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Sumário 
 
 

Este trabalho é sobre a combinação de óxidos ferroelétricos funcionais com 
nanotubos de carbono (CNTs) para aplicações na microeletrónica, como por 
exemplo em potenciais memórias ferroelétricas não voláteis (Non Volatile 
Ferroelectric Random Access Memories (NV-FeRAM)) de estrutura tridimensional 
(3D).  

A eletrónica miniaturizada é nos dias de hoje omnipresente. 

A necessidade de reduzir o tamanho dos componentes eletrónicos tem sido 
estimulada por necessidades de maior desempenho em dispositivos de menores 
dimensões e a custos cada vez mais baixos. Mas esta tendência de miniaturização 
da eletrónica desafia consideravelmente os processos de fabrico, os materiais a 
serem utilizados nas montagens das placas e a fiabilidade, entre outros aspetos. 
Dispositivos semicondutores e tecnologia de circuitos integrados, juntamente com 
a embalagem eletrónica associada, constituem a espinha dorsal dos sistemas 
eletrónicos miniaturizados de alto desempenho. No entanto, à medida que o 
tamanho diminui e a funcionalização aumenta, a redução das dimensões destes 
dipositivos é cada vez mais difícil; é bem conhecido que abaixo de um tamanho 
limite o desempenho do dispositivo deteriora-se. Assim, a miniaturização da 
eletrónica à base de silício tem limitações. 

É precisamente neste contexto que desde 2011 o Road Map for Semiconductor 
Industry (ITRS) sugere tecnologias alternativas às atualmente em uso, designadas 
por Mais de Moore (More than Moore); sendo uma delas com base em carbono 
(CNTs e grafeno) [1]. 

Os CNTs com o seu desempenho único e tridimensionalidade à escala 
nanométrica, foram considerados como elementos muito promissores para a 
eletrónica miniaturizada [2]. Nanotubos de carbono possuem uma geometria 
tubular e um conjunto único de propriedades, incluindo o transporte balístico de 
eletrões e uma capacidade enorme de transportar a corrente elétrica, o que os 
tornou de grande interesse para o futuro da microeletrónica [2]. Na verdade, os 
CNTs podem ter um papel fundamental na miniaturização das memórias 
ferroelétricas não voláteis (NV-FeRAM). A mudança de uma construção 
tradicional bidimensional (2D) (ou seja, a duas dimensões, como são os filmes 
finos) para uma construção tridimensional 3D, com base num arranjo 
tridimensional de estruturas unidimensionais (1D), como são as estruturas 
nanotubulares, resultará num desempenho melhorado com deteção de sinal 
elétrico optimizada, devido à grande contribuição do elétrodo inferior. Uma 
maneira de conseguir esta configuração 3D é usando nanotubos de carbono. 

Os materiais ferroelétricos (FE) são polarizados espontaneamente e possuem 
constantes dielétricas altas e as suas propriedades piroelétricas, piezoelétricas e 
eletroópticas tornam-nos materiais funcionais importantes na eletrónica, sendo 
uma das suas aplicações chave em memórias eletrónicas. 

No entanto, combinar os nanotubos de carbono com óxidos FE funcionais é um 
desafio. Começa logo com a compatibilidade entre os materiais e o seu 
processamento, já que as temperaturas de cristalização do FE e as temperaturas 
de oxidação dos CNTs se sobrepõem. Neste caso, o processamento a baixa 
temperatura dos óxidos FE é absolutamente fundamental. 

 

  



  

 

 

 

 

 

 

 

 

 

 

Dentro deste contexto, neste trabalho foi realizado um estudo sistemático sobre a 
fabricação e caracterização estruturas combinadas de CNTs – FE, usando 
métodos de baixa temperatura e de baixo custo. Os FE em estudo foram 
compostos de titanato zirconato de chumbo (Pb1-xZrxTiO3, PZT), titanato de bário 
(BaTiO3, BT) e ferrite de bismuto (BiFeO3, BFO). Os diversos aspetos relacionados 
com a síntese e fabricação, como efeito sobre a estabilidade térmica dos 
nanotubos de carbono multiparede (multiwall CNTs, MWCNTs), formação da fase 
FE na presença de MWCNTs e interfaces entre CNTs / FE foram abordados neste 
trabalho. A resposta ferroelétrica medida localmente através de microscopia de 
ponta de prova piezoelétrica (Piezoresponse Force Microscopy (PFM)), evidenciou 
claramente que, mesmo para baixas temperaturas de processamento óxidos FE 
sobre CNTs mantém a sua natureza ferroelétrica. 

O trabalho começou pela identificação do comportamento de decomposição 
térmica em diferentes condições dos nanotubos utilizados neste trabalho. 
Verificou-se que os MWCNTs purificados são estáveis até 420 ºC no ar, já que não 
ocorre perda de peso sob condições não isotérmicas, mas foram observadas, por 
espectroscopia Raman e microscopia eletrónica de transmissão (TEM), alterações 
na morfologia dos tubos para condições isotérmicas a 400 ºC. Em atmosfera rica 
em oxigénio os MWCNTs começam a oxidar-se a 200 ºC. No entanto, em 
atmosfera rica em árgon e sob uma taxa de aquecimento elevada os MWCNTs 
permanecem estáveis até 1300 ºC com uma sublimação mínima. A energia de 
ativação para a decomposição destes MWCNTs em ar foi calculada situar-se entre 
80 e 108 kJ / mol. 

Estes resultados são relevantes para a fabricação de estruturas MWCNTs - FE. 
De facto, demonstramos que o PZT pode ser depositado por sol-gel a baixas 
temperaturas sobre MWCNTs. E, particularmente interessante foi provar que a 
presença de MWCNTs diminui a temperatura e tempo para a formação de PZT, 
em cerca de ~ 100 ºC comensuráveis com uma diminuição na energia de ativação 
de 68 ± 15 kJ / mol a 27 ± 2 kJ / mol. Como consequência, foi obtido PZT 
monofásico a 575 ºC para as estruturas MWCNTs – PZT, enquanto que para PZT 
(na ausência de MWCNTs) a presença da fase de pirocloro era ainda notória a 650 
ºC e onde a fase de PZT foi formada por nucleação homogénea. A natureza 
piezoelétrica das estruturas de MWCNTs - PZT sintetizadas a 500 ºC por 1 h foi 
provada por PFM. 

Na continuação deste trabalho foi desenvolvida uma metodologia de baixo custo 
para revestimento de MWCNTs usando uma combinação entre o processamento 
sol – gel e o processamento hidrotermal. Neste caso o FE usado como prova de 
conceito foi o BT. BT é uma perovesquita sem chumbo bem conhecida e utilizada 
em muitas aplicações microeletrónicas. No entanto, a síntese por reação no estado 
sólido é normalmente realizada entre 1100 - 1300 ºC o que coloca seriamente em 
risco a combinação com MWCNTs. Neste âmbito, também se ilustrou claramente 
a ineficácia da síntese hidrotérmica convencional, devido à formação de 
carbonatos, nomeadamente BaCO3. As estruturas MWCNTs - BT aqui preparadas 
são ferroelétricas e exibem resposta electromecânica (15 pm / V). Considera-se 
que estes resultados têm impacto elevado, uma vez que esta estratégia também 
pode ser estendida a outros compostos de materiais com elevadas temperaturas 
de cristalização. Além disso, foi também verificado no decurso deste trabalho que 
a cobertura de MWCNTs com FE pode ser optimizada, neste caso com 
funcionalização não covalente dos tubos, ou seja, por exemplo com sodium 
dodecyl sulfate (SDS). 

 

  



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Ainda no decurso deste trabalho, os MWCNTs foram utilizados como modelos / 
andaimes (templates) para crescer, neste caso, nanorods de multiferroicos de 
BFO. Mostrou-se que o uso de solventes nítricos promove danos severos nas 
paredes dos MWCNTs, o que resulta na oxidação prematura dos tubos durante o 
tratamento de recozimento. Observou-se também que a utilização de solventes 
nítricos resulta no enchimento parcial dos MWCNTs com BFO, devido à baixa 
tensão superficial (<119 mN / m) da solução de nitrato. A abertura dos topos dos 
tubos e o enchimento dos tubos ocorre simultaneamente durante a etapa de 
refluxo. Verificou-se ainda que os MWCNTs tem um papel crítico na fabricação de 
BFO monofásico; isto é, a oxidação de nanotubos de carbono durante o processo 
de recozimento faz com que a atmosfera deficiente em oxigénio, que é gerada 
como consequência, restrinja a formação das fases secundárias de Bi2O3 e se 
possa obter BFO monofásico. A morfologia das nano estruturas de BFO obtidas 
indica que os MWCNTs podem atuar como molde ou andaime (template) para 
crescer estruturas 1D de BFO. Medidas magnéticas nestas nano estruturas 
revelam uma curva de histerese ferromagnética pouco desenvolvida com um 
campo coercivo de 956 Oe a 5 K. 

Também se explorou o possível uso de CNTs alinhados verticalmente (VA-
MWCNTs) como elétrodos de base para dispositivos de microeletrónica, por 
exemplo, para aplicações de memória. Como prova de conceito foram depositados 
in-situ filmes de BFO na superfície dos VA-MWCNTs por pulverização catódica por 
rádio frequência (rf sputtering). Para uma temperatura de deposição de 400 ºC e 
tempo de deposição de até 2 h, filmes de BFO cobriram os VA-MWCNTs e não 
ocorreram danos tanto no filme como nos MWCNTs. Apesar do comportamento 
macroscópico destes filmes de BFO sobre VA-MWCNTs apresentar perdas 
dieléctricas, a natureza ferroeléctrica, estrutura de domínios e sua inversão foi 
confirmada por PFM. Uma histerese ferromagnética pouco desenvolvida com um 
campo coercivo 700 Oe, caracterizam o comportamento magnético destas 
estruturas.  

O nosso trabalho sistemático é um passo significativo para o  desenvolvimento de 

células de memória 3D; foi assim claramente demonstrado que os nanotubos de 

carbono podem ser combinados com óxidos FE, para serem por exemplo usados 

na próxima geração 3D de memórias ferroelétricas não voláteis, não excluindo, 

no entanto, outras potenciais aplicações na eletrónica. 
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Abstract 

 
 
 

This work is about the combination of functional ferroelectric oxides with Multiwall 
Carbon Nanotubes for microelectronic applications, as for example potential 3 
Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NV-
FeRAM). 

Miniaturized electronics are ubiquitous now. 

The drive to downsize electronics has been spurred by needs of more performance 
into smaller packages at lower costs. But the trend of electronics miniaturization 
challenges board assembly materials, processes, and reliability. Semiconductor 
device and integrated circuit technology, coupled with its associated electronic 
packaging, forms the backbone of high-performance miniaturized electronic 
systems. However, as size decreases and functionalization increases in the modern 
electronics further size reduction is getting difficult; below a size limit the signal 
reliability and device performance deteriorate. Hence miniaturization of silicon-
based electronics has limitations. 

On this background the Road Map for Semiconductor Industry (ITRS) suggests 
since 2011 alternative technologies, designated as More than Moore; being one of 
them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. 

CNTs with their unique performance and three dimensionality at the nano-scale 
have been regarded as promising elements for miniaturized electronics [2]. CNTs 
are tubular in geometry and possess a unique set of properties, including ballistic 
electron transportation and a huge current caring capacity, which make them of 
great interest for future microelectronics [2]. Indeed CNTs might have a key role in 
the miniaturization of Non Volatile Ferroelectric Random Access Memories (NV-
FeRAM). Moving from a traditional two dimensional (2D) design (as is the case of 
thin films) to a 3D structure (based on a tridimensional arrangement of 
unidimensional structures) will result in the high reliability and sensing of the signals 
due to the large contribution from the bottom electrode. One way to achieve this 3D 
design is by using CNTs. 

Ferroelectrics (FE) are spontaneously polarized and can have high dielectric 
constants and interesting pyroelectric, piezoelectric, and electrooptic properties, 
being a key application of FE electronic memories. 

However, combining CNTs with FE functional oxides is challenging. It starts with 
materials compatibility, since crystallization temperature of FE and oxidation 
temperature of CNTs may overlap. In this case low temperature processing of FE 
is fundamental. 

Within this context in this work a systematic study on the fabrication of CNTs - FE 
structures using low cost low temperature methods was carried out. The FE under 
study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate 
(BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the 
fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in 
presence of MWCNTs and interfaces between the CNTs/FE are addressed in this 
work.  

  



  
 
 
 
 
 
 
 
 
 
 
 

 The ferroelectric response locally measured by Piezoresponse Force Microscopy 
(PFM) clearly evidenced that even at low processing temperatures FE on CNTs 
retain its ferroelectric nature. 

The work started by verifying the thermal decomposition behavior under different 
conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that 
purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non 
isothermal conditions, but morphology changes were observed for isothermal 
conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy 
(TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However 
in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 
ºC with a minimum sublimation. The activation energy for the decomposition of 
MWCNTs in air was calculated to lie between 80 and 108 kJ/mol.  

These results are relevant for the fabrication of MWCNTs – FE structures. Indeed 
we demonstrate that PZT can be deposited by sol gel at low temperatures on 
MWCNTs. And particularly interesting we prove that MWCNTs decrease the 
temperature and time for formation of PZT by ~100 ºC commensurate with a 
decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, 
monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT 
traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to 
homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised 
at 500 ºC for 1 h was proved by PFM. 

In the continuation of this work we developed a low cost methodology of coating 
MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as 
a proof of concept was BT. BT is a well-known lead free perovskite used in many 
microelectronic applications. However, synthesis by solid state reaction is typically 
performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. 
We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this 
process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT 
structures are ferroelectric and exhibit an electromechanical response (15 pm/V). 
These results have broad implications since this strategy can also be extended to 
other compounds of materials with high crystallization temperatures. In addition the 
coverage of MWCNTs with FE can be optimized, in this case with non covalent 
functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). 

MWCNTs were used as templates to grow, in this case single phase multiferroic 
BFO nanorods. This work shows that the use of nitric solvent results in severe 
damages of the MWCNTs layers that results in the early oxidation of the tubes during 
the annealing treatment. It was also observed that the use of nitric solvent results in 
the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) 
of the nitric solution. The opening of the caps and filling of the tubes occurs 
simultaneously during the refluxing step. Furthermore we verified that MWCNTs 
have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs 
during the annealing process causes an oxygen deficient atmosphere that restrains 
the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of 
the obtained BFO nano structures indicates that MWCNTs act as template to grow 
1D structure of BFO. Magnetic measurements on these BFO nanostructures 
revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 
K. 

 
 

  



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
We also exploited the possible use of vertically-aligned multiwall carbon nanotubes 
(VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory 
applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on 
the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in 
situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover 
the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of 
the macroscopic lossy polarization behaviour, the ferroelectric nature, domain 
structure and switching of these conformal BFO films was verified by PFM. A week 
ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a 
coercive field of 700 Oe.  

Our systematic work is a significant step forward in the development of 3D memory 
cells; it clearly demonstrates that CNTs can be combined with FE oxides and can 
be used, for example, as the next 3D generation of FERAMs, not excluding however 
other different applications in microelectronics. 
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1.1 Problem statement 

The field of electronics is growing exponentially from the last decade and so. This 

progress is well seen from the miniaturization of devices, devices with multi-functionality 

and high data transfer rate (4G technology expected to move to 5G by 2025). 

In today’s world, we all are connected with each other by wireless technology 

using smart phones and smart devices. All the devices are connected by internet network. 

The day is not far when we live in ultra-digitally responsive world, where more things are 

exponentially connected to the internet than people. Thomson Reuters predict by 2025 

that this digital connectivity will encompass and join vast geographies [1]. The rising of 

digitization demands new set of systems, circuits architectures and materials, which can 

further support the reduction of the size of the devices, increasing the energy storage 

capacity with high charging rate and memories with high data storage capacity. Thanks 

to the recent progress in the improvement of semiconductors, development of graphene 

and carbon nanotubes (CNTs) these predictions will be soon a reality. 

Within the electronics industry, one of the major trends in these last few years has 

been the ability to exponentially decrease the minimum feature size used to fabricate 

integrated circuits in accordance with Moore’s Law [2]. But this miniaturization trend 

challenges board assembly materials, processes, and reliability. Nevertheless the 

miniaturization of silicon-based electronics has limits. On this background the Road Map 

for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, 

designated as More than Moore; being one of them based on the use of carbon (carbon 

nanotubes (CNTs) and graphene) [3]. The ITRS has specifically suggested that carbon 

nano structures, and carbon-based nano composites in particular, are part of the driving 

force behind this transformation, and are poised to take centre stage in high-energy 

density and power-density applications for microelectronics. Carbon nano composites can 

be used as supercapacitive electrodes, either in two-or-three-dimensional structures, with 

high surface area.  

One of the areas of microelectronics where further miniaturization is getting 

difficult is the area related with Non-Volatile Ferroelectric Random Access Memory 

(NV-FeRAM). 
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FeRAM is the memory storage device similar to a dynamic random access 

memory (DRAM), in which instead of a dielectric it uses of ferroelectric (FE) material, 

typically as lead zirconium titanate (PbZr1-xTixO3, PZT). FRAM stores information using 

the polarization of a ferroelectric material placed between two electrodes. At present the 

memory cells are in the form of planar or stack cells as illustrated in Figure 1-1 (a), where 

the FE layer is embedded between the top and bottom electrodes and the thickness of the 

FE layer is from 90 to 150 nm. Further reduction of the FE thickness results in the 

lowering of the signals below 100 fC (this is the comfort zone for FeRAM cell according 

to 1T -1C design) and results in a poor signal reliability, cross talk between the memory 

cells and high leakage current [4]. 

The possible solution for this problem is to radically alter the configuration and 

substitute this classical two dimension (2D) memory cell structure by a completely new 

one, based on a three dimension (3D) structure cell design (Figure 1-1 (b)), taking 

advantage of one dimension (1D) nanostructures. The 3D memory cells structure provides 

large areas for bottom and top electrodes resulting in enhancement of capacitance and 

signal strength. Moreover, it was predicted theoretically that 1D structures increase the 

storage capacity up to 10,000-fold [5, 6]. Not only in memory cells, the 3D FE structures 

in form of nanotrenchs, nano rods, nano bars and nanotubes have a vast set of 

applications, such as energy harvesters, microfluidic systems, electrocaloric coolers for 

computers, phased-array radar, high-power microwave devices, among others [7]. Very 

recently Intel Corporation has develop a 3D transistor part of the 13 quad core processors 

having 20 % better performance with 20 % less power consumption than predecessor [8].  

One possible way to get 3D FE cells is to use carbon nanotubes (CNTs) as bottom 

electrode or template to fabricate FE nanostructures, due to its tubular shape, high 

conductivity, ballistic electron transport and a huge current - carrying capacity, which 

make them of great interest [11]. For memories applications CNTs can act as a bottom 

electrode, on which FE is deposited as shown in Figure 1-2 (a) or interconnects as in 

transistors and as the channel material in 3 D Field Effect Transistor (FET) (Figure 1-2 

(b)) [11]. 
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Figure 1-1 (a) Memory cell for FeRAM with one transistor and one capacitor (1T1C) 

architect planar structure, where bottom electrode is in shape of 2D structure (film) [9] 

and (b) Schematic illustrates 3D FeRAM cell where bottom electrode is in shape of tube, 

inset on top left shows the possible schematic of the 3D FeRAM [10]. 

However these new configurations for FE applications raised many questions that 

need to be answered before any prototype demonstration and fabrication: Will CNTs 

work as bottom electrode? How can CNTs be integrated with FE materials, when 

oxidation temperature and phase formation temperature of FE is so close? How will the 

(b) 

(a) 
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interfaces between FE and CNTs affect the electrical performance. These are some of the 

many questions to be answered in these new structural designs. 

  

Figure 1-2 Schematic illustration of the possible use of CNTs as a bottom electrode (1 D 

structure) (a) and for 3D memory cell design covered with FE (b) use of CNTs as a 

channel in FET transistor (adapted from [12]). 

The combination of CNTs with FE can be an elegant approach to reduce capacitor 

size in integrated FeRAM circuits as well. Pursuing this idea, Kawasaki et al. [13] (year 

2007) combined successfully for the first time FE thin films and MWCNTs. The authors 

demonstrated the possibility of conformably coating Multi Wall CNTs (MWCNTs) with 

high-dielectric oxide as a first step toward ultrahigh integration density of three-

dimensional FeRAM. However, this is a very preliminary work and the authors reported 

several problems associated with carbon lattice damage, siphoning of the substrate 

material and the stoichiometry of PZT that need to be addressed. Till today there are only 

a few reports on the combination of FE with CNTs [13-31]. And most of the literature 

lacks in systematic studies on the phase formation of FE in presence of CNTs, interface 

studies and measurement of FE properties. The detail summary on the state of the art on 

CNTs-FE nano structures is given in Chapter 2. Anyhow these works are important being 



 

Ferroelectric – Carbon Nanotubes (CNTs) structures fabrication for advanced functional nano devices   
6 

Scientific motivation and rationale 

considered as landmarks, since they demonstrated the feasibility of the fabrication of 

CNTs-FE nano structures. These previous also highlight the need for more systematic 

works on the fabrication of these CNTs-FE nanostructures and somehow supporting the 

R&D performed in the present work. At the same time the development of lead free FE 

and lead free multiferroic 3D nanostructures is pertinent and highly desirable, as well.  

Therefore the main aim of the present work is fabrication and characterization of 

CNTs-FE structures to: i) identify optimised fabrication strategies, as compatibility of 

both materials is an issue, ii) accumulate new knowledge on CNTs–FE interface 

phenomena as the structure properties are largely determined by them, iii) exploit 

different structures as embryonic forms of high density hard-wired FRAM capacitor 

arrays and iv) measure the ferroelectric response of the CNTs-FE. 

The novelty and originality of these studies include: 

-synthesis of functional nanostructures of 1D nano lead based, lead free ferroic 

structures with CNTs, in which CNTs will be used as the template or bottom conductor 

to fabricate 1D ferroelectric nanostructures;  

-to exploit low cost hydrothermal / chemical methods to grow FE on CNTs; 

-to study systematically interfaces/surface modification between CNTs and FE to 

optimize their growth;  

-to measure local electrical properties of MWCNTs-FE structures using piezo 

force microscope (PFM); 

Materials for FeRAM are selected based on the properties, which are considered 

to be the most important in the operation of memory devices and based on processing 

requests as well [10] and these are:  

-the remanent polarization (Pr), that need to be as high as possible, so that sensing 

margin between the two states is well defined; 

-the coercive field (Ec) should be small so that device can operate at low voltage;  
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-the fatigue is other aspect to be considered; it is defined as the steady loss of 

 remanent polarization of the material and should be minimal; 

-the retention state over time, this need to be about ten year’s retention at 85 ºC; 

-the crystallization temperature needs to be as low as possible so that FE can be 

easily integrated on a chip. 

Because commercially in use, PbZr0.52Ti0.48O3 (PZT) and BaTiO3 (BT) are the 

first choice as a material for our studies. Both PZT and BT depict excellent 

polarization/electric field response. And they have been used as material for sensors, 

FeRAMs, capacitors and in electro optic devices. In 2006 Fujitsu announced bismuth 

ferrite (BiFeO3, BFO) as the FE for FeRAM [32]. In addition because BFO, is one of the 

true single phase multiferroic materials having high polarization (~45 µC/cm2), besides 

being a lead free material make it an obvious choice for our studies, as well. Therefore, 

the materials under study in this work are: lead free BT and BFO and lead based PZT to 

fabricate CNTs-FE nano structures. General properties of all the three selected FE are 

mentioned in Table 1-1.  

1.2 Outline of the thesis 

This chapter (Chapter 1) presents the motivation and the objective of the present 

work. In Chapter 2 a detailed introduction of carbon nanotubes (CNTs) for electronics, 

to the basics of ferroelectricity and ferroelectric materials and the comprehensive 

discussion on ferroelectric behaviour at the nano scale and in nanostructures, passing by 

the fabrication of MWCNTs-FE composite is reported. Chapter 3 describes the 

experimental details carried out along the work, including the purification and 

functionalization of the MWCNTs used in this work, followed by a concise description 

on the characterization techniques and conditions used in the present work. Some of the 

experimental details concerning materials preparation are detailed later in Chapters 5 to 

7 for each case study. The results obtained in this work and discussion are presented in 

next four chapters. Chapter 4 is dedicated to the thermal degradation studies conducted 

on MWCNTs used in this work. The following chapters report the several cases studies 

of this work based of each of the FE material used to combine with MWCNTs. Chapter 
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5 reports on the structures of MWCNTs-PZT. Chapter 6 describes the work on 

MWCNTs-BT and Chapter 7 present the work on MWCNTs-BFO. General conclusions 

and future work are presented in Chapter 8. 

Table 1-1 Physical properties of the selected ferroelectric materials to be studied in this 

work. The presented properties refer to performance as in 2D films.  

Properties 

PbZr0.52Ti0.48O3 

(PZT) on platinum 

coated silicon 

substrate [33] 

BaTiO3 (BT) on 

platinum coated 

silicon substrate 

[34] 

BiFeO3 (BFO) 

on SrRuO3 

coated silicon 

substrate [35] 

Pr(µC/cm2) >30 ~10 ~45 

Coercive field (Ec) 

(kV/cm) 
~150 ~35 ~200 

Crystallization 

temperature (oC) 
650-700 700-750 650-700 

Curie temperature 

(oC) 
~390 ~120 ~830 

Fatigue >1010 - - 
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Chapter 2 

2 Fundamentals and state of the art 
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Abstract  

The purpose of this chapter is to provide the background of the current work by 

presenting a review on the state of the art of the most significant topics. It starts by 

emphasising the importance of carbon in microelectronics followed by the presentation 

of the most important concepts, nomenclature and knowledge on Carbon Nanotubes 

(CNTs), as synthesis, electrical properties and dependence on temperature and pressure 

of the physical properties of CNTs. The basic concepts and definitions of piezoelectricity 

are introduced after and followed by details on ferroelectrics. A brief review on 

ferroelectric behaviour and size effects of ferroelectrics is subsequently presented. The 

literature review on the CNTs-FE structures covers the available information on the topic. 

The chapter further includes details on the two major synthesis approaches, top- down 

and bottom up, used for the fabrication of nano structured materials, precisely nano 

ferroelectrics. The chapter ends with a summary of the presented concepts, indicates the 

opportunities and challenges if carbon-based electronics will be further exploited. 
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2.1 Carbon nanotubes for electronics 

2.1.1 Why CNTs might be useful in microelectronics? 

The Holy Grail for semiconductor industries is to keep following Moore´s law [2], 

in what concerns the scaling of conventional silicon based integrated circuits to even 

smaller feature sizes. The smallest element printed on the chip in repeatedly array or the 

half pitch of the DRAM is known as feature size. From the last 45 years the feature size 

has been reduced from 10 µm to 22 nm in silicon microelectronic devices [8]. The small 

features have been mainly fabricated by lithography processes, but it’s getting difficult to 

further achieve small feature sizes without affecting the electrical properties of the 

devices. Continuous scaling of devices on silicon based microelectronics is getting 

difficult and companies are exploring new sets of nano-materials such as CNTs and 

graphene in order to go beyond silicon based microelectronics [36]. The global market 

revenue for CNTs is expected to reach $2,398.4 million by 2018 in various sector 

including microelectronics [37]. 

CNTs is the prime material under consideration due to its extraordinary electrical 

and mechanical properties. In addition to this, it has quasi one dimension (1D) structure 

which helps in unidirectional current flow and long mean free path (up to few hundred 

nanometer). CNTs can offer scattered free ballistic transportation for small channel 

devices, hence low power dissipation and has good thermal conductivity [38, 39]. The 

above properties make CNTs as a perfect channel material for Field Effect Transistors 

(FET). Digital circuits based on transistors fabricated from CNTs have the potential to 

outperform silicon by improving the energy efficiency of the product by more than one 

order of magnitude. Hence, CNTs are a promising complement to the existing 

semiconductor technologies [40]. 

The first potential use of semiconducting single wall CNTs (SWCNTs) with a 

diameter of 1 nm was demonstrated in 1998 by the University of Delft and IBM 

Corporation for field effect transistors (FET) (Figure 2-1) [41, 42]. In FET the SWCNTs 

are used as a channel material. They demonstrated that the conductance of semiconductor 

SWCNTs can be modified by an order of magnitude (~ 105) by externally applying a gate 

(

b) 
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voltage, similar to that of a metal–oxide–semiconductor field-effect transistor 

(MOSFET). Transistors made from CNTs depict 20 times less switching resistance and 

200 times more current handling capacities than conventional MOSFETs. This was a 

revolutionary finding among the scientific community that demonstrates the potential 

usefulness of CNTs FET. The reports on the first use of CNTs in digital circuit application 

came in 2001, when CNT - based logic gate by integrating n-type and p-type nanotube 

transistors was demonstrated. [43-45]. n and p type semiconductor CNTs can be prepared 

by the integration of metals with different work functions (smaller for the case of n-type 

and higher for p-type semiconductor, respectively) [46, 47]. The potential of CNTs was 

also explored for the Radio frequency (RF) applications as a planar RF transistors, self-

aligned T-gate RF transistors and transistors with embedded bottom gate [48-50]. 

 

Figure 2-1 Atomic force micrograph of FET device constructed using single wall carbon 

nanotubes [41, 42]. 

CVD grown CNTs can be processed into thin films of CNTs by solution transfer 

methods. The thin films of CNTs have a great potential application for flexible devices. 

These films have excellent transparency which makes them a preferential material for 

future electronics displays. The potential of semiconducting CNTs for thin films 
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transistors (TFTs) was demonstrated [51-53]. CNTs TFTs have been employed as active 

matrix organic light-emitting diode (AMOLED) arrays [19]. The schematic diagram of 

one pixel of organic light-emitting diode (OLED) controlled by CNTs network based 

driver circuit is given in Figure 2-2 (a). This is the first demonstration of AMOLED arrays 

with 500 pixels driven by 1000 CNT TFTs. Figure 2-2 (b) depicts AMOLED arrays 

fabricated on glass substrates. Figure 2-2 (c) shows an optical image for the OLEDs lights 

on CNT TFTs with yield efficiency of 70 %. CNTs TFTs has also been employed in the 

control of circuits for pressure sensing elements in electronic skin (Figure 2-3) [54]. It 

was proved that this flexible CNTs network-based FETs can be processed at room 

temperature, hence less expensive what is indeed important from the industrial and 

consumer point of view [53]. 

More recently in 2013, Shulaker et al. [55] demonstrate the first CNTs based 

computer. This computer is entirely built on CNTs-based transistors in which CNTs are 

used as channel material. The CNTs computer runs an operating system that is capable of 

multitasking.  

 

 

(a) 
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Figure 2-2 (a) Schematic diagram for the construction of one pixel of OLED controlled 

by CNTs, (b) Arrays of AMOLED fabricated on transparent glass substrate and (c) 

illuminating arrays of green light of AMOLED with the CNTs based network circuit [56].  

 

 

Figure 2-3 Represent the pressured OLEDs containing FETs where CNTs are used as 

channel material [54]. 

(c) (b) 
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Other than FETs, CNTs have been studied for interconnectors applications due to 

its high current density up to 109 A/cm2 which is more than 100 times that of copper and 

high surface area. In CMOS two kinds of interconnectors are used, named as horizontal 

and vertical interconnectors (Figure 2-4). Horizontal interconnectors join FETs in 

different parts of an integrated circuit. There are many layers of horizontal interconnectors 

in CMOS and each layer is separated by a dielectric. The vertical interconnectors called 

as vias, and they pass through holes in the dielectric to join horizontal interconnectors to 

the source and drain or gate electrode of a FET as shown in Figure 2-4 [11]. Defect free 

MWCNTs with sizes ranging from 20 to 100 nm in bundles or as individual have proven 

the potential to be used as metallic interconnectors. The high thermal conductivity of 

CNTs is also very useful for chip thermal management and dissipation of heat in devices 

[57]. Fujitsu Ltd. and Infineon Technologies AG have carried out extensive studies on 

the fabrication of interconnectors [58-60]. 

The high surface area of CNTs depicts, make them ideal material to fabricate 

sensors with high sensitivity. CNTs transistors was tested as sensor and depicts high 

sensitivity to low concentration of NO2 and NH3 [61].The CNT transistor shows the 

increase in conductance when come in contact with NO2 and NH3. The phenomena was 

interpreted by the charge transfer mechanism between gasses and CNTs. Further, 

development shows the CNT transistor based sensors can detect 100 ppm level of NO2 

gas [62]. 

Nantero Inc. demonstrated the use of MWCNTs sandwiched between two metallic 

electrodes to form resistive Nanotube based / Non-volatile random access memory 

(NRAM) cell. Figure 2-5 (a) shows the SEM micrograph of NRAM cell where CNTs are 

embedded inside the tungsten electrodes. Figure 2-5 (b) shows the various steps followed 

to fabricate the NRAM cells from the heterostructure of SiO/TiN/CNT/W. The memory 

works based on the principle of change in the resistance that occurs due to the interaction 

between CNTs attach on the top and bottom electrode shown in Figure 2-5 (c) [32].  

The first commercial application for CNTs in microelectronics was realized as a 

composite with polymer (polycarbonate-ABS), which is used as electric discharge 

material in automobiles [63]. Other than electric discharge application composites based 

on CNTs can be used as electromagnetic interference shielding, as well [64]. 



 

Ferroelectric – Carbon Nanotubes (CNTs) structures fabrication for advanced functional nano devices         
16 

Fundamentals and state of the art 

 

Figure 2-4 Schematic of the two kinds of interconnects in which CNTs can be used in 

CMOS circuitry design (adapted and modified from [11]). 

One of the areas of microelectronics where further miniaturization is getting 

difficult is the area of memories, in particular Non Volatile Ferroelectric Random Access 

Memory (NV-FERAM) (detailed in Chapter 1). Therefore, there is need to move from 

2D designs to 3D design which results in the high reliability and sensing of the signals 

due to the large contribution from bottom electrode. One way to achieve this 3D design 

is using CNTs. CNTs are tubular in geometry and have unique set of properties, including 

ballistic electron transportation and a huge current caring capacity, this make them of 

great interest for future FeRAM [11]. The idea of using CNTs covered with dielectric 

material for Nanoelectromechanical dynamic random access memory non-volatile was 

first put forward by Jang et al. [14], later followed for non-volatile ferroelectric memory 

[21].  

To integrate CNTs with complex functional oxide such as ferroelectric there is 

need for detail and comprehensive assessment on various aspects, mainly on synthesis 

and properties. So that CNTs can be effectively used for microelectronic devices 
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applications. Some of initial investigation has been carried out and its details are 

mentioned in section 2.5. 

 

 

Figure 2-5 (a) Scanning electron micrograph of NRAM cell based on CNTs, (b) schematic 

of layer heterostructure of SiO, TiN and CNTs, which was litho followed by etching to 

obtained NRAM cells and (c) working of the CNTs based RAM on the principle of change 

in resistance; on left the CNTs are in contact so low resistance “on” state and on right 

CNTs are not in contact “off” state [32]. 

2.2 Introduction to carbon nanotubes (CNTs) 

Most of the literature has been credited the discovery of carbon nanotubes (CNTs) 

to Sumio Iijima (1991). However, it know by now that first electron micrograph published 

back in 1952 by Radushkevich and Lukyanovich in the Journal of Physcial Chemistry of 

Russia [65]. The micrograph shows the carbon filaments exhibiting a inner cavity having 

(c) 

(a) (b) 
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diameter of 50 nm. However, the work might be not highlighted due to the cold war and 

discouraging of citing articles written in Russian language by west. Iijima work has get 

maximum importance because of the fundamental physics and systematic growth 

mechanism discussed on the formation of CNTs [66].  

In the following years, the properties of CNTs were studied theoretically and 

exploited by different experimental methods. CNTs show extraordinary charge carrier 

mobility (2 - 6) × 104 cm2/(V·s)), with a band gap (1 eV) dependent on the specific 

ordering of carbon atoms in the nanotube, and a maximal electrical current density of 

>109 A/cm2 (~100 times higher than copper wires). In addition CNTs has Young’s 

modulus of 0.8 to 1.8 TPa and tensile strength of ~63 GPa far better than steel (Young’s 

modulus ~0.2 TPa and tensile strength 1.55 GPa) [67-69]. The electrical properties of 

CNTs are mainly dependent on the chirality (tube diameter and wrapping angle 

determined by vector (m, n)), which creates a big challenge in terms of CNTs synthesis 

to develop a method by which one can control the chirality of the tubes. The task of 

producing samples containing CNTs of a specific chirality is difficult and is still open for 

further research [70]. In spite of that, CNTs have found already vast applications when 

used as fillers in composites to strengthen the mechanical properties of materials, 

especially oxides and polymers [71]. 

CNTs are formed by rolling a graphite sheet in to a seamless hollow cylinder. The 

CNTs are classified based on the rolling direction to get different diameter and helicity 

of the tubes. The circumference of CNTs is determined by the chiral vector C⃗ h, that is 

defined by C⃗ h = ma1̂ + na2̂ , where m and n are integers and â1 and â2 are unit vectors as 

represented in Figure 2-6 [72]. The chiral vector of graphene sheet becomes a 

circumferential line of the tubes when they are rolled to form CNTs. The CNTs with a 

roll-up vector of the form n = m are called armchair tubes and chiral vector angle is 30º. 

Zigzag tubes are characterized by the roll-up vector, either n or m, being zero and the 

chiral vector equal to 30º. Both zigzag and armchair are achiral tubes and all other tubes 

are known as chiral tubes or helical, where n ≠ m and chiral vector angle lies between 0 

and 30º. The diameter of the tubes, d, is defined as:  
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d =  

a√m2 + mn + n2

π
 

Equation 2-1 

where a is the C-C bond length of the graphene sheet. 

CNTs are further divided by the number of graphene sheets rolled to form 

concentric graphene sheets. If seamless tube form from the rolling of single sheet of 

graphene it is called a Single Wall CNTs (SWCNTs). If two sheets are rolled to form 

concentric circle these are known as Double Wall CNTs (DWCNTs). The third type are 

called Multi Wall CNTs (MWCNTs), where concentric graphene tubes are stacked one 

into the other (Figure 2-7). MWCNTs were the ones described in the landmark paper of 

Iijima [73]. The discovery of SWCNTs came later in 1993 [74, 75]. 

 

 

Figure 2-6 A sheet of graphene rolled to in particular directions to form three different 

kind of single walled carbon nanotubes, named as armchair, zigzag and chiral [72, 76]. 
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Figure 2-7 Classification of CNTs based on the no. of graphene sheets rolled 

concentrically single wall CNTs, double wall CNTs and multi wall CNTs (from left to 

right ) [77]. 

2.2.1 Electronic properties of CNTs 

CNTs depict metallic, semi metallic and semiconductor (with band gap of 1 eV) 

properties. The electrical properties are mainly dependent on the values of n and m, as 

first predicted by Saito [71, 72, 78, 79]. It was found that depending on the chiral vector 

1/3rd of the nanotubes are metallic and 2/3rd of them are semiconducting. Armchair 

nanotubes are always metallic, while other chirality can be metallic or semiconducting. 

In CNTs C atoms form both σ and π bonds. In CNTs lattice the unhybridized π orbitals 

are responsible for the transportation of the π electrons through the nanotubes. In the axial 

direction the π electrons move freely throughout the lattice due to no constrictions [72], 

whereas in the radial direction electrons are confined by the monolayer thickness of the 

graphene sheet [69]. There is a destructive interface of electrons (as wave) by itself if the 

wavelength of the electron is not a multiple of the circumference of the nanotubes [80]. 

Therefore the dominant conduction path in CNTs is along the axis of the tubes. The 

rolling of the graphene sheet results in the π orbitals more delocalized outside the CNTs 

and σ bonds being slightly out of plane [77]. This results in CNTs more thermally and 

electrically conducting. 

MWCNTs usually consists of the several tubes rolled one on other with interlayer 

distance in each layer of approximately 3.4 Å. The bending of the graphene sheet and its 

influence on the electrical and structural properties of MWCNTs are similar to SWCNTs. 
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However, even if the MWCNTs consist of rolling of semiconducting tubes they behave 

as semi-metallic due to their reduce band gap [77]. Due to their metallic nature and large 

number of walls they are potential candidates to be used as bottom conducting electrodes 

for future microelectronic devices.  

2.2.2 Synthesis of CNTs 

MWCNTs are the first CNTs synthesised by Iijima (1991) [73] by arc discharge 

method which was adopted from the early investigators on the synthesis of fullerenes [73, 

75, 81, 82]. In arc discharge method, discharge between the two graphitic electrodes (6 - 

12 mm diameter) separated by 1 - 4 mm takes place inside a chamber filled with an inert 

atmosphere. With the application of a bias across the electrode carbon is ejected from the 

positive electrode and deposited on the negative electrode, resulting in the formation of 

MWCNTs [83]. In order to synthesised SWCNTs by arc discharge method, the graphite 

electrodes are loaded with metallic catalysts (Fe, Co, Ni, Y, Mo). The graphite electrodes 

are vaporized along with the catalyst and carbon condenses in the form of SWCNTs [81, 

84-87]. 

In the later years (1995) laser ablation method was used to produce CNTs, mostly 

SWCNTs [81, 83, 88, 89]. In laser ablation method, a graphite target is ablated by the 

powerful laser in inert helium or argon atmosphere (also acting as carrier gas) and results 

in the evaporation of carbon. These carbon atoms are carried by the carrier gas to the cold 

cooper collector on which they condense in the shape of nanotubes [88, 90].  

However, both arc discharge and laser ablation method does not yield large 

amounts of CNTs as required for a full industrial adoption of CNTs. The breakthrough 

technique that enabled CNTs to become an industrial material was a route that involved 

Chemical Vapor Deposition (CVD) [91, 92]. In CVD process the hydrocarbon vapor 

thermally decomposed on the surface of catalyst and precipitate to form CNTs. Indeed, 

the catalytic decomposition of hydrocarbons was used well before the discovery of CNTs 

for the production of certain kinds of carbon fibres [93, 94]. Although slow, this method 

yield long and large amounts of CNTs. This synthesis route makes possible the production 

of CNTs in a continuous manner and enables a kind of control over the nanotube 
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parameters that other techniques do not offers [95, 96], including: the patterned growth 

of nanotubes [97], the growth of centimetre long nanotubes [98], doped CNTs [99], 

among others. 

The MWCNTs used in the present studies were fabricated by CVD, therefore the 

procedure is explained here more comprehensively. 

In a thermal CVD setup (Figure 2-8), the substrate (or holder) embedded with a 

catalyst is placed in the centre of the quartz tube, which was flashed with inert gas, like 

H2 at 400 ºC for 30 min in order to reduce the catalyst. Transition metal nano particles 

are used as catalysts, usually Fe, Ni, Co, Mo either in the pure form or as an alloy [100, 

101]. CNTs synthesis begins on the nano particles (used as catalyst) with a suitable source 

of hydrocarbon (methane, ethane, ethanol, benzene) [102]. The hydrocarbon source is 

heated at high temperature, in the range of 700 oC to 1200 oC [103], inside the quartz 

tube. The hydrocarbon gas at high temperature is thermally decomposed into hydrogen 

and carbon, the carbon atoms diffuse on the surface of the metallic nano particles, forming 

an amorphous carbon shell around the metal catalysts. This amorphous carbon rearranges 

itself into an hexagonal network and finally precipitates in the form of CNTs. The 

termination of CNTs occurs when the metal particles are fully covered with CNTs walls 

and future diffusivity of carbon as a feedstock on the surface of catalyst is constraints by 

already grown CNTs walls [104]. 

Two types of mechanisms for CNTs growth are known: base growth and tip 

growth. The type of growth depends mainly on the interaction between the catalysts and 

the base (substrate). If the interaction of the catalyst particles with the support (substrate) 

is strong it yields CNTs on the top of the particles and this is known as base growth type 

(Figure 2-9 (a)). Conversely, when the interaction is not so strong between the support 

and the particles CNTs grow between the support and the metal particles and this 

mechanism is known as tip growth (Figure 2-9 (b)). Both experimentally and theoretically 

it was proven that CNTs diameter is highly dependent on the catalyst size [105, 106]. It 

is important to mention that during the synthesis of CNTs there is the formation of 

secondary forms of carbon such as amorphous carbon, fullerene and graphene. The 

presence of these secondary phases affects markedly the quality of the CNTs. Therefore, 

post treatments based on chemical and thermal treatments are needed to remove unwanted 
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carbon allotropes. Still up to day it is a challenge to develop a technique by which only a 

particular chirality of CNTs is synthesised with a minimum amount of secondary phases. 

 

 

Figure 2-8 Schematic of a CVD setup for the synthesis of CNTs [107].  

 

Figure 2-9 Illustration of two growth mechanisms of CNTs: (a) base growth and (b) tip 

growth. These growth mechanisms are dependent on the interaction of the catalyst and 

support (substrate) [108]. 

(a) (b) 
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2.2.3 Functionalization of CNTs 

Carbon nanotubes are naturally hydrophobic, and in order to optimised their 

surface for posteriori use or to alter physical and/or electrical properties, their outer 

surface needs to be modified and usually CNTs are functionalized by chemicals and 

physical methods [109-111]. 

Within the chemical functionalization, the modification of the CNTs surface can 

be categorised as: (a) covalent attachment of the chemical group to the side walls of 

CNTs, (b) non-covalent attachment of the chemical group to the side walls of CNTs, 

where the chemical species adsorbed or wrapped on the surface of the CNTs; and (c) the 

endohedral filling of CNTs inner empty cavity, as illustrated in Figure 2-10 [109, 112].  

In covalent type the functionalized groups, like hydroxyl and carboxylic groups, 

are formed at defect sites of CNTs with π-conjugate. The attachment of functional groups 

to the nanotubes usually takes place at defect sites present at the walls or at the caps of 

CNTs. This is due to the lower activation energy for chemical reaction at defect sites 

(vacancies, non-hexagonal arrangement of C atoms, etc.) [110]. Covalent attachment 

always influence the properties of CNTs, for example in the case of fluorine atoms when 

attached they adopt the tetrahedral coordination and the sp3 hybridization, which destroys 

the electronic band structure [113, 114]. In the non-covalent functionalization functional 

groups wrapped up the CNTs by Van Der Waals forces and π- π stacking. Some examples 

of chemicals which can be used for non-covalent functionalization are sodium dodecyl 

benzene sulfonate (NaDDBS), sodium dodecyl sulfate (SDS) and poly vinyl pyrrolidone 

(PVP). 

Endohedral functionalization is the filling of the inner empty cavity of CNTs. This 

filling can be performed by two methods: i) physical and ii) wet chemical. In the physical 

one the open tubes are directly immersed in the molten materials (no solvent is used). The 

tubes are filled by the molten metals due to the capillary forces. Dujardin et al. [115] 

suggested that the filling of metals with high surface tension such as lead [116], bismuth 

[117] and cesium [115] occurred due to the formation of oxides or carbide compounds as 

a result of the reaction with oxygen and/or carbon. The carbides or oxides of those metals 

have a surface tension lower than the surface tension of pure elements, allowing 
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compounds to fill the nanotubes by capillary action. Therefore, the filling of tubes is may 

be related with oxides rather than pure metal particles.  

Other method of filling CNTs is by wet chemistry. In 1994, Tsang et al. [118] 

filled nanotubes with metal oxide particles such as cobalt, nickel and iron. They used a 

nitric based metal solutions to open the end of the CNTs by refluxing CNTs in the nitric 

solution and, simultaneous filling took place with the metal salts. The tubes were annealed 

at 200 to 400 ºC, so that metal salt decomposes and forms the respective element. Gold, 

silver, platinum particles were also filled in CNTs by wet chemical method [119-122]. 

Other than oxides, biomolecules and liquids were also filled in CNTs for various 

biomedical and storage application; more details can be found in reference [71]. The 

CNTs inner cavity offers space for the storage of guest molecules which can be used to 

produce confined nano structures, for hydrogen storage and drug delivery applications 

[115, 123-125]. 

 

Figure 2-10 Scematic representation of the various types of functionlization of CNTs: (a-

b)  covalent, ( c, d) non-covalent and (e) endohedral functionalization[126]. 
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2.2.4 Effect of temperature and pressure on CNTs 

As mentioned above one of the main objectives of this work is to cover MWCNTs 

with ferroelectric oxide layers. However, it is known that the ferroelectrics oxides have 

generally high temperature of crystallization of around 700 to 1000 ºC. In this particular 

or any other application in which CNTs will be submitted to pressure and or temperature, 

requires knowledge on the effect of temperature and pressure on CNTs and their 

dependence on the type of CNTs. 

According to the literature CNTs starts oxidizing around ~500 ºC. Therefore, 

combining ferroelectric oxides with CNTs, for 1D structure might be quite challenging, 

especially, when CNTs are needed to be used as a bottom electrodes. There are various 

factors which affect the oxidation of MWCNTs. Here, is a brief literature review on the 

thermal oxidation of MWCNTs.  

It is established that the thermal stability of CNTs depend on two main parameters 

i) type of CNTs and ii) diameter of CNTs [127-133]. The activation energy for oxidation 

of carbon nanotubes depends on the types of CNTs, here we listed activation energy from 

low to high as follow. The first species to start oxidize are SWCNTs (325 ºC), closely 

follow by amorphous carbon (350 ºC), then DWCNTs, MWCNTs (450 ºC) and the most 

stable carbon form is graphite (starts oxidizing at around 700 ºC). The second parameter 

is the size and diameter of the tube [131, 134]. Tubes with smaller diameters and lengths 

have higher surface energies and strains resulting in poor resistance to oxidation. 

Therefore tubes with small diameters and lengths oxidize first followed by tubes with 

bigger diameters.  

As known, produced CNTs contain different carbon species (or impurities) such 

as amorphous carbon, graphite and fullerenes. All these species have different C-C bond 

lengths, curvature what influences the decomposition (oxidation) temperature of CNTs; 

therefore for any further application and maximization of their properties tubes need to 

be purified before being processed. Chemical and thermal treatments are the current 

procedures used for the purification of CNTs. The effect of purification on the thermal 

behaviour of CNTs has been part of many publications. 
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The thermal stability of the chemically purified CNTs (using acids as HCL, HF 

and nitric acid) was monitored by DTA/TG, HRTEM, Raman spectroscopy, Wide Angle 

X-ray Diffraction, among others [135-139]. It was demonstrated that there is an increase 

in the oxidation temperature of MWCNTs after the chemical purification due to the 

removal of amorphous carbon and metal catalysts. It was also reported that the treatment 

with nitric acid for 2 h results in the increase of the crystallinity of MWCNTs by 85 % 

and hence the thermal stability of the tubes by 5 to 10 ºC [140].  

The other method for purification is a thermal treatment. The thermal treatments 

reported in the literature were carried out in air or in inert atmosphere. For tubes thermally 

treated in air at around 350 to 500 ºC the amorphous carbon was eliminated and resulted 

in improved thermal stability of the tubes [141, 142]. The other way to purify CNTs is to 

anneal in inert atmosphere [143] or in vacuum [143-145] at very high temperature (2000 

ºC). By systematic studies of comparison of the activation energy of oxidation of 

MWCNTs using TEM and Raman it was found to be an effective method to remove 

impurities and enhance graphitization of CNTs and, as a consequence, to increase the 

thermal resistance of CNTs [146, 147]. 

For some particular applications the pressure stability of CNTs might be 

important. The best way to characterize the pressure effect on the CNTs is to monitor the 

shift in Raman radial and tangential modes (Raman peaks). It was found that with the 

increase in pressure there is a linear shift in the tangential mode 5.7 cm-1/GPa  up to 1.7 

GPa, followed by the change in the value of the slope for further pressure increase up to 

5 GPa [148]. On releasing the pressure tangential bands come back to its original position 

with small delay for all hollow nano structures. No significant change in the electrical 

transportation behaviour was observed for CNTS with applied pressure of 2 GPa [149]. 

Experiments carried out at high pressure and temperature showed that a pressure of 5.5 

GPa and temperature of 950 oC is needed for MWCNTs to deform and form other 

structure such as ribbon or onion like [150-152]. Further, increase in temperature to 1500 

ºC results in the formation of diamond [153].  

However, it was found that there is no systematic study on the effect of different 

atmosphere and heating conditions on the oxidation of MWCNTs. Therefore and within 

the aim of the present work, the effect of different atmospheres and temperature was 



 

Ferroelectric – Carbon Nanotubes (CNTs) structures fabrication for advanced functional nano devices         
28 

Fundamentals and state of the art 

studied so that different experimental condition can be explored to obtain crystalline 

ferroelectrics on CNTs. These results will be presented in chapter 4. 

2.3 Functional oxides: ferroics 

2.3.1 Definitions, classification and application of ferroics 

Functional materials are characterized as materials which possess particular native 

properties and functions [154]. The classification of functional materials is usually related 

to materials whose function is associated with electric, magnetic and optical properties. 

Functional materials are found in all classes of materials: ceramics, glasses, organic 

oxides and polymers. Ceramics functional materials mainly include dielectrics, 

pyroelectrics, piezoelectrics, ferroelectrics, ferroelectric relaxors, incipient ferroelectrics, 

semiconductors, ionic conductors, superconductors, electro-optics, magnetics and 

multiferroics. Application of these materials includes medical diagnostics such as 

ultrasonic imaging, aerospace such as accelerometers and micro positioners, automotive 

such as solid state piezoelectric fuel injectors, chemical and process control, which 

requires the use of thermal, strain and force sensors, in memories such as capacitor cell, 

magnetic sensors, and spintronics [155], among many others. The utility of functional 

materials in these applications reflects their unique properties, such as spontaneous 

polarization, piezoelectricity, superconductivity and magnetoresistance. All these 

properties are directly dependent on the chemical composition, singularities of the 

crystallographic structure and manufacture process. 

Dielectric materials have high electrical resistivity, which means that ideal 

dielectrics do not conduct electricity, due to no or low density of free charge carriers; as 

a consequence dielectrics are used in insulating applications (e.g insulators used in high 

voltage transmission lines). However, dielectric materials exhibit polarization (P) when 

placed under an electric field. The mathematical derivation of polarization is presented 

below. 
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The electric flux density 𝐸𝑓𝑙𝑢𝑥or electric displacement (charge per unit area, C m-

2) at a given point of an insulator material is proportional to the electric field (E) and is 

given by following equation: 

 𝐸𝑓𝑙𝑢𝑥 = ԑ𝑟ԑ𝑜𝐸 Equation 2-2 

where ԑo (F m-1) and ԑr (F m-1), are the dielectric permittivity of free space (vacuum) and 

relative dielectric permittivity of the material, respectively.  

When an electric field is applied to the dielectric material, the trapped charges 

inside the material are displaced by some distance in the direction of applied electric field 

known as dipole moment. This displacement produces local dipoles throughout the 

material. The sum of all the individual dipole moments within the given volume is called 

as polarization (P) of the solid. Polarization measures the additional flux density and is 

represented by following equation: 

 𝐸𝑓𝑙𝑢𝑥 = ԑ𝑜𝐸 +   𝑃 Equation 2-3 

Polarization equation derived from Equation 2-2 and Equation 2-3 can be 

represented as: 

 P = ԑ𝑜(ԑ𝑟 − 1)𝐸 Equation 2-4 

In addition, the polarization and dielectric permittivity of the material can be 

calculated from the capacitance of the material (the ability of the material to store charge) 

at a frequency well below mechanical resonances. The total polarization of a solid is the 

result of the contribution of four main mechanisms: atomic polarization, ionic 

polarization, dipolar polarization and space polarization (more details in reference [156]). 

Dielectrics show a linear relationship between the applied field and induced 

polarization. For linear dielectrics when the applied field is removed the polarization 

disappears. Whereas, dielectric materials in which electric field develops due to 

mechanical stresses or strains develop due to applied electric field are known as 

piezoelectrics materials. 
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The piezoelectric effect was discovered by Jacques and Pierre Curie in 1880 in 

quartz, tourmaline and Rochelle Salt (RS) crystal (sodium potassium tartate tetrahydrate) 

[157-159], while studying the effect of pressure on the generation of electrical charges. 

They found that with the application of mechanical forces electrical charges are generated 

in the crystal; this is known as a direct effect and the degree of polarization is proportional 

to the applied stresses. Piezoelectric crystals also depict the converse effect, where a 

geometrical strain is produced by the application of an electric field. The name 

´´piezoelectric`` derived from the combination of the two words: piezo and electric, where 

the prefix piezo comes from the Greek word meaning press, therefore piezoelectricity is 

the generation of electricity that results from a mechanical force, or vice versa. The 

necessary condition for a material to be a piezoelectric is to have a non-centro-symmetric 

structure, where the net movement of negative and positive ions in relation to each other 

produces an electric dipole i.e polarization. From the 32 classes of symmetry, 11 point 

groups possess a centre of symmetry hence, they are non-polar and 21 possess a non-

centro-symmetric structure, hence they are polar or piezoelectric. Form these 21 non 

centro-symmetric 20 point groups materials shows piezoelectric effect. Figure 2-11 

illustrates the interrelationship of piezoelectrics and subgroups on the basis of the 

crystallographic symmetry [160]. 

The mathematical expression for the piezoelectricity is expressed as: 

 D=𝑑𝐸+𝜀𝑇𝐸               𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟, 𝑑𝑖𝑟𝑒𝑐𝑡 𝑒𝑓𝑓𝑒𝑐𝑡    Equation 2-5 

 𝑆=𝑠𝐸𝑇+ 𝑑𝐸                      𝑚𝑜𝑡𝑜𝑟, 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑒𝑓𝑓𝑒𝑐𝑡     Equation 2-6 

where D is the dielectric displacement, S the strain, d a piezoelectric coefficient, s the 

material compliance, T the stress and ԑ the dielectric permittivity. The superscripts T and 

E represent the quantity held constant; in the case of 𝜀𝑇 the stresses are held constant and 

in the case of 𝑠𝐸  the electric field is held constant in Equation 2-5 and Equation 2-6, 

respectively. Piezoelectricity is a directional property therefore expressed as follow: 

 𝐷3 = 𝑑33𝑇3                              (𝑑𝑖𝑟𝑒𝑐𝑡 𝑒𝑓𝑓𝑒𝑐𝑡) Equation 2-7 
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   𝑆3 = 𝑑33𝐸3                               (𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑒𝑓𝑓𝑒𝑐𝑡) Equation 2-8 

where d33 is a piezoelectric coefficient with the units (C/N) or (m/V). Figure 2-12 depicts 

the schematic of a direct (generator) and a converse effect (motor) of piezoelectric 

materials. The suffix of the piezoelectric coefficient d33 indicates the direction of 

polarization and the applied mechanical stresses. Where 1, 2 and 3 corresponds to 

Cartesian coordinate axis x, y and z, respectively. In case the piezoelectric coefficient 

given by d33, it indicates the polarization generated in 3 (or z) direction (the first suffix) 

due to the application of mechanical stress in the 3 (or z) direction (the second suffix). 

For example in case of piezoelectric coefficient d31, it indicates the polarization 

generated in the 3 (or z) direction with the application of stress in the 1 (or x) direction.  

High d values are desire for piezoelectric materials used in motion or vibrational 

devices. Therefore, the piezoelectric materials which generate large amount of voltage 

per unit of input are evaluated by open circuit g coefficient, which is related with 

piezoelectric coefficient (d) by following equation: 

 
  𝑔 =  

𝑑

𝜖𝑟𝜖𝑜
 

Equation 2-9 

The common application of these materials is in portable gas igniters and patio lighters. 

There are 10 point groups with in a sub group of piezoelectrics which shows 

induced voltage or polarization when subjected to change in temperature and are known 

as pyroelectric materials. All pyroelectric materials show piezoelectric properties but the 

inverse is not true. Within the subgroup of pyroelectric materials, a group of materials 

which depicts spontaneous polarization at zero field conditions and that can be inverted 

by inverting the direction of the applied field are known as ferroelectrics. All the 

ferroelectric materials depict piezoelectric properties. A comprehensive detailed 

information on ferroelectricity is presented in next section, after the brief introduction to 

magnetoelectrics and multiferroics.  

 



 

Ferroelectric – Carbon Nanotubes (CNTs) structures fabrication for advanced functional nano devices         
32 

Fundamentals and state of the art 

 

 

Figure 2-11 Interrelationship of piezoelectrics and subgroups on the basis of symmetry 

(adapted from [160]). 
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Figure 2-12 Schematic of piezoelectric effect direct (generator) on left and converse effect 

(motor) on right [160]. 

In the last decades and so, there has been an outbreak of research focused on a 

new class of materials known as magnetoelectrics and multiferroics [161, 162]. The major 

interest in this field of research is due to its hybrid functionalities, which make a material 

simultaneously ferromagnetic (FM) and ferroelectric (FE). In this case it is possible to 

control the magnetic response and/or electrical response (polarization) by the application 

of an electric field and/or magnetic field, respectively. This possibility opens a new whole 

range of interesting applications such as magnetic recording media, spintronics and 

sensors. Nevertheless, the study of multiferroics is also of scientific fundamental interest 

[163].  

The term multiferroic is defined as a single-phase material that exhibits more than 

one fundamental functionality (ferroic - ferroelectricity, ferromagnetism, ferroelasticity 

[164] and ferrotoroidicity [164-166]). The definition can be further broadened if includes 

non-primary order parameters under consideration such as antiferromagnetism, 

ferrimagnetism and anti-ferroelectricity. On the other hand, magnetoelectric (ME) 

materials can be multiferroics or non-multiferroics, possessing the cross-coupling 

between electric and magnetic parameters under external stimuli. The subgroup of ME 

and multiferroic materials is given in Figure 2-13. The coupling between the electric and 
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magnetic order parameters can be realized by measuring the induced magnetization under 

the action of an external electric field or the vice versa [167]. In 2000, Hill et al. [168] 

demonstrated the conditions required for the existence of ferroelectricity and 

ferromagnetism in single-phase materials, which are hardly satisfied. Ferroelectricity 

needs broken spatial inversion with invariant time reverse symmetry. In contrast, 

magnetization (M) and magnetic field (H) change their signs upon time reversal and are 

unaffected by spatial inversion. Multiferroic system requires simultaneous breaking of 

both time and spatial symmetries. This is possible in spin frustrated systems which always 

prefer to have spatially inhomogeneous magnetization and lone pair effect, as in the case 

of BiFeO3. 

In the last 10 years, various patents have been registered, from synthesis, 

designing to applications, of new devices based on multiferroic and magnetoelectric 

materials [169-174]. In this work we used BiFeO3 a single phase multiferroic to combine 

with MWCNTs for ferroelectric based applications, therefore a more comprehensive 

detailed description on ferroelectricity and ferroelectrics is presented hereafter.  

 

Figure 2-13 Relationship between multiferroic and magnetoelectric materials. Illustrates 

the requirements to achieve both in a material, imitated from [163]. 
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2.4 Ferroelectrics 

Discovery of the ferroelectric (FE) phenomena dates back to mid-16s century with 

the observation of ferroelectricity in Rochelle Salt (RS) crystals (sodium potassium tartate 

tetrahydrate) by Elie Sceignette in France for medical purposes [175]. It took 

approximately two centuries to measure the pyroelectric effect and further 60 years to 

find piezoelectric response in RS crystal. Later in 1921, Joseph Valsek [176] proved 

experimentally the ferroelectric nature of RS crystal that had been theoretical predicted 

in 1912 [177]. Several studies in the following years were carried out on the crystal 

structure and properties of RS crystals. However, due to its water solubility nature, soon 

the interest diminished. In the mid 40s with the development of high capacitance 

capacitors based on the ferroelectric barium titanate (BaTiO3, BT) the interest in FE 

reappeared. In 1945 and 1946 the work of Wu and Goldman in USSR [178] and Hippel´s 

group in USA [179] established the high dielectric constant and FE behaviour of BaTiO3 

single crystals. However, the startling discovery came from Gray [180] in 1949, when he 

reported the ferroelectric nature of BaTiO3 ceramics. The authors demonstrated that with 

the application of an external electric field it is possible to orient ferroelectric domains 

within the grains of the ceramics, in a similar way to the single crystals. These findings 

were the trigger factor that turned polycrystalline BaTiO3 ceramics into one of the most 

important ferroelectrics of all the times with a great industrial and commercial use. Later, 

in 1952 the discovery of high Tc (Curie temperature) lead zirconium titanate (PZT, Pb(Zr1-

xTix)O3) ferroelectrics has given the field of piezoelectrics and ferroelectrics further 

importance, up to the current days. Indeed, at the present 50 % of the microelectronic 

devices used commercially contain lead based functional oxides. However, due to the 

toxicity of lead and regulations from Europe and USA there is a strong need to replace 

lead based materials by lead free dielectrics, piezoelectrics and ferroelectrics [181, 182]. 

As said above, ferroelectricity is a property of a material defined as the ability to 

switch the spontaneous polarization by the application of external field [183]. Due to a 

non- centrosymmetric structure, there are dipolar moments in the ferroelectrics that under 

zero field conditions originate a spontaneous polarization. For a material that contains 

electric dipoles, the local electric field will promote the dipole alignment in certain 

regions, contributing to the increase of the polarization, which, by itself, will promote the 
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increase of the local field [155, 160]. These co-operation phenomena will align the dipoles 

along the same direction, resulting in the spontaneous polarization of the material. 

Consequently, the electric polarization in ferroelectrics does not vary linearly with the 

applied field and hence they are called non-linear dielectrics. In ferroelectrics the 

relationship between the applied field and the polarization is described by a hysteresis 

loop, similar to the one exhibited by the ferromagnetic materials [155]. Ferroelectric 

hysteresis shows the nonlinear relation between the polarization (P) (on Y axis) and 

applied electric field (E) (on X axis) presented in Figure 2-14. When an electric field is 

applied to a ferroelectric material, the dipoles begin to align in the direction of the applied 

field, this phenomena is also know as switching. When saturation polarization (Ps) 

reaches the maximum value and do not further increase with the increase in applied field, 

a maximum number of domains are aligned in the direction of the applied field. If the 

field is reduced to zero, the polarization values will decrease, but do not fall to zero, at 

this point the polarization value lower than Ps known as the remanent polarization Pr 

(shown in Figure 2-14). To reduce the value of polarization to zero, it is necessary to 

apply a field in the opposite direction. The field at which polarization reaches to zero is 

called coercive field (Ec) and at this point all the domains are randomly oriented (as 

shown in Figure 2-14). If the applied field is further increased in the negative direction 

domains start to oriented in the direction of applied field and attain maximum 

polarization, also known as saturation polarization Ps, but in this case with a negative sign 

(-Ps). When the electric field is reduced again to zero, there is again a remanent 

polarization but in the negative direction (-Pr). Further increase of the field will bring the 

polarization back to +Ps and this creates the loop as shown in Figure 2-14. This loop is 

known as the ferroelectric hysteresis loop. The spontaneous polarization of ferroelectrics 

is used to store data in FeRAM as a encoded "0"s and "1"s (binary number for digital 

computing), as illustrated in Figure 2-14. Since no external field is required to maintain 

these states once reached, the memory device is known as non-volatile i.e. when the 

power is switched off the information is kept saved. Commercially FeRAMs use 

ferroelectric thin films (90 -200 nm) because they have low coercive field and can be 

switched from one spontaneous polarization state to other with the application of ~ 3 to 5 

V. In order to miniaturize FeRAMs without affecting the properties, considerable efforts 
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are required to improve the fabrication techniques, explore new nano materials and new 

designs.  

 

Figure 2-14 Hysteresis loop of ferroelectrics, where Ps and, Pr are spontaneous 

polarization and remanent polarization, respectively (adapted from [184]). 

2.4.1 Crystal structure of ferroelectrics 

In general ferroelectrics have four crystal structures, namely: 

1. Tungsten-bronze  

2. Perovskite (oxygen octahedral, ABO3) 

3. Pyrochlore  

4. Bismuth layer-structure  

From all the above structures materials that depict the perovskite structure are by 

far those that possess better properties and commercially more in use [185]. Some of the 

most important compositions having a perovskite-type structure are BaTiO3, PbTiO3, 

Pb(ZrxTi1-x)O3, (Pb1-xLax)TiO3, Pb(Zn1/3Nb2/3)-PbTiO3 (PZN-PT), Pb(Mg1/3Nb2/3)-
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PbTiO3 (PMN-PT) and KxN1-xNbO3 (KNN), which represent the bulk of ferroelectric 

ceramics manufactured in the world today. 

An ideal perovskite has a centrosymmetric structure with a cubic space group 

Pm3m and chemical formula ABO3, where A2+ and B4+ atoms are cations and O2- the 

anion. The perovskite crystal structure can be described based on either a body centre 

cubic (BBC) and face centre cubic (FCC) lattice. In case of BCC lattice, the perovskite 

structure consists of twelve oxygen ions (O-2) placed at the middle of all the edges of a 

cube and A2+ ions placed at the centre of the unit cell surrounded by four B4+ ions placed 

at each corners. In case of FCC lattice, the perovskite structure consists of B4+ ions at the 

body centre position surrounded by six oxygen ions (O-2) at the face centre positions and 

A2+ ions occupy all the four corner positions (Figure 2-15 (a)) . Perovskite structure with 

cubic symmetry are at the non-polar state where A, B and O ions coincide, depicts no 

polarization (P = 0). When the A and B ions are displaced from their position with respect 

to O2-, a net polarity of the lattice (P ≠ 0) is established (Figure 2-15 (b)) [155]. Moreover, 

many different cations can be substituted in both A and B sites of the perovskite to 

improve the physical response of the materials, namely the electrical properties [186]. 

 

Figure 2-15 (a) Ideal perovskite structure at temperature above Tc, (b) below Tc a non-

centrosymmetric structure results in the B site atom displacement, where aC, aT, cT, are 

the length of the unit cell, where suffix C and T stand for cubic and tetragonal structures, 

respectively [184]. 

(a) (b) 
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The ideal perovskite structure is rarely obtained at ambient temperature/pressure 

due to the strict constraints placed by the ionic sizes. The Goldschmidt tolerance factor, 

t [187], based on the geometrical packing of charged spheres, can be used to describe the 

distortion of the perovskite structure from the ideal configuration, by the following 

equation: 

 
t =

rA + rO

2(rB + rO)
 

Equation 2-10 

where rO, rA and rB are the ionic radius of the O, A and B site ions. Figure 2-16 depicts 

list of compounds with t value from 0.95 to 1.08. For t = 1, the cubic paraelectric phase 

is stable. For t > 1, since the B-site ion is too small for its site, it can shift off-centre, 

leading to the occurrence of a displacive-type ferroelectricity in the crystal; BaTiO3 and 

Pb(Zr,Ti)O3 are some examples. For t < 1, perovskite oxides are in general not 

ferroelectrics, but exceptions are found for Bi based materials (e.g. BiFeO3), in which 

large A-site displacement is observed that results in ferroelectric behaviour.  

 

Figure 2-16 Distribution of ferroelectric oxides based on tolerance factor (adapted from 

[188]). 
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2.4.2 Ferroelectric phase transition 

A ferroelectric material can undergo a phase transition adopting a non-polar 

centrosymmetric structure at a temperature called Curie temperature (TC). Above TC, with 

the loss of the polar structure, the material does not exhibit spontaneous polarization and 

it is said to be paraelectric. Below TC, due to the appearance of the spontaneous 

polarization and to the mutual interaction between the dipoles, which causes a significant 

increase of the local field, the material exhibits ferroelectricity. The structural phase 

transition from the paraelectric to the ferroelectric phase is reversible. Near TC due to a 

distortion in the crystalline lattice as the phase structure changes, the thermodynamic 

properties, including dielectric, elastic, optical, and thermal constants show an anomalous 

behaviour; the permittivity raises, reaching a maximum at TC [189].  

The theoretical explanation for the phase transition is the concept of a soft mode, 

which was proposed by W. Cochran et al. [190]. According to which, the ferroelectric 

order is based on the instability of a transverse vibrational mode, referred to a soft mode 

or a ferroelectric mode. Blinc et al. [191] have reported detailed lattice dynamic 

calculations for several ferroelectric crystals and more rigorous mathematical treatments 

of the soft mode in ferroelectrics. In the proximity of TC the crystalline lattice is also soft 

and can be strongly polarized with a relatively small coercive field, this results in very 

high permittivity values for some ferroelectrics near TC. This phenomenon is generally 

known as a dielectric anomaly. The temperature dependence of the dielectric permittivity 

above TC can be described by a simple law called the Curie-Weiss law [192] given by 

following equation:  

 
ε =  εo + 

C

T − Tc
 

Equation 2-11 

where C is Curie Weiss constant. 

2.4.3 Ferroelectric domains 

When a ferroelectric material is cooled down from the paraelectric state to the 

ferroelectric one, there is the formation of uniform aligned electric dipoles in certain 
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regions of the crystals; regions that are known as ferroelectric domains. These 

ferroelectric domains are formed in order to minimize the electrostatic energy of the 

depolarization field (Ed) and the elastic energy associated with mechanical constraints. 

At the transition temperature, with the onset of the spontaneous polarization there is the 

formation of surface charges, the field due to this surface charge is known as a 

depolarization field. The direction of the depolarization field is opposite to the direction 

of spontaneous polarization (Ps) (Figure 2-17 (lower half of the image). Depolarization 

fields occur in regions where non homogeneous distribution of the spontaneous 

polarization takes place such as at the surface of the crystal, at grain boundaries where 

the direction of the polarization in neighbour grains is in the opposite orientation. 

Depolarization fields (mV/m) can be so high that they may affect the single domain state 

of ferroelectrics [186, 193, 194]. The electrostatic field associated to the depolarization 

field can be minimized by splits into ferroelectric domains with oppositely oriented 

polarization, this resulting in the formation of 180o domains; or alternatively the 

depolarization charge is compensated by electrical conduction with the surrounding 

materials.  

The formation of domains in ferroelectrics also occurs due to mechanical stresses 

as illustrated in Figure 2-17 (upper half of the image). Assuming that part of the crystal 

is under compression in one direction, as it is cooled down through the phase transition 

temperature, in order to minimize the elastic energy associated with the compression 

stress, polarization develops perpendicularly to the direction of the stress, where in 

unstressed region the polarization may remain parallel to the stress direction, this 

resulting in the formation of 90o domains. 

Domain walls therefore separate regions in which polarization oriented is 

antiparallel (180º-walls) or perpendicular (90º-walls) to each other. Both 90 and 180º 

domain walls may reduce the effects of the elastic strain and depolarization electric fields. 

In a real scenario when crystal cools through the ferroelectric phase transition it undergoes 

a combination of electric and elastic boundary conditions and results in the formation of 

complex domain structure with an interplay of 90º and 180º walls. Domain walls with 

orientations that differ from the spontaneous polarization are called ferroelectric domain 
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walls and those with orientations that differ from spontaneous strain tensor are called 

ferroelastic domain walls [184]. 

It was understood from above description that the directions along which the 

polarization will develop depend on the electrical and mechanical boundary conditions 

imposed on the material. The type of domain walls formed in ferroelectric materials 

depends on the non-ferroelectric and ferroelectric phase of the crystal. In the 

rhombohydral crystal, the direction of the polarization occurs along the body diagonal 

(111) direction. This leads to the formation of 180º, 71º and 109º domain walls with eight 

possible direction of the spontaneous polarization. Fousek and Janovec [195] derived a 

mathematical expression which gives the possible criteria by which it is possible to 

predict the type of domain walls existing in ferroelectric materials.  

 

Figure 2-17 Schematic illustrating the phenomena of domains formation: (upper part) 

formation of 90o and 180o domains due to mechanical stresses, (lower part) formation of 

180o domains due to electric field, during the cooling down from high temperature to 

lower temperature in a crystal, where aC, aT, cT, are length of unit cell, where suffix C 

and T for cubic and tetragonal structure, respectively. Ps and Ed are spontaneous 

polarization and depolarization field, respectively [184]. 
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2.4.4 Ferroelectric applications 

Ferroelectric materials found applications not only due to ferroelectricity but also 

due to the related properties such as pyroelectricity and piezoelectricity. These properties 

are of great interest in a vast range of applications. Pyroelectrics are useful for imaging 

and thermal detection applications where as piezoelectrics are used in electromechanical 

devices, such as sensors and actuators. In particular in microelectromechanical systems 

(MEMS), the large piezoelectric coefficients of ferroelectric solid solutions such as PZT 

allow for novel miniature electromechanical devices [196]. In the last three decades, the 

development made in the ferroelectric fabrication and processing of ceramics and thick 

and thin films for integrated–circuit applications have served to keep the industry growing 

to the current maturity [160]. Ferroelectrics in the form of bulk are used in dielectric 

capacitors, infra-red (IR) sensors, piezo sensors and actuators, electo optic shutters and 

electro optic displays. In form of films they are used in Nov-volatile memories, as a buffer 

layer for FET, integrated optics and reflective coatings. Figure 2-18 illustrates the 

possible use of ferroelectrics in form of bulk ceramics and/or films. More details on 

ferroelectric application are out of the context of this work and can be found in reference 

[160]. 

 

Figure 2-18 Various application fields of ferroelectric oxides ceramics and films are 

identified in the flow chart [160]. Abbreviations used in the figure are ML (multilayer), 

PTC (positive temperature coefficient), IR (infra-red) and AR (anti-reflective). 
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2.4.5 Ferroelectric memories  

The ferroelectric hysteresis is a unique characteristic of ferroelectrics that can be 

explored from the practical point of view (described above). A ferroelectric material with 

a square hysteresis loop has stable remanent polarization (Pr) values for small changes of 

the electric field (E) and the switching of polarization occurs for high applied electric 

fields. These are ideal features for the binary code and NV-FERAMs (as stated above).  

In 1951, Dudley Allen Buck [197] proposed the use of ferroelectrics as Random 

Access Memory (RAM) in his master thesis. At that time ferroelectrics started to be 

considered as promising candidates, however lack of reliability, fatigue of the switching 

cycles, imprint (the shift of the hysteresis loop along the origin axis due to self-

polarization), high operation voltages and leakage currents limited their practical 

implementation. Magnetic and later semiconductor memories were used [198]. More 

recently, due to the ability to prepare high quality films (epitaxial grown, defect free and 

with controlled stoichiometry) a renewed interest in ferroelectric memories appear. The 

work on the development of ferroelectrics as RAM started in late 1980´s and the concept 

was proved in 1991 at NASA´s Jet Propulsion Laboratory [199]. In the 1990´s a FeRAM 

consisted of two transistors - two capacitors (2T - 2C) with the storage capacity of 512 b 

to 16 kb. The first FeRAM with capacity of 256 b using one capacitor - one transistor (1T 

– 1C) was demonstrated in 1994 [200]. In order to compete with magnetic Dynamic 

Random Access Memory (DRAM) there was a need to increase the storage capacity and 

reliability of the signals and to miniaturize the device. Many efforts have been carried out 

to shrink the FE memory cell and new architectures and circuits/devices technologies 

have been developed. The major breakthrough came with the development of chain 

FeRAM in 1997. The first prototype of 16 kb chain FeRAM was fabricated in 1999. This 

was followed by 8 Mb in 2001 [201], 32 Mb in 2003[202], 64 Mb in 2006 [203] and 128 

Mb in 2009 [204]. The average cell size including blocked selector region (region 

combined with memory cell and transistor) has been shrunk from 13 to 0.32 mm2. 128 

Mb FeRAM consists of 90 nm thick PZT film in a capacitor cell to store the information 

based on remanent polarization (discussed above) [204].  
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Table 2-1 illustrates the development of chain FeRAM with capacity and design 

rule (layout rules required to obtain optimum yield of the device without compromising 

circuit reliability). This development leads to improve the scope of usage of FeRAMs in 

various memory devices as illustrated below [205]. 

The continuous development made it plausible to use ferroelectrics in commercial 

memory devices, especially in the low power consumption devices such as smart cards. 

Since then different companies such as Ramtron, Fujitsu Ltd., Texas Instruments, 

Samsung, Sony, among others have been working on the fabrication and development of 

the FeRAM.  

The commercial available FeRAMs are Fujitsu 8-kb made of PZT used in Sony 

play station 2, 32 Mb PZT FeRAM fabricated by Samsung and 4 Mb FRAM by 

Matsushita made from strontium bismuth tantalate (SBT) [206]. Bismuth ferrite (BiFeO3, 

BFO), one of the true single phase multiferroic materials, is used for FeRAMs by Fujitsu 

[207]. 

Applications of non-volatile memories include a display of highly consumable 

multimedia equipment (digital cameras, video cameras and digital audio) and portable 

products (mobile phones, notebooks, Palm PCs, among others) [155]. A comprehensive 

review on FeRAMs can be found in reference [208]. 

Further miniaturization of FeRAMs is still an area of active research as suggested 

by the International Technology Roadmap for Semiconductors (ITRS) for NV-FeRAM 

(non-volatile FeRAM) (Table 2-2) [209]. According to this road map the cell structure 

will go from planar (2D) to a three dimensional designs (3D) using nano structures such 

as nanotubes, nano trenches, among others and capacitor size of 0.08 µm2 or below up to 

few nano meter dimension. There is also need to look for materials with high current 

caring capacity such as carbon nanotubes and graphene, in order to replace expensive 

metal electrodes.  

Two fundamental questions are raised here: i) one more scientific and related with 

the need to know if ferroelectricity will still exist at the nano scale, and ii) a second one 
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more technological and related with the existence of available technologies that will allow 

to fabricate the required nano size geometries. 

 

Table 2-1 Development of chain FERAMs as a function of capacity [210]. 

 

 

The answer to the first question about the existence of ferroelectricity at nano 

scale is addressed in the next sub section with a comprehensive literature review on the 

topic and the answer to the second one related with the fabrication techniques is addressed 

in section 2.6. 
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Table 2-2: International Technology Roadmap for Semiconductors (ITRS), suggest 

potential solutions for future non-volatile memory [3]. 

 

 

 

2.4.6 Scaling of the ferroelectrics 

Effect of size on ferroelectric properties of nano structure ferroelectrics 

As indicated before, further improvements in terms of storage capacity are 

needed; these can be accomplished by miniaturization of the cell size into nano 

dimensions and/or the development of new nano structures based on nanotubes, nanorods 

or nanowires as described by J. Scott et al. [211]. These 1D structure seems to be the new 
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direction for decreasing the existing size of memory devices. So it is pertinent to know if 

at nano scale ferroelectrics preserve ferroelectricity; i.e are there size effects in the 

ferroelectric response of nanostructures? How quantum effects affect the ferroelectric 

behaviour? What are the mechanisms responsible for the modification of ferroelectricity 

at the nano scale. Indeed, it is well accepted now, that properties of a material can 

drastically change at the nano scale due to quantum confinement effects. New properties 

have been even discovered for many nano sized materials. The effects of size reduction 

in the ferroelectric properties have been also addressed from the experimental and 

theoretical point of view. 

Size effects in ferroelectrics have two distinct origins: intrinsic and extrinsic. In 

terms of intrinsic effects contributing to the ferroelectric instability phenomena to be 

considered are: depolarization phenomena [212], the absence of long-range cooperative 

interactions, elastic constraints and new ferroelectric polarization. In terms of extrinsic 

effects to be considered are: domain structure, free carriers, lattice defects and interface 

phenomena [213-217]. 

Theoretical determination of the stability of the spontaneous polarization with the 

decrease of size was given by Landau theory [218] and by Ab Initio models [219-221]. 

Ghosez and Rabe et al. [221] studied the critical thickness for PbTiO3 films using 

atomistic simulation and first principle calculations. The authors found that in (001) films 

with thickness as low as three unit cells (~1.2 nm) the ferroelectricity persist. Later, 

Junquera and Ghosez [219] determined the critical thickness using first principle on more 

real scenario where interface between the BaTiO3 thin films and the metallic electrodes 

(SrRuO3) was taken in to  account. The authors found that BaTiO3 thin layers lose the 

ferroelectric properties below 24 Å (2.4 nm), due to the depolarization electrostatic field.  

To verify the theory on the critical thickness several systematic experimental 

studies were carried out on powder particles of different sizes [222, 223] and thin films 

[224-226]. Here we present the most important works on experimental evidences for the 

persistency of ferroelectric properties for nano particles and thin films. Later, 

comprehensive details on the existence of ferroelectric ordering in nanotubes and nano 

rods is also discussed. 
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Ishikawa et al. [223] determined the critical size for PbTiO3 nano particles below 

which ferroelectricity might not exist, using Raman and XRD. Raman results indicate that 

the critical size is ~ 10.7 nm below which Raman scattering was not observed. Whereas, 

the c/a ratio determined by XRD pattern indicates critical thickness of 11.7 nm. According 

to the authors the critical size effect is due to the weakening of dipole-dipole interaction 

with the decrease in particle size. The experimental difficulties to fabricate small size (> 

10 nm) constrain the experimental investigation on critical size effects in ferroelectrics. 

However, this constrain has been overcome and critical size of particles was studied for 

~5 nm BaTiO3 particles by Polking et al. [227]. High quality mono domain BaTiO3 (BT) 

particles prepared by hydrothermal method were studied by aberration corrected 

transmission microscopy with holographic polarization imaging and piezo force 

microscope (PFM). The maps of ferroelectric structure distortions indicate the persistence 

of a linearly ordered and monodomain polarization at nano dimension. Further, the 

switching of mono domains for 5 nm BT particles were proved by PFM. These results 

point the way to fabricate ferroelectric memories with the storage capacity of multi-

Tbit/in2. From these studies it can be concluded the ferroelectric critical size for particles 

is well below 5 nm.  

The first experimental proof for the existence of ferroelectricity for thin films 

came from the work of Tybell et al. [225]. Epitaxial Pb(Zr0.2Ti0.8)O3 (PZT) thin films, 

with thickness from 800 to 40 Å (up to 10 unit cells) were grown on Nb-doped SrTiO3 

metallic single crystal substrates by off centre RF sputtering. Using scanning probe and 

electric field microscopy the ferroelectric state was found for PZT films of 40 Å (4 nm to 

10 unit cells). Fong et al. [228] studied critical thickness for ultra-thin films of PbTiO3 

synthesised by metal organic chemical vapor deposition (MOCVD) on SiTiO3 substrate. 

Films with thickness of 4 to 12 nm were studied by synchrotron x-ray scattering maps in-

situ (during the growth of films) as a function of temperature. The satellite peaks obtained 

from the in plane domains were used to study the ferroelectric transition as function of 

temperature. Satellites peaks persist down to 12 Å (approximately three unit cells). This 

result seems to indicate that the effect of depolarisation in theory is overestimated. Indeed, 

in theoretical studies 180º domains were not considered however they were present in the 

experimental samples and it is well known that this domain configuration produces a 

natural mechanism (described above) for reducing the depolarising fields across the 
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thickness of the film. It is clear from the experimental results that stable ferroelectricity 

exists in nano particles and thin films up to 5 nm and 1.2 nm, respectively.  

Various theories have been used to investigate the ferroelectric behaviour and 

critical thickness for 1D ferroelectrics [229-242]. Here, we described the most relevant 

works. 

Ebenezer and Ramesh theoretically evaluated the percentage of piezoelectric-

response on the cylinder structure (such as nanotubes) having diameter of 5 mm and 

length of 10 mm using finite element methods. The result proved that the polarization lay 

along the long axis z or radially through the wall, but piezoelectric response around the 

tube circumference (θ) was not calculated. 

Euler-Lagrange equation was used by Morozovska et al. [230] to derive the 

analytical expression for dependence of paraelectric-ferroelectic transition temperature 

on the radii of nonotubes, while considering the influence of effective surface tension and 

depolarization field. In their studies they found the enhancement of spontaneous 

polarization for BaTiO3 and Pb(Zr,Ti)3 nanotubes and the noticeable increase of transition 

temperature which the authors suggest to be due to the radial stresses coupled with 

polarization via electrostriction effect.  

Geneste et al. [232] used the first principle calculation and found that the critical 

thickness below which ferroelectric distortion does not exist for BaTiO3 nanowires is 

about 1.2 nm. The authors suggested that the disappearance of distortion is due to low 

coordination at the wire surface. Later in 2008, Hong et al. [234] used Landau-Ginzburg-

Devonshire theory to study the ferroelectric properties for Pb(Zr0.5Ti0.5)O3 nanowires. It 

was proposed that Curie temperature, coercive field, remanent polarization, dielectric 

permittivity and piezoelectric coefficient are size dependent. These properties disappear 

below the critical thickness (2 nm) but can be recovered if appropriate axis tension is 

applied. The same authors studied the size dependent ferroelectric properties for BaTiO3 

nanowires using the same theory. They found the Curie temperature, polarization and 

width of the ferroelectric loops decrease with the reduce diameter of the noanowires 

below 20 nm. The critical thickness for BaTiO3 where hysteresis loop disappear is 

estimated to be 3.6 nm [235]. The effect of the surface curvature of PbTiO3 nanowires 
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was also theoretically studied [238]. The nanowires depict enhancement of spontaneous 

polarization due to the tension induced by nanowires surface curvature at the surface. 

This induced tension counteracts the surface depolarization and PbTiO3 nanowires with 

1.8 nm diameter depicts 1.26 times higher spontaneous polarization than bulk counterpart. 

The effect of surface termination for BaTiO3 [236] and PbTiO3 [237] nanowires 

were also theoretically investigated. It was found that the critical thickness for BaTiO3 

nanowires regardless of stoichiometry and nanowires side wall termination is about 12 Å. 

However, the nanowires with Ba-O termination depict polarization below critical 

thickness. In the case of PbTiO3 nanowires the ferroelectricity is enhanced at the edge of 

the Pb-O terminated nanowire because Pb-O covalent bond that predominates 

strengthened ferroelectric distortions locally. Whereas, it is found considerable 

suppression of ferroelectricity for Ti-O terminated nanowires. Critical thickness for 

PbTiO3 nanowires with Ti-O termination is around 17 Å. Zheng et al. [240] use 

thermodynamic models and Ginsburg - Laudau equation to determine the effect of surface 

tension and the near –surface eigenstrain relaxation on the ferroelectric properties. The 

authors found that the transition temperature and polarization are enhanced due to the 

effective radial pressures induced by the surface tension. This results in high remanent 

polarization and coercive field in comparison with bulk values for BaTiO3 nanotubes. Ma 

et al. [239] use Landau–Ginzburg–Devonshire phenomenological approach to investigate 

the surface tension associated internal pressure on the phase transition in BaTiO3 

nanowires. The surface tension inside 1D structures induces the internal pressure along 

the radial direction which influences the ferroelectric properties. It was concluded that if 

the polarization is oriented along the axis of the nanowires the polarization and transition 

temperature are expected to increase with the decrease in diameter, until the long –range 

ordering favouring ferroelectricity. In the case of polarization normal to the axis of the 

tubes transition temperature decreases with diameter. 

From the theoretical point of view it is somehow clear that the critical size of 1D 

structures to present ferroelectricity is dependent on many factors as size, polarization 

direction, stress at curvature, termination and so on. Hence it is difficult to predict or 

indicate an exact critical size; however from the above mentioned works, the maximum 

critical size theoretically calculated for 1D ferroelectricity is estimated to be around ~3 
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nm. A clear picture on the critical size can be obtained if one considers experimental 

studies, as well. 

In last decades, experimental studies have been carried out on 1D nano 

ferroelectrics to understand the existence of ferroelectricity and domain formation in 

nanowires, nanotubes and nanorods and also to verify the theoretical predictions. Here, 

we detailed the most important experimental investigations carried out accordingly. 

The first experimental investigation about ferroelectric properties on BaTiO3 

nanowires prepared by solution based methods was carried out in 2002 [243]. The 

ferroelectric properties were investigated by Electron Force Microscope (EFM) on 

BaTiO3 nanowires having diameters ranging from 10 to 35 nm. 10 nm BaTiO3 nanowires 

retain ferroelectric properties and depict a coercive field of ~7 kV/cm and retention time 

for the induced polarization >5 days.  

In 2003 Morrison and co-workers obtain nanotubes of strontium bismuth tantalate 

(SBT), BT and PZT with wall thickness of ~200 nm, using Si porous template assisted 

chemical solution deposition (CSD) [211, 244, 245]. SBT and PZT tubes exhibit good 

rectangular hysteresis loops acquired by SPM [246]. 

Nanorods of Rochelle salt (RS) single crystals were synthesised inside alumina 

templates with pore size of 30 nm by Yadlovker et al. [247]. The electrical measurements 

were carried out by Sawyer-Tower circuit from temperature ranges from 21 - 60 ºC. They 

found there is an enhancement of the spontaneous polarization from 0.25 up to 2 µC/cm2 

in nanorods as compare to bulk.  

In 2006, Zhaoyn et al. [248] characterized BaTiO3 nanowires synthesised by 

chemical based methods  having diameter of 50 - 200 nm and length up to 10 mm. PFM 

studies were carried out both in plane and out of plan mode. The authors have found that 

the ferroelectric polarization switching along the axis of nanowire, whereas ferroelectric 

response normal to the axis was strongly suppressed. In the same year Spanier et al. [213] 

investigated the ferroelectric phase transition in BaTiO3 nanowires synthesised from 

solution-phase decomposition of barium titanium isopropoxide. In this case BaTiO3 

nanowires have diameters ranging from 30 to 100 nm with lengths up to 10 µm. The 
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influence of depolarization fields on the stability of written domains perpendicular to the 

nanowire axis was demonstrated by Electrostatic Force Microscopy and the enhancement 

of ferroelectricity was attributed to the presence of molecular adsorbents on the surface 

of the wires. Curie temperature (Tc) variation as a function of the nanowire diameter is 

shown in Figure 2-19. Based on the experimental results it was predicted that the Curie 

temperature for BaTiO3 nanowires falls below room temperature for nanowire with 

diameter of 3 nm and ferroelectricity can be retained in the BaTiO3 nanowires up to 0.8 

nm below the room temperature. The suppression of ferroelectricity for nanowires with 

decrease in diameter is the result of the depolarization fields as it is known that the 

depolarization is an inverse to the thickness of the material. 

Focused ion beam was used by Schilling et al. [249-251] for the synthesis of 

different sizes of 1D BaTiO3 structures. The domain study on these 1D BaTiO3 structures 

were carried out after cooling the wires below the Curie temperature and imaged by 

Scanning Tunnelling Electron Microscopy. The authors found that the orientation of 

polarization exists both in parallel and vertical axis of the nanowires. By changing the 

aspect ratio of the wires, it allows local variations of the polarization direction.  

Nanorods of PbTiO3 with width of 30-100 nm and length of 100´s nm were 

fabricated by hydrothermal method and characterized by Piezo Force Microscope. These 

rods exhibit ferroelectric hysteresis loops with the applied dc bias of ±10 V. The 

orientation of the domains can be altered from perpendicular to parallel by heating the 

nanorods above Curie temperature. Heat treatment also results in the formation of 90º 

domains what might be caused by the rearrangement of the surface as stated by the authors 

[252].  

The above studies suggest the size is not a constraint for 1D nano structures and 

possess sufficient ferroelectricity along the axis of 1D structure as well in the 

perpendicular to axis.  

In 1984 Ginzburg et al. [253] theoretically predicted that anomalies in magnetic 

response of CdC and CuCl are due to the presence of toroidal ordering and this ordering 

can be found in ferroelectric material as well. 
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Fu et al. [254] investigated BaTiO3 colloidal quantum dots and wires using first 

principle based approach. They found that large ferroelectric off centred displacement 

exists in 5 nm nanodots, where ferroelectric domain ordered in spontaneous vortex 

ordering. This theoretical demonstration of spontaneous toroidal moment open the 

possibility of fabricating high density ferroelectric memory based on spontaneous 

toroidal moment. Later, Naumov and co-workers [6, 255] used ab initio studies to 

investigate the ferroelectric behaviour of Pb(Zr,Ti)O3 nanodisks and nanorods. 

Nanodisks of 3.2 nm diameter show the structural stability at low temperature and 

possess spontaneous polarization in the form of clockwise and anticlockwise vortices 

(Figure 2-20) which is not similar to the bulk. The toroidal movement and TC for 

nanorods increases with diameter at low temperature where in the case of nanodiscs TC 

is insensitive to the diameter. The authors also explained numerically that there is a 

critical diameter under which vortex do not exist. 

 

 

 

Figure 2-19 Ferroelectric phase transition temperature (TC) as a function of the diameter 

of BaTiO3 nanowires (dnw). The solid circles are the experimentally determined TC and 

magenta solid line is the fit to the data. The inset plots TC as a function of 1/dnw [213]. 
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Figure 2-20 Schematic of the possible polarization phenomena pattern that occurs at the 

nano scale (a) circular and [6] (b) toroidal spontaneous moment [256, 257]. 

2.5 CNTs and ferroelectrics 

A key requirement for the miniaturization of FeRAM capacitor cell (or memory 

cell) is to have large electrode surface area so that reliability of the switching and sensing 

of the signals can be improved. These requirements cannot not be achieved in the present 

2D planar structure. Therefore, alternative structures and circuit designs are needed. 3D 

type structures appears as a promising alternative. It is expected that these 3D capacitor 

cells for FeRAMs will allow to fabricate RAMs with the storage capacity of 1 - 10 Gbit 

without exceeding the total area of the memory cell i.e. more than 0.08 µm2 [258, 259]. 

This means that the memory cell should be of lateral dimension of 100 nm or less up to 

20 nm. 

3D FeRAM cells can be design by two different approaches based on the design 

of bottom electrode (BE) [4]. The schematic of the two designs that are currently being 

proposed are represented in Figure 2-21; the first one is named as pin shaped (Figure 2-21 

(a)) and the second one as cup shaped (or trench). In pin shaped the BE is deposited on a 

flat substrate and shaped in the form of rods or tubes. These tubes are then conformally 
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covered with the ferroelectric material and top electrode (TE). In the cup shaped geometry 

(Figure 2-21 (b)) the BE is shaped in the form of a trench that is later covered with the 

ferroelectric and on the top of it with the TE. The whole cell size needs to be less than 10 

F2 (where F is feature size) to accumulate the high storage density. 

  

Figure 2-21 3D FeRAM capacitor cell: (a) pin shaped and (b) cup (or trench) shaped 

[4].  

The major developments on 3D shaped FeRAM capacitors have been mainly 

performed by three different research groups. The group of Funakubo from Japan used 

silicon trenches to fabricate 3D FeRAM capacitor cells [258, 260]. The group of Wouters 

from Belgium used pin shaped bottom electrodes covered with strontium bismuth 

tantalate (SBT) [261-263]  and the third group of Scott from United Kingdom and Katiyar 

from USA used CNTs as a BE for the synthesis of 3D capacitor cells [13, 21].  

Cup (or trench) shaped bottom electrodes were first investigated by Funakubo et 

al [260] in collaboration with Samsung-Tokyo Institute of Technology (Figure 2-22). The 

authors used SiO2/TiAIN/Ti/SiO2/Si trench substrates as a bottom electrode for the 

fabrication of 3D shape FeRAM capacitors. By pulsed–metal organic chemical vapor 

deposition (MOCVD) Si trenches were coated with Ru electrode followed by the 

ferroelectric layer of PZT by pulsed-MOCVD at 540 ºC. SEM and EDS analysis 

evidenced the good conformal covering of Si trenches with Ru and PZT, demonstrating 

the success of using MOCVD to fabricate trench bottom electrode capacitor cells for high 

(a) (b) 
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density FeRAMs. However, this work reveals some concerns about the variation of the 

PZT composition throughout the structure and thickness of PZT layer in the trench. 

Kim et al. [258] did similar investigations on the fabrication of 3D capacitors 

using Si trench, but in this case atomic layer deposition (ALD) was the chosen technique. 

Si trenches were covered with ~ 15 nm layers of Ir conducting electrodes using TiAlN as 

buffer layer between the PZT and Ir which improves the stability of Ir electrodes. The 

ferroelectric PZT layer deposited after by MOCVD depicted a uniform covering 

throughout the trench with compositional uniformity of PZT throughout the trench. 

However, structural non-uniformity of the PZT layer on the bottom and on the side walls 

was observed by TEM. 

These results are preliminary investigations on using Si trenches as templates for 

the fabrication of 3D capacitors; more systematic investigations using different FE 

materials and electrical characterization are necessary to be carried out. 

In 2003, pin shaped electrodes were first investigated by Zambrano et al. [4] in 

STMicrelectronis. The authors illustrates the pin shaped electrodes have some advantages 

over cup shaped ones because there is no need of uniform covering of BE with FE, 

moreover no need of masking required during the deposition process of BE and/or FE 

and the size of the capacitor cell was not controlled by parasitic components as in trench 

shape cells. In this work Zambrano and co-workers used MOCVD to cover 

Pt/IrO2/Ir/TiAlN (BE) with strontium bismuth tantalate (SBT) (Figure 2-23 (a)). 

However, structural non-uniformities of SBT grains were found at the bottom electrode. 

In following works [261-264] this same group fabricated SBT films on pin shaped 

Pt/IrO2/Ir/TiAlN (BE) with the technology node of 0.35 µm and 0.18 µm using MOCVD. 

A 70 % increase in the remanent polarization was reported for these 3D capacitors in 

comparison with similar 2D capacitor cells due to the contribution of the sidewalls of BE 

(Figure 2-23 (b)). The authors also found that remanent polarization values increase with 

the miniaturization of the cell size as illustrated in Figure 2-23 (c). These 3D capacitor 

cells show fatigue after 1013 cycles. 

These innovative works clearly show that the use of 3D structures results in 

improving polarization of 3D capacitors due to the increase in the surface area of the 
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bottom electrode. These findings triggered the further research with the use of metallic 

1D materials with enhanced conducting properties such as CNTs, to fabricate 3D 

capacitor cells for future 3D FeRAMs. 

 

Figure 2-22 SEM micrograph of 3D trench shaped capacitor, Si trench covered by PZT 

for 3D capacitor cell for FeRAM (left side image). The EDS analysis from side walls and 

bottom of the trench reveals the presence of Pb, Zr and Ti elements (right side image) 

[260]. 



 

Ferroelectric – Carbon Nanotubes (CNTs) structures fabrication for advanced functional nano devices         
59 

Fundamentals and state of the art 

 

 

 

(a) 

(b) 
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Figure 2-23 (a) 3D pin shaped capacitor cell in which the BE is covered with SBT; (b) 

caparison of hysteresis loops of 3D and 2D capacitors, 3D capacitor depicts high 

remanent polarization; and (c) size dependence of the remanent polarization of 3-D 

capacitors measured at 5 V, in 0.18 and 0.35µm technology [265]. 

The first use of CNTs as bottom electrode for pin shaped memory application 

came from the work of Jang et al. [14, 16, 17] in which the potential of using vertical 

aligned CNTs coated with Si3N4 targeted to the development of ultra large scale 

integration (ULSI) memory based on DRAM or nano electromechaical RAM 

(NEMRAM) was proved. The working principle of NEMRAM memory is based on the 

mechanical movement of the nanotubes, due to the charging of capacitor as in DRAM. 

The main advantage of vertical structure design using CNTs is to decrease the cell 

dimension and improve the storage capacity. CNTs were vertically grown by CVD on the 

substrate and then coated with Si3N4 layer by direct current plasma enhanced chemical 

vapor deposition system (DC-PECVD) (Figure 2-24 (a)).  

Later in 2007, based on a similar idea Kawasaki et al. [13, 21] have employed 

CNTs as bottom electrodes for the development of pin shaped 3D capacitors cells for 

FeRAM. In this work CNTs were vertically grown on silicon substrates and vertical 

MWCNTs were coated with PZT by liquid source misted chemical deposition (LSMCD) 

(Figure 2-24 (b)). After PZT deposition on MWCNTs the samples were pyrolysed at 300 

(c) 
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ºC for 3 min followed by annealing at 650 ºC in oxygen atmosphere. TEM and STEM 

studies show that the tubes are not uniformly coated and also that the MWCNTs did not 

burn due to the protective coating of the oxide on the top of the tubes. However, EDS 

analysis clearly reveals the contamination of CNTs surface with platinum. These studies 

were the initial step and proved the feasibility of producing CNTs – FE structures. In 

these studies the ferroelectric behaviour of CNTs-FE was not demonstrated.  

Following this pioneer work, Katiyar and co-workers demonstrated the covering 

of Bamboo–CNTs (BCNT) (diameter of 100 to 150 nm) with pulsed laser deposition 

(PLD) method at low oxygen pressure of 70 to 80 mTorr and temperature ranges from 

600 oC to 700 oC with ferroelectrics as PZT and Ba0.7Sr0.3TiO3 (BST) [27] and 

ferromagnetic La0.67Sr0.33MnO3 [31]. PZT on the surface of BCNTs was analysed by 

Raman that confirms no damage to the BCNTs up to 650 ºC and confirms the formation 

of crystalline PZT at 650 ºC. However with the increase in the deposition temperature to 

700 ºC, no RAMAN peaks corresponding to BCNTs were observed, point to the possible 

disappearance of BCNTs by oxidation. The structural morphology of the PZT grown on 

BCNTs studied by HRTEM depict nano sized crystal beads of PZT across the CNTs 

(Figure 2-25 (a)). PZT layer thickness on the surface of CNTs is varying from 50 to 80 

nm. The local piezoelectric response shows ferroelectric behaviour of 1D BCNTs-PZT 

(Figure 2-25 (b)) [28, 29]. The leakage current maps were also obtained using conduction 

AFM reveals the variation in conductivity throughout the structure. According to author 

this may be associated with the presence of defects associated with the fabrication. BST 

deposited on BCNTs by PLD at 650 ºC with oxygen pressure of 80 mTorr were 

characterized by HRTEM and Raman [27]. HRTEM analysis shows the BST-BCNTs 

structure has diameter of 150 to 250 nm. BST layer consists of maize like nano beads 

having thickness of 15 to 25 nm. Raman analysis confirms the presence of BCNTs with 

little damage fabricated at 650 ºC. No electrical measurements were performed on the 

BST covered BCNTs structure. Later, the same group deposited La0.67Sr0.33MnO3 

(LSMO) [31] on CNTs using PLD. The thickness of the LSMO layer on the surface of 

MWCNTs is ~50 nm. The in-situ I-V measurement in TEM and modelling of the data 

states the electron transport properties of LSMO-BCNTs outperform those from CNTs 

alone. 
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Yang et al. [25] fabricated co-axial nano structures (or core shell) of MWCNTs 

and oxides using PLD. CoFe2O4 layers on MWCNTs were deposited by PLD followed 

by BT layers. The authors found that increasing the deposition temperature (above 700 

ºC) and oxygen concentration (100 mTorr) improved the crystallinity of BT but the 

surface morphology of the tubes becomes affected at these conditions. No electrical 

measurements were reported. 

  

Figure 2-24 (a) MWCNTs coated with Si3N4 for NEMRAM [15] and (b) MWCNTs coated 

with PZT by liquid mist technique [21]. 

  

Figure 2-25 (a) HRTEM micrograph shows nano beads of PZT on the surface of PZT 

coated MWCNTs. (b) Piezo-electric response from a PZT nanotube [28, 29]. It was 

demonstrated that MWCNTs can be conformally covered with PZT by PLD and a 

ferroelectric response was measured.  

(a) (b) 

(b) (a) 
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Vertical Aligned (VA) MWCNTs covered with SrTiO3 layers by RF sputtering to 

control the field emission from the VA-MWCNTs has been demonstrated by Pandey et 

al.[30]. Author, prove the high dielectric constant dielectric (SrTiO3) on VA-MWCNTs 

can reduce Coulomb repulsion forces between electrons in neighbouring CNTs. This 

leads to lower the drifting of electron flows in CNTs and thus reduce electron phonon 

scattering and Joule heating. No information is disclosed on structure or interfaces of 

MWCNTs-SrTiO3. The possible application of this heterostructure was proposed for field 

emission devices such as X-ray generation, and wave amplification application.  

The above mentioned works use physical/chemical vapor deposition methods to 

cover CNTs with FE, but there are some reports on use of chemical solution deposition 

methods to cover MWCNTs with FE detailed below. 

The first work on the use of chemical methods to cover MWCNTs with FE was 

reported in 2010, where Bedekar et al. [23, 24] reported coatings of MWCNTs with 

BaTiO3 (BT). The BT layer on the surface of MWCNTs was formed by dispersing the 

CNTs in to the commercial sol gel solution of BT. MWCNTs covered with BT precursor 

were heat treated in nitrogen atmosphere at 700 ºC for 2 h to obtained MWCNTs covered 

with BT layer. HRTEM and EDS revealed uniform covering of tubes with layer thickness 

from 10 to 20 nm. However in this study information on oxide phase formation process, 

crystallinity and electrical measurements are lacking.  

Mohammadi et al. in 2012 [26] used MWCNTs as sacrificial templates for the 

growth of PZT nanotubes. Here, MWCNTs were coated with PZT sol gel solution and 

annealed at >450 ºC for different time periods to oxidized MWCNTs. Without 

explanation the authors stated that the presence of MWCNTs promoted the early PZT 

phase formation. The activation energy for the PZT phase formation was calculated by 

Kissinger equation and found to be 103 kJ/mol. TEM analysis demonstrate the formation 

of PZT tubes with thickness of 50 to 60 nm. Electrical measurements were not performed 

on these PZT nanotubes.  

Vertical aligned MWCNTs were covered with BST particles using low cost 

electrophoretic deposition (EPD) process for 3D capacitor cell. Commercial Ba1-xSrxTiO3 

(BST) nano particles (average size of 10 nm) were used for the deposition in aqueous 
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media. Vertical aligned MWCNTs synthesised by CVD were used as a working 

electrodes and deposition of BST particles were carried out with electric fields of 5 V/cm 

and 100 V/cm [22]. Although BST particles covered MWCNTs, a non-uniform surface 

of BST granules on the MWCNTs is the main limitation of this fabrication process. The 

electrical properties of these MWCNTs-BST structures were not measured. 

Other than covering CNTs with FE there are other studies which are focused on 

the fabrication of MWCNTs-FE composites for various electrical application. Here are 

some of the most important ones, which are somehow related with the present work.  

Hydrothermal synthesis was used to fabricate MWCNTs-BT composite structures 

in which MWCNTs were used as metallic fillers to improve the thermal and electrical 

properties of the composites [18, 19, 266]. The MWCNTs-BT composites were 

hydrothermally synthesised in two steps. In the first step TiO2 was initially immobilized 

on the surface of MWCNTs using sol gel method. These MWCNTs-TiO2 structures were 

reacted with barium acetate solution to get MWCNTs-BT composite powders. [18-20] 

Using these powders MWCNTs-BT sintered bulk ceramics with different wt% of 

MWCNTs were fabricated by spark plasma sintering (SPS). Composite depicts decrease 

in thermal conductivity and electrical conductivity from 3.06 to 2.46 W/mK and 20.3 to 

6.5 S/cm, respectively, whereas specific heat capacity increases from 425 to 465 mJ/gK.  

In 2008, Ruangchalermwong et al. [267] synthesised MWCNT-PZT thin films on 

Pt (111)/TiO2/SiO2/Si(200) substrates by spin coating. The films were prepared by mixing 

different wt% (0 to 1) of MWCNTs in the PZT sol. The deposited films were pyrolysised 

at 400 ºC for 2 h and then annealed at 650 ºC for 30 min. During the annealing process 

MWCNTs oxidized and leave open porosity. The effect of porosity on the dielectric 

properties of porous PZT films was investigated. As expected it was found that the 

dielectric response degrades with the increase of porosity.  

Table 2-3 and Figure 2-21 summarizes the above literature review and the most 

important contributions to this field of covering of MWCNTs with ferroelectrics up to 

now. In the Figure 2-21 the green ovals and square represent the major aim and specific 

aims for the present work carried out.  



 

Ferroelectric – Carbon Nanotubes (CNTs) structures fabrication for advanced functional nano devices         
65 

Fundamentals and state of the art 

Most significant progress on covering MWCNTs with FE has happened in last 

five years; most of this work relates with covering MWCNTs for 1D structure by 

physical/chemical vapor deposition methods and just a few studies are related to the use 

of chemical solution deposition methods; 

-except the work of Kumar et al. [29], no other works studied the ferroelectric 

properties of the CNTs-FE. 

-there are no systematic studies on the coverage of MWCNTs with low cost 

chemical solution methods has been reported, especially for BFO.  

-it is clear that developing and understanding the covering process of CNTs with 

FE is an important aspect for 3D FeRAM capacitors. 

From the above discussion it is clear there is need to pursue this idea and to 

develop techniques by which the short come of previous studies can be overcome, such 

as stoichiometry control, carbon lattice damage and siphoning of the using CNTs as a 

substrate material. It is also necessary to conduct more systematic characterization of 

ferroelectric properties.  

 

Figure 2-26 Plot illustrates the important works published on covering of CNTs with FE 

by physical/chemical vapor deposition and chemical solution deposition methods.  
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Table 2-3 Literature review on the development of CNTs-FE. 

Group Material/Process Characterization Conclusions Reference 

J E Jang et al. 

(2004, 2005 and 

2008) 

Si
3
N

4
-MWCNTs/ Plasma-

enhanced chemical vapor 

deposition (PECVD) 

SEM, electrical 

measurements 

Proof the concept of  using 3D 

geometry for Ultra large scale 

integrations and 

nanoelectromechanical DRAM 

[14-17] 

Q. Huang et al. 

(2004-2005) 

BaTiO
3
–MWCNTs/ 

Hydrothermal method followed 

by sintering using RTP furnace, 

bulk 

XRD, SEM and 

electrical 

measurements 

Transfer n-type BaTiO
3
  

semiconductor to p-type with 

the inclusion of CNTs 

[18-20] 

S Kawasaki et al. 

(2007-2008) 

MWCNTs-Pb(ZrxTi1-x)O
3  

/liquid 

source misted chemical deposition 

(LSMCD) technique 

SEM, EDS mapping 

MWCNTs damaged at 650ºC 

in air. Also, there is reaction 

between substrate material and 

CNTs 

[13, 21] 

Ezzat G Bakhoum et 

al. (2009) 

BaSrTiO
3
-MWCNTs

 
/ 

Electophoretic deposition (EPD) 

SEM, deposition 

parameters 

Non uniform coating of 

MWCNTs with BST particles 
[22] 

V Bedekar et al. 

(2010) 

BaTiO
3
-SiCN-MWCNTs 

Use MWCNTs as Template/ 

solution method 

XPS ,SEM,TEM, 

EDS 

Successfully coated  BT on 

SiCN/MWCNT 
[23] 

V Bedekar et 

al.(2010) 

BaTiO
3
–MWCNTs/ solution 

method 

FTIR ,SEM  ,TEM , 

EDS, Contact Angle 

Coating thickness of 5-15 were 

obtained by solution method 
[24] 

Y Yang et al.(2010) 
BaTiO

3
-CoFe

2
O

4
–MWCNTs/ 

Pulsed Laser deposition (PLD) 
SEM ,TEM ,XRD 

Proved PLD is effective 

technique for coating 

MWCNTs  

[25] 

M R Mohammadi et 

al.(2012) 

PbTiO
3 

 Nanotubes 

Use MWCNTs as 

Template/ Solution method 

DTA/TG ,XRD  

,RAMAN, SEM, 

TEM, EDS Mapping 

PZT nanotubes were successful 

obtained using MWCNTs 

template 

[26] 

F Mendoza et 

al.(2012) 
Ba

0.7
Sr

0.3
TiO

3
 (BST)-CNTs/ PLD XRD, RAMAN , 

SEM, HRTEM 

Demonstrate the possible 

strategy for the conformal 

coating of MWCNTs 

[27] 

A Kumar et al. 

.(2012, 2014) 
PZT-CNTs/ PLD 

XRD, RAMAN , 

SEM, HRTEM, 

PFM 

Demonstrate the possible 

strategy for the conformal 

covering of MWCNTs with 

PZT without major damage to 

CNTs and Local ferroelectric 

measurements 

[28, 29] 

A. Pandey et al 

.(2012) 

Strontium Titanate on Vertical 

Aligned CNTs/RF sputtering 

Raman, XPS, SEM, 

HRTEM and Current 

(I) -Electric field (E) 

Field emission properties has 

been improved 
[30] 

J. Beltran-Huarac et 

al. (2013) 
La0.67Sr0.33MnO3-CNTs/ PLD 

XRD, RAMAN , 

SEM, HRTEM, I-V 

Curve 

Demonstrate the possible 
strategy for the conformal 

coating of MWCNTs with 

ferromagnetic oxide 

[31] 
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2.6 Introduction to the nano fabrication methods  

Since the last 20 years and related with the expectations on nano technologies, a 

key enabling technology, synthesis and fabrication of nano structured materials have been 

consistently studied. Indeed novel properties expected for many nanostructures, nano 

materials and nano devices and the market needs for small, smart and mobile electronic 

gadgets have been the driving force behind these developments. Extensive efforts have 

been on going to prepare nano particles, ultrathin films, nanowires, nanotubes and 3D 

arrays of nano structures. Among all of these, 1D nano structures and their arrays as 3D 

structures are been seen as highly promising to be used in various electronic applications, 

due to their electron caring capacity, large surface area and high strength. As mentioned 

before, 1D nano structures are expected to play a prominent role as interconnectors, 3D 

memories cells, as a gate material for transistors, in optoelectronics and as 

electrochemical and electromechanical devices with nano scale dimensions, among others 

[206, 268]. 

So far fabrication strategies can be divided in to two main groups: top down and 

bottom up approach. 

In top-down methods the feature size is obtained by etching or removal of 

materials from a large surface. The methodology mainly relies on lithography processes 

that utilize highly energised particles such as photons, ion or electron beam to erase 

material. Top down methodologies employ physical methods such as lithography, 

etching, ball milling and probe-based methods to downsize large macro structure to micro 

sized ones. The main advantage of top down methods comprise high-precision 

positioning and size control and disadvantages include: effect the crystallographic 

orientation of the materials, introduced impurities and imperfections and time [269]. 

In the case of bottom up approaches the nano structures are fabricated from the 

atomic level to the molecular one, as building blocks, up to a nano or micrometre size. As 

a consequence, advantages of the bottom up processes include better chances to obtain 

defect free nano structures, high homogeneity in the structure, epitaxy and possibility to 

be used for coatings; the main disadvantages of bottom up approaches include: toxicity 

of precursors, difficulties in controlling uniformity of size and morphology of the nano 
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structures and complexity of the process in some cases. Table 2-4 summarises the most 

common top down and bottom up approaches used for the fabrication of ferroelectric 

films and nano structures with their advantages and disadvantages [270]. 

Table 2-4 List of top down and bottom approaches and their advantage, disadvantages 

and limitations, adapted from [270] 

Approach Technique Advantages Disadvantages Minimum 

size (nm) 

References 

 

Top-Down 

 

FIB 

 

 

 

EBDW 

 

 

EB-lithography 

 

High resolution, Use of High 

quality films, Uniform size and 

array 

 

No etching process, High 

resolution and Uniform size 
and array 

 

High resolution and uniform 

size and array 

 

Surface damage, Low 

throughput, Volume 

shrinkage, Shape 

change 

Low throughput, 

Etching process 

 

 

Low throughput, 

Etching process 

 

70 

 

 

70 

 

 
 

100 

 

[259, 271-274] 

 

 

[271, 275-277] 

 

 

[278, 279] 

 

Bottom-up 

 

CSD (solgel, 

hydrothermal) 

 

 

MOCVD 

 

 

PLD 

 

 

Sputtering 

 

Easy Process, Easy to generate 

various size and to access 

extremely small size 

 

Easy Process, Easy to generate 

various size and to access 

extremely small size 

 

Easy process, Access to 

extremely small feature 

 

Easy process, conformal 

coating 

 

Difficulty in uniform 

size array, and shape 

 
 

Difficulty in uniform 

size array, and shape 

 

 

Difficulty in uniform 

size array, and shape 

 

Difficult in uniformity 

 

 

<10 

 

 

<10 

 

 

 

<10 

 

 

<10 

 

 

[224, 271, 280-

287] [288, 289] 

 

 

[271],[282],[290],

[291, 292] 

 

[271, 282] 

 

 

[30, 293] 

 

Top-down approaches mainly rely on lithography processes that utilizes highly 

energised particles such as photons, ions or electron beam to remove material. Within 

these methodologies the most important techniques used to fabricate ferroelectric nano 

structures are Focused Ion Beam (FIB) and Electron Beam Direct Writing (EBDW). 
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These techniques are currently used in modern commercial nano technology, because 

they provide high-precision positioning and excellent size control [294]. The working 

principles of these techniques are described below. 

The working principle of FIB is based on bombardment of high energy ions on 

the surface in order to remove the atoms. In FIB the Gallium ions are generated form the 

gallium metal placed in contact with tungsten needle. The produced gallium ions are 

accelerated towards the samples using electrostatic lenses with the acceleration energy 

from 1 - 50 keV. FIB is carried out under high current (~4 nA) to remove the material up 

to sub-micrometres to nanometre [295]. FIB has the same experimental setup as scanning 

electron microscope except in the case of FIB focused beam ions (namely gallium ions) 

are used instead of electrons. FIB is one of the most popular techniques for the fabrication 

of ferroelectric nano structures from already deposited metal organic crystalline films. 70 

nm FE nano structures can be fabricated from FIB. FIB can be used in three different 

ways for micro fabrication, named as FIB lithography, FIB milling and FIB deposition 

milling. The main advantages of FIB are: high resolution, uniform size and the ability to 

fabricate arrays. Low throughput and high cost are however major limitations. 

As an example, Ganpule et al. [259] successfully demonstrated the use of FIB to 

achieve ferroelectric nano structures with sizes ranging from 1 to 0.01 µm2 of 

Pb1.0(Nb0.04Zr0.28Ti0.68)O3. A protective layer of Pt is coated on the top LSCO electrode 

previously deposited on Pb1.0(Nb0.04Zr0.28Ti0.68)O3 film (Figure 2-27 (a)). FIB ion beam 

was operated with an acceleration voltage at 50 kV, dose of 8 x 1017 ions/cm2 and beam 

spot size of 6 - 12 nm to fabricate nano structures as small as 100 nm. The obtained 

ferroelectric nano structures show ferroelectric hysteretic response. However, there are 

major concerns regarding the damage of the oxide lattice at the etching surface by the 

high energy electron milling. Therefore, it is not possible at this stage of the technology 

to obtained feature sizes below 70 nm, for which ferroelectric oxides will not damage. 

E-Beam Direct Write (EBDW) is a massless lithography process used to fabricate 

patterns of metallic and oxide nano structures using metal organic precursors [296]. It 

uses electrons as a source for patterning the surface of the substrate covered with the metal 

organic precursors. Chemical reactions are locally induced in a metal-organic film by 

irradiation the film with the electron beam. The unexposed area is dissolved by etching 
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or firing process and further heating at high temperature yields nano pattered structures 

of metal or oxides. A feature size around 20 nm can be achieved by this process. This 

technique is widely used for making photo masks for integrated circuits [296]. However, 

EBDW is not economically viable to make patterns, besides being very time consuming, 

the fabricated nano structures are highly defective.  

Alexe et al. [275] used EBDW to fabricate SrBi2Ta2O9 and Pb(Zr0.70Ti0.30)O3 nano 

structures; the experimental steps followed during this process are shown in Figure 2-27 

(b). The metal organic films of Pb(Zr0.70Ti0.30)O3 and SrBi2Ta2O9 on SrTiO3/Nb substrates 

were exposed to the electron doses varing from 600 to 1500 mC/cm2 and 600 to 1200 

mC/cm2, respectively. The films were then immersed in toluene for 1 min and dried with 

nitrogen. Nano structured patterns (as shown in Figure 2-27 (b)) were obtained with 

lateral dimensions between 1 and 0.125 µm. After this the substrates were heat treated to 

obtained crystalline nano structures of Pb(Zr0.70Ti0.30)O3 and SrBi2Ta2O9  ferroelectric. 

The local ferroelectric switching proved the ferroelectric nature of 100 nm 

Pb(Zr0.70Ti0.30)O3 nano structures. 

Bottom up approaches are divided into three categories i) Physical Vapor 

Deposition (PVD) and ii) Chemical Vapor Deposition (CVD) and iii) Chemical Solution 

Deposition (CSD). 

In PVD process a vapor phase from a pure material is created by laser ablation or 

ion bombardment. This vaporized material condenses on the substrate to create the 

desired ferroelectric layer. In the case of CVD, the source material, in the form of volatile 

precursors and together with the carrier gases are injected into the CVD chamber, where 

the vaporized precursors adhered to the hot substrate, eventually undergoes chemical 

reaction and leaves the desired ferroelectric oxide layer on the substrate. Both PVD and 

CVD are widely used in microelectronic industries to fabricate thin film based devices 

[297, 298]. 

In comparison to the previous PVD and CVD, Chemical Solution Deposition 

(CSD) methods are high-throughput, well suited to the deposition of large areas and low 

cost. Due to these assets CSD has recently started to be used in the industry to fabricate 

ferroelectric thin films and/or nano structures. In CSD process liquid precursors of desire 
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material are transferred/deposited on the substrate to form films and or nano structures of 

ferroelectrics [299, 300].  

 

Figure 2-27 Top down methodologies for the fabrication of ferroelectric nano structures: 

(a) focused ion beam milling (FIB) and (b) EB direct writing [259, 275]. 

Important processing methods used for the fabrication of ferroelectric nano 

structures by PVD are Pulse Laser Deposition (PLD) and sputtering. Within CVD 

methods, Metal Organic Chemical Vapor Deposition (MOCVD), because it combines 

chemical reactions at the gas phase, has a prominent place. In what concerns CSD 
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methodology sol gel and hydrothermal are some of the most versatile methods to fabricate 

ferroelectric nano structures at low costs and low temperature. 

PLD involves ablating a target material with a high energy focused laser beam to 

produce a highly forward directed plasma plume (normal to the target surface) that 

subsequently condenses and deposits onto the substrate. The PLD method is of interest 

due to its relative simplicity when compared to other PVD techniques, its relative good 

capacity to transfer stoichiometric amounts of the target material to the substrate, and its 

ability to control the stoichiometry of the growing thin film with the aid of a background 

gas atmosphere. Usually an excimer or Nd-YAG laser, producing an intense pulsed 

(repetition rate 0-100 Hz) laser beam in the UV range, is used. Typical wavelengths are 

193 nm for ArF, 248 nm for KrF and 308 nm for XeCl excimer lasers and 355 nm for 

Nd:YAG. For every material there exists a set of optimal deposition parameters that 

requires some systematic previous work. The main advantage of PLD is related to the 

possibility of getting conformal covering and very small dimension structures (>10 nm). 

The main disadvantage includes the difficulties in getting uniform size, arrays and shapes 

[301]. 

Sputtering is also a PVD technique. It works on two modes, named as DC mode 

used to deposit metallic films mainly and Radio Frequency (RF) mode use for depositing 

oxide films. The working principle of sputtering is based on the bombardment of a target 

(cathode) with high energy positively charged ions. In the sputtering chamber the inert 

gas is introduced at a pressure of 1 to 10 mTorr. A DC voltage is applied between the 

target (cathode) and the substrate (anode), which ionizes the inert gas and results in the 

formation of a plasma. The charged ions of the inert gas accelerate towards the target and 

the forced collisions of the ions with the target results in the ejection of atoms from the 

target into the space. These ejected atoms move towards the substrate (anode) where they 

condense to form a film. During the ionization of the inert gas the electrons are released 

and accelerate towards anode substrate. During electron journey to anode, it collides with 

the inert gas and create more ions and electrons in the process, so that cycle of sputtering 

continues. Inert gases, as Ar and Xe, are used to form a plasma and prefer for the 

fabrication of metallic films [194]. 
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For the deposition of oxide films RF sputtering is preferable because it can be 

operated in low gas pressure (< 1mTorr) at RF of 13.65 MHz, nevertheless the RF 

sputtering can be operated from 0.5 -30 MHz. In the RF sputtering a permanent magnet 

is fixed behind the target to accelerate the ionization process. With the application of 

magnetic field parallel to the target surface, the secondary electrons drift in circular path 

very near to the target surface. The advantage of RF sputtering is the plasma confined 

near to the target without causing any damage to the film (on anode). As particles are 

drifting in circular motion it increases the traveling distance and the probability of 

ionization of the inert gas molecules. This process tends to generate large amount of ions, 

therefore, increasing the efficiency of the sputtering process. Although sputtering 

techniques are very good for growth of 2D films, there are limitations especially in what 

concerns the control of the microstructure, crystal structure and stoichiometry for 

complex multicomponent systems. Moreover, it is implies the use of expensive 

equipment. For the synthesis of oxides, reactive gases such as nitrogen and/or oxygen 

mixed with argon are used. It is also possible to deposit multicomponent systems, but it 

requires system and target modifications [302]. In the present work RF magnetron 

sputtering is used to deposit BFO film on the surface of aligned CNTs. The important 

parts of the sputtering unit used in the work are marked in Figure 2-28. 

MOCVD is a chemical vapor deposition process used to fabricate thin films and 

coatings, especially for manufacturing III-V compound semiconductors and mainly based 

on nitrates. MOCVD working principle is simple. Pure gases of the desired processed 

material along with carrier gases are introduced into the CVD chamber by pumping. The 

atoms of desired oxides are deposited on the substrate by decomposing organic molecules 

while they are passing over the hot substrate. The deposited atoms undergoes 

crystallization process to form thin oxide film on the surface of substrate. MOCVD is 

used for manufacturing light-emitting diodes (LEDs), lasers, transistors, solar cells and 

other electronic devices, and is one of the key enabling technologies for future markets 

with high growth potential [298]. The advantages of MOCVD process include a high 

output and versatility to generate a wide range of sizes up to very small sizes <10 nm, 

whereas the disadvantages encompass difficulties to have uniform coverings and the use 

of toxicprecursors. 



 

Ferroelectric – Carbon Nanotubes (CNTs) structures fabrication for advanced functional nano devices         
74 

Fundamentals and state of the art 

 

 

Figure 2-28 RF Sputtering unit from CRIOLAB, the important parts are marked with 

circles.  

Sol gel processing is known as wet chemical method, through which nano sized 

particles and/or thin films of simple and complex compounds can be obtained at the 

molecular level (Figure 2-29). The term sol refers to a colloidal suspension of solid 

particles of nano metric size, where gravitation forces are negligible and interactions are 

dominated by short range forces, like Van Der Walls [303]. The term gel is used to define 

a porous three dimensional network of clusters or particles that result from the hydrolysis 

and condensation of the sol. 

The steps involved in the formation of inorganic networks from a solution are 

dependent on the structure of the sol. Metal alkhoxides (M(OR)z, (where R is an alkyl 

group CxH2x+1, and Z is the oxidation state of the metal) and metal salts are the most 

commonly used starting reagents for sol-gel processing of oxides. Many chemical 
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parameters affect the reaction process such as pH, temperature. type of solvent, 

concentration of the metal in solution, acid and base catalysis, order of addition of 

reagents, among others [304].  

Hydrolysis and poly condensation are the two steps towards the formation of the 

gel. This reaction can be described by a SN2 mechanism (bimolecular nucleophilic 

substitution) [305]. 

O + M -O R 
H

H
 

O-M-O R
H

H
 

HO-M-O
H

R
 

HO-M  + ROH 

 

The reaction occurs with the nucleophilic addition of a negatively charged HOδ- 

group on to positively charged metal Mδ+, leading to an increase of the coordination 

number of the metal atom in the transition state. The positively charged proton then 

transferred towards an alkoxy group and the positively charged protonated ROH ligand 

is finally removed.  

The simple way of describing the whole reaction of hydrolysis and condensation 

is given below: 

 M(OR)x + H2O 
 

⇔ (RO)x-1M-OH + ROH Equation 2-12 

 (RO)x-1M-OH + (RO)xM 
 

⇔ (RO)x-1M-O-M(OR)x-1 + 

ROH 

Equation 2-13 

 RO)x-1M-OH + HO-M(RO)x-1 
 

⇔ (RO)x-1M-O-M(OR)x-1 

+ HOH 

Equation 2-14 

In reaction Equation 2-12, hydrolysis of the metal alkoxide bond (M-OR) results 

in the formation of a metal hydroxyl bond (M-OH). In the second step (Equation 2-13), 

the condensation between the hydroxyl and an alkoxide ligand or between two hydroxyl 

ligands (Equation 2-14) results in the formation of a metal-oxygen-metal (M-O-M) 
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bridge, which constitutes the backbone of any oxide  structure. Continuous condensation 

leads to increase in metal-oxygen-metal crosslinks, eventually results in gelation or 

precipitation. 

The final structure contains an inorganic network of oxygen bridged metal, 

hydroxyl and alkoxy groups [303, 306]. The network branching, molecular size and 

number of alkoxide groups depends on the reaction kinetics. In order to have small 

molecules and precipitates it is advised to have a fast hydrolysis step.  

One of the claimed advantages of sol gel method is the possibility to synthesised 

nano powders and thin films at relatively low temperatures compared to solid state 

method. Some of the disadvantages of the sol-gel process include: relative high cost and 

toxicity of precursors and solvents and crack formation in the case of thin films, resulting 

from the decomposition of the organics prior to the oxide formation. 

 

Figure 2-29 Sol-gel process to obatin different nano structure materials such as films, 

fibers, glass, ceramics xerogel and aerogel [307].  
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Hydrothermal is a process by which fine organic or inorganic materials are 

obtained using single or heterogeneous phase reaction in aqueous media above room 

temperature (T > 25 oC) and above atmosphere pressure. Synthesis is usually conducted 

above the boiling temperature of the solvent, which results in the generation of an 

autogeneous pressure which is the saturated vapor pressure of the solution. This condition 

provides optimum conditions to increase solubility and reactivity of the precursors used 

in the material synthesis. If water is used as the solvent the process is known as 

hydrothermal and when nonaqueous solvent is used it is known as solvothermal [308]. 

Upper limit of hydrothermal temperature and pressure used commercially are 1000 oC 

and 500 MPa respectively [299]. 

Figure 2-30 demonstrates the effect of filling factor (of teflon jar used for 

hydrothermal process) on the autogeneous pressure and temperature for water based 

process. The doted curve represents the line where the liquid and gaseous phase coexists. 

Below this dotted line the liquid water is not present and the vapor phase is not saturated. 

The compressed liquid phase is presented above the dotted line. The solid line represents 

the pressure inside the vessel due to different filling factors. For example when the filling 

factor is 70 % the vessel is completely filled with liquid water at a temperature of ~ 300 

oC, with the increase in temperature the pressure inside the vessel also increases and 

follows the 70 % line [309].  

The properties of the water changed with the addition of mineralizers. This 

mineralizers are used to improve the solubility limits of different precursors, diffusion 

and reaction rate. The precursors used in hydrothermal synthesis also influence the 

composition of the liquid and gas phase equilibrium in the autoclave.  

The hydrothermal synthesis is an economical and environmentally friendly 

method to synthesised organic and inorganic materials with different shapes and sizes. 
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Figure 2-30 Pressure – temperature dependence for different degrees of filling of the 

autoclave with water during hydrothermal process [309]. 

The nucleation and growth mechanisms of formation of oxides in hydrothermal 

synthesis can be dissolution-precipitation [310] or phase boundary chemical reaction 

[311]. Dissolution-precipitation mechanisms involve the transportation of the solute 

through the suspension, surface adsorption and dehydration of the solute species, surface 

diffusion between precursors and finally crystallite formation and growth (Figure 2-31 

(a)). In dissolution-precipitation the solubility of the precursors is important and in some 

cases it might not be sufficient for the reaction process to occur. Therefore different 

precursors with different reactivity should be used; for example in the hydrothermal 

synthesis of BaTiO3, anatase has a higher reactivity than rutile. Not only precursors but 

also pH is major factor, therefore different mineralizers needs to be added to increase the 

solubility of the precursors. The choice of the optimal mineralizer should consider the 

chemistry of the oxide and precursor species needed to be dissolved. Strong bases (NaOH 

or KOH) have a high solubility under the hydrothermal synthesis conditions, therefore 

frequently used [312]. 
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The phase boundary controlled mechanism occurs for the amorphous gels, 

exhibits a porous network structure, which is believed to be infiltrated by the aqueous 

solute and solvent under hydrothermal conditions Figure 2-31 (b); because of that the 

diffusion process is very rapid for the phase boundary mechanism in comparison to the 

dissolution- precipitation one. The nucleation of small particles occurs with the addition 

of basic solution followed by the growth at hydrothermal conditions. 

Different crystallite size and shapes can be obtain by controlling the various 

parameters, such as concentration of precursor in the solution, pH of the solution, 

temperature and type of precursors. In order to obtained 1D nano structured materials 

with anisotropic crystal structures, the appropriate organic additives or surfactants to aid 

directed growth or 1D templates [313] are usually used. 

 

(a) 
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Figure 2-31 Schematic of (a) dissolution-precipitation and (b) phase boundary control 

reactions [310, 311]. 

Hydrothermal synthesis is performed in stainless steel autoclaves as illustrated 

in Figure 2-32. The used precursors can be oxides, nitrates, hydroxides or other salts of 

the desire material. The precursors, additives and mineralizers are added together with 

the solvent in the teflon jar, before putting it into the stainless steel autoclave. The filling 

factor of the teflon is always lower than 80%. Moderate temperatures in between 80 to 

300 ºC are used for the synthesis, which are lower than supercritical conditions. The 

heating time varies from system to system and can differ from 0.5 to 72 h. The 

hydrothermal synthesis is carried in teflon jars to avoid contaminations [309]. The 

fabricated powder is washed with water and in some cases with alcohols to remove the 

ions deposited on the surface of the product. The advantages of hydrothermal methods 

over other methods are: use of low working temperature, the materials which have high 

vapor pressure near the melting point can be grown by hydrothermal method and 

different shapes of the same material can be obtained. 

(b) 
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Figure 2-32 Schematic of a teflon lined stainless steel autoclave, used for hydrothermal 

synthesis [309]. 

There are various different mechanisms and strategies by which 1D ferroelectrics 

can be fabricated by CSD and can be classified as template assisted synthesis and template 

free synthesis.  

In template assisted synthesis, 1D negative templates made of porous alumina 

(AAO, anodic aluminium oxide) and positive templates such as nanotubes, nanorods or 

nanowires are used to fabricate 1D nano structures. Sol-gel solution of the desired 

compound is introduced into the pores or channels by capillary forces and/or use of 

vacuum pumps. This is followed by an heat treatment to obtained crystalline tubes similar 

to the geometry of the formation channels [314]. The template of AAO is removed by 

basic solution such as NaOH, in some cases removed by heating the template at elevated 

temperature Figure 2-33 (a)).  

Positive templates has been used to fabricate 1D nano structures, the nano wires 

and nanotubes of ferroelectrics. Mohammadi et al. [26] used MWCNTs as a positive 

sacrificial templates to fabricate Pb(Zr0.52Ti0.48)O3 nanotubes. MWCNTs covered with 

Pb(Zr0.52Ti0.48)O3 solution was heat treated at elevated temperature to obtained 

Pb(Zr0.52Ti0.48)O3 1D nanotubes with diameter of 80 to 100 nm. CNTs can be used as non-
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sacrificial positive template to fabricate FE-CNTs structures, where CNTs will be used 

as bottom electrodes for microelectronic devices. The use of CNTs for non-sacrificial 

template was described above in the work of Kumar et al. [29].  

Electrospinning is also a template assisted synthesis in which the shape of the final 

nanofibre is confined by the shape and size of the nozzle. A viscous polymeric solution 

of the desired material is uniaxial stretched under an electrified jet to get thin fibres 

(Figure 2-33 (b)) [315]. Hollow fibres can also be produced using co-electrospinning 

method [316]. Alkoy et al. [317] used sol-gel based PZT solution and polyvinyl 

pyyrolidone polymer to fabricate PZT nanofibres heating at 700 ºC. PZT fibres having 

diameters ~230 nm were obtained from this process. 

 

Figure 2-33 (a) Template growth using AAO templates and (b) uniaxial stretching during 

the electro spinning process for the fabrication of 1D ferroelectrics(adapted from [318]). 

In template free method the 1D structures are formed due to kinetically favouring 

or controlling of crystallographic facets. Template free synthesis methods are better in 

many aspects when compared with template methods, especially because no post 

treatments are required. The most common mechanisms of template free growth are: 1) 

(a) (b) 
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crystallographic orientation preferences and 2) growth of preferential crystal facets by the 

use of appropriate capping reagents.  

In case of materials with anisotropic crystal lattice. There is an energy differences 

between the crystal faces, faces with high surface energies show the fastest growth rate 

in contrast to others, resulting in 1D structures Figure 2-34 (a)). Orientated attachment 

for piezoelectric ZnO was reported by Pacholski et al.[319]. 1D ZnO structures were 

formed by the attachment of the quasi-particles with perfectly allied lattice planes along 

c direction. The attachment between the particles occurred by the conventional 

mechanism of dissolution and growth. The other mechanism for the growth of 1D is 

adsorption of capping reagents on preferential surfaces of the crystal. These capping 

agents stabilized that surface triggering the differences in the growth rate between 

capping and non-capping sites resulting in the formation of 1D structures Figure 2-34 

(b)). Yang et al.[320] fabricated nanowires of BaTiO3 by hydrothermal method using 

polyethylene glycol (PEG) as a surfactant. PEG molecules have specific surface 

adsorption on to the selective crystallographic planes of the oxide crystals. This limits the 

growth of the crystal to specific orientation resulting in the formation of 1D BT nanowires 

under hydrothermal conditions.  

 

Figure 2-34 Growth of 1D nano ferroelectric structures due to (a) use of anisotropic 

crystallographic structure of a solid and (b) use of surfactant [318]. 

(a) (b) 
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2.7 Conclusions  

This chapter detailed important aspects related with the proposed work on the 

fabrication of CNTs-FE nano structures. It is evident from the literature that CNTs is the 

optimum material for microelectronics due to its extraordinary physical, chemical 

properties and unique geometry. With the evolution of electronic world there is urgent 

need to have high data storage devices which can be also achieve if FeRAM are redesign 

from capacitor planar structure to 3D one, as suggested by ITRS 2011. One way to 

achieve this 3D design FE capacitors is to combine CNTs with FE. However, this is not 

a trivial task as mentioned above and, currently there are no systematic studies on the 

fabrication and characterization of CNTs-FE structures, and in particular exploiting the 

use of low cost and low temperature synthesis methods. 

This is the ground where this work is set, aiming to explore the potential of using 

low cost, low temperature process to construct MWCNTs-FE nano structures and to 

check their ferroelectric behaviour towards potential applications, namely as FeRAMs. 
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Chapter 3 

3 Experimental details 
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Abstract  

This chapter describes the experimental strategy followed to fulfil the defined 

objectives of this thesis. The materials under study include MWCNTs and as 

ferroelectrics, Lead Zirconate Titanate (Pb1-xZrxTiO3, (PZT)) and Barium Titanate 

(BaTiO3) and as a multiferroic Bismuth Ferrite (BiFeO3). The synthesis techniques used 

comprise low temperature chemical solution methods as sol gel and hydrothermal and 

physical deposition, as RF sputtering. The different fabricated MWCNTs-FE structures 

were characterized by a variety of techniques that include, X-Ray diffraction, thermal 

analysis (DTA/TG), Infra-Red spectroscopy, Raman spectroscopy, Scanning Electron 

Microscopy (SEM), Transmission Electron Microscopy (TEM), High Resolution (HR) 

TEM, Atomic Force Microscopy (AFM) and Piezo Force Microscope (PFM). As received 

MWCNTs are impure, and for the purpose of this work MWCNTs were purified and 

functionalised. For each MWCNTs-FE system the particularities of the experimental 

procedure are described in detail later in the corresponding chapters. 
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3.1 Introduction  

The experimental work carried out during this work is illustrated in Figure 3-1. In 

this work two ferroelectric compounds (PZT and BaTiO3, BT) and one multiferroic 

(BiFeO3, BFO) were used to cover MWCNTs. In the first phase of the work and since 

ferroelectrics usually require high crystallization temperature the thermal resistance of 

MWCNTs was studied as a function of temperature, heating rate and atmosphere. In the 

next phase, MWCNTs were purified and functionalised. For that two different 

functionalization processes were used: covalent bonding and non-covalent bonding 

functionalization. Using these functionalised MWCNTs the combination between PZT, 

BT and BFO, as ferroics with MWCNTs was conducted using sol gel and hydrothermal 

methods to obtain 1D ferroelectric structures. In the last phase of the work, BFO was 

deposited on the Vertical Aligned (VA) MWCNTs using sputtering to investigate the 

potential use of VA-MWCNTs as conducting bottom electrodes. The physical properties 

of the nano structures were characterized by various techniques such as DTA/TG, XRD, 

Raman, FTIR, SEM and HRTEM. The electrical response for MWCNTs-FE were 

investigated by PFM.  

 

Figure 3-1 Flow chart of the experimental strategy followed during this work. 
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3.2 Multiwall carbon nanotubes used in the present work 

3.2.1 As-received MWCNTs 

MWCNTs used in this work were synthesised at the University of Scientirarum 

Szegediensis (University of Szeged) in Hungry, by Chemical Vapor Deposition 

Technique (CVD). Briefly, alumina supports impregnated with Co-and Fe-acetate 

(catalyst) were used as substrates to grow MWCNTs. The substrates are placed on quartz 

boats in the reaction chamber. In the first step, furnace and catalysts are degassed at 750 

ºC in flowing nitrogen. After 30 min, the gas stream is changed for a mixture of acetylene-

nitrogen and the catalytic chemical vapor deposition takes place for 1 h. At this stage the 

CNTs grown on the catalyst particles with amorphous carbon. After the reaction, the 

system is cooled under nitrogen flow. As prepared MWCNTs are removed from the 

alumina support by boiling in concentrated sodium hydroxide (NaOH) solution [321]. 

The thermal studies were performed on the as-received MWCNTs.  

Vertical aligned (VA)-MWCNTs grown on Si substrates with diameter and length 

of 5-20 nm and 1-2 mm, respectively, were also used to fabricate MWCNTs-FE 

structures. VA-MWCNTs were purchased from CVD Materials Corporation, USA. They 

were used to exploit the potential of CNTs as bottom electrode in order to replace the 

expensive metal electrode such as platinum. 

3.2.2 Purification and functionalization of MWCNTs 

As received MWCNTs contain impurities such as amorphous carbon, metal 

particles and so on, that compromise the final properties of the MWCNTs. To remove the 

impurities and to functionalize the tubes for improved wettability they were thermally 

and chemically treated. MWCNTs were functionalised both covalently and non-

covalently, as described below. 

The steps followed for the purification of as-received MWCNTs are illustrated in 

Figure 3-2. As-received MWCNTs were cleaned by thermal heating at 350 °C for 1 h to 

remove the amorphous carbon and other chemical groups attached on the surface of the 

tubes. This was followed by a chemical refluxing step in 6 M of hydrochloric acid (HCl) 
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for 6 h at 125 ºC; this resulted in the removal of metallic catalysts. The refluxed MWCNTs 

were washed with deionized water using ultrasonic bath and repeated filtration until pH 

come close to neutral. Vacuum filtration was performed using PVDF membrane filter 

(Membrane Solution) having diameter ~ 47 mm and pore size 0.22 µm. At the end of this 

step purified MWNTs were dried at ~100 ˚C overnight in the oven. This purification 

process removed almost all the carbonaceous (amorphous carbon) along with metal 

catalyst particles. After this step MWCNTs are designated as purified MWCNTs.  

The purified MWCNTs were acid treatment with 5 M of nitric acid (HNO3) and a 

mixture of 5 M and 10 M of HNO3 and sulphuric acid (H2SO4) for different periods of 

time. The nitric acid results in the functionalization of the tubes by induction of hydroxyl 

and carboxyl ion groups on the defect sites, whereas H2SO4 cuts the tubes into small 

segments. In the present work, MWCNTs tubes functionalized with 5 M HNO3 where 

used for the fabrication of MWCNTs-FE structures. It was verified that functionalization 

with mixtures of 5 M and 10 M of HNO3 and H2SO4 induced severe damages to 

MWCNTs and because of that tubes treated with this process were not further used in this 

work. 

Non covalent functionalization was carried out on purified MWCNTs using 

Sodium Dodecyl Sulfate (SDS, Sigma, ≥ 98.5%). The MWNTs (~300 mg) were dispersed 

in SDS aqueous solution (1:10 volume ratio) using ultra-bath sonicator for 2- 5 h. This 

solution was further magnetically stirred overnight so that as much as complete reaction 

between SDS and MWCNTs occurs. The SDS functionalized MWCNTs were filtered 

and dried in oven for 24 h at 80 ºC. SDS functionalized MWCNTs are referred as 

SDSMWCNTs. The non-covalent functionalization is more conformal and has less 

damage to the structure of MWCNTs. Figure 3-2 illustrate the steps followed for the 

functionalization of MWCNTs both covalently and non-covalently.  
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Figure 3-2 Flow Chart illustrating the steps followed for the purification and 

functionalization of MWCNTs. 

3.3 Characterization techniques 

3.3.1 Contact angle  

In this work the wettability of the MWCNTs is an important aspect, since one 

aims at the complete coverage of the tubes by the ferroelectric oxide. To measure the 
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wettability of surfaces there are different methods (quantitative and qualitative) and 

among the quantitative ones, contact angle method is one of the best when pure fluids are 

used.  

The contact angle was defined for the first time by Thomas Young et al. [322], 

the angle formed between the liquid drop contact with the solid surface where the 

mechanical equilibrium of the drop under the action of three interfacial tensions, namely 

liquid vapor (𝛾𝑙𝑣), solid-vapor (𝛾𝑠𝑣) and solid-liquid (𝛾𝑠𝑙) given in Equation 3-1. The 

Young equation for the contact angle (θ) is given below. 

 𝛾𝑙𝑣𝑐𝑜𝑠𝜃 =  𝛾𝑠𝑣 − 𝛾𝑠𝑙  Equation 3-1 

The facile way to measure contact angle is a direct measurement of the tangent 

angle at the three phase contact point on a sessile drop profile also known as sessile 

method. The set-up used for measuring contact angle by sessile method is referred as 

telescope-goniometer. It consists of a horizontal stage to mount the sample of interest and 

a micro meter pipette or motor driven syringe is attached on the overhead of horizontal 

stage (as in the present work). A digital camera and illumination source are placed in both 

sides of the horizontal stage so that camera, horizontal stage and illumination source are 

horizontally aligned. The water/liquid drop of desired volume is transfer to the surface of 

interest and image is acquired after the drop come in stable configuration. The contact 

angle is measured between the solid-liquid interfacial tensions and liquid-vapor 

interfacial tensions as shown in Figure 3-3. If the contact angle is >90o the surface has 

poor wetting, if it is equal to 90o then incomplete wetting and good wetting is obtained 

when θ is <90o. The direct measurement of sessile drop contact angles with a telescope-

goniometer can yield an accuracy of approximately ±2° [323].  

The contact angle was measured on purified and functionalized MWCNTs using 

sessile drop method (Dataphysics, OCA 25). A drop of water (~3 µl) is delivered on the 

surface of MWCNTs films. The water droplet on MWCNTs is allowed to come in stable 

configuration before taking the images to measure contact angle using software (SCA 20) 

provide with the equipment. 
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Figure 3-3 Contact angle (θ) formed by sessile liquid drops shows the wettability of the 

substrate on (left) θ > 90 o poor wetting, (in middle) θ = 90 o incomplete wetting (right) θ 

< 90 o good wetting (adapted from [323]). 

3.3.2 Differential Thermal Analysis (DTA) – Thermo gravimetric (TG) 

DTA and TG analysis are one of the most basic and powerful tools to evaluate the 

behaviour of a material as a function of temperature. From the DTA and TG plots, various 

information can be extracted, among them: thermal stability, chemical and physical 

reactions (exothermic or endothermic), phase formation and transition, glass transition 

temperature, melting temperature, among others. 

The working principle of DTA is based on the heat loss or gain due to the 

structural changes in material as a function of temperature or time. DTA equipment uses 

two set of identical columns, one for the reference (generally, empty alumina crucible) 

and other for the sample. Both the columns undergoes similar thermal cycle, while 

recording any temperature difference between reference and sample by thermocouples 

equipped with in the chamber. This temperature changes occurs due to the endothermic 

or exothermic reactions taking place in the sample. A DTA curve provides vital 

information on the phase formation especially in case of ferroelectric oxide synthesis by 

chemical methods. This information can be used to synthesise material with the desire 

phase or can be used to predict the reaction evolution for the formation of oxide.  
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The working principle of TG is based on the weight change occurred as function 

of temperature or at isothermal conditions. The weight loss that occurs in amorphous gels 

prepared by solution are mainly due to the evaporation of water, solvents, releasing of 

carbon dioxide and, in some cases, phase formation. In the particular case of carbon 

nanotubes, the weight change in ambient atmosphere is typically a superposition of the 

weight loss due to oxidation of carbon into gaseous carbon dioxide and the weight gain 

due to oxidation of residual metal catalyst into solid oxides. TG and DTA data can be 

obtained simultaneous in the same equipment, under various atmospheres and various 

heating rates.  

For oxidation studies of MWCNTs and phase formation of ferroic oxides, DTA/ 

TG was performed in a SETARAM, Labsys, TG-DTA12. The samples were heated in 

aluminum crucibles from temperature ranging from 80 oC to 900 oC in air at different 

heating rates (2, 5, 10, 20 and 40 oC/min). Base line was measured for all the experiments 

for each heating rate and deducted from the calculated data for each analysis. 

3.3.3 X-Ray Diffraction (XRD) 

The physical properties of all the solids are dependent on the crystal structure as 

is the case of FE. Therefore it is important to know the crystallographic structure of oxides 

under study and how the crystallographic structure is affected by the preparation 

conditions, and presence of foreign elements such as CNTs (present work scenario). X-

ray diffraction is one of the most important and used characterization tool to study the 

crystalline structure of materials. 

The working principle of XRD is based on the diffraction of X-ray from Bragg 

plane. When a beam of X-ray interacts with the atom and electrons in the crystal, they 

will oscillate under the X-ray impact and emit a large number of electromagnetic waves 

in particular directions. The direction of the emissions will be in phase in certain 

directions, which depends on the incident X-ray (Figure 3-4), on the wavelength and on 

the spacing between atoms in the crystals. The relation between all of these parameters is 

given by Bragg relation Equation 3-2: 



 

Ferroelectric – Carbon Nanotubes (CNTs) structures fabrication for advanced functional nano devices         
94 

Experimental details 

 nλ = 2d.sinθ Equation 3-2 

where n is an integer and λ is the wavelength of the x-ray used, d is the inter planar 

spacing, and θ is the angle made by the incident ray with the crystal plan.  

Diffracted rays are detected by a diffractometer; the obtained diffraction patterns 

are then compared with the reference standards for identification. Each solid has its 

unique crystallographic characteristics and X-ray powder patterns can be used as a 

"fingerprint" for crystal identification. Once the material has been identified, X-ray 

diffraction may be used to determine its crystalline or microcrystalline structure, i.e. the 

relative orientation of atoms in the crystal or crystallite and interatomic distances. 

Furthermore, it is possible to determine the size of the crystallites using Scherrer equation 

[324]. 

 

Figure 3-4 X-ray diffraction from the Bragg plane of cubic crystal with path difference 

equal to 2d sinθ, diffraction pattern is shown on the bottom right of the figure[325]. 
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Two sets of XRD equipment were used in the present investigation. For the phase 

identification studies conducted at room temperature Rigaku diffractometer with Cu-Kα 

radiation filtered by Ni was used. The diffraction patterns were acquired from 10 to 80° 

(2θ) with a step length of 0.04 º. For the in-situ phase formation studies as a function of 

the temperature Philips X’Pert diffractometer with Cu-Kα radiation was used to analyze 

samples for phase formation studies with temperature. In this case the diffraction patterns 

were acquired from 10° to 60° (2θ) with a step length of 0.02°.In order to obtain reliable 

quantitative data for kinetic analysis, the scan time and the samples weight were always 

the same. Variable-temperature X-Ray diffraction measurements were performed using 

Panalytical X’pert-Pro powder diffractometer equipped with an incident beam 

monochromator (Cu Kα1 radiation), Pixcel position sensitive detector, and Anton Paar 

TTK-450 temperature stage having an operating range from -190 °C to +1300 °C.  

3.3.4 Vibration spectroscopy  

3.3.4.1 FTIR Spectroscopy 

FTIR stands for Fourier Transform Infra-Red. As an infrared spectroscopy (IR), 

it gives information about chemical and bonding environment of the molecules. At room 

temperature the organic molecules are always in motion. The energy of the molecules are 

quantized rather than continuous. This means the molecules can only stretch and bend at 

certain allowed frequencies. When, molecules interact with the electromagnetic radiation, 

if the radiation frequency matches with the frequency of one of the vibrational modes, it 

will absorb energy (in most cases) from the radiation and jump to higher energy state. 

The difference between the lower vibration state and higher vibration state is equal to the 

energy associated with the wavelenght of the radiation that was absorbed. This results in 

the infrared spectrum as a function of transmission or absorption of energy. In a FTIR 

spectra the abscisa axis corresponds to the IR wavenumber, which are expressed in cm-1. 

This is the number of waves in a length of one centimetre. The ordinate axis represents 

the percentage of transmittance or absorbance, denotes the amount of light that was 

absorbed at each frequency [326]. The wave number (𝐯 ̅) is expressed by the following 

relation given in Equation 3-3: 
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 𝐯 ̅ =  
𝟏

𝛌
=  

𝐯

𝐜
 Equation 3-3 

where λ stands for the wavelength, c for the speed of light in vacuum (c = 2.997925 × 

108 ms-1) and 𝐯 wave frequency. 

There are different possible modes of vibration. The number of fundamental 

modes of vibration of a molecule can be predicted by the degrees of freedom of the 

vibrational energy which for linear and non-linear polyatomic molecules containing N 

atoms are 3N-5 and 3N-6, respectively [327]. The stretching vibration can be described 

by the movement when the bond length vary, and the bending vibration is the movement 

when one atom can move out of plane and so the bond angle is changed. Some bonds can 

stretch in-phase (symmetric stretching) or out-of-phase (asymmetric stretching). More 

detailed description of modes of vibration is presented in Figure 3-5. 

 

Figure 3-5 Four vibration modes for molecues [328]. 

In this work Fourier Transformed Infrared (FTIR) spectra in transmittance mode 

was acquired with a Mattson Mod 7000. FTIR spectra in the range 400-4000 cm-1 was 

obtained from the pellets. The pellets were prepared by mixing the sample with KBr (150 
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mg) and pressed uniaxial with the pressure range from 10-20 MPa. The spectra is typically 

an average of 64 scans with 4 cm-1 resolution. 

3.3.4.2 Raman Spectroscopy  

Raman spectroscopy was discovered by an Indian scientist C.V Raman for which 

he was awarded the Nobel Prize in physics in the year 1930. Raman spectroscopy is also 

known as vibrational spectroscopy, it is used to study various modes such as vibration, 

rotation etc. in the system by means of inelastic scattering. Laser light is used as a source 

for Raman spectroscopy in visible, infrared and near ultraviolet range. Laser light 

interacts with the phonons from the sample and results in the shift of energy. These shifts 

in energy give the information about the electronic environment of the molecules [329].  

The working principle of Raman is based on the inelastic scattering of light when 

interact with molecules. When a monochromatic light from the source interacts with the 

molecules or bonds inside the sample it gives rise to different scattering phenomena, 

namely Rayleigh, Stokes Raman and Antistoke Raman scattering. During this interaction 

the photon excites the molecules from ground state to the virtual energy states (Figure 

3-6), where it stays for some time and return to the ground state in different or same 

vibration levels after emitting the photon. The molecule if excited from first vibrational 

level returns back to the same vibrational level then it is known as Rayleigh scattering or 

elastic scattering (no change in frequency of photons) (Figure 3-6). If the molecule returns 

to different vibrational level, then the difference between the original state and the new 

state leads to a shift in the emitted photon's frequency, away from the excitation 

wavelength. When the photon frequency is shifted towards lower wavelength then it is 

known as Stoke scattering, otherwise it is known as Antistoke scattering. Energy of 

scattered phonons is discrete for every bounding and electronic environment; therefore it 

shows typical frequency for all Raman active molecules [330]. 
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Figure 3-6 Diagrammatic representation of an energy transfer model of Rayleigh 

scattering, Stokes Raman and Anti-Stokes Raman scattering, adapted from [329]. 

Raman spectroscopy gives very valuable information, which is useful for 

chemical identification, characterization of molecular structures, effects of bonding, 

environment and stress on a sample. Due to these features, Raman spectroscopy is widely 

used for polymers, oxide films, ceramics, and semiconductors and for the analysis of 

fullerene structures. 

Raman spectroscopy is most important tool for the characterization of MWCNTs. 

The Raman spectra of MWCNTs usually exhibit two characteristic bands, the tangential 

stretching G mode (1500 -1600 cm-1) and the D mode (~1350cm-1). The D band is a 

double resonance Raman mode, which can be understood as measurement of structural 

disorder coming from amorphous carbon and any defect. The G band originates from 

tangential in plane stretching vibration of the C- C bonds within the graphene sheets 

related with sp2 bounding. The intensity ratio of the D and G bands is represented by R 

(R = ID/IG, calculated from Raman spectra), can be used to evaluate disorder density of 
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nanotube walls. The graphitized MWCNTs exhibit a lower value for R with an average 

of ~1.1 [331]. 

Raman spectra for isothermally heated MWCNTs were recorded on a Bruker RFS 

100/S FT Raman spectrometer using a 1064 nm excitation of the Nd/YAG laser. The 

spectra were collected on powder samples in a range of wavenumber from 100 and 2000 

cm-1. However, for better resolution, the spectra was also acquired by HR 800, Jobin 

Yvon spectrometer, using the excitation lines of 532 nm for MWCNTs-FE and 

MWCNTs. 

3.3.5 Electron microscopy  

The transmission electron microscope operates on the same basic principles as 

light microscope but instead of light it uses electrons. The use of electrons as the light 

source is related with its lower wavelength which gives high resolution, thousands of 

times better than light microscope. TEM works under high vacuum created by different 

pumps such as ionic, diffusion and rotary pumps. 

TEM is divided into three main parts: the first one is the electron source, the 

second one is the column consisting of electromagnetic lenses, sample holder and aperture 

and the third one is the detector where one will have the final image (fluorescent screen) 

(Figure 3-7). The electrons are generated by three known mechanisms, field emission, 

thermionic emission and schottky emission. To guide these electrons through the column 

the electromagnetic lenses are used that focuses the electrons into a very thin beam. The 

electron beam then travels through the specimen to the detector where it gives the final 

image [332]. 

There are different image modes in which the TEM can work. The most common 

mode is bright field and in which TEM generally starts. In this mode, contrast is formed 

directly by blockage and absorption of electrons in the sample. Thicker regions of the 

sample or regions with a higher atomic number appear dark, whereas regions with no 

sample in the beam path appear bright, hence the term bright field. 

In dark field mode the objective aperture (a metallic plate with different sizes of 

holes) is placed in back focal plane that blocks the direct beam from the interacted 
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electrons and allow only scattered electrons to produce an image, due to which the image 

appears to be dark. In this mode it is possible to identify if the particles are crystalline or 

amorphous. The crystalline particles appear dark in this mode.  

The diffraction mode also known as selected area electron diffraction (SAED) is 

obtained by adjusting the magnetic lenses such that the image comes from back focal 

plane of the lens rather than the image plane, the spots in case of single crystal and rings 

in case of polycrystalline are observed.  

 

Figure 3-7 Schematics of optical microscope, TEM and SEM (from left to right) with 

important parts are named [333]. 
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The major application of TEM is to study the morphology of materials, and to 

obtain crystallographic and compositional information (if so equipped). TEM can also 

give information about structural aspects, phases, impurities, elemental analyses and 

dislocations. SAED is also required to calculate the lattice parameter and to observe the 

crystallinity of the composites. 

The resolution of the TEM is limited primarily by spherical aberration. By the 

reduction of the spherical aberration (by aberration correctors), an increase of the 

mechanical stability and the use of high voltages has led to the development of High 

Resolution TEM (HRTEM) which allows the production of images with sufficient 

resolution to show carbon atoms in diamond separated by only 0.89 Å and atoms in silicon 

at 0.78 Å [334]. The ability to determine the positions of atoms within materials has made 

HRTEM an important tool for nano-technologies research and development.  

In this work, the microstructures were analysed by TEM with a 300 kV Hitachi, 

H9000-NA instrument and HRTEM manufactured by a Jeol 2200FS microscope worked 

at 200 kV. MWCNTs-BFO samples were observed in King Abdullah University of 

Science and Technology (KAUST), Saudi Arabia using FEI Titan, 300 kV. 

For TEM analysis powder samples were dispersed in chloroform. One drop of the 

formed suspension was then put on a lacy carbon grid supported on a copper grid (Agar 

Scientific). The sample were dried in air for few hours before investigated for 

morphology, elemental analysis, interface and d spacing of the MWCNTs and MWCNTs-

FE by TEM.  

Scanning Electron Microscope (SEM) 

Most of the electronic systems of scanning electron microscope is similar to the 

ones of TEM. However, here the sample image is formed from the secondary electrons, 

which reflect from the sample rather than transmitted and detected by the detector (Figure 

3-7). 

The samples characterized by SEM were prepared as follows: MWCNTs and 

MWCNTs-FE powders were dispersed in ethanol or chloroform and few drops of the 

suspension were spread on aluminium sample holders. After drying the samples were 
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covered with a thin layer of carbon in order to make them conductive. The carbon 

deposition process was performed using an Emitech K950 carbon deposition chamber 

equipped with a turbo pump. The outgas time and evaporated time were 30 and 2 seconds, 

respectively. The SEM analysis were performed using Hitachi SU- 70 (S-4100) (FCT: 

REDE/1509/RME/2005). 

3.3.6  Atomic force microscopy and Piezo force microscope 

After the invention of the Scanning Tunnelling Microscope (STM) it quickly 

became obvious that other physical processes could be used to map surfaces, not just a 

tunnelling current. Indeed, physical forces (Van Der Wall forces, electrostatic forces and 

so on) between the sample and the tip were proved to be used for image surfaces, and this 

technique named as atomic force microscopy (AFM) [335]. 

AFM works on two basic modes: contact mode and non-contact mode. In contact 

mode AFM, the tip (scanning probe) mounted on the cantilever is brought in contact with 

the sample and scanned using piezoelectric actuators. The deflection of the cantilever is 

accurately monitored by laser spot reflected from the cantilever to the mirror and photo 

diode, refer Figure 3-9 (a). These signals are passed to the feedback system which allow 

the mapping of the sample surface [336]. During the interaction between the tip and the 

sample surface, the tip experiences rapidly changing forces. As the function of the 

magnitude of these interaction forces the vibrational characteristics of the tip changes: 

amplitude, frequency, magnitude etc. These signals are converted to get topography 

profile of the samples. 

The other mode of AFM operation is non-contact or tapping mode (TAFM). In 

this mode the cantilever is placed at some particular Z distance from the sample (knows 

as set point), where the tip oscillates close to its resonance frequency (with free 

amplitude). When the tip comes in contact with the sample forces the amplitude of the tip 

vibration reduces or increase by nm. This change in amplitude is monitored by the photo 

diode similar to contact mode to acquire the topography of the sample. The major 

advantages of the tapping over contact mode are the better resolution due to the negligible 

lateral forces and less wear of the tip. 
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AFM images are not a true representation of the sample topography due to the 

complex dynamics of the vibration tip and surface system. Therefore, there are limitations 

in achieving atomic resolution. This limitation can be overcome by using tips with very 

small (1-2 nm) tip diameter and having high aspect ratio. However, the tip used for AFM 

imaging are not ideally sharp and having low aspect ratio as shown in Figure 3-8 (a and 

b). Therefore, an AFM image does not reflect the true sample topography, but rather 

represents the interaction of the probe with the sample surface. This is called tip 

convolution. Nevertheless, the tip convolution does not affect the height of the feature 

only affects the lateral resolution.  

In the present work, this remark was kept in mind and the values mention in the 

text for the size of MWCNTs-FE was related with the vertical measurements rather than 

lateral measurements.  

 

Figure 3-8 Schematic illustrates the topography acquired from (a) a high aspect ratio 

and (b) a low aspect ratio tip. A high aspect ratio tip is the ideal probe (tip) to acquire 

best resolution. Whereas, with low aspect ratio will results in the convolution. This does 

not often influence the height of a feature but the lateral resolution [337]. 

It was addressed in the previous chapter, that the nano scale ferroelectrics are of 

technological interest and therefore there is need to study the various aspect of 

ferroelectric and piezoelectric properties at nano meter scale. Therefore, PFM was used 

to study the local ferroelectric properties of MWCNTs-FE. Schematic of experimental 

setup for PFM is shown in Figure 3-9 (a) [155, 335].  

(a) (b) 



 

Ferroelectric – Carbon Nanotubes (CNTs) structures fabrication for advanced functional nano devices         
104 

Experimental details 

In general, the PFM is carried out in contact mode using a conductive tip, used as a 

moveable nano electrode. The PFM response image is created from the deformation of 

ferroelectric domains due to the applied external field. This deformation can be in the 

form of contraction, elongation or shear depending upon the polarization vector and 

direction of the applied field. The PFM works on the converse piezoelectric effect where 

electric field- induce strain (S). It is expressed as follow: 

 Sj = dijEi Equation 3-4 

where Ei is the applied field and dij piezoelectric tensor. For a single–domain 

ferroelectric the piezoelectric coefficient relates to the spontaneous polarisation Ps via 

the following expression: 

 dij = ԑimQjmkPs  Equation 3-5 

where ԑim is the dielectric constant, Qjmk is the electrostatic coefficient and dij 

piezoelectric tensor. 

The above equation states linear coupling between piezoelectric and ferroelectric 

parameters and can be used to determine the domain polarity from the sign of field 

induced strain. The electric field along the polarization direction results in the elongation 

of the domain. The contraction of the domains is observed when the direction of the 

polarization is opposite to the applied field direction. The relation between induced strain 

(S) and changes in thickness (∆Z) is given by following equation:  

 S =   
∆Z

Z
=  ±d33E Equation 3-6 

where ∆Z is the sample deformation, Z thickness of the sample, d33 effective 

piezoelectric constant. The above equation can be further rewritten as follow: 

 ∆Z = ±d33V Equation 3-7 
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where 𝑉 is applied voltage. The contribution related to the electrostriction (given in 

Equation 3-5.) is typically much smaller than the piezoelectric response in a polarized state 

and vanishes if no dc field is applied to the sample. In the dynamic piezoresponse imaging 

method, an AC voltage is applied and the surface displacement is measured by the change 

in the vertical vibration of the cantilever, this response is know as vertical piezoresponse 

(VPFM), and amplitude is given by Equation 3-7.  

When domain polarization direction is parallel to the surface, the imaging of that 

domain is represented by detecting the torsional vibration of the cantilever Figure 3-9 (b) 

known as lateral PFM (LPFM). This surface vibration translates via friction forces to the 

torsional movement of the cantilever. The amplitude of the in-plan oscillation is given by  

 ∆Xo =   d15Vo Equation 3-8 

where ∆Xo is the change in the deflection along the X axis and Vo is the applied voltage 

and d15 is piezoelectric coefficient. Single-point piezoresponse force spectroscopy (PFS) 

is a technique which allows to probe the domain growth by detecting the changes in area 

of domain orientation as a function of time. It is mainly used to study the domain growth. 

The local ferroelectric hysteresis of the materials can be performed at the single point 

mode also known as switching spectroscopy (SS) PFM. Where the switching response of 

the domain is measured as the function of applied dc bias from positive to negative cycle. 

The characteristic local hysteresis response from the ferroelectric materials is shown in 

Figure 3-9 (c). 

 

(a) 
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Figure 3-9 (a) Schematic of PFM setup to simultaneously acquire the topography and the 

in- and out-of-plane component of the polarization. A function generator is used to apply 

an alternating voltage Vw between the tip and the bottom electrode of the ferroelectric, 

(b) schematic illustrates how PFM signals is acquired by the deformation of ferroelectric 

under the applied field; the voltage induced cantilever deflection is detected by a reflected 

laser beam on a four sector photodiode and (c) a hysteresis loop acquired by switching 

spectroscopy (SS-PFM)[338]. 

In this work, the topography and simultaneously piezoelectric response was 

obtained by Standard Asylum SPM (at the University College Dublin (UCD), Ireland). 

The vertical PFM was obtained when the mechanical oscillations were induced by 

alternating current (ac) voltage at frequency away from resonance frequency of the tip. 

MikroMasch series XSC11/Pt (cantilever no. B) silicon nitrate platinum coated tips were 

used, having a resonance frequency of 60 to 100 kHz and spring constant of 1.1 to 5.6 

N/m. The PFM response was also obtained using an Atomic Force Microscope (AFM, 

Multimode Nanoscope III A), equipped with external lock-in amplifier. Si AFM tips with 

platinum coating (force constant 2.8 Nm-1 and resonant frequency 70 kHz, MikroMasch 

series NSC18/Pt) were used with an applied voltage. As the effective piezoelectric 

coefficient ((d33)eff is proportional to the amplitude signal, this can be defined as 

(d33)eff ∝ (amplitude signal . cos(phase signal)) / Vac, where Vac is the ac voltage 

applied. The local hysteresis measurement were carried on individual grains by 

applying dc bias in 20 steps, with 0.3 s duration of each step and 0.2 s delays after 

the step. 

(b) (c) 
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3.3.7 Electrical characterization  

In this work, the capacitance and dielectric losses were measured using an 

impedance bridge (HP 4284A, Agilent, USA) over a frequency range of 100 kHz to 1 

MHz. The oscillation level of the applied voltage was set to 0.1-0.5 V. The analysed 

electrical properties include the capacitance and loss tangent. The macro level electrical 

response on BiFeO3 deposited on top of Vertical Aligned (VA) MWCNTs was measured 

using Metal-Insulator-Metal (MIM) configuration, where MWCNTs-cloth (cloth 

fabricated by vacuum filtration method) as top electrode and aligned MWCNTs as bottom 

electrode was used (as presented in Figure 3-10).  

To confirm the ferroelectric behaviour of MWCNTs-BFO, polarization-electric 

field (P-E) hysteresis loop were measured at room temperature using a Sawyer-Tower 

circuit [157]. The loops were acquired at two set of frequencies 50 and 100 Hz using a 

ferroelectric tester, Aixact, TF analyzer 1000. Current vs Voltage (I-V) measurements 

were carried out on the pressed MWCNTs (as received and functionalized) from 0 to 3 V 

to study the conducting nature of the tubes. The distance between the probes is fixed at 

10 mm, approximately. 

 

Figure 3-10 Schematic representation of BFO in between aligned MWCNTs and 

MWCNTs cloth, where MWCNTs act as electrode for measuring dielectric properties and 

P-E loop. 

 

 

 

MWCNT-TE 
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B
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3.3.8 Vibration sample magnetometer (VSM) 

VSM was invented by Simon Foner at Lincoln Laboratory MIT, in 1955. The 

working principle of VSM is based on Faraday's law of induction, according to which the 

change in the magnetic field results in induced electric fields. In VSM, the sample is 

placed under a constant magnetic field. If the sample is magnetic, the domains of the 

sample are aligned in the direction of applied magnetic field and higher the magnetic field 

higher is the magnetic moment. The magnetic dipoles of the sample create a magnetic 

field around the sample and as the sample is moved (using piezoelectric actuators) up and 

down there will be a change in the induced magnetic field as a function of time (change 

in induced emf) that can be sensed by pick up coils, in the form of electric field, according 

to Faradays law as induction electric fields. The induced voltage is amplified and signaled 

to a lock-in amplifier, where the piezoelectric signal is a reference signal. After the 

mathematical calculations, the induced magnetization as a function of applied magnetic 

field can be monitored. From this measurement it is possible to plot a magnetic hysteresis 

loop. It is possible to detect very small moments about 10-4 to 10-6 emu. Various 

measurements can be made in a uniform magnetic field as a function of temperature and 

field intensity [339]. In this work, Cryogenic VSM (Cryogenic Inc., UK) was used to 

measure the magnetic behaviour of samples up to 10 T at room temperature and at 5 K. 

The flakes of MWCNTs-BFO placed inside the gelatin capsule was placed inside a non-

magnetic straw and is attached to the VSM vibrator for magnetic measurements. 
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Chapter 4 
4 Thermal studies, functionalization and characterization of MWCNTs 
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Abstract  

Carbon Nanotubes (CNTs) have unique physical properties. This has been the 

driver for the current exploitation of their use in different advanced applications, such as 

in composite nano scale structures or devices. If a thermal treatment is required for the 

fabrication of the composite, the thermal decomposition behaviour of the tubes is a key 

aspect in this process. Within this context the thermal decomposition behaviour under 

different conditions of the MWCNTs used in this work was studied by DTA/TG, X-Ray, 

Raman spectroscopy and electron microscopy. 

Our studies revealed that purified MWCNTs are stable up to 420 oC in air, as no 

weight loss occurs in TG/DTA analysis under non isothermal conditions but morphology 

changes were observed for isothermal conditions at 400 oC by Raman spectroscopy. In 

oxygen-rich atmosphere MWCNTs started to oxidize at 200 oC. However in argon-rich 

atmosphere and under a high heating rate MWCNTs remain stable up to 1300 oC with a 

minimum sublimation. The activation energy for the decomposition of MWCNTs in air 

was calculated to lie between 80 and 108 kJ/mol. These results have broad implications 

for the expanded use of MWCNTs in composites with functional complex oxides that 

usually require synthesis temperature above 650 oC. 

MWCNTs are hydrophobic in nature and to cover MWCNTs with FE, they were 

functionalized covalently and non-covalently. The FTIR studies confirms the attachment 

of functionalized groups on MWCNTs. The linear variation of current with voltage depict 

the CNTs are metallic in nature. Vertical Aligned (VA) MWCNTs were also 

characterized for morphology and electrical properties. The microstructure of MWCNTs 

reveals well crystalline layer of graphene with presence of small amount of amorphous 

carbon. I-V curve from VA-MWCNTs confirms the metallic behaviour. 
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4.1 Introduction 

As described in chapter 2 scaling of electronics is no longer only about reducing 

dimensions; instead, it currently encompasses the development of emerging devices that 

incorporate new and combined functionalities. Carbon- based nano devices are expected 

to be integrated into nano electronics during the next decades [209]. MWCNTs were 

discovered in 1991, by Iijima [73] and since then have attracted tremendous interest in all 

fields of research and engineering. Due to its graphene structure CNTs have hydrophobic 

behaviour and inert nature. So, a successful combination of CNTs with different materials 

(organic and inorganic) may require a process to modify the tube’s surface through 

surface functionalization [126]. Additionally, as-produced MWCNTs contain different 

carbon species (or impurities), namely amorphous carbon, graphite and fullerenes. These 

species have different C-C bond length, curvature and strains that influence their surface 

and decomposition behaviour. Amorphous carbon acts as low temperature pre-ignition 

sites, and therefore as-prepared CNTs typically decompose at low temperatures. 

Therefore by removing the amorphous carbon the thermal resistance of the tubes 

improves [138]. Chemical and thermal treatments are current procedures used to purify 

and improve the thermal resistance of CNTs. 

On the other hand and from a different point of view, for composites in which 

thermal treatments at elevated temperatures during the synthesis are required, the thermal 

behaviour of CNTs is a key feature. The high firing temperatures and controlled 

atmospheres needed to synthesize and densify functional oxides used in microelectronic 

applications can be detrimental to the CNTs, compromising their role in the composite. 

In spite of the previous studies on the thermal behaviour of MWCNTs towards their 

purification, the literature is still incomplete in the description and understanding of the 

thermal behaviour of MWCNTs under different atmospheres. 

In this chapter the oxidation of MWCNTs and its dependence on the atmosphere 

is studied. The activation energy for the decomposition is calculated. The condition in 

which these MWCNTs can be used in combination with ferroic oxides are defined. In 

addition to improve the compatibility and liaison between MWCTs and ferroic oxides 

different tubes functionalization was conducted. Since one of the main purposes of these 

MWCNTs is as possible bottom electrodes their metallic nature was investigated. 
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4.2 Experimental 

As received MWCNTs (93% purity) were used to investigate the thermal stability. 

Differential thermal and thermo gravimetric analysis (DTA/ TG) were carried out in a 

SETARAM Labsys TG-DTA12 system. The samples were heated in alumina crucibles 

up to 1400 ºC in air and flowing oxygen and argon atmospheres (0.4 L/min in both cases) 

for different heating rates (2, 5, 10 and 20 ºC/min). For isothermal studies MWCNTs heat 

treated inside DTA/TG equipment at particular temperature as a function of time. The 

morphology of MWCNTs heat-treated at different temperatures, in different atmospheres 

were analyzed by Raman (Bruker RFS 100/S FT) and TEM (Hitachi Microscope, Model 

H9000-NA). 

As received MWCNTs were purified followed by functionalization by nitric acid 

and Sodium Dodecyl Sulfate (SDS), detailed procedure on functionalization is mentioned 

in chapter 3.  

These functionalized MWCNTs were characterized by Fourier Transform 

InfraRed (FTIR) spectroscopy (Mattson Mod 7000 FTIR spectrometer).). The contact 

angle was measured on purified and functionalized MWCNTs using sessile drop method 

(Dataphysics, OCA 25). The morphology of the functional MWCNTs were investigated 

by Scanning Electron Microscopy (SEM) and TEM. I-V curves were obtained on purified 

and functionalized MWCNTs by Aixact, TF analyzer 1000.  

4.3 Results and Discussion 

TG and DTA curves of MWCNTs conducted in air are depicted in Figure 4-1. In 

air MWCNTs are thermally stable up to 420 oC, i.e. no phase change or any oxidation 

reaction took place. Above 420 oC, weight loss starts to occur due to the oxidation of the 

amorphous carbon and of MWCNTs themselves Figure 4-1 (a)). DTA curves from the 

as-received MWCNTs are characterised by an exothermic peak between 500-600 ºC 

depending on the heating rate, and an endothermic one above 700 ºC. For the heating rate 

of 20 ºC/min (Figure 4-1 (b)) two maxima between 510–580 oC were observed which 

demonstrate the presence of two different forms of carbon having similar oxidation 
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behaviour; i.e. amorphous carbon and MWCNTs. Similar observations were also noticed 

in the DTA behaviour of SWCNTs [128]. 

 

 

Figure 4-1: TG (a) and DTA (b) of as received MWCNTs conducted at different heating 

rates (2, 5, 10 and 20 oC/min) in air. MWCNTs are thermally stable up to 420 oC in air. 

(b) 

(a) 
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For the evaluation of the activation energy for a oxidation process two models 

were used, Kissinger´s [340] and Coat and Redfern [341]. 

Kissinger´s model assumes that the decomposition reaction is of first order and 

irreversible in nature. The calculation of the activation energy is based on the temperature 

at which the maximum mass loss change occurs, for different heating rates and is 

expressed as [340]: 

 𝐼𝑛 
𝛽

𝑇𝑝
2
=  

𝐸

 𝑅𝑇𝑝
+ 𝐼𝑛 [

𝑑𝑓(𝛼)

𝑑𝛼
]
𝐴𝑅

𝐸
 Equation 4-1 

where β stands for the heating rate, f(α) for the conversion function, A for the pre-

exponential factor, E (kJ/mol) for the activation energy for the reaction, R(J/mol K) for 

the gas constant and Tp (K) for peak temperature where the mass change is maximum. 

The activation energy for the decomposition was calculated from the slope of the variation 

of ln (β/(Tp)
2  as a function of 1/Tp, to be 108kJ/mol. 

In the Coat and Redfern model, in contrast to the previous one, the activation 

energy is calculated based on the change in the mass fraction for a single heating rate, 

according to the Equation 4-2 [340]: 

 𝐼𝑛 [− 𝐼𝑛 
(1 − 𝛼)

𝑇2
] =  𝐼𝑛 [

𝑘0𝑅)

𝛽𝐸
] − 

𝐸

𝑅𝑇
 Equation 4-2 

For single heating rates of 2, 5, 10 and 20 ºC/min, the activation energy was calculated 

by plotting ln[-ln(1-α)/T2] against 1/T, where α is the fraction of reactant, and calculated 

by the formula ((mi-mt)/(mf-mi)) from the TG data, where mi is the initial mass, mt is the 

mass at a given temperature and mf is the final mass. In this case, the activation energy 

was calculated to be 80 kJ/mol. 

The thermal behaviour of MWCNTs under partial oxygen and argon atmospheres 

is depicted in Figure 4-2. The tubes started to decompose at 200 oC under partial oxygen 

and at 430 oC under argon. The enhanced amount of oxygen increases the reaction rate at 

lower temperature and results in the oxidation of the amorphous carbon at 200 oC. The 

major losses occur above 420 oC in partial oxygen atmosphere, which is similar to the 
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oxidation of MWCNTs in air where both amorphous carbon and MWCNTs oxidizes 

simultaneously. Even at higher heating rates of 40 ºC/min, under which MWCNTs kept 

unchanged until 540 oC/min, the excess amount of oxygen accelerates the oxidation of 

MWCNTs resulting in the total oxidation of the tubes below 670 ºC (Figure 4-2 (a)). 

In partial argon atmosphere (Figure 4-2 (b)), no sublimation occurs before 430 oC 

for both 2 oC/min and 40 oC/min heating rates. For 2 oC/min a first 20 % weight loss 

occurs before 800 oC, which may be due to the amorphous carbon, and the rest of the 

MWCNTs were sublimation between 800 - 1280 oC. Heating in argon makes possible to 

retain the maximum amount of MWCNTs until 800 oC, even for a low heating rate. For 

the heating rate of 40 oC/min the sublimation of MWCNTs starts just at 500 oC which is 

mainly from amorphous carbon, and until 1400 oC only ca. 25% loss occurs. For this high 

heating rate MWCNTs were kept up to 1300 oC with very negligible sublimation. 

 

Figure 4-2: TG of as received MWCNTs in partial oxygen (a) and in partial argon (b) 

atmospheres. The tubes started to decompose at 200 oC under partial oxygen with the 

total oxidation occurring below 670 ºC. Under a reducing atmosphere, even for a low 

heating rate, the tubes remain intact up to 800 oC. 

As received MWCNTs contain impurities (amorphous carbon, metal particles, 

etc.) and the graphite layers are not uniform along the tube, which results from point 

defects and faults between graphite layers. MWCNTs heat treated at 400 ºC in air for 

different periods of time do not show any visual changes in the morphology corroborating 

the TG analysis, where no weight loss was noticed at 400 ºC. However, MWCNTs heated 

at 500 ºC show an increase in the tubes diameter and ruptures of walls clearly indicating 

(b) (a) 
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the oxidation process that results in breaking of MWCNTs (marked by circles in Figure 

4-3 (a)). With the further increase in temperatures (600 ºC) MWCNTs formed bundles 

due to the reduction in the free energy of the system, as previously reported for Double 

Wall Carbon Nanotubes (DWCNTs) [342] and the morphology were severely affected 

presented in Figure 4-3 (b).  

The morphology of MWCNTs treated in argon at 800 oC with heating rate of 2 

oC/min is depicted in Figure 4-3 (c). The TEM micrograph shows uniform and intact tube 

walls with no presence of amorphous carbon. The decomposition of the MWCNTs cap 

(i.e. end) was observed (marked by a circle in the Figure 4-3 (c)), which is due to the high 

reactivity of the sp3 bonds associated with the cap, and the high local curvature strain. 

Figure 4-3 (d) depicts the Raman spectra for MWCNTs heat-treated at 600 and 800 ºC in 

argon with R (defined in Chapter 3) values of 1.01 and 1.005, respectively. The R value 

of MWCNTs heat treated at 600 ºC is higher than the one of MWCNTs heat treated at 

800 ºC, due to the presence of a relative high amount of impurities, in this case amorphous 

carbon and metal particles, which results in a high intensity of the disorder band (D) for 

600 ºC. After heat treated at 800 ºC the amount of impurities in the tubes decreases and 

the D band intensity decreases, as well. 

 

  

(a) (b) 
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Figure 4-3: TEM micrograph (a) of MWCNTs heat treated at 500 ºC and (b) MWCNTs 

heat treated at 600 ºC in air; (c) TEM micrograph of MWCNT heated at 800 ºC at 2 

oC/min in argon and (d) Raman spectra for as received, heat-treated at 600 ºC and 800 

ºC MWCNT with R values in argon with heating rate of 2ºC/min (c). 

4.4 Functionalization and characterization of MWCNTs  

MWCNTs are hydrophobic in nature which results in poor wettability. In order to 

improve the wettability of the MWCNTs prior to be used for the fabrication of MWCNTs-

FE structures they were functionalized by chemical processes. The MWCNTs were 

refluxed in nitric acid (detailed description mentioned in Chapter 3) to create defects site 

by breaking the sp2 and sp3 carbon bonds and induce hydroxyl and carboxyl groups at 

those sites. This type of functionalization in known as covalent functionalization.  

MWCNTs were also functionalized with SDS, where the aliphatic chains of SDS 

adsorbed on the surface of MWCNTs with week forces such as Van Der Waals forces. 

This type of functionalization is known as non-covalent functionalization. Both covalent 

and non-covalent functionalized MWCNTs were used in this work. Figure 4-4 represents 

the schematic of covalent and non-covalent functionalize CNTs. 

(c) (d) 
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Figure 4-4 Schematic depicts covalent (on top right) and non-covalent (on bottom right) 

functionalization carried out using acid treatment by nitric acid and sodium dodecyl 

sulphate (SDS), respectively. The covalent functionalization took place on defect sites and 

very local, whereas, non-covalent functionalization with SDS molecules adsorbed along 

the nano tube, covering maximum surface. 

The purified and covalent functionalized MWCNTs were characterized by 

vibrational spectroscopy (FTIR) in order to identify the functional groups attach to the 

surface of MWCNTs, given in Figure 4-5. Purified MWCNTs depict the characteristic 

peak at 1629 cm-1 that is associated with the vibration of the carbon skeleton from the 

carbon nanotubes. The peaks at 3446, 2977 and 2971 cm-1 for purified MWCNTs are 

assigned to hydroxyl groups (-OH), asymmetric stretching of CH2 groups and symmetric 

stretching of CH2 groups [343] which might result of some structural or point defects on 

CNTs. FTIR spectra of covalent functionalized MWCNTs shows an increase in 

absorption band 3446 cm-1, attributed to the hydroxyl group (-OH) that clearly indicates 

the increase in number of OH groups attach to the surface of CNTs. The bending 

deformation for -COOH and bond stretching of CO in the functionalized-MWCNTs are 
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observed at 1447 cm -1; and 1048 cm -1, respectively; indicating the presence of carboxyl 

groups on the surface of MWCNTs[344, 345].  

 

 

Figure 4-5 FTIR spectra of purified and functionalized MWCNTs with 5 M nitric acid, 

FTIR bands at 3446, 2916, 2977 and 1447 cm-1 depict the presence of hydroxyl and 

carboxyl groups. The characteristic band from MWCNTs is present at 1629 cm-1. 

Further the wettability of the MWCNTs were assessed by measuring the contact 

angles between MWCNTs and water droplets. The optical micrograph for purified 

MWCNTs and functionalized (HNO3) with water droplet on the surface is given in Figure 

4-6. The contact angle for purified MWCNTs is 150º, which decreases to 52º for the 

functionalized MWCNTs. This results clearly corroborates the FTIR observation on the 

presence of carboxylic and hydroxyl groups on the surface of MWCNTs which results in 

the improved wettability. 
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Figure 4-6 Optical micrograph of the water droplet on the surface of  (a) purified 

MWCNT and (b) nitric acid functionalized MWCNT, the contact angle decrease from 150 

º to 52 º after functionalization of MWCNTs, confirm the improvement in wettability of 

MWCNTs.  

The MWCNTs tubes as-received, purified and functionalised were characterized 

by SEM and TEM (Figure 4-7). SEM micrographs for as-received MWCNTs show the 

presence of amorphous carbon and the metal particles (appears bright in the micrograph) 

Figure 4-7 (a). Whereas, after the purification process the MWCNTs are almost free from 

amorphous carbon and metal particles. The purified MWCNTs are more agglomerated 

and hence difficult to distinguish them in SEM (Figure 4-7 (b)). After functionalising 

MWCNTs (with 5M HNO3) shows less agglomeration with few impurities as presented 

in Figure 4-7 (c). The TEM micrograph of the functionalised MWCNTs depicts a well 

crystalline carbon lattice with fewer defects and having interlayer distance between 

carbon walls around 0.34 nm. The MWCNTs depicted in this micrograph have diameters 

ranges from 12 to 30 nm (Figure 4-7 (d)). 

(a) (b) 
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Figure 4-7 SEM micrographs of MWCNT films (a) as-received (b) purified (c) 

functionalized 5M HNO3 and (d) TEM micrograph of functionalized MWCNTs. 

As stated above, the non-covalent functionalization (by SDS) was also performed 

on MWCNTs in order to increase the functionalized area on MWCNTs. To confirm the 

functionalization of MWCNTs with SDS they were characterized with FTIR (Figure 4-8). 

Peak at 1629 cm-1 is associated with the vibration of the carbon skeleton from the carbon 

nanotubes, this peak is very clear for both MWCNTs and SDS functionalized MWCNTs. 

For SDS functionalized tubes two more peaks are present in comparison to as received 

MWCNTs; one at 1058 cm−1 assigned to the symmetrical stretching vibration of S=O and 

second at 881 cm−1 assigned to the asymmetrical stretching vibration of C–O–S [346, 

347]. This peaks confirms the functionalization of CNTs with SDS.  

 

(a) (b) 

(c) (d) 
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Figure 4-8 FTIR spectra of MWCNTs and SDS functionalized MWCNTs confirm the 

covering of MWCNTs with SDS molecules with the presence of peaks at 881 and 1058 

cm-1. 

The metallic nature of the MWCNTs used in this work were investigated by the 

I-V curves (Figure 4-9). I-V curves were measured with the application of dc bias up to 

± 3 V. I-V curve for as received, nitric acid functionalized (covalent functionalization) 

and SDS functionalization (non-covalent functionalization) depicts the linear change in 

current with the application of the applied voltage. This states the ohmic nature of the 

tubes as shown by metals, hence they are metallic in nature. Whereas, as-received 

MWCNTs depicts less current values (~0.5 mA) at 3 V in comparison to nitric acid (1.5 

mA) and SDS functionalised MWCNTs (1.7 mA). This is due to the presence of 

impurities such as amorphous carbon and metal particle for the as received MWCNTs 

which affects the electron flow path in the tubes.  

The current values in the case of SDS functionalized tubes are slightly better in 

comparison to the nitric acid functionalized tubes (at 3 V for SDS MWCNTs 1.7 mA and 

for nitric acid MWCNTs 1.5 mA). This indicates that during the covalent 

functionalization the breaking of carbon lattice occurs (defects). This defects hinder the 
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electron flow and as a consequence effect the current flow. In case of non-covalent 

functionalized MWCNTs the defect sites were not induce because the functionalize 

molecules are adsorbed on the surface of the MWCNTs rather than making covalent 

bonding as in case of covalent functionalized MWCNTs. Therefore the current flow for 

SDS functionalised MWCNTs is slightly higher in comparison to covalent functionalized 

MWCNTs.  

 

Figure 4-9 I-V curves for as received, oxidative treatment with nitric acid (covalent 

functionalization) and SDS functionalized (non.-covalent functionalization) MWCNTs. I-

V curves illustrates the improvement of current flow after functionalization of MWCNTs.  

The VA-MWCNTs were used to explore the potential of MWCNTs as conducting 

bottom electrode for FeRAM. The morphology and electrical characterizations are 

presented below. 

SEM micrograph of VA-MWCNTs grown on the silicon substrate is illustrated in 

Figure 4-10 (a). They are densely packed and having length up to 1-2 mm. TEM 

micrograph of VA-MWCNTs depicts the presence of amorphous carbon along the walls. 

The tubes have well crystalline carbon lattices and having diameters ranging from 5 to 20 
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nm (Figure 4-10 (b)). I-V curve of VAMWCNTs depicts the linear increase of current 

with the applied voltage, proving the metallic behaviour of the tubes (Figure 4-11). 

  

Figure 4-10 (a) SEM micrograph of VA-MWCNTs and (b) TEM micrograph of MWCNTs 

depicts the presence of amorphous carbon on the walls and high crystalline carbon walls 

with thickness of CNTs between 5-20 nm.  

 

Figure 4-11 I-V curve for VA-MWCNTs, depicts the metallic behaviour of the tubes. 

(a) (b) 
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4.5 Conclusions 

According to thermal analysis, when heat-treated in air the MWCNTs used in this 

work are stable up to ~400 oC and start degrading after the initial combustion of 

amorphous carbon. Under these conditions the activation energy for the decomposition 

of the tubes lies between 80 and 108 kJ/mol. The decomposition of MWCNTs is 

accelerated in oxygen and decelerated in argon, as expected. The tubes start to decompose 

at 200 oC and at 430 oC at oxygen and argon atmosphere, respectively. The MWCNTs 

heat treated at 800 ºC with heating rate of 2 oC/min in argon atmosphere are well intact 

without major physical damage of the walls. However, under a reducing atmosphere and 

for high heating rates MWCNTs are kept stable up to 1300 oC with very negligible 

decomposition. These are relevant results for the further utilization of MWCNTs in 

composites with functional complex oxides with synthesis temperature usually above 650 

oC. FTIR and I-V curves for covalent and non-covalent functionalized MWCNTs confirm 

that the MWCNTs are functionalised and metallic in behaviour. 
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Chapter 5  
5 Multiwall carbon nanotubes (MWCNTs) – Lead zirconium titanate 

(PZT)   
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Abstract  

In this chapter we prove that it is feasible to utilise MWCNTs as electrodes for 

the formation of 1D Pb(Zr1-xTix)O3 (PZT) nano ferroelectrics. In addition we unveil the 

role of CNTs on the phase formation of nano ferroelectrics.  

Growing a ferroelectric on the surface of CNTs is a non-trivial task. Previous 

works have clearly demonstrated the damage of the CNT lattice after the annealing of the 

oxide. In this work we demonstrate that MWCNTs decrease the time and temperature for 

formation of lead zirconium titanate PZT by ~100 ºC commensurate with a decrease in 

activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic 

PZT was obtained at 575 ºC for MWCNTs-PZT whereas for pure PZT traces of 

pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous 

nucleation. The piezoelectric nature of MWCNT-PZT synthesised at 500 ºC for 1 h was 

verified. 
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5.1 Introduction 

As mentioned before PZT is commercially used in a large number of 

microelectronic devices such as ferroelectric memories (FeRAMs), electromechanical 

sensors and actuators, due to its high dielectric constant (~800) and polarisation (40 

µC/cm2) and large piezoelectric (d33 > 300 pC/N) and electromechanical coupling 

coefficients (keff = 0.42) [348]. Hence PZT was one of the targeted materials in this PhD 

work. 

However, PZT from conventional solid state reaction requires high temperature, 

between 900-1000 oC [349] and care must be taken to compensate for the volatilization 

of lead oxide [350, 351]. PZT has been prepared by chemical methods such as 

hydrothermal synthesis[352, 353], sol gel [354-356] and co precipitation [349]. These 

routes guarantee compositional homogeneity at the molecular level and reduce 

crystallization temperature.  

As described in Chapter 2, the use of CNTs as templates or as bottom electrodes 

is a potential strategy to realise 3D ferroelectric nano structures [4, 21, 28, 90, 357]. 

However, the practical use of CNTs as bottom electrodes depends on the ability to retain 

their geometry and integrity during fabrication. In the last years, only a few reports on the 

investigation of MWCNTs covered with ferroelectrics for 3D capacitors and related 

applications have been published (referred in section 2.5). In 2007 Kawasaki et al. [21] 

was the first to report the coverage of aligned MWCNTs with PZT by Liquid Source 

Misted Chemical Deposition (LSMCD). The authors found that annealing at 600 oC 

resulted in the damage of the CNT lattice and reaction between the substrate and the tubes. 

In 2012, Mohammadi et al. [26] used MWCNTs as a sacrificial template to synthesise 1D 

PZT tubes by sol gel. The early decomposition of CNTs between 400 - 500 oC was 

observed and the authors refer to early formation of perovskite (at ~ 450 ºC) but no further 

information or discussion was provided.  

In this work, we coated MWCNTs with PZT via a chemical solution process, 

which offers crystallisation of the perovskite phase at low temperature. Interaction 

between the PZT and CNTs as a function of the temperature is studied using thermo 

gravimetric (DTA/TG), X-Ray diffraction and microscopy characterisation. The 
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activation energy for the perovskite phase formation is calculated and the role of CNTs 

in perovskite crystallization addressed. The piezoelectric and ferroelectric responses of 

MWCNTs coated with PZT are reported.  

5.2 Experimental 

A diol-based sol-gel was utilised to coat the MWCNTs used in this work. The 

tubes were functionalized with 5 M nitric acid to improve their wettability (as described 

in Chapter 2). Lead(II) acetate trihydrate (99.5%, Sigma-Aldrich) was mixed with 1, 2 

propanol diol and acetic acid for 30 min at 60 ºC. Titanium(IV) isopropoxide (97 %, 

Fluka) stabilized with acetylacetone (1:2 mol ratio) was then added to the lead acetate 

solution followed by mixing for 30 min at 60 ºC. Zirconium(IV) propoxide (70 %, Fluka) 

stabilized with acetyl acetone (1:2 mol ratio) was subsequently added followed by 

dilution with acetic acid to obtain a 0.2 M solution containing the correct proportions of 

Pb, Zr and Ti.  

5 wt. per cent (approximately) of MWCNTs were immersed in the PZT solution 

and ultra sonicated for >2 h (Branson, USA, 40 kHz). During the sonication process 

temperature stay well below 50 oC and no bubbles or precipitations occurred. The solution 

was then stirred on a hot plate at 70 oC for ~ 1 h and gelation occurred. The gel was dried 

at 120 oC for 24 h to obtain MWCNTs-PZT composite powders. Similar steps were 

followed to obtain PZT powders. A flow chart representing the steps followed to fabricate 

PZT and MWCNTs - PZT are illustrated in Figure 5-1. 

PZT and MWCNTs-PZT powders were characterized by differential thermal and 

thermo gravimetric analysis (DTA/ TG), carried out in a SETARAM Labsys TG-DTA12 

system in air up to 700 oC with heating rate of 5 oC /min. The phase formation of PZT 

with and without MWCNTs was followed by in-situ XRD (Philips X´´ Pert. Cu, Kα), 

carried out in air at 5 oC/min up to 650 ºC. Ex-situ XRD (Rigaku, Geigerflex D/Max-C, 

Cu Kα) was used to characterize MWCNTs-PZT powders heated for 1 h at various 

temperatures. All the samples investigated in the present studies were heat treated in 

alumina crucibles covered with platinum foils. These MWCNTs - PZT composites were 

further studied by Fourier Transform InfraRed (FTIR) spectroscopy (Mattson Mod 7000 
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FTIR spectrometer) and transmission electron microscopy (TEM) (Hitachi Microscope, 

Model H9000-NA and JEOL, Model 2200 FS). 

 

Figure 5-1 Flow chart illustrates the steps followed to fabricate PZT and MWCNTs-PZT.  
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The piezoelectric and ferroelectric response of MWCNTs-PZT were investigated 

by Atomic Force Microscope (AFM, Multimode Nanoscope III A), equipped with 

external lock-in amplifier for measuring piezo response. Si cantilevers with platinum 

coating (force constant 2.4 N/m and resonant frequency 80 kHz, MIKROMASCH) were 

used with an applied voltage of 5 V. Topography signals of the surface were taken 

simultaneously with the amplitude and phase signals and were collected in contact 

mode. Several hysteresis loops with dc bias from - 40 to + 40 V were obtained for 

MWCNTs-PZT to ensure the reproducibility of the results, and representative loop 

is presented. Switchable polarization corresponds to the difference between the 

positive saturation polarization and negative ones (Rm = (RS)+ - (RS)-). As the 

effective piezoelectric coefficient ((d33)eff) is proportional to the amplitude signal, 

this can be defined as (d33)eff ∝ (amplitude signal . cos(phase signal)) / Vac, where 

Vac is the ac voltage applied. 

5.3 Results and Discussion 

Figure 5-2 (a) illustrates the DTA analysis conducted in air at different heating 

rates (5, 10, 20 and 30 oC/min) for PZT (continuous line) and MWCNTs-PZT samples 

(dashed line). For PZT heated at 5 oC/min., there is a small broad exothermic peak at ~200 

ºC related to the release of low temperature organics. Between 200 and 350 oC, a further 

broad exothermic peak occurs, attributed to the combustion of organic solvents. On 

increasing temperature, the next broad exotherm lies between 420 ºC - 570 oC and 

corresponds to the formation of pyrochlore phase [358] followed by transformation to 

perovskite observed as a small shoulder at 505 ºC. 

However, for MWCNTs-PZT heated at 5 ºC/min, the broad exothermic peak 

corresponding to the formation of the pyrochlore phase begins at ~ 350 oC, ~ 80 oC lower 

than PZT. Moreover, the transformation to perovskite is complete by 480 oC for 

MWCNTs-PZT as opposed to 570 ºC for PZT. According to our previous studies, the 

exothermic peak for the oxidation of MWCNTs starts at ~ 420 oC [359] but in the present 

study this peak is not observed since it overlaps with that of pyrochlore and perovskite 

phase formation. From the TG analysis of PZT and MWCNTs-PZT samples, four major 

weight loss events (I, II, III and IV) are identified (Figure 5-2 (b)). The first (I), an 
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exothermic event with ~2 - 10 wt% loss, occurs below 200 oC due to the evaporation of 

water and solvents. The second (II), also exothermic but with ~25% and 20% wt% loss 

for PZT and MWCNTs-PZT, respectively, occurs in the range 200 to 300 oC due to the 

combustion of organics. The third (III), ~6% for PZT between 300 oC and 450 oC, may 

relate to the decomposition of residual organics. For PZT, a small additional weight loss, 

~3% is observed up to 560 ºC (IV). For MWCNTs-PZT above 400 ºC, the weight loss is 

higher than that observed for PZT and is continuous up to 750 ºC. According to our 

previous studies, oxidation of MWCNTs occurs up to ~750 ºC. In comparing the TG 

spectra of PZT and MWCNTs-PZT the observed difference in the weight loss is ~5 %, 

which is approximately the wt% MWCNTs added in the MWCNTs-PZT samples. 

Nonetheless, it is evident that the formation of pyrochlore and perovskite phases takes 

place at lower temperature for the case of MWCNTs - PZT in comparison with PZT. 

To study further the phase formation, in-situ XRD was carried out on both PZT 

and MWCNTs-PZT powders (Figure 5-3). For PZT, peaks attributed to pyrochlore appear 

at ~500 ºC and with perovskite at 550 ºC (Figure 5-3 (a)). However, for MWCNTs-PZT 

small peaks ascribed to pyrochlore and perovskite appear at 450 ºC (Figure 5-3 (b)). 

Moreover, for MWCNTs-PZT perovskite peaks become sharper as temperature increases 

with monophasic PZT obtained at 575 ºC. In contrast, for PZT, traces of pyrochlore are 

still identifiable at 650 ºC.  

Ex-situ XRD analysis of samples calcined for 1 h at different temperatures are 

presented in Figure 5-4. For MWCNTs-PZT annealed at 400 ºC, the volume fraction of 

PZT perovskite phase is enhanced when compared with in-situ XRD of MWCNTs-PZT 

at 400 ºC. For MWCNTs-PZT annealed 1 h at 500 ºC, only peaks associated with 

perovskite are present. Further increasing the annealing temperature to 550 ºC sharpens 

the perovskite peaks, presumably due to an increase in scattering coherence length related 

to grain growth. 
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Figure 5-2 (a) DTA and (b) TG analysis of PZT (continuous line) and MWCNTs-PZT 

(dashed line) heat treated at different heating rates: 5, 10, 20 and 30 oC/min. DTA clearly 

evidences the early appearance of exothermic peaks associated with the formation of 

pyrochlore and perovskite around 350 oC for MWCNTs-PZT samples in comparison to 

PZT (420 oC). 

(b) 

(a) 
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Figure 5-3 In-situ XRD patterns of (a) PZT and (b) MWCNTs - PZT acquired from room 

temperature to 650 oC with an heating rate of 5 ºC/min. Monophasic perovskite phase 

was obtained at 550 oC for MWCNTs - PZT samples but was not obtained up to 650 ºC 

for PZT. 

(a) 

(b) 
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Figure 5-4 Ex-situ XRD patterns obtained for MWCNTs-PZT samples, annealed 1 h at 

400, 450, 500 and 550 oC. Note the simultaneous appearance of pyrochlore and 

perovskite phase after 1 h at 400 oC and monophasic perovskite after 1 h at 550 oC. 

FTIR spectra of MWCNTs and MWCNTs-PZT samples (annealed 1 h at 400, 

450, 500 and 550 oC) are shown in Figure 5-5. The spectrum of MWCNT has one major 

characteristics peaks at 1630 cm-1. The transmittance bands at 3448 cm-1 and around 1580 

cm-1 correspond to the stretching of O-H and C-H bonds and its occurrence in all the 

samples confirms the presence of organics. For MWCNT-PZT the bands at 1640 cm-1 and 

1315 cm-1 correspond to acetic acid or acetate [360] and bands at 1436 and 1560 cm-1 are 

attributed to symmetric and asymmetric -COO stretching modes of the acetate groups 

[361]. 

MWCNTs-PZT heat-treated at 400 - 450 oC exhibit additional peaks identified as 

an intermediate acetate salt whose bands occur at 1050, 1020, 940, 860, 666 and 620 cm-

1. The intensity of these peaks diminishes for MWCNTs-PZT samples heated 1 h at 500 

oC but there are additional peaks at ~588 cm-1 and 349 cm-1. These two transmittance 

peaks are attributed to TiO6 and ZrO6 stretching and bending of the octahedra, 

respectively, confirming the formation of perovskite [362]. MWCNTs-PZT sample 
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heated 1 h at 550 oC do not depict characteristic peaks of MWCNTs and intensity of 

octahedral peaks further strengthen. The combination of XRD (in-situ and ex-situ), 

DTA/TG and FTIR studies clearly indicates that the presence of MWCNTs facilitates the 

crystallization process of PZT and reduces the crystallization temperature by ~100 oC. 

However, the mechanism of PZT formation and the growth of the perovskite phase 

required further study using TEM. 

 

Figure 5-5 FTIR spectra of MWCNTs and MWCNT-PZT samples annealed 1h at 400, 

450, 500 and 550 oC. The characteristic peaks of CNTs at 1630 cm-1 and at 349 and 588 

cm-1 are from octahedra of Zr and Ti and indicate the formation of a crystalline PZT. 

Figure 5-6 (a) is a TEM micrograph of MWCNTs-PZT, dried 24 h at 100 ºC, 

which illustrates the conformal covering of MWCNTs with an amorphous PZT sol and 

also depicts the presence of some particulates. This sample was further analysed under 

high resolution (HR) TEM. Crystalline particles of lead ions with d spacing of ~ 0.30 nm 

surrounded by an amorphous network of zirconium and titanium are observed (Figure 5-6 

(b)). EDS spectra confirmed the presence of lead, zirconium and titanium (inset of Figure 

5-6 (b)). Similar observations have been previously reported in the literature for the 

growth of BaTiO3 and ZnO. In these studies in-situ HRTEM indicated that Ba and Zn 
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ions were entrapped in the amorphous network of the respective organics prepared by sol 

gel [363, 364]. 

In TEM micrographs of MWCNT-PZT annealed 1 h at 400 oC (Figure 5-6 (c)), 

amorphous and crystalline phases are observed which corroborates previous XRD and 

FTIR analyses and confirmed the presence of perovskite and PZT. The MWCNTs 

(diameter ~100 nm) have been coated with a crystalline phase of dark contrast, 

presumably perovskite. 

The TEM micrographs of MWCNTs-PZT samples annealed 1 h at 500 oC reveal 

crystalline tubes of ~50 nm having d spacing = 0.28 nm consistent with d110 PZT, Figure 

5-6 (d). EDS spectra (inset in Figure 5-6 (d)) confirm the presence of lead, zirconium and 

titanium. HRTEM micrographs from one of the CNTs covered with PZT is illustrated in 

Figure 5-6 (e) and reveal the CNT lattice (inset Figure 5-6 (e)) with d spacing ≈ 0.34 nm 

and d001 PZT ≈ 0.40 nm. After annealing at 500 ºC, HRTEM proves the tubes are intact, 

covered in a crystalline phase with d spacing characteristic of d001 and d110 PZT.  

 

(a) 
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(b) 

(c) 
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Figure 5-6 TEM micrographs of MWCNT-PZT samples showing: (a) as dried sample 

with a conformal covering of amorphous PZT on MWCNTs; (b) HRTEM micrograph of 

an amorphous sol accompanied by an inset EDS spectra confirming the presence of Pb, 

Zr, O and Ti (Cr and Cu are from sample holder); (c) a micrograph of sample annealed 

1h at 400 oC showing tubular shaped rods of ~100 nm with dark contrast; (d) a sample 

annealed 1 h at 500 oC illustrating long range crystalline regions of perovskite along with 

an inset EDS spectra confirming the presence of Pb, Zr, O and Ti and (e) a HRTEM 

micrograph illustrating coated MWCNTs (the red circle and the inset magnified view 

depicts the CNT lattice spacing of 0.34 nm and d100 for PZT (0.40 nm)). 

(d) 

(e) 
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From the above TEM images, it is evident that the crystallisation of PZT is 

triggered by the MWCNTs whose surfaces act as nucleation sites for the perovskite phase. 

This mechanism implies that the MWCNTs lower the activation energy for perovskite 

PZT formation. The activation energy of phase formation of PZT and MWCNTs-PZT 

may be calculated by applying the Kissinger equation [340] to data from DTA (Table 

5-1). The maximum energy change associated with the combustion of organics, formation 

of pyrochlore and perovskite phase is calculated from the DTA peaks (heating rate of 5 

ºC/min), marked as: i) A (combustion of organics), B (pyrochlore) and C (perovskite), 

corresponding to 254, 453 and 505 ºC, respectively for PZT (Figure 5-7 (a)) and ii) A’, 

B’ and C’, corresponding to 265, 366 and 395 ºC, respectively for MWCNTs-PZT (Figure 

5-7 (b)). A Gaussian function was used to fit the DTA data for different heating rates and 

the associated maximum energy change (together with measurement error) are indicated 

in Table 1. 

Kissinger´s model assumes that the reaction is of first order and irreversible in 

nature. The calculation of the activation energy is based on the temperature at which the 

maximum mass loss occurs, for different heating rates and is expressed as [340]: 

 
𝑑(𝐼𝑛𝛼/𝑇𝑝)

𝑑(𝑇𝑝)
=  

𝐸

 𝑅
 Equation 5-1 

where α stands for the heating rate (5, 10, 15 and 20 oC/min in the present study), E 

(kJ/mol) for the activation energy for the reaction, R (J/mol K) for the gas constant and 

Tp (kelvin) for peak temperature. The Tp was calculated from peak fitting and the 

activation energy from the slope of the variation of In (α /(Tp)
 as a function of 1/ Tp. The 

activation energy for pyrochlore and perovskite phase for PZT is 248±29 kJ/mol and 

68±15 kJ/mol, respectively and for MWCNT-PZT is 158±25 kJ/mol and 27±2 kJ/mol, 

respectively. As anticipated, the activation energy for the formation of both the 

pyrochlore and perovskite phase is lower for MWCNT-PZT in comparison to PZT. As 

shown in Figure 5-7 (a) good fitting is obtained for all the peaks. A certain uncertainty 

may be associated with peak A fitting, due to the combustion of the different organics 

present in precursor powders, still the error associated is limited. 
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The origin of the lower of activation energy may be explained by a combination 

of factors. The presence of high surface area of the tubular CNTs may act as 

heterogeneous nucleation sites for the oxide crystallization at low temperatures, reducing 

the activation energy for PZT in the presence of MWCNTs. 

The perovskite formation in PZT is a sequential transition through an intermediate 

pyrochlore/fluorite phase. The transformation of pyrochlore into perovskite is a 

nucleation-controlled process where the perovskite nucleation is the rate-controlling step 

[365, 366]. If the nucleation energy is reduced the crystallization temperature of the 

perovskite phase is lowered. Indeed, low processing temperature can be obtained if the 

underlayer provides heterogeneous nucleation sites [367-373]. However, this seeding 

effect of CNTs has not been previously reported. In fact, the result is somewhat 

unexpected, as C-based compounds have not traditionally been considered for nucleation 

or for substrates for these perovskite materials. In addition, the local increase in 

temperature in the vicinity of the MWCNTs due to exothermic oxidation may also 

contribute to the overall lowering of the activation energy. MWCNTs start to oxidize at 

420 ºC and around this temperature there is the simultaneous appearance of pyrochlore 

and perovskite phase. Nevertheless, the major part of the CNTs remain intact up to ~500 

ºC, which indicates they may be only locally oxidized, confirming the TG observations. 

The schematic of possible scenarios is given in Figure 5-8. 

   

Figure 5-7 Gaussian fitting of differential thermal analysis peaks of (a) PZT and (b) 

MWCNT-PZT samples with an heating rate of 5 ºC/min, marked with A (A´), B (B´) and 

C (C´) that corresponds to the maximum energy change during the combustion of 

organics, formation of pyrochlore and perovskite, respectively. 

(a) (b) 
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Table 5-1 DTA peaks for PZT and MWCNTs - PZT samples and activation energy 

calculated from Kissinger equation for oxidation of organics, pyrochlore and perovskite. 

Heating Rate 

(oC/min) 
Phase 

Temperature of 

maximum energy 

change for PZT 

Temperature of 

maximum energy 

change for MWCNT-

PZT 

5 

Organic 254 265 

Pyrochlore 453 366 

Perovskite 505 395 

10 

Organic 266 276 

Pyrochlore 464 386 

Perovskite 587 484 

15 

Organic 272 279 

Pyrochlore 467 390 

Perovskite 596 523 

20 

Organic 278 286 

Pyrochlore 476 395 

Perovskite 613 582 

Activation Energy (kJ/mol) for PZT 

pyrochlore                               perovskite 

248±29                                      68±15 

Activation Energy (kJ/mol) for MWCNTs - PZT 

pyrochlore                                perovskite 

158±25                                      27±2 

 

From the application point of view the electrical response of MWCNTs-PZT is 

important, therefore the local piezoelectric and ferroelectric behaviour of MWCNTs-PZT 

annealed at 500 oC for 1 h were investigated through vertical piezoresponse force 

microscopy (VPFM). Figure 5-9 (a) represents VPFM phase response of MWCNTs-PZT 
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tube with domain of 80 nm in width and 180 nm in length and inset in Figure 5-9 (a) 

depicts the topography micrograph. Phase response depicts the clear dark contrast from 

the tube, indicating that polar domains are aligned in the opposite direction to the applied 

field. MWCNTs-PZT annealed at temperatures below 500 oC do not present piezoelectric 

response related to their incipient degree of crystallinity. The line profile analysis, 

corresponding to the topography and phase signals rules out topography effects on the 

acquired PFM signal Figure 5-9 (b)). The local hysteresis loops obtained from MWCNTs 

-PZT depict the typical ferroelectric polarization behaviour, though with poor saturation 

up to the applied dc bias of 40 V (Figure 5-9 (c)). Various ferroelectric loops were 

acquired in different areas and a similar behaviour was observed. PFM measurements 

prove the piezoelectric and ferroelectric nature of the obtained MWCNTs-PZT and that 

the polarization direction can be reversed with the applied field as needed for memories. 

 

 

Figure 5-8 Schematic represent the two possible scenarios heterogeneous nucleation and 

local oxidation of MWCNTs which result in the early formation of PZT phase.  
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Figure 5-9 Topography (a) and VPFM phase images (b) of individual MWCNTs-PZT 

nanotube with domain 80 nm in width and 180 nm long, annealed at 500 ºC 1 h. 

Representative remanent local hysteresis loops (c). PFM measurements prove the 

piezoelectric and ferroelectric nature of the obtained MWCNTs-PZT. 

5.4 Conclusions 

The use of MWCNTs as electrodes for the formation of 1D Pb(Zr1-xTix)O3 (PZT) 

nano ferroelectrics is demonstrated. For sol gel based MWCNTs-PZT structures a 

systematic study on the phase formation process by in-situ and ex-situ XRD, DTA, FTIR 

and HRTEM detected perovksite phase formation in the presence of the MWCNTs at 

~100 oC lower than without, accompanied by a decrease in activation energy from 68±15 

kJ/mol for PZT and 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 

575 ºC for MWCNT-PZT whereas for PZT traces of pyrochlore are still identifiable at 

(a) 

(c) 

(b) 
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650 ºC. We proposed that MWCNTs act as seeds to reduce the nucleation barrier of 

perovksite phase formation by providing the low energy nucleation sites and the 

exothermic oxidation of MWCNTs. In addition the piezoelectric nature of MWCNT-PZT 

synthesised at 500 ºC for 1 h was proved. Though further work is necessary, these results 

are of particular relevance in 3D ferroelectric nano capacitors in which CNTs are 

proposed as bottom electrodes. 
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Chapter 6 
6 Multiwall carbon nanotubes (MWCNTs) – Barium titanate (BT)  
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Abstract: 

In this chapter MWCNTs-BaTiO3 (BT) structures fabricated from hydrothermal 

method are described. Two strategies for the functionalization of MWCNTs have been used: 

covalent and non-covalent functionalization.  

Using covalent functionalized MWCNTs, the conventional hydrothermal synthesis, in 

which TiO2 is previously deposited on the surface of MWCNTs prior to the reaction with Ba 

precursors to form BT, proved to be ineffective. However, when using a sol gel hybrid 

hydrothermal process BT layers > 100 nm thick conformally covered the MWCNTs. 

MWCNTs-BT structures synthesised at 160 ºC are ferroelectric and exhibit an 

electromechanical response of 15 pm/V.  

However the process can be further improved if the MWCNTs are non-covalent 

functionalized, with sodium dodecyl sulfate (SDS). In this case the formation of carbonates is 

very residual and the SDSMWCNTs-BT structures obtained are typically 20 to 200 nm in 

diameter with lengths up to ~5 µm. These nano structures exhibit ferroelectric and piezoelectric 

behaviour, with an effective piezoelectric coefficient of ~2 pm/V, as assessed by piezo force 

microscope (PFM). 

This work not only demonstrates how to adapt the hydrothermal process to successfully 

cover CNTs with ferroelectric oxides, but also proves the concept of 3D nano capacitors based 

on carbon nanotubes prepared by a low temperature and low cost process. This strategy can be 

used for many different ferroelectric oxides. 
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6.1 Introduction  

In the previous chapter the feasibility to synthesise MWCNTs-PZT ferroelectric nano 

structures was proved. 

Up to now, compositions within the solid solution between PbZrO3 and PbTiO3, 

designated as PZT (Pb1-xZrxTiO3), have been widely used in ferroelectric memories, 

piezoelectric actuators, sensors and transducers, and more recently as promising energy 

harvesters. However, the use of PZT that contains more than 60 wt% of lead will soon be 

severely restricted, due to lead toxicity [182]. Among the several possible lead free candidates 

to substitute PZT, BaTiO3 based compositions are of relevance. 

BT is a well-known lead free perovskite with high dielectric constant (~2000, at 1 kHz), 

low dielectric loss (0.02, at 1 kHz) and Curie temperature at ~125 ºC [374, 375]. BT is used in 

many applications such as multilayer ceramic capacitors (MLCCs), temperature coefficient 

resistors, ultrasonic transducers, piezoelectric devices, and tuneable phase array antennas. BT 

synthesis by solid state reaction is typically performed around 1100 to 1300 ºC [376]. BT can 

however be synthesised at around 650 ºC to 900 ºC by chemical solution methods such as sol 

gel [377] and co-precipitation [378] but these temperatures are still too high to avoid oxidation 

of MWCNTs (which is around 500 ºC). Therefore, for BT and other lead-free ferroelectrics, 

there is a need to explore low temperature processes for their crystallization on MWCNTs. 

Hydrothermal synthesis is a low temperature chemical synthesis process by which 

crystalline oxides particles [379] and/or thin films [380] can be obtained from reaction in 

aqueous media at relative elevated temperature (> 25 oC) and pressure (> 100 KPa) [379]. A 

wide range of different oxides have been fabricated from 80 to 300 ºC, such as BaTiO3 [320, 

381, 382], PZT [383] and ZnO [313]. Hence hydrothermal synthesis might be suitable for the 

synthesis of ferroelectric oxides in combination with MWCNTs. In previous reports, 

hydrothermal synthesis was used in the fabrication of MWCNTs-BT composite in which 

MWCNTs acted as metallic fillers to improve the thermal and electrical properties of the 

composites [28,29]. The MWCNTs-BT composites were hydrothermally synthesised in two 

steps. First, TiO2 was immobilized on the surface of MWCNTs using a sol gel method. The 

TiO2-MWCNTs structures were then reacted with barium acetate to obtain MWCNTs-BT 

powders [18-20] but conformal coverage of individual tubes was not the main objective of the 

research. MWCNTs-BT have also been fabricated by the sol gel method [23, 24, 384]. In this 
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method, MWCNTs-BT were annealed at 700 ºC in N2 subsequent to deposition to achieve a 

final BT layer, ~5-10 nm thick. Phase formation and interfacial aspects were not reported nor 

did any of the above studies address the ferroelectric properties of MWCNTs-BT.  

Within this context, in this work we exploit two different approaches to cover covalent 

functionalized MWCNTs with BT by hydrothermal method. In the first methodology 

MWCNTs are covered with a titanium based solution, followed by hydrothermal reaction with 

a Ba precursor to obtain BT on top of the MWCNTs. In the second methodology, a BT sol was 

used to cover MWCNTs followed by a hydrothermal reaction. A systematic study of the 

fabrication conditions and aspects of the synthesis is presented and the ferroelectric properties 

reported. 

With the use of sol gel hybrid method we demonstrate the localized covering of 

covalent functionalized MWCNTs with BT using hydrothermal method. However, there is 

difficultly in conformal covering of MWCNTs up to large area. Therefore, we use non-covalent 

functionalize MWCNTs with SDS in order to improve the coverage area of MWCNTs with 

BT. The advantage of non-covalent functionalization is: it provides the large functionalized 

area and do not infer the electrical properties of the MWCNTs. In this context, the 

SDSMWCNTs-BT were fabricated via sol gel hybrid hydrothermal method and various aspects 

from synthesis to ferroelectric properties are discussed. 

6.2 Experimental 

MWCNTs used in this work were synthesised by a chemical vapor deposition technique 

(CVD). Prior to the coating with BaTiO3, the tubes were purified and acid treatment with 5 M 

HNO3 results in covalent functionalization. The average diameter and length of the tubes is 

around 15 - 60 nm and ~ 10 µm, respectively (for more detail refer Chapter 3 and 4).  

Two synthesis methodologies were used to cover MWCNTs with BT.  

Methodology One: Based on the previously reported methodology [19], 0.1 M of 

titanium solution was prepared from titanium(IV) isopropoxide (> 97 % purity, Fluka) mixed 

with deionized water, acetylacetone (> 99% purity, MERCK ) and ethanol (> 99.5 % purity, 

Panreac) in the mol. ratio of 1:3:3:20. To minimize the presence of CO2, which may promote 

the formation of BaCO3, deionized water was boiled prior to being used throughout this work. 
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MWCNTs (40 mg, 4 wt. %) were dispersed in the titanium solution using a probe ultra-

sonicator (UP200S, FORLAB) for 15 min followed by bath ultra-sonication (Branson, USA, 

40 kHz) for 2 h. To encourage complete reaction, the solution was stirred at 70 ºC for 2 h, 

followed by a filtrating and heating (100 ºC - 24 h) until MWCNTs-TiO2 powders were 

obtained. The amorphous powders were heat treated at 400 ºC for 1 h to obtain MWCNTs 

covered with crystalline TiO2 (MWCNTs - TiO2). In the second step, as-prepared MWCNTs-

TiO2 were mixed with the Ba precursor solution in 1:1 mol. ratio. 0.1 M solutions of Ba acetate 

(99 % purity, ACS), Ba hydroxide (98 % purity, ACS) and Ba acetate with Na hydroxide (5 

M) (NaOH, 98 % purity, ABCR) were used as the Ba precursors. MWCNTs-TiO2 particles 

were dispersed in the Ba solution by stirring for 1 h at 30 ºC. The pH of the MWCNTs-BT 

solution was ~10 (for the acetate and hydroxide precursors) and ~13 in case of Ba acetate with 

NaOH. The solutions prepared from the different Ba precursors were transferred to 70 ml 

teflon-lined stainless-steel autoclaves, 40 % full. The hydrothermal reaction was carried out in 

the autoclave at 160 ºC for 12 h to obtain the final MWCNTs-BT. The MWCNTs-BT particles 

were filtered and washed with distilled water until the pH of the solution came close to neutral. 

The powders were dried overnight at 100 ºC before characterization. 

Methodology Two: In the second methodology, 0.1 M of BT solution was used for the 

synthesis of MWCNTs-BT. Initially, a stabilized titanium solution was prepared by mixing 

titanium(IV) isopropoxide (> 97 % purity, Fluka) with acetylacetone (> 99% purity, MERCK) 

and ethanol (> 99.5 % purity, Panreac) in mol. ratio of 1:2:5. Ba acetate solution, prepared from 

barium acetate (99% purity, ACS) dissolved in deionized water (5 wt. ratio of Ba), was added 

to the previously prepared titanium solution. A clear and stable solution of BT was obtained 

after mixing for 1 h at 70 ºC. 25 mg of MWCNTs were added to the BT solution which was 

mixed by using an ultra-high sonicator (UP 200S) for 5 min, followed by 1 to 2 h in an 

ultrasonic bath (Branson 1510). The MWCNTs-BT solution was stirred and heated at 70 ºC for 

2 h to obtain homogeneity (a black solution, with no white precipitation). 5 M potassium 

hydroxide solution (KOH, ≥ 85 % purity, Sigma Aldrich) was added to the MWCNTs-BT 

solution to promote the nucleation of BT, which was observed as the formation of white 

amorphous precipitates.  

The precipitated MWCNTs-BT solution was transferred to a teflon lined stainless-steel 

autoclave, ~ 40 % full. Hydrothermal treatment was carried at time and temperatures, ranging 

from 0.5 to 24 h and 100 to 250 ºC. Growth and crystallization occurred under autogenous 
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pressure inside the autoclave after being subjected to various temperatures. The crystalline 

MWCNTs-BT powders were filtered and washed with distilled water until the pH was neutral. 

The powders were dried overnight in the oven at 100 ºC. The various steps to obtain MWCNTs-

BT in Methodologies One and Two are illustrated in Figure 6-1. 

 

 

(a) 
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Figure 6-1 Flow chart illustrates the steps followed to obtained MWCNTs-BT via (a) 

Methodology One and (b) Methodology Two. 

In order to have better wettability, the MWCNTs were non-covalently functionalized 

with sodium dodecyl sulfate (SDS), named as SDSMWCNTs. Procedure for functionalization 

detailed in Chapter 3.  

For covering SDSMWCNTs with BT methodology two was used (sol gel hybrid 

hydrothermal method). Two different concentration of BT solution (0.1 and 0.01 M) were used 

(b) 
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to cover SDSMWCNTs. The SDSMWCNTs (10 mg) were added slowly to the BT solution 

and the solution was mixed using a probe ultra-high frequency sonicator (UP 200S) for 5 min, 

followed by sonication using a ultra-sonication bath (Branson 1510) for 2 h. SDS MWCNTs-

BT solution was heated at 70 ºC for 2 h to get homogenous solution (a dense black solution, 

with no white precipitation). The potassium hydroxide (KOH, ABCR, 85 %) solution (5 M) 

was added to the SDSMWCNTs-BT solution to increase pH to 13 or above, this results in 

supersaturation and nucleation occurs in the form of a white precipitate. The precipitated 

SDSMWCNTs-BT solution was transferred to a teflon lined stainless-steel autoclave, which 

was filled up to 40 % of the total capacity and the autoclaves exposed to hydrothermal treatment 

to obtain SDSMWCNTs-BT powders. The obtained SDSMWCNTs-BT powders were filtered 

and washed by distilled water until the pH value come close to neutral. The deionized water 

was boiled prior to be used throughout the experiments, in order to minimize CO2 presence, 

which may contribute to the formation of BaCO3. The obtained powders were dried in an oven 

at 100 ºC for 12 h, before being used for the characterization of the phase formation, 

morphology and electrical properties.  

The obtained powders were dried in an oven at 100 ºC for 12 h, before being used for 

the characterization of the phase formation, morphology and electrical properties. Figure 6-2 

schematic illustrates the steps followed for the synthesis of SDSMWCNTs-BT. 

The phase formation of BT for all samples and degree of crystallinity were assessed by 

X-ray diffraction (Philips, X´Pert diffractometer and Cu-Kα radiation), Raman spectroscopy, 

(RFS100/S FT using a 534 nm excitation source) and Fourier Transform InfraRed (FTIR) 

spectroscopy (Mattson, Madison, WI, USA, 7000 FTIR spectrometer). The microstructures of 

the composites were analysed by Scanning Electron Microscopy (SEM) (Hitachi SU-70 (S-

4100)), Transmission Electron Microscopy (TEM) (300 kV Hitachi H9000-NA) and High 

Resolution Transmission Electron Microscope (HRTEM, JEOL 2200 FS). SDSMWCNTs-BT 

powders for TEM were prepared by dispersing them in to the chloroform and later a drop from 

the solution was transferred to TEM lacey gird (Agar). 

The topography of MWCNTs-BT and SDSMWCNTs-BT was determined using 

atomic/piezo-force microscopy whilst simultaneously obtaining local piezoelectric response 

(MFP-3D Asylum Research Atomic Force Microscope (AFM)). The measurements were 

carried out using soft Pt-coated cantilever with spring constant of 0.1-0.4 N/m and resonance 

frequency of 12 - 18 kHz (MikroMasch, XSC11). Samples for AFM/PFM were prepared by 
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dispersing MWCNTs-BT and SDSMWCNTs-BT structures in ethanol, and depositing them on 

platinised silicon substrate by spin coating. To calibrate the AFM deflection sensitivity, the 

force-curve method is used- which is also used to calibrate vertical PFM. This is done by taking 

the slope (in nm/V) of the linear (contact) region of a force curve, giving the distance moved 

by the tip, per voltage change on the photo detector.  

 

 

Figure 6-2 Schematic illustrates the processing steps to obtained MWCNTs-BT 

(SDSMWCNTs-BT) tubes.  

6.3 Results and discussion 

6.3.1 Covering covalent functionalized MWCNTs with BT 

To follow the phase formation, MWCNTs-BT obtained from Methodology One were 

studied by XRD, SEM and TEM. Figure 6-3 (a) presents the XRD pattern of MWCNTs-TiO2 

heat treated 1 h at 400 ºC. XRD peaks match with the JCPDS #21-1272, confirming the 

formation of anatase. Figure 6-3 (b) shows the XRD pattern of MWCNTs-BT obtained from 

different Ba precursors at 160 oC for 12 h. The MWCNTs-BT fabricated from Ba hydroxide 

precursor results in the formation of mainly BaCO3 with only a few peaks with low intensity 



 

Ferroelectric – Carbon Nanotubes (CNTs) structures fabrication for advanced functional nano devices         
155 

Multiwall carbon nanotubes (MWCNTs) – Barium titanate (BT) 

that match cubic BT. XRD peaks corresponding to TiO2 were not identified, which may be due 

to the dissolution of TiO2 crystalline particles into Ti(OH)aq. XRD pattern obtained from 

MWCNTs-BT with Ba acetate precursor still exhibited BaCO3 albeit with a higher volume 

fraction of BaTiO3 ( Figure 6-3 (b). However, with the addition of NaOH as well as Ba acetate, 

the reactivity increased [385] and monophasic BT was obtained, with no traces of carbonate in 

XRD pattern. 

SEM micrographs of MWCNTs-TiO2 show the presence of TiO2 crystalline particles 

about 10 -30 nm on the surface of the MWCNTs Figure 6-4 (a). TEM micrographs from 

MWCNTs-BT obtained from Ba acetate-NaOH solution depict agglomerates of BT particles 

(150 nm) in contact with MWCNTs after hydrothermal reaction at 160 ºC for 12 h (Figure 6-4) 

but not nucleating directly on their surface. Moreover, when Ba acetate and Ba hydroxides 

solutions were used, areas with no TiO2 particles promoted the formation of BaCO3. The 

detachment of TiO2 from MWCNTs during the synthesis of MWCNTs - BT can be explained 

by a mechanism of homogeneous dissolution and recrystallization [310] in which TiO2 

dissolution into Ti(OH)aq results in the removal of TiO2 particle from the surface of MWCNTs 

and formation of BaTiO3 away from the surface of MWCNTs. A further reason for the 

detachment of TiO2 might be weak bonding between MWCNTs and TiO2. The schematic of 

the possible steps during the dissolution and recrystallization is presented in Figure 6-5.  

 

 

(a) 
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Figure 6-3 XRD patterns of (a) MWCNTs-TiO2 particles synthesised at 400 oC, JCPDS #21-

1272 and (b) MWCNTs-BT obtained from the reaction of MWCNTs-TiO2 with different barium 

precursors at 160 ºC for 12 h (Methodology One). The XRD patterns reveal monophasic BT 

(without BaCO3) only when Ba acetate with NaOH was used. 

  

Figure 6-4 (a) SEM micrograph depicting the coverage of MWCNTs with TiO2 particles, after 

synthesis for 1h at 400 ºC and (b) TEM micrograph of MWCNTs-BT powders obtained from 

Ba acetate and NaOH solution with a hydrothermal reaction at 160 ºC for 12 h (Methodology 

One). An aggregate of BT particles (150 nm) is formed, not attached to the surface of 

MWCNTs. 

(b) 

(a) (b) 
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Figure 6-5 Schematic representation of the formation of BT from dissolution and 

recrystallization. TiO2 particles detach from the MWCNTs surface, which results in the 

formation of BaCO3 due to the exposure of MWCNTs surface to Ba precursors. 

As a consequence of the poor results obtained by pure hydrothermal synthesis, a second 

(Methodology Two) sol gel/hydrothermal hybrid processing route was devised. MWCNTs 

were dispersed in a BT solution and exposed to hydrothermal conditions to obtain MWCNTs-

BT. The phase formation of MWCNTs-BT fabricated from the hybrid sol gel / hydrothermal 

method was characterized by XRD as a function of synthesis time (Figure 6-6). All the 

diffraction peaks were indexed as cubic BT (JCPDS No.: #31-0174) with lattice parameter, a 

= 4.031 Ǻ. As-precipitated MWCNTs-BT powders consisted of BaCO3 phase with no 

crystalline BT phase. With the processing time of 0.5 h the crystalline BT formed and its 

crystallinity increased with processing time. With the increase in the synthesis time from 0.5 

to 5 h the amount of BaCO3 decreased significantly, as indicated by the disappearance of the 

BaCO3 peak 2θ = 23.09. Monophasic BT is formed at ≥10 h at 160 oC. 

The cubic versus tetragonal BT phase assemblage as a function of synthesis time can 

be studied from splitting of the (200) peak at 2θ ~ 45 º. For MWCNTs-BT obtained at 160 ºC 

(0.5 and 2 h) the cubic phase is dominant. With the increase in the synthesis time from 5 to 24 

h the peak of BaTiO3 become broader and shifts towards the right, indicating the presence of a 

doublet (002 and 200) consistent with tetragonal BT (Figure 6-6 (b)). However, broadening of 

the 200 peak in comparison to solid state synthesised BT [386] indicates low tetragonality (c/a 
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→ 1), possibly associated with intrinsic size effects. The largest c/a ratio was obtained for 

MWCNTs-BT synthesised 10 h at 160 ºC. 

The evolution of BT phase assemblage as a function of temperature from 100 to 250 ºC 

for a synthesis time of 2 h was also investigated, Figure 6-6 (c-d). Almost pure BT phase on 

the surrounding of MWCNTs were obtained at 250 ºC for 2 h, whereas for lower reaction 

temperature the presence of BaCO3 diffraction peaks are visible in XRD pattern (Figure 6-6 

(c)). The formation of BaCO3, during the synthesis of BaTiO3 is inevitable due to its low 

activation energy, in comparison to BT. However, with the further input of energy in terms of 

synthesis time and temperature BaCO3 converts to BT [382]. The transformation from 

pseudocubic to tetragonal phase was also monitored using the (200) peak at 2θ ~ 45, Figure 

6-6 (d). MWCNTs-BT synthesised ≤200 ºC are dominated by cubic BT but at 250 oC the peak 

is shifted to the right, indicating the presence of tetragonal BT phase.  

 

 

(a) 
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(c) 

(b) 
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Figure 6-6 XRD patterns of (a) MWCNTs-BT obtained at various synthesis time at 160 ºC, (b) 

cubic to tetragonal broadening of the 200 peak for MWCNTs-BT obtained at various synthesis 

time at 160 ºC, (c) MWCNTs-BT obtained at various temperature for 2 h; and (d) cubic to 

tetragonal 200 broadening of MWCNTs-BT obtained at various temperatures for 2 h. The 

maximum tetragonal phase was observed for MWCNTs-BT fabricated at 160 ºC for 10 h. 

FTIR transmittance spectra for the MWCNTs-BT derived from Methodology Two at 

various times and temperatures are depicted in Figure 6-7 (a, b). The transmittance peaks 

around 575 and 420 cm-1 are the fingerprint of BT, which occurred due to the stretching and 

bending of Ti-O-Ti octahedron [380]. The intensity and the area under this peak increased with 

increasing time and temperature of synthesis. The peak at 1637 cm-1 refers to the characteristic 

peak of carbon skeleton (stretching of C=C) [387] which is present in all of MWCNTs-BT and 

its intensity does not change. Peaks at 1073 and 3438 cm-1 correspond to the functional 

carboxyl and hydroxyl groups, respectively [388]. The decrease in the intensity of the carboxyl 

and hydroxyl peaks with the synthesis time and temperature might be due to the replacing of 

functional groups with BT crystallites. The peak at 1448 cm-1 is the signature of the carboxylate 

(COO-) group due to symmetric and asymmetric stretching. The intensity of the band decreases 

with the increase in the synthesis time due to the decomposition of CO2 associated with the 

thermal degradation of carbonate impurities [389]. The peak around 864 cm-1 is the fingerprint 

of the carbonate phase [18]. The intensity of the carbonate peak is reduce for MWCNTs-BT 

with increasing synthesis time from 0.5 min to 24 h at 160 ºC and as a function of increasing 

temperature (100 ºC to 250 ºC) for 2 h synthesis. FTIR results corroborate previous XRD 

(d) 
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observations (Figure 6-6) but a small peak corresponding to carbonate is present in the FTIR 

spectra for MWCNTs-BT synthesised at 160 oC for 10 h and 24 h does not correspond to an 

equivalent peak in the XRD patterns. 

 

 

Figure 6-7 FTIR spectra of MWCNTs-BT synthesised (Methodology Two) at (a) 160 ºC for 

varying times and (b) varying temperature for 2 h. FTIR spectra show the characteristic peaks 

of BT at 403 and 575 cm-1 and for MWCNTs around 1637 cm-1. 

(b) 

(a) 
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Figure 6-8 (a) represents the Raman spectra of BT (prepared by sol gel/hydrothermal 

method) and MWCNTs-BT synthesised at 160 ºC for different time periods from 30 min to 24 

h. Tetragonal BT depicts eight Raman active modes, 3A1g + B1g + 4Eg.[390] BT and 

MWCNTs-BT peaks at 180, 259 and 517 cm-1 are assigned to A1 symmetry transverse 

component of the optical mode (TO modes). The peak at 304 cm-1 is assigned to the B1g mode, 

indicating the asymmetry within the TiO6 octahedral [390]. A high frequency longitudinal 

optical mode (LO) of A1 symmetry is assigned to the peak at 715 cm-1. MWCNTs-BT 

synthesised at 160 oC for 10 h exhibits a clear peak at 304 cm-1, assigned to tetragonal BT, 

whereas MWCNTs-BT synthesised for shorter times do not present well defined tetragonal 

peak at 304 cm-1. The Raman observations therefore corroborate XRD data (Figure 6-6). 

Figure 6-8 (b) shows the Raman spectrum for MWCNTs and MWCNTs-BT in the 

range from 1200 to 1800 cm-1. MWCNTs exhibit two characteristic peaks on at 1336 and other 

at 1575 cm-1, named as D and G band, respectively. D band is the double resonance band that 

gives the information about the structural disorder and G band results from the in plane 

tangential stretching of the C - C bonds in the graphite sheet and gives information about the 

desired graphitic structure of the tube [359]. MWCNTs-BT show both D and G band fingerprint 

of MWCNTs, but both characteristic peaks are shifted from their position when compared to 

pristine MWCNTs. This most likely indicates the presence of BT on the surface of the CNTs 

which results in a compressive strain and shifts the peak to higher wavenumber. The intensity 

of these peaks decreased also for composite samples due to presence of BaTiO3 which restricts 

the phonon interaction with the surface of CNTs [28]. 

The morphology of MWCNTs-BT was then investigated by SEM, TEM and AFM. 

SEM (STEM mode) images of MWCNTs-BT synthesis at 160 ºC for 10 h reveal that there is 

partial coverage of the MWCNTs surface with BT (Figure 6-9 (a-b)). The dark contrast marked 

by the red circle in the micrograph indicates BT layers on the surface of MWCNTs. The coating 

thickness was estimated to be ~ 30 nm. The morphology of the MWCNTs-BT was further 

investigated by AFM (Figure 6-9 (c-d)). The topography and line profile at three different 

places (marked by crosses in Figure 6-9 (c)) on the MWCNTs-BT was imaged. The line profile 

(Figure 6-9 (d)) from point 1 corresponds to bare MWCNT having a diameter of 14 nm 

(determined from the height). The line profile at point 2 and 3 corresponds to the MWCNTs 

coated with BT, with a diameter of 20 and 75 nm, respectively. It is clear from the STEM and 

AFM topography micrographs that the MWCNTs are partially covered with BT of varying 
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thickness up to 2 - 100 nm. The selective coating may be due to localized covalent 

functionalization of MWCNTs that results in selective covering of MWCNTs with BT.  

The tubes were further observed using TEM. Bright field and dark field micrographs 

of MWCNTs-BT are illustrated in Figure 6-10 (a, b) respectively. The bright field micrograph 

reveals a surface coating (BT) on the MWCNTs and the accompanying dark field image reveals 

bright contrast from strongly diffracting regions, confirming that it is crystalline.  

Figure 6-11 (a) is a HRTEM micrograph of MWCNTs, which illustrates that they are 

uniformly covered with BT (40 nm). Inset in Figure 6-11 (a) is a micrograph which illustrates 

the carbon lattice fringes (0.33 nm), close to the theoretical value (0.34 nm) of MWCNTs [391]. 

In some cases (Figure 6-11 (b)), micrographs reveal a d spacing of ~0.28 nm which corresponds 

to (101) BT. The arrows marked in the micrograph indicates the MWCNTs embedded inside 

the BT clearly showing the expansion of carbon fringes (0.36 nm) after BT covering, indicating 

they are under stress, and corroborating the observed shift in Raman peak. EDS spectra from 

the MWCNTs-BT depicts the presence of Ba and Ti element, Figure 6-11 (c). MWCNTs-BT 

prepared at 250 ºC for 2 h were also investigated by HRTEM and revealed a similar structure 

/ microstructure. 

 

(a) 
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Figure 6-8 Raman Spectra of (a) BT and MWCNTs-BT and (b) MWCNTs and MWCNTs-BT, 

synthesis at 160 oC fabricated by the hybrid sol gel / hydrothermal method for different reaction 

times. MWCNTs-BT synthesised at 160 ºC for 10 h exhibit a tetragonal peak at 304 cm-1 and a 

shift in the characteristic peak of MWCNTs which suggests that they are under compression. 

 

  

(b) 

(a) (b) 
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Figure 6-9 (a-b) STEM micrograph of MWCNTs-BT fabricated at 160 ºC. The coated part of 

the MWCNTs are marked by red circles. (c) AFM topography of MWCNTs-BT and (d) line 

profile of the topography corresponding to three points marked in the topography image. SEM 

and AFM results illustrate the selective deposition of BT on the MWCNTs.  

  

Figure 6-10 (a) Bright and (b) dark field micrographs of MWCNTs-BT fabricated at 160 ºC 

for 2 h which show partial coverage of MWCNTs with BT. 

(

d) 

(

c) 

(a) (b) 

(c) (d) 
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Figure 6-11 (a) MWCNTs coated with BT about 10 - 12 nm,, (b) high magnification of BT 

covered the MWCNTs and (c) EDS spectra of MWCNTs-BT composite, HRTEM studies clearly 

indicates the presence of BT on the surface of MWCNTs. 

Figure 6-12 is a schematic representation of the possible steps occurred during the 

formation of BT layers on MWCNTs using the hybrid sol gel/hydrothermal method. The 

functionalized surface of the MWCNTs reacts with the amorphous BT sol network and the Ba 

ions become entrapped by the amorphous Ti. On heating, the amorphous Ti network opens and 

the Ba atoms penetrate inside [363]. Consequently, there is not enough Ba ions residual in the 

vicinity of the Ti network to react with the carbon skeleton of MWCNTs to form BaCO3. 

During growth, amorphous sol undergoes a reaction in which movement of the gel surface is 

the rate controlling step [311] resulting in the formation of crystalline BT on the surface of the 

MWCNTs. The chemical equation for reaction mechanism for the formation of BT is given 

below: 
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Figure 6-12 Schematic for the formation of MWCNTs-BT from sol gel / hydrothermal method: 

Ba ions entrapped inside the network of titanium helping reducing the formation of BaCO3 at 

the surface of MWCNTs. 

Figure 6-13 illustrates the AFM-PFM response of the MWCNTs-BT, acquired in 

contact mode. The topography micrograph (Figure 6-13 (a)) represents two or more entangled 

tubes covered with BT. The line profile that corresponds to the topography image reveals that 

the diameter of the MWCNTs-BT is ~60 - 80 nm whereas, the MWCNTs diameter are ~25 nm. 

The out of plane response was obtained with the application of peak to peak 10 V ac Figure 

6-13 (b) 

  

Figure 6-13 (a) Topography and (b) phase response (out of plane) of MWCNTs-BT obtained 

at 160 ºC by sol gel / hydrothermal method AFM-PFM with the application of 10 V in contact 

mode. 

(a) (b) 
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The electromechanical responses were caried out by sweepingthe AC voltage from 0 to 

20 V in contact mode on the selected points. The electromechanical response from MWCNTs-

BT is illustrated in Figure 6-14 (a). The amplitude measured as a function of the applied voltage 

shows a linear increase with the applied voltage, and confirms an linear electromechanical 

effect (Figure 6-14 (b)). In Figure 6-14 (a), points marked by red, corresponds to where Vac 

sweeps were performed with a bias up to 20 V. The high bias above 20 V results in the dielectric 

breakdown. The value of the dzz measured varied at each point, possibly indicating a slight 

difference in orientation / thickness of BT on the MWCNTs, as previously suggested. [392] 

The average value of dzz is ~15 pm/V. The hysteresis of MWCNTs-BT demonstrates that the 

domains of BT on the MWCNTs can be switchable with the application of applied voltage 

(Figure 6-14 (c)). The amplitude response on the same area is given in Figure 6-14 (d).  

 

 

Figure 6-14 (a) Topography micrograph marked with red dots corresponds to the d33 

measurements; (b) Vac sweeps depicts the linear variation of amplitude as a function of applied 

voltage; (c) PFM phase hysteresis and (d) amplitude response obtained with the application of 

±25 V to MWCNTs-BT obtained by sol gel / hydrothermal method at 160 ºC. 

(a) 

(c) 

(b) 

(d) 
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6.3.2 Covering non-covalent functionalized MWCNTs with BT 

It was clear from the above results that covalent functionalized MWCNTs can be 

covered with BT at particular areas, which might be the result of the localized covalent 

functionalization. In order to have uniform coverage of MWCNTs with BT, MWCNTs were 

functionalized non-covalently with SDS to promote large area functionalization. So, that 

conformal covering of MWCNTs with BT can be obtained. The results obtained on the 

covering of non-covalent functionalized MWCNTs with BT are presented and discussed 

hereafter. 

Figure 6-15 (a) illustrates HRTEM micrographs of the SDS functionalized MWCNTs 

used in the present studies having diameter ranges from 10 to 30 nm. Figure 6-15 (b) represents 

the SEM micrographs of SDSMWCNTs-BT synthesised at 250 ºC for 12 h from 0.01 M BT 

solution evidencing SDSMWCNTs-BT tubes with diameter of 50 to 200 nm, alongside with 

the few BT particles and uncovered MWCNTs. The SEM micrograph of SDSMWCNT-BT 

obtained from 0.1 M of BT solution is given in Figure 6-15 (c), SDSMWCNTs-BT obtained 

from 0.1 M of BT mainly consists of BT particles with irregular morphology and a very few 

tubes. It was clear from the SEM analysis that the initial concentration of BT precursor has a 

significant effect on the morphology of the final product. This can be explain based on the 

difference in the concentration of the SDS and BT. When we used a high concentration of BT 

solution (0.1 M) the nucleation and growth occurs in the conventional way and BT particles 

are formed. Whereas when BT concentration is around 0.01 M, preferential nucleation occurs 

at SDS molecules and BT grows from there. Hence, 1 D SDSMWCNTs-BT structures were 

obtained from the less concentrated BT solution.  

 

(a) 
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Figure 6-15 (a) HRTEM micrograph of SDS functionalized MWCNTs; SEM micrographs of 

SDSMWCNTs-BT synthesised from (b) 0.01 M and (c) 0.1 M  BT solution. BT tubes were 

formed when the initial concentraion of the BT solution is 0.01 M. 

The 1D SDSMWCNTs-BT structures obtained from 0.01 M solution were further 

investigated under a HRTEM. The HRTEM micrograph illustrates BT tubes having the 

diameter of 30, 50 and 70 nm and length up to 2 µm (Figure 6-16 (a)). Further, magnified view 

of the tubes depicts the presence of MWCNTs, which are embedded beneath the BT layer. The 

magnified view depicts the d002 spacing of 0.2 nm that corresponds to BT crystallographic 

plane as shown in the inset of Figure 6-16 (b). The diameter of the SDSMWCNTs-BT tubes is 

around 90 nm with CNTs diameter close to 60 nm, hence the thickness of BT layer on CNTs 

is around 15 nm (Figure 6-16 (b)). In some SDSMWCNTs-BT tubes, the coverage of BT is so 

dense that it was difficult to visualize carbon skeleton of MWCNTs. The variation in the 

diameter of the SDSMWCNTs-BT might be due to the difference in the original diameters of 

MWCNTs (10 to 60 nm) used in the present studies. The SDSMWCNTs-BT fabricated at 250 

oC for 2 h are illustrated in Figure 6-16 (c-d). MWCNTs (having 10 nm diameter) are uniformly 

covered with BT having a diameter of ~20 nm. The magnified view of the BT covered 

SDSMWCNTs depicts the carbon and BT lattices with the spacing of 0.33 nm and 0.23 nm, 

respectively (Figure 6-16 (c)). HRTEM results clearly proves that the MWCNTs are conformal 

covered with BT and form 1D structures. HRTEM analysis at the interface between 

SDSMWCNTs and BT depicts three different sets of lattice spacing as illustrated in Figure 

6-17, having the d spacing of 0.35, 0.37 and 0.23 nm. The lattice spacing of 0.35 nm 

corresponds to CNTs lattice and 0.23 nm to BT (111) plane. However, the lattice spacing of 

0.37 nm between CNTs and BT planes corresponds to BaCO3 (111) plane (JCPDS- 05-0378) 

(illustrated in Figure 6-17 inset on the top right). The elemental mapping of MWCNTs-BT 

(c) (b) 
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structures is represented in Figure 6-18. The tubes of SDSMWCNTs-BT with diameter of 115 

nm depict the uniform distribution of barium, titanium and oxygen throughout the tube. The 

elemental mapping confirms the uniform distribution of barium and titanium elements 

throughout the structure.  

 

  

  

Figure 6-16 HRTEM micrographs of SDSMWCNTs-BT tubes synthesised from 0.01 M solution 

at 250 oC for 12 h, tubes with diameters of 30, 50 and 70 nm were obtained (a). A magnified 

view of the tube shows d spacing of 0.2 nm (shown in inset) (b). HRTEM micrograph of 

SDSMWCNTS-BT obtained at 250 oC for 2 h MWCNTs covered with BT (c) and magnified 

view depicts the lattice fringes of 0.33 nm and 0.23 nm corresponds to CNTs and BT (d).  

 

(d) (c) 

(b) 
(a) 
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Figure 6-17 HRTEM micrograph of SDSMWCNTS-BT synthesised at 250 oC – 12 h, depicts 

the interface between the BT particle and MWCNTs, there are three different d spacings: 0.37, 

0.23 and 0.35 nm observed corresponds to BaCO3, BT and MWCNTs, respectively.  

    

Figure 6-18 Elemental mapping of SDSMWCNTs-BT (a) STEM micrograph; mapping of (b) 

barium, (c) titanium and (d) oxygen elements. The elemental mapping depicts uniform 

distribution of element corresponds to BT. 

XRD pattern of the SDSMWCNTs-BT at 250 oC for 2, 12 and 48 h, fabricated from the 

initial molar concentration of 0.01 M and SDSMWCNTs-BT obtained at 250 ºC - 12 h from 

0.1 M concentration of BT precursor is given in Figure 6-19 (a). The diffraction peaks match 

well with a tetragonal BT cell having space group P4mm indexed to JCPDS no. 05-0626. 

(b) (c) (d) (a) 
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Diffraction peaks for Ba(Ti2O5) and TiO2 (secondary phases) were also identified for all the 

samples. The peaks from the secondary phases are very stable and are not eliminated with the 

increase of the reaction time. According to literature the Ba(Ti2O5) is stable phase and can only 

be eliminated by heating above 1100 ºC, and in case of hydrothermal processing it is unlikely 

to eliminate once it has formed. [393] To confirm, if the SDSMWCNTs-BT tubes fabricated at 

250 oC for 2, 12 and 48 h are tetragonal or cubic, the diffraction peak around 2θ~45o were 

looked for splitting or broadening. An asymmetric broadening (Figure 6-19 (b)) was found and 

can be attributed to the (200)/(002) reflection of tetragonal structure for above mentioned 

samples. It is know from the literature the particle size less than 300 nm attribute to the peak 

broadening in contrary to splitting [320, 394].  

 

 

 

(a) 
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Figure 6-19 XRD pattern of the SDSMWCNTs - BT at 250 oC for 2, 12 and 48 h, fabricated 

from the initial molar concentration of 0.01 M and SDSMWCNTs-BT obtained at 250 ºC - 12 

h from 0.1 M concentration of BT precursor (a) and the tetragonality of the SDSMWCNTs – 

BT for the sample fabricated at 250 oC for 2, 12 and 48 h determined from the broadening of 

200 peak (corresponds to cubic) in to 200/002 (corresponds to tetragonal). (b), asymmetric 

broadening was found for all the samples attribute to tetragonal structure. 

FTIR spectrum of MWCNTs, SDSMWCNTs and SDSMWCNTs-BT are represented 

in Figure 6-20 from wavenumber 4000 to 350 cm-1. Peak at 3446 cm-1 corresponds to hydroxyl 

group [388], and is present for both MWCNTs and SDSMWCNTs. The second group of peaks 

occur at 2977 and 2924 cm-1 and are assigned to the asymmetrical and symmetrical stretching 

of –CH2– present in SDSMWCNTs, where pristine MWCNTs depicts only the peak assigned 

to the symmetrical stretching. The transmittance peaks at 1579 and 1384 cm-1 can be attributed 

to the monodentate carboxylate mode and symmetrical vibrations of –CH3, respectively. All 

the above mentioned peaks disappeared after the formation of BT on the tubes. The peak at 

1629 cm-1 is associated with the vibration of the carbon skeleton from the carbon nanotubes; 

this peak is very clear for pristine MWCNTs and SDSMWCNTs but not so clear for 

SDSMWCNTS-BT. For SDSMWCNTs two more peaks are present in comparison to 

MWCNTs; one at 1058 cm−1 assigned to the symmetrical stretching vibration of S=O and a 

second one at 881 cm−1 assigned to the asymmetrical stretching vibration of C–O–S [346, 347]. 

After the formation of BT on MWCNTs, the FTIR spectra reveals a significant decrease in the 

intensity of the peak at 1058 cm−1 and the disappearance of the peak at 881 cm−1 what might 

(b) 
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be due to the formation of BT by the replacing of the sulphur ions (from SDS). The huge 

transmittance peak for SDSMWCNTS-BT at 1442 cm−1 may corresponds to carboxylate 

groups [18]. The characteristic peaks for BT that appears around 418 and 563 cm-1 are from 

the stretching and bending of the Ti-O octahedron of BT [380]. Peak around 856 cm-1 is from 

the carbonate phase, indicating the formation of BaCO3. In agreement with HRTEM analysis 

of SDSMWCNTs-BT reveals the formation of BaCO3 at the interface of MWCNTs. The 

formation of BaCO3 may results in deficiency of Ba ions in the solution that as a consequence 

might result in the formation of secondary phases, Ba(Ti2O5) and TiO2, as it was observed. 

 

Figure 6-20 FTIR spectra of MWCNTs, SDSMWCNTs and SDSMWCNTs-BT, depicts the SDS 

functionalized peaks at 1058 and 881 cm-1 and characteristic peaks for the formation of BT at 

563 and 418 cm-1. 

From the above analysis, a schematic is proposed on the formation of 1D 

SDSMWCNTs-BT (Figure 6-21). MWCNTs functionalized with SDS results in the non-

covalent functionalization. Where the  hydrophobic part (C-C chain) of the SDS is adsorbed 

on the MWCNTS by Van Der Waals interactions and the hydrophilic part of the surfactant is 

oriented toward the aqueous phase [395]. SDS functionalization make CNTs stiffer due to the 

rigidity of the SDS and align them unidirectionally, this also provide with better dispersion of 

MWCNTs in solution. [396, 397] It has been experimentally and theoretically verified that 
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SDS molecules adsorbed on the CNTs based on chirality and electrical properties [398, 399]. 

Moreover, SDS adsorbed on the surface of MWCNTs in three different type, named as 

cylindrical adsorption, hemimicellar adsorption and random adsorption (shown in Figure 6-21), 

This dependents on the concentration of SDS in the media [400] and on the size and chirality 

of the tubes, as stated above. This could be the reason that not all the MWCNTs are conformal 

covered with SDS due to different size of the MWCNTs used in the present studies and also 

the chirality.  

FTIR of SDSMWCNTs-BT indicates the intensity of transmittance band from S=O and 

C-O-S has been extinct and decrease in intensity after the formation of BT. It indicates the S=O 

was replaced by Ti-O network during the nucleation and/or growth process, this results in the 

deposition of BT on the surface of MWCNTs. The nucleation and growth of the BT on the 

surface of MWCNTs might be dependent on the type of adsorption of SDS on the MWCNTs. 

This might be the reason, why some of the tubes are uniformly covered with BT, few of them 

partially and others are not at all.  

The formation of secondary phase Ba(Ti2O5) and TiO2 occurred due to the deficiency 

of Ba ions in the solution, which is only possible if the Ba ions from the suspension form BaO 

or BaCO3. HRTEM results depicts the formation of BaCO3 at the interface of SDSMWCNTs-

BT. The possible reason for the formation of BaCO3 phase at the interface is due to aliphatic 

chains (C-C) of SDS, Which reacts with Ba ions to form BaCO3. Nevertheless, in our previous 

studies we demonstrated that sol gel hybrid hydrothermal method restrict the formation of 

BaCO3 for the fabrication of MWCNTs-BT. But it seems same is not true when surfactant with 

long aliphatic chains present along the periphery of the MWCNTs.  

The topography and out of plane PFM amplitude and phase response with the respective 

line profile presented on the right of the Figure 6-22 (a-c). The line profile from the topography 

micrograph illustrates the ~ 50 nm height of the SDSMWCNTs-BT. The phase response 

depicts that most of the component of the polarization are aligned along the same direction of 

the applied field. The point poling was carried out on the tube and imaged after poling with 

+30 V (on top) and -30 V (on bottom) dc bias for 0.5 min marked in Figure 6-22 (b). The phase 

response after poling depicts the domains poled with negative 30 V appears dark in contrast, 

this depicts orientation of the domains has changed from the rest of the surrounding domains; 

(Figure 6-22 (b) on right), whereas, when the domains oriented along the same direction of 
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electric field (poled by +30 V) the domains look more brighter than before due to increase in 

the density of the domains oriented along the applied field. 

 

Figure 6-21 Schematic representation of the formation of SDSMWCNTs-BT nanotubes using 

non-covalent functionalization. SDS adsorbed on the surface of MWCNTs in three different 

ways named as cylindrical adsorption, random adsorption and hemimicellar adsorption; the 

functionalized MWCNTs mixed with BT precursor and subjected to hydrothermal condition to 

obtained SDSMWCNTs-BT. Different type of adsorption results in semi cover or uniform cover 

of SDSMWCNTs with BT. 

 

Figure 6-22 AFM-PFM micrograph of SDSMWCNTs-BT tubes: (a) topography, (b) phase 

response (out of plane) and (c) point poling on the marked point with +30 V on top and  -30 V 

on the bottom the poling response is read with the applied field of 15 V in contact mode. The 

poling depicts the dipoles can be aligned from positive to negative direction with the 

application of external field. 
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The electromechanical responses were carried out with the application of AC voltage 

in contact mode on the different points on tube. The tip was approach to the point of interest 

and the electromechanical response was measured as the function of applied voltage. The linear 

increase of the amplitude with the applied voltage are observed, which is typical response 

expected from the piezoelectric materials. Where, the slope obtained from amplitude vs Vac 

plot (illustrate as inset in Figure 6-23) and force is calculated from the force calibration curve. 

The average value of d33 is approximately 2 pm/V which is quite low compare to the bulk (d33 

= 75 pm/V) [401].  

 

Figure 6-23 Amplitude as a function of applied voltage (Vac) plot for SDSMWCNTs-BT; 

illustrates the linear change in amplitude with applied voltage and the slope gives the value of 

effective d33, in this case it is around 2 pm/V. 

  

Figure 6-24 (a) Hysteresis loops and (b) amplitude obtained from SDSMWCNTs-BT tube with 

the application of ±50 V dc bias. The shift in FE loop is due to self-polarization of BT tube, the 

results clearly depict the ferroelectric behaviour of the tubes. 

(a) (b) 
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The low d33 was also reported for the SrBi2Ta2O9 nano sphere is 2 pm/V [402] and also 

for cubic crystal of 10 nm of BT is 1.5 pm/V [227]. The reason for low value of d33 might be 

the orientation of the domains in BT, which is explained  by caring out systematic 

measurements on thin films by PFM [392]. 

Local piezoelectric hysteresis measurements were recorded to demonstrate the 

ferroelectric behaviour of the tubes. Figure 6-24 (a) and (b) depicts the hysteresis phase loop 

and amplitude response from the SDSMWCNTs-BT, respectively. The hysteresis phase and 

amplitude loops were acquired by scanning with dc bias ± 50 V. A square hysteresis phase loop 

and butterfly amplitude loop were observed, this indicate the tubes are ferroelectric in nature. 

The self-polarization of the SDSMWCNTs-BT is clearly indicated by the shift of phase 

hysteresis loop along the positive side of the applied bias. The PFM studies on tubes established 

that SDSMWCNTs-BT indicates they are ferroelectric in nature.  

6.4 Conclusions  

The present studies demonstrate an low cost methodology of coating covalent 

functionalized MWCNTs with BT using a sol-gel hybrid hydrothermal method and succinctly 

illustrates the ineffectiveness of conventional hydrothermal synthesis due the formation of 

BaCO3. The MWCNTs-BT are ferroelectric and exhibit an electromechanical response (15 

pm/V). However, the covering of MWCNTs is local and non-uniform what might be related to 

the covalent functionalization of MWCNTs.  

Further studies on non-covalent functionalized MWCNTs demonstrated a more 

conformal covering of SDSMWCNTs with BT using sol gel hybrid hydrothermal method. 

HRTEM showed that SDSMWCNTs-BT have diameters ranging from 20 to 200 nm. The local 

PFM response proves that MWCNTs-BT tubes are ferroelectric and piezoelectric with d33 of 

2 pm/V. 

This strategy can also be extended to the other compounds for materials with high 

crystallisation temperatures. The formation of nano composites of BT on MWCNTs is a 

significant step forward in the development of 3D memory cells. 
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Chapter 7 
7 Multiwall carbon nanotubes – Bismuth ferrite oxide (BFO)  
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Abstract:  

This chapter demonstrates the fabrication of MWCNTs- BiFeO3 (BFO) structures. 

MWCNTs-BFO structures were obtained by two approaches: chemical solution 

deposition method (sol gel) and physical method (sputtering). In the first approach 

MWCNTs were used to fabricate 1D structures of MWCNTs-BFO from a sol gel solution 

of BFO. It was found that MWCNTs provides the critical role in the fabrication of 

monophasic BFO by curbing the formation of secondary phase (Bi2O3). TEM 

observations clearly illustrate that opening and semi filling of MWCNTs with BFO 

precursor occurs during the processing of MWCNTs-BFO. Through the annealing 

process of MWCNTs-BFO to obtained crystalline BFO the MWCNTs were completely 

oxidized and 1D BFO monophasic nano rod like structures were formed. The BFO nano 

rod like structures, mimicking the morphology of the MWCNTs, have crystallites with 

an aspect ratio of 1:3 or above, and diameters in the range of ~20 - 50 nm. BFO nano rod 

like structures depicted a weak ferromagnetic loop with coercive field of 956 Oe at 5 K.  

In the second approach, Vertically Aligned MWCNTs (VA-MWCNTs) as bottom 

electrodes for microelectronics were used. As a proof of concept BFO films were 

fabricated by in-situ deposition on the surface of VA-MWCNTs by RF magnetron 

sputtering. In-situ deposition temperature of 400 ºC and deposition time up to 2 h was 

used, BFO films cover the VA-MWCNTs and no damage occurs either in the film or VA-

MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric 

nature, domain structure and switching of these conformal BFO films were verified by 

piezo force microscopy. G type antiferromagnetic ordering with weak ferromagnetic 

ordering loop was proved for BFO films on VA-MWCNTs, having a coercive field of 

700 Oe. 
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7.1 Introduction 

Recently special attention has been paid to materials, designated as multiferroics 

that possess two or more ferroic properties, as ferroelectricity, ferroelasticity and 

ferromagnetism. The possibility of combining and controlling two different physical 

phenomena in a single material is indeed considered the epitome of functionality. 

Multiferrroics are because of that very promising from the technological pointy of view 

for modern electronics, as memory elements, sensors, and spintronics. Bismuth ferrite is 

one of the few single phase multiferroic materials. BFO has a rhombohedral distorted 

perovskite structure with space group of R3c and displays ferroelectricity below ~ 830 oC 

and antiferromagnetism below 370 oC [163]. BFO has a very large intrinsic polarization 

(theoretically predicted to be as high as ~100 μC/cm2) [403] and room – temperature 

multiferroism. This predicted high switching polarization is indeed higher than the one of 

the most commercialised ferroelectric materials for memory applications (PZT based 

compositions). So besides the multiferroic properties and due to the large remanent 

polarization BFO is a promising material for applications in which polarization switching 

is required (as memory applications). Indeed BFO is the ferroelectric material of Fujitsu 

256 Mb FeRAMs [207]. However, high dielectric losses, leakage current and tendency to 

fatigue are the main hurdles to overcome for any kind of electronic applications. 

However, the practical application of BFO is hinder due to high leakage current attributed 

to the co-existence of Fe3+ and Fe2+ ions along with oxygen vacancies [404]. In addition 

the formation of secondary phases Bi2O3, Fe2O3, Bi2Fe4O9, and Bi25FeO39 [405] make it 

difficult to achieve significant superior multiferroic properties. 

The synthesis of monophasic BFO is difficult due to the particular kinetics and 

thermodynamic properties of Bi2O3 – Fe2O3 system. Using solid state reaction methods 

is extremely hard to obtained pure BFO. Various modified synthesis approaches has been 

used to obtained monophasic BFO such as microwave sintering [406], liquid sintering 

[404], plasma assisted sintering [407] and mechanochemical methods [408] as well as 

various chemical methods such as co-precipitation [409] and hydrothermal [410]. Some 

of these methodologies have found some success in achieving pure BFO but no definite 

reaction mechanism for obtaining pure BFO phase has been identified yet. In order to 

stabilize the perovskite structure and to lower the conductivity of BFO doping with 
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different elements has also been reported and revealing promising results [411]. 

Nevertheless, synthesis a stoichiometric BFO and understanding the reaction process is 

still a point of open discussion among researchers.  

Due to the technological importance of nano structured materials, efforts have 

been made to fabricate nano structures of BFO [412, 413]. Various chemical methods 

have been used to fabricate 1D BFO structures, broadly, distinguished as template and 

template free methods. Details on some of these methodologies have been given in 

Chapter 2 of this thesis. In template methods, a sacrificial template is usually Anodic 

Aluminum Oxide (AAO). These templates are filled with BFO solution followed by 

annealing (500 - 600 ºC) and removing of template carried out by chemical or by thermal 

etching to obtain 1D BFO structures [414]. However, BFO reacts with AAO template and 

forms secondary phases, which results in poor properties. 1D BFO structures have also 

been obtained by template free method using electrospinning, hydrothermal and 

combustion methods [415-417]. The use of BFO 1D nano structures have been also 

demonstrated for 3D memory cells by depositing BFO on ZnO nano rods by RF sputtering 

using LaNiO3 as a buffer layer at 450 ºC; these nano structures depict piezoelectric 

coefficient (d33) of 33 pmV-1 and a polarization of 133 µC/cm-2 [418]. CNTs with 

extraordinary electrical and mechanical properties make them a typical choice as a 

material for future microelectronic devices. The detailed literature review on CNTs for 

electronics and CNTs-FE composites is presented in Chapter 2. On a short note, CNTs 

are seen as possible alternative to the expensive indium tin oxide (ITO) substrates used 

in solar cells [419] or as channel material in FETs [11, 30]. More recently, vertical aligned 

MWCNTs were also coated with SrTiO3 (STO) by pulse laser deposition, in order to 

reduce the work function of CNTs so that electron field emission can be controlled for 

FET applications. Here the main purpose was the coverage of a carpet type layer of CNTs, 

instead of individual CNTs. However, the authors did not address synthesis and phase 

formation [30]. 

There are no studies on the fabrication of MWCNTs -BFO heterostructures or the 

use of MWCNTs as templates to fabricate BFO nano structures using chemical or 

physical methods. Therefore, we studied the use of chemical solution method and 

physical method to fabricate MWCNTs-BFO nano structures by sol gel and RF 
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sputtering, respectively. A comprehensive study on the phase formation, interface, 

electrical and magnetic properties is addressed in this chapter.  

7.2 Experimental 

Approach one: sol gel method to cover covalent functionalized MWCNTs 

Prior to the fabrication of MWCNTs-BFO structures a sol gel solution of BFO 

was prepared. 0.2 M BFO solution was obtained by mixing at room temperature in the 

stoichiometric proportions (1:1) bismuth(III) nitrate (BiNO3.5H2O, ≥ 98 %, Sigma 

Aldrich) and iron(III) nitrate (Fe(NO3)3.9H2O, ≥ 98 %, Sigma Aldrich). Each precursor 

was dissolved in deionised water (5 ml each) before mixing to get a transparent BFO 

solution. Later, nitric acid (65 %, Panreac) as a solvent and citric acid (≥ 99.5 %, Merck) 

as a chelating agent were added to the BFO solution in the molar ratio of 20:5. At this 

stage the solution was light yellow in colour. This solution was mixed at 70 oC with 

vigorous stirring for 2 h before being used for the synthesis of 1D BFO. Covalent 

functionalized MWCNTs were used in this work (details about the MWCNTs are 

presented in Chapter 3). 

MWCNTs-BFO powders were obtained by uniformly dispersing 10 mg of 

MWCNTs in 10 ml of BFO solution by ultra-sonication for 2 h (Branson, USA, 40 kHz) 

resulting in a dense black solution. The solution was refluxed at 100 oC for 2 h, during 

this process NO2 was evaporated, and the total volume of solution reduced. The solution 

was further heat treated in the oven (150 ºC for 2 h) to get dried powders of MWCNTs-

BFO. The obtained amorphous powders of MWCNTs-BFO were annealed at various 

temperatures, from 300 up to 550 oC and time period of 2 h to obtained crystalline nano 

structures of MWCNTs-BFO. BFO solution (without CNTs) was also used to obtain BFO 

powders for comparison purposes. Figure 7-1 illustrates the steps to produce MWCNTs-

BFO and BFO powders from sol gel solution.  
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Figure 7-1Flow chart illustrates the steps followed to synthesised MWCNTs-BFO and 

BFO powders. 

Approach two: covering Vertically Aligned (VA)-MWCNTs with BFO by 

sputtering 

Bismuth(III) oxide (Bi2O3, Riedel-deHaën, 99.5 %) and iron(III) oxide (Fe2O3, 

Merck 99 %), powders were used as precursors for the synthesis of BiFeO3 targets. The 

powders were mixed according to the BFO stoichiometry in a ball miller for 24 h using 

ethanol as media. The mixed powders were dried in an oven at 100 oC for 24 h followed 
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by a calcination step at 720 oC for 3 h. The BFO calcined powders were then ball milled 

for 5 h to obtain a finer particle size distribution. Next, these powders were uniaxially 

pressed in a 2 inch diameter die with an applied pressure of 1-5 MPa and finally heat 

treated at 800 ºC for 4 h to obtain a dense ceramic target for sputtering. Figure 7-2 

indicates the steps to fabricate BFO ceramic targets.  

 

Figure 7-2 Flow chart of the steps to obtained BFO targets. 

VA-MWCNTs grown on Si substrates with diameter and length of 5-20 nm and 

1-2 mm, respectively, were used as substrates (CVD Materials Corporation, USA) (details 

are presented in chapter 3 and 4). BFO deposition was carried out in a RF sputtering unit 

(CRIOLAB - Equipamento Criogénico e de Laboratório Lda) at different temperatures 

and exposure times in an atmosphere of argon / oxygen with a flow rate of 15 and 5 sccm, 

respectively, and a working pressure of 7x10-4 Torr. The deposition was carried out at 60 

W and working distance of 100 mm. 
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MWCNTs-BFO structures were characterized by differential thermal and thermo 

gravimetric analysis (DTA/TG) using SETARAM Labsys TG-DTA12 system. For the 

DTA/TG analysis alumina crucibles were used, and the measurements carried out up to 

500 ºC with a heating rate of 5 ºC/min. In-situ X-Ray diffraction measurements as a 

function of the temperature were performed using Panalytical X’pert-Pro powder 

diffractometer. The diffraction patterns were acquired from 10 ° to 60 ° (2θ) with a step 

length of 0.02o. A platinum substrate was used for in-situ studies, which were carried out 

up to 550 ºC in air with an heating rate of 5 oC/min. Ex-situ XRD (Rigaku, Geigerflex 

D/Max-C, Cu Kα) was used to characterize MWCNTs-BFO and VA-MWCNTs-BFO 

fabricated at different temperatures. MWCNTs-BFO and VA-MWCNTs-BFO were 

characterized by Raman in a HR 800, Jobin Yvon spectrometer, using the excitation lines 

of 532 nm. Scanning electron microscope ((SEM), Hitachi S4100), Transmission electron 

microscope ((TEM), Hitachi H9000-NA) and High Resolution TEM ((HRTEM), JEOL 

2200) were used to study the morphology of the nano structures obtained by sol gel 

method and sputtering. The power samples of MWCNTs-BFO and VA-MWCNTs-BFO 

were dispersed in chloroform and transfer to Cu grids for TEM analysis. The dielectric 

response of VAMWCNTs-BFO were measured using a precision LCR (inductor 

capacitor resistor) meter (Model HP4284A) connected to a PC via a GPIB card and 

working in the frequency range from 1 kHz to 1 MHz. P-V loops were measured in a 

ferroelectric test system (aixACCT, TF ANALYZER 1000 Measurement System). 

Topography analysis and local piezoelectric response was measured using a MFP-3D 

Asylum Research Atomic Force Microscope, equipped with Zurich Instruments (HF2LI) 

external lock-in amplifier and a Tektronix (AGF320) function generator for BFO 

deposited on VAMWCNTs. Magnetic measurements were carried out on crystalline BFO 

1D structures and VAMWCNTs-BFO using vibrating sample magnetometer (Cryogenic 

VSM). Magnetic hysteresis loops were measured at room temperature as well as 5 K in 

the field of 10 T for MWCNTs-BFO. 
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7.3 Results and Discussion 

7.3.1 Approach one: MWCNTs-BFO fabricated by sol gel method 

DTA/TG analysis of amorphous powders of BFO and MWCNTs-BFO are 

presented in Figure 7-3. DTA curves depict one endothermic peak followed by three 

exothermic ones for BFO and MWCNTs-BFO in the temperature range 100 to 350 oC, 

respectively (Figure 7-3). The endothermic and exothermic peaks in between 100 to 175 

oC correspond to the evaporation of water and solvent for both powders. The total weight 

loss is ~6 % as from the TG analysis (marked as region I) (Figure 7-3). The next two 

exothermic peaks for BFO and MWCNTs-BFO at 230 oC and 330 oC are associated with 

the decomposition of organics used in the preparation. The weight loss in the range of 

175 oC and 350 oC is around ~32 % for BFO and MWCNTs-BFO (region II and III). The 

DTA depicts two exothermic peaks for BFO and three exothermic peaks for MWCNTs-

BFO in the region of 350 to 500 oC, respectively, highlighted and magnified view is 

illustrated as an inset in Figure 7-3 (a). In-situ XRD with temperature was performed on 

MWCNTs-BFO (Figure 7-3 (b)) and BFO (Figure 7-3 (c)) powders under the same 

conditions as in DTA/TG, to identify the phase formation. According to the in-situ XRD, 

BFO phase appears at 450 ºC for both powders and the crystallinity of the phase improved 

further with the temperature (matched with JCPDS 20 - 0169). By comparing the phase 

formation results obtained from in-situ XRD with DTA for MWCNTs-BFO and BFO it 

is clear that the exothermic peak that starts at 438 oC and continues up to 450 oC 

corresponds to the formation of the BFO phase. TG curve depicts small weight loss less 

than 1 % for BFO and around 2-3 % for MWCNTs-BFO curve in the range from 425 and 

500 ºC, which might be due to the evaporation of some residual solvents; and in the case 

of MWCNTs-BFO the additional weight loss may correspond to the oxidation of 

MWCNTs. The oxidation of MWCNTs has been studied for the tubes used in the present 

studies, according to which MWCNTs start to oxidized at 420 ºC in air (Chapter 4). There 

are few exothermic peaks before and after the BFO exothermic peak (438 ºC) for BFO 

and MWCNTs-BFO (Figure 7-3 (a)). These peaks may correspond to the formation of 

intermediate and/or secondary phases. Unfortunately the XRD peaks corresponding to 

secondary and intermediate phases were not observed in the in-situ XRD investigation. 
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(a) 

(b) 
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Figure 7-3 (a) DTA/TG analysis of BFO and MWCNTs-BFO powders, (b) in-situ XRD of 

MWCNTs-BFO and (c) BFO with heating rate of 5 ºC/min. DTA and in-situ XRD results 

confirms the BFO formation at 450 ºC.  

Further, BFO and MWCNTs-BFO were studied by ex-situ XRD as a function of 

annealing temperature and time of 2 h (Figure 7-4). The XRD analysis illustrate that 

rombohedral BFO with R3c space group was formed at 350 ºC for BFO and MWCNTs-

BFO, where diffraction peaks corresponds to the JCPDS 20 - 0169. BFO and MWCNTs-

BFO annealed at 350 ºC depicts the presence of intermediate phases Bi2O3 and α FeO. 

However, the amount of Bi2O3 is small for MWCNTs-BFO heat treated at 350 ºC for 2 h 

in comparison with BFO prepared under the same conditions. With the further increase 

in annealing temperature to 420 ºC almost monophasic BFO was obtained for MWCNTs-

BFO. Whereas, for BFO the intensity of the Bi2O3 peak has increased with annealing 

temperature from 350 to 420 ºC. Further increase in annealing temperature (500 ºC) for 

BFO depicts the formation of additional bismuth rich secondary phase Bi25FeO39. The 

formation of secondary phase with increasing annealing temperature has been reported in 

different studies, as referred in the introduction.  

(c) 
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Figure 7-4 Ex-situ XRD pattern for BFO and MWCNTs-BFO powders annealed at 350 

and 420 ºC for 2 h. Monophasic BFO was obtained for MWCNTs-BFO after annealing 

at 420 ºC for 2 h. BFO annealed at 500 oC depicts the bismuth rich phase Bi25FeO39, 

where-as the BFO and MWCNTs-BFO depicts the Bi2O3 and FeO as secondary phase. 

The presence of MWCNTs reduce the oxygen pressure due to the oxidation of MWCNTs 

at annealing temperature of 420 oC hence curb the formation of Bi2O3 phase.  

The ex-situ XRD answered some of the questions raised from DTA analysis on 

the unidentified exothermic peaks. The ex-situ XRD confirms that the exothermic peak, 

between 400 and 425 ºC, observed before the BFO formation might correspond to the 

formation of Bi2O3 (intermediate phase), and the same is true for MWCNTs-BFO. It is 

known from reported studies that a reducing oxygen pressure plays an important role on 

restricting the formation of Bi2O3 during the fabrication of BFO [420]. In the present 

investigation monophasic BFO phase was obtained for MWCNTs-BFO with the 

annealing temperature of 420 ºC for 2 h. This might be due to the oxidation of CNTs, 

which create a reducing atmosphere and results in the lack of oxygen for the formation of 
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Bi2O3 phase. On the contrary, MWCNTs-BFO anneal at 350 ºC depicts Bi2O3; this 

annealing temperature is below the oxidation temperature of MWCNTs, resulting in the 

formation of Bi2O3.  

DTA of MWCNTs-BFO presents an additional exothermic peak between 350 and 

400 oC, which corresponds to the oxidation of MWCNTs. In our previous work on the 

thermal stability of MWCNTs, it was observed that MWCNTs start to oxidize at 420 ºC 

in air. However, the presence of impurities can lower the oxidation temperature of 

MWCNTs [421], moreover during the refluxing of MWCNTs in the nitric solution, the 

tubes were severely damaged as observed in the TEM. This might also account for the 

early oxidation of CNTs. The decrease in oxidation temperature for MWCNTs treated in 

nitric acid for different time interval has also been reported recently [422]. This result 

corroborates our observation that the exothermic peak between 350 and 400 ºC 

corresponds to the oxidation of MWCNTs; therefore no carbon nanotubes remain after 

the annealing of MWCNTs-BFO at 420 oC for 2 h. 

Raman spectroscopy is an important tool for the characterization of CNTs. The 

Raman spectra of CNTs usually exhibits three characteristic bands for MWCNTs. The 

tangential stretching of carbon atoms results in G band (1500 -1600 cm-1), that is a 

characteristic feature of the graphitic layers. The second and third characteristic bands are 

from defective graphitic structures, named as D mode (~1330 cm-1) and D´ band (1610 

cm-1) [423]. In the present work, the Raman spectra for MWCNTs and MWCNTs-BFO 

(before annealing) were studied (Figure 7-5). All the characteristic bands of MWCNTs 

(G, D and D´ band) are marked in the spectra. MWCNTs and MWCNTs-BFO (before 

annealing) depict all the three characteristic peaks as mentioned above. There is no 

significant Raman peak shift for MWCNTs after being covered with BFO. However, the 

intensity of both D and G band is reduced for MWCNTs-BFO in comparison to 

MWCNTs, due to the less number of photons that interacts with the C-C skeleton of 

MWCNTs. The MWCNTs-BFO annealed at 420 ºC for 2 h does not depict the 

characteristic peaks for MWCNTs. 
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Figure 7-5 Raman spectra for functionalized MWCNTs and MWCNTs-BFO (before 

annealing). After the deposition of BFO solution on MWCNTs the intensity of the 

characteristic CNTs peaks were reduced and no peak shift was observed.  

MWCNTs-BFO before and after heat treatment were characterized by electron 

microscopy. BiFeO3 amorphous particles are present on the surface as well as inside the 

tubes, as depicted in Figure 7-6 (a). Magnified HRTEM micrograph from one of the tubes 

illustrates the presence of amorphous BFO particles along the walls, as well as inside the 

tubes, marked by arrows in Figure 7-6 (b). The inset in Figure 7-6 (b) depicts the 

magnified view of MWCNTs tip; tips were oxidized what might have occurred during 

the refluxing in nitric suspension at 100 ºC, permitting the partially filling of MWCNTs 

with BFO solution.  

The process of opening and filling of MWCNTs is possible by two approaches; 

wet chemical and physical methods. In the wet-chemistry approach the cap of CNTs can 

be removed by refluxing in nitric basic suspensions of the metal oxide and simultaneous 

filling of metal salts took place what is highly depended on the wetting capabilities. The 

opening of CNTs with nitric acid was first demonstrated by Tsang et al [118] that used 

this approach to fill in the tubes with various metals from their respective nitrate 
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precursors. The use of nitric solution results in the removal of the MWCNTs cap due to 

its weak sp3 hybridization in comparison to strong sp2 hybridization of the walls. The 

second approach, the physical method is a two-step process; in the first step the cap of 

CNTs is removed by thermal oxidation and in the second one, CNTs without caps are 

immersed inside the metal solution, resulting in the filling [424]. In both methods the 

filling of tubes occurred through capillary forces. Ugarta et al have demonstrated that 

liquids with lower surface tension (< 190 mN/m) are effective for filling and wetting the 

nanotubes, being nitrates salts among them [120]. 

In the present work, the oxidation of CNTs cap and partial filling of MWCNTs 

occurred due to refluxing of nitric acid followed by the filling and wetting of MWCNTs, 

in a single step. 1D structures formed after annealing at 420 oC are illustrated in Figure 

7-6 (c,d). SEM micrograph depicts the 1D structure of MWCNTs-BFO having a diameter 

in the range of 10 – 100 nm but the morphology of the tubes is not uniform. TEM studies 

confirm the formation of 1D BFO structure and crystalline BFO attached together to form 

1D morphology. The tip of the 1D MWCNTs-BFO structure is irregular and widen; this 

is due to the presence of excess amount of precursor at the open end of the tubes, resulting 

in the formation of irregular “mouth”. From SEM and TEM micrographs it looks like that 

the 1D structure is formed due to attachments of nano size crystals. These crystals were 

further analysed under HRTEM. 

 

  

(b) (a) 
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Figure 7-6 TEM micrographs of MWCNTs-BFO before annealing: (a) MWCNTs coated 

with BFO solution, (b) a detail of a MWCNT coated with BiFeO3 solution showing 

amorphous particles deposited on the walls and inside the tubes; inset illustrates the 

magnified view of MWCNT where the CNTs lattice along the cap has been oxidized. 

MWCNTs-BFO after annealing at 420 ºC for 2 h: (c) SEM micrograph illustrate the nano 

structure of BFO and (d) TEM micrograph represents the BFO nano structures with non-

uniform thickness all along the structures. 

HRTEM micrographs of 1D MWCNTs-BFO annealed at 420 oC depict the 

presence of various crystalline 1D particles with aspect ratio of 1:3 and above. The 

interplanar spacing is around 0.28 nm (presented in inset of Figure 7-7 (a)), which 

corresponds to (012) crystalline plane of BFO. Figure 7-7 (b) depicts the magnified view 

from one of the crystalline particles; the particle imitates the morphology of CNTs. The 

CNTs lattices were not observed during the HRTEM investigation of MWCNTs-BFO. 

This corroborates the findings of Raman and supports our discussion on the role of 

MWCNTs oxidation on the formation of monophasic BFO. From the morphology of 

crystalline BFO it can be concluded that MWCNTs acted as a template for the fabrication 

of 1D BFO. Chemical composition of MWCNTs-BFO investigated by energy dispersive 

X-Ray spectroscopy (EDS) spectra (inset in Figure 7-7 (b)) confirms the presence of 

bismuth and iron elements in the composite; the additional peaks such as Cu are from the 

TEM grid. 

(d) (c) 
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Figure 7-7 HRTEM micrograph of MWCNTs-BFO annealed at 420 oC for 2 h (a) depicts 

crystalline particles with aspect ratio of 1:3 and above; the inset illustrates the lattice 

spacing of this crystalline particle as 0.28 nm (b) magnified view from the BFO nano 

structure depicts 1D crystallites and inset illustrate EDS spectra confirm the presence of 

bismuth and iron elements.  MWCNTs were completely oxidized as no MWCNTs found 

under HRTEM and the crystallites of BFO clearly illustrates the morphology of nano 

rods, formed due to the template of the MWCNTs.  

(a) 

(b) 
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Figure 7-8 gives the relationship between magnetization and magnetic field for 

MWCNTs-BFO at 300 K and 5 K. MWCNTs-BFO at room temperature with 

magnetization at 10 K Oe field is nearly 0.9 emu/g and 2Hc of 514 Oe, as illustrated in 

inset of Figure 7-8. The unsaturated hysteresis loop from MWCNTs-BFO with weak 

ferromagnetic behaviour is similar to one reported for BFO wires [425], different from 

the bulk BFO. The average diameter of the BFO wires is around 30 nm, which is lower 

than the wavelength (62 nm) of the in commensurate spiral spin structure. The BFO 

particles with size less than 62 nm possess weak ferromagnetic properties due to size 

confinement effect where the antiferromagnetic order is frequently interrupted at the 

particle surface. These confinements partially destroy the spiral spin structure and results 

in the weak ferromagnetic ordering.  

At low temperature (5 K) the size effect is more significant, from the broadening 

of the M-H curve and increase in magnetization values from 0.9 emu/g (300 K) to 2.2 

emu/g, as well as cohesive field (2Hc) from 514 Oe to 956 Oe, respectively. The increase 

of magnetization values at low temperature is the result from the cycloid structure which 

is more an harmonic at lower temperature and its detrimental effect on the magnetic 

ordering is diminished [426]. Therefore, in the MWCNTs-BFO nanowires, the spin 

relaxation from the spatially modulated anti ferromagnetic configuration can be quite 

significant, resulting in weak ferromagnetic behaviours and enhanced M at low 

temperature. 

 

Figure 7-8 Magnetic M-H hysteresis loops of MWCNTs-BFO at 300 and 5 K, where the 

inset gives a magnified view of the loop near the origin. The MWCNTs-BFO depicts 

magnetization values of 2.2 emu/g and coercive field (2Hc) of 956 Oe at 5 K. 
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7.3.2 Approach two: Covering VA-MWCNTs with BFO 

XRD patterns of BFO targets and films deposited on VA-MWCNTs synthesised 

in-situ at 400 oC and 600 oC are illustrated in Figure 7-9 (a). The BFO target depicts 

almost pure BFO rhombohedral phase with minor amounts of secondary phases 

(Bi2Fe4O9, Bi25FeO40). The diffraction peaks from the planes (012), (104), (110), (113), 

(006), (202) and (211) are indexed to the R3c crystal symmetry. At 350 ºC the deposited 

BFO is amorphous as seen by XRD. BFO deposited on VA-MWCNTs at 400 ºC for 1 

and 2 h is almost monophasic, with trace amounts of Bi2O3 (Figure 7-9 (a)). To note that 

Bi2O3 does not have significant effect on the magnetic properties, while increasing the 

conductivity of the film [427]. Moreover, its amount can be reduced by changing the 

oxygen partial pressure [420]. As the growth temperature increases from 400 ºC to 600 

ºC, formation of the non-perovskite phase Bi2Fe4O9 takes place (Figure 7-9 (a)). Indeed 

there is a very narrow temperature window in which pure monophasic BFO can be 

obtained, depending on the processing parameters [428] and purity of the reagents [429]. 

Secondary phases such as Bi2Fe4O9 and Bi25FeO40 reduce significantly the electrical 

response, therefore they should be avoided. In addition, BFO sputtered on VA-MWCNTs 

at room temperature and later annealed at 500 ºC (ex-situ) in air and in flowing nitrogen 

depicts Bi2O3 as the major phase with small amounts of BFO and Bi2Fe4O9, as observed 

by XRD (Figure 7-9 (b)). Considering the above, BFO films deposited at 400 ºC on VA-

MWCNTs were used for further characterization.  

 

(a) 
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Figure 7-9 XRD pattern of BFO target and BFO films on VA-MWCNTs fabricated in-situ 

at 400 oC - 1 h, 400 oC - 2 h and 600 oC - 1 h. With the increase in deposition temperature 

to 600 ºC secondary phases are well visible and (b) XRD of BFO deposited on VA-

MWCNTs followed by annealing at 500 ºC – 2 h in air shows poor crystallization and 

domination of secondary phases. 

The optical micrographs of VA-MWCNTs and BFO on VA-MWCNTs are 

represented in Figure 7-10 (a,b). The complete covering of VA-MWCNTs by the 

brownish layer of BFO can be seen. In order to check the microscopic morphology the 

films fabricated at 400 ºC with varying time were investigated by SEM (Figure 7-11). 

SEM micrographs of BFO on VA-MWCNTs deposited at 400 oC for 1 and 2 h depict 

uniform coverage on the aligned tubes with rough topography. However, as the deposition 

time increases (above 2 h) films become porous what may result from the partial or local 

oxidation of MWCNTs, due to isothermal heating at ~400 oC for prolonged periods of 

time. Indeed isothermal heating near 400 ºC in air results in the oxidation of MWCNTs 

as reported before (Chapter 4). 

(b) 
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Figure 7-10 Optical images of (a) dense VA-MWCNTs on Si substrate and (b) BFO 

sputtered on the surface of VA-MWCNTs, deposited at 400 ºC for 2 h.  The optical 

micrographs depict a uniform coverage of VA-MWCNTs with BFO. 

  

 

Figure 7-11 Top view SEM micrographs of BFO on VA-MWCNTs deposited at 400 oC 

for (a) 1 h (b), 2 h and (c) 4 h. Dense BFO films on VA-MWCNTs are obtained at 400 oC 

with a deposition time of 2 h.  

(a) (b) 

(c) 

(a) (b) 
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VA-MWCNTs (400 ºC - 2 h) covered with BFO were removed from the substrate 

and observed under HRTEM (Figure 7-12). There is a uniform covering of VA-

MWCNTs with BFO films with average thickness of 150 nm. Detailed observation of 

VA-MWCNTs coated with BFO revealed tubes coverage thickness of about 5 - 10 nm in 

size (Figure 7-12 (a-b)). The inset (marked by a circle in Figure 7-12 (b)) depicts VA-

MWCNTs lattices with spacing of 0.34 nm and also intact carbon nanotubes; no visual 

damage after deposition of BFO can be seen from HRTEM (Figure 7-12 (c) TEM 

micrograph of as received VA-MWCNTs). BFO crystalline particles with lattice spacing 

of 0.27 nm from d110 plan are also specified in the micrograph. 

   

   

Figure 7-12 HRTEM micrographs of BFO on MWCNTs deposited at 400 oC for 2 h (a). 

Magnified view of one of the tubes with a 5 nm BFO thick layer (b). A d spacing of 0.34 

nm and 0.27 nm was measured for MWCNTs and BFO, respectively (c) HRTEM 

micrograph of as received VA-MWCNTs, with well-defined carbon walls and covered 

with some amorphous carbon layer and (d). EDS confirms the presence of Bi and Fe. 

EDS analysis on coated VA-MWCNTs identifies Bi, Fe and O elements (Figure 

7-12 (d)) and the elemental mapping proves the uniform distribution of Bi, Fe and O 

(a) 

(c) 

(b) 

(d) 
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throughout the BFO layer (FFigure 7-13). Under the current experimental settings the 

best conditions for the fabrication of BFO by in-situ RF sputtering on VA-MWCNTs are 

400 ºC with deposition time varying between 1 and 2 h for which there is no damage of 

the morphology of BFO films and MWCNTs.  

   

Figure 7-13 SEM elemental maps of MWCNTs coated with BFO at 400 ºC for 2 h (a): 

bismuth (b) and iron (c) showing a uniform distribution of elements. 

BFO films on VA-MWCNTs were further characterized by Raman spectroscopy 

(Figure 7-14 (a)). VA-MWCNTs used in this work depict two characteristic peaks at 1336 

and 1575 cm-1 corresponding to D and G band respectively, where the D band is attributed 

to the breathing vibration of aromatic rings of carbon in the lattice, indicating that the 

defect level of CNTs and G band corresponds to E2g mode where atoms of the carbon 

unit cell vibrate tangentially to each other [34]. After the BFO deposition the D and G 

band of MWCNTs shift to high frequency by ~2 cm-1 and the full width half maximum 

of the peaks also decreases due to less phonons interaction [29]. The shift in Raman peaks 

gives the information of the stress level of the MWCNTs [430]. In our case, because the 

observed shift is small it indicates that the stress level developed at the interface is not so 

strong, as the one observed for example for MWCNTs covered with PZT by pulse laser 

deposition [28]. 

The change in the intensity ratio of D and G bands (Id/Ig) is 1.0 and 1.2 for the 

MWCNTs and BFO coated VA-MWCNTs in this study, respectively. The increase in the 

intensity ratio after BFO deposition, may state that the BFO layer constrain the vibration 

motion of carbon lattice and results in the increase of D band intensity; other possible 

reason for this shift can be related with the loss of structure, the conversion of significant 

(c) (b) (a) 
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number of sp2 hybridized carbon to sp3 carbon hybridization during deposition of BFO 

[431]. From the Raman results one can also conclude that MWCNTs do not deteriorate 

significantly during the in-situ growth of BFO films at 400 oC corroborating the previous 

observations. 

The group theory predicts 13 Raman active modes 4A1 + 9E for rhombohedral 

lattice type with R3c space group, as is the case of BFO. Fukumura et al. [432] found all 

the 13 Raman active mode for BFO cubic single crystals [111] at 4 K (A1 147, 176, 227, 

490 cm-1 and E 265, 279, 351, 375, 437, 473, 525, 77, 136 cm-1). In the present studies of 

BFO films on VA-MWCNTs, very weak Raman modes were observed at 121, 245, 458 

and 612 cm-1, where 121, 245 and 458 cm-1 peaks are from A1 mode, 245 and 612 cm-1 

are from E mode (Figure 7-14 (b)). The Raman modes observed for BFO on VA-

MWCNTs shift towards lower frequency when compared with the Raman mode observed 

for bulk BFO [433]. As well known in thin films soft modes are very sensitive to strain 

and nano structuring and generally it results in the shifting of Raman peaks; the shift 

upwards in the frequency results from compressive stresses while tensile stresses cause 

downwards shifts [434]. Therefore, the shift of Raman peaks to lower frequency, as here 

observed, indicates that BFO films on MWCNTs are in tensile state. 

 

(a) 
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Figure 7-14 Raman spectra of VA-MWCNTs and BFO on VA-MWCNTs (a); comparison 

of characteristic peaks of MWCNTs and BFO (b). The shift in Raman peaks states that 

the CNTs and BFO on top of CNTs are under stress.  

The capacitance, losses and P-V loops were measured on BFO - MWCNTs 

composites and are depicted in Figure 7-15 (a, b). BFO-MWCNTs composites show 

capacitance of 9 pF and dielectric losses ~0.02 at 1 MHz, for an applied voltage of 0.1 V. 

Lossy P-V loops were observed with polarization values around 1.5 - 2 µC/cm2 at 50 and 

100 Hz, respectively. Indeed two main limitations of BFO (bulk, films and nanostructures 

in general) are the high dielectric losses and low resistivity. It is now well recognised that 

the lossy polarization behaviour of BFO is mainly intrinsic and extrinsic, i.e. created by 

space charge, defects, cationic and anionic vacancies, etc. The existence of oxygen 

vacancies has been related to the reduction of Fe3+ species to Fe2+ [Bi(Fe2+Fe3+)]O3-d and 

Bi deficiency (Bi1–xFeO3–d) due to the high volatility of Bi [435-438]. In the present case 

the synthesis of BFO carried out in reduced oxygen pressure might have contributed to 

the oxygen vacancies [439] and in addition the CNTs and BFO interface and topography 

might have contributed to conducting BFO. Because lossy hysteresis loops may hinder 

the ferroelectric behaviour, therefore domain switching and local electrical polarization 

were studied by PFM.  

(b) 
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Figure 7-15 Hysterisis loop (a) and dielectric permitivity and looses as a function of 

frequency (800 Hz to 1 MHz) (b) for BFO films on VA-MWCNTs sputtered at 400 oC for 

2 h. 

Topography and PFM phase response of BFO films (on top of VA-MWCNTs) 

were simultaneously acquired with the application of 5 V at 30 kHz between the tip and 

the ground electrode (MWCNTs) (Figure 7-16 (a, b)). The rms roughness of the BFO on 

VA-MWCNTs is 25 nm for 2 x 2 µm2 scan area; this is due to non-uniform surface of 

VA- MWCNTs. No well-defined grain boundaries can be seen from the topography 

micrograph for BFO. Nevertheless, the line profile from topography image and 

piezoresponse depicts most of the response are consisting of mono domains (Figure 7-16 

(c)). The piezoresponse image is characterized by strong domain contrast: deep bright and 

dark areas indicate significant out of plane components of polarization. There is a small 

fraction of regions with poor contrast likely corresponding to domains with polarization 

directed parallel to the surface. The piezohistogram acquired from the piezoresponse 

micrograph depicts the bi-modal distribution of the domains for BFO on VA-MWCNTs 

(Figure 7-16 (c)). The deconvolution of the piezohistogram into two peaks was done to 

emphasise the covered area with positive and negative domains. The out of plan phase 

response centre is 32o for the positive phase and ~- 42o for negative domains (Figure 7-16 

(b)). From the fitting peaks and area under them it is clearly suggested that most of the 

domains are oriented along the applied field. There is a very small area, which is not 

covered by the two fitting peaks and is representing the number of domains, which do not 

show out of plane response.  

(b) (a) 
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Figure 7-16 Topography (a), out of plane piezoresponse (b) and line profile from 

topography and piezoresponse (c) from BFO films on VA-MWCNTs. The dark and bright 

contrast from domains of these BFO films is clearly visible (d) Phase piezohistogram of 

BFO on VA-MWCNTs. 

BFO on VA-MWCNTs was further characterized by point poling to investigate 

its ferroelectric behaviour. The point poling was performed on two areas, where domains 

are showing the dark contrast (marked by cross in Figure 7-17 (a)). The marked area on 

the left of the micrograph was poled by - 30 V and the marked area on the right of the 

micrograph was poled by + 30 V each for approximately 30 s. After poling both the areas, 

the piezoresponse was acquired with the application of 5 V depicted in Figure 7-17 (b) 

(poled area marked by cross). The piezoresponse from the area poled with -30 V, reveals 

no significant change in the contrast. However, the area poled with +30 V shows a change 

in the contrast of the area, which confirms the switching of domains with the application 

of DC bias. 

(a) 

(c) 

(b) 

(d) 
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The above poling results indicate that BFO domains can be switched with the 

application of an electric field. To further strengthen this claim of ferroelectric nature of 

the BFO on the surface of VA-MWCNTs switching spectroscopy PFM (Switching 

spectroscopy, SS-PFM) with frequency of 0.2 Hz and period of individual pulses of 0.5 

ms, was carried out. Figure 7-18 illustrates ferroelectric hysteresis loop and amplitude 

loop obtained with the application of ±30 V DC bias. A square PFM loop was obtained 

with coercive bias of ±10 V. In PFM the measurements are local and come from 

individual grains or adjacent grains, which reflects more or less single crystal properties. 

It was proved that BFO films on VA-MWCNTs in spite of the low synthesis temperature 

and lossy macroscopic polarization response exhibit local ferroelectric behaviour where 

switching of ferroelectric domains is possible under an applied field. 

 

  

Figure 7-17 Point poling was performed on the area marked by cross, with -30 V on left 

and +30 V on right: phase response (out of plane) before poling (a) and phase response 

(out of plane) after point poling for BFO films on VA-MWCNTs (b). 

(a) (b) 
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Figure 7-18 Phase hysteresis loop (a) and amplitude loop (b) from BFO films on VA-

MWCNTs acquired for 30 V. 

In order to confirm the magnetic nature of these BFO films, the magnetization 

was measured as the function of applied magnetic field (H) of -10000 Oe to 10000 Oe at 

300 K and given in  Figure 7-19. M-H hysteresis curves of BFO films on VA- MWCNTs 

at 400 oC for 2 h depict unsaturated hysteresis loops, indicating the R3c structure with 

antiferromagnetic nature, similar to the one observed for polycrystalline BFO bulk or 

single crystals [433]. However, a small coercivity (2Hc) of 700 Oe was observed for these 

(a) 

(b) 
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BFO films (represented as inset of  Figure 7-19). The weak ferromagnetic behaviour was 

also observed for nano particles and thin films of BFO as reported before [427, 440]. 

There are two possible explanations for the weak ferromagnetism in BFO films and nano 

particles: first, strain effects and oxygen vacancies associated with Fe+3 ions in BFO and 

second, size effects where below 62 nm size the uncompensated spins at the surface of 

the particle arise [441-443]. Indeed it is clear from the TEM micrographs of BFO films 

on VA-MWCNTs that the crystalline particles of BFO around the MWCNTs are smaller 

than 10-20 nm and the small shift in the Raman peak of MWCNTs after BFO deposition 

also indicates the existence of strains. Therefore, one can assumed that the weak 

ferromagnetic behaviour of BFO on VA-MWCNTs may be due to the combined effect of 

strain and size effects. Similar unsaturated weak ferroelectric loops were also reported for 

BFO nanotubes synthesised by chemical solution methods [414]. The shift in the 

hysteresis loops shown in inset of  Figure 7-19, can be ascribed to the presence of 

exchange coupling between the ferromagnetic surface and antiferromagnetic cores. The 

self-orientation of the magnetic domains during the synthesis can also be one of the 

reasons for the shift in the ferromagnetic loop from the origin. 

 

 Figure 7-19 Magnetic hysteresis of BFO on VA-MWCNTs at 300 K. BFO on VA-

MWCNTs depicts the weak ferromagnetic response with 2Hc = 700 Oe. 
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7.4 Conclusions 

Form the sol gel method (approach one) the 1D structures of BFO were 

successfully synthesised with average diameter of 30 nm and aspect ratio of 1:3 and 

above, at temperatures around 420 ºC. It was learned that reducing atmosphere provided 

by the oxidation of CNTs plays a crucial role in the formation of pure BFO, namely 

curbing the formation of the secondary phases. It was also found that the use of nitric acid 

solvent with metal nitrates is a very interesting way to fill the VA-MWCNTs with 

functional oxides, in a single step. However, keeping CNTs intact during annealing 

process is challenging especially for bismuth compounds. The use of VA-MWCNTs work 

as template and BFO crystalline obtained mimic the morphology of VA-MWCNTs, 

which is very interesting. The use of VA-MWCNTs to synthesised 1D structures can be 

useful in the development of materials with enhance magnetic properties.  

BFO films on VA-MWCNTs were successfully deposited by RF sputtering 

(approach two) at 400 oC without damaging the morphology of both the tubes and films. 

SEM and HRTEM studies prove the conformal covering of MWCNTs with BFO. These 

composite structures (BFO on VA-MWCNTs) present a lossy macroscopic hysteretic 

response with low polarization values of 1-2 pC/cm2. In spite of that locally at the 

nanometric scale domains can be reversed from one direction to another under the applied 

field. It is also clear from the M-H curve that BFO films on VA-MWCNTs are 

antiferromagnetic without any saturation. The small opening of the magnetization loop 

near zero indicates the presence of a weak ferromagnetic nature of these BFO films which 

might be due to size and/strain effects. The results here presented are a proof that BFO 

films on VA-MWCNTs can find potential applications in photovoltaics, memories and 

other microelectronic applications.  
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Conclusions 

 

The present work adds knowledge on the potential use of MWCNTs as bottom 

electrodes for different microelectronic applications as 3D FERAMs and/or templates to 

obtain 1D FE nano structures. In this work we demonstrate and proved the concept of the 

use of low cost, low temperature synthesis of chemical solution deposition (CSD) 

methods for covering MWCNTs. Due to the close proximity of the oxidation temperature 

of MWCNTs and the phase formation of FE oxides and due the requirement of an 

oxidizing atmosphere to get an oxide with proper ferroelectric response, this task is not 

trivial. Therefore, vital parameters such as thermal oxidation of MWCNTs in different 

atmospheres, FE oxide phase formation (in the presence of MWCNTs), interface 

development (FE and MWCNTs) and electrical properties of the prepared MWCNTs – 

FE nano structure have been experimentally investigated and based on these studies 

various mechanisms on the formation of MWCNTs - 1D structures were suggested. The 

current work, in which three different ferroelectric oxides, PZT, BT and BFO were 

studied, answers to many of the open questions and raises other challenges to be solved 

in the near future.  

The main conclusions of this work can be summarized as: 

The thermal stability of MWCNTs depends on size, purity and type of CNTs. 

Therefore, the thermal properties of the MWCNTs used in this work were investigated 

by DTA/TG, Raman and TEM. It was found that MWCNTs are stable up to ~400 oC and 

start degrading after the initial combustion of amorphous carbon. The oxidation or 

MWCNTs can be enhanced or delayed by changing the atmosphere conditions and/or 

heating rate. Oxygen atmosphere accelerates oxidation of MWCNTs that might occur at 

temperatures as low as 200 oC and argon atmosphere decelerates the oxidation process 

shifting the combustion to temperatures as high as 800 ºC. Under a reducing atmosphere 

with high heating rates MWCNTs are kept intact up to 1300 oC with negligible damage 

to CNTs morphology. These results are of the utmost importance for the in-situ 

crystallization of FE with MWCNTs or for the heat treatment of MWCNT-FE structures. 
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 The sol gel method was first investigated for covering the covalent functionalized 

MWCNTs with FE. A systematic study on the phase formation process by in-situ and ex-

situ XRD, DTA, FTIR and HRTEM was carried out. In these studies PZT was the chosen 

as the FE oxide. It was found that the perovksite PZT phase forms at 575 ºC for MWCNT-

PZT whereas for PZT (without MWCNTs) traces of pyrochlore are still identifiable at 

650 ºC. The decrease of temperature is accompanied by a decrease in activation energy 

for perovskite phase from 68±15 kJ/mol (for PZT) to 27±2 kJ/mol (for MWCNTs-PZT). 

for holding time of 1 h monophasic perovskite phase in MWCNTs-PZT can be obtained 

at 500 ºC. HRTEM studies confirm in-situ and ex-situ XRD and DTA/TG results on the 

early formation of perovskite PZT phase in presence of MWCNTs. We proposed that 

MWCNTs act as seeds to reduce the nucleation barrier of perovksite phase formation by 

providing low energy nucleation sites; in addition the exothermic local oxidation of 

MWCNTs that might occur in some parts of the tubes result in the increase in the local 

temperature that might promote the phase formation process. The piezoelectric nature of 

MWCNT/PZT synthesised at 500 ºC/1 h assessed by PFM proved the concept.  

For the case of the synthesis of MWCNTs with BT hydrothermal method was the 

selected one. In this case the challenge of compatibility with MWCNTs is even higher 

than in the previous case due to the fact that BT requires a considerably high synthesis 

temperature than PZT; and in addition, depending on the synthesis methodology, 

carbonates are formed that are very difficult to eliminate, usually demanding even higher 

post annealing temperatures (> 1000 ºC) what jeopardises totally the combination with 

CNTs. Two different hydrothermal strategies were used to cover MWCNTs with BT. In 

the first strategy the conventional method to synthesize BT at hydrothermal conditions 

was used, where titanium dioxide particles on MWCNTs act as template site to react with 

barium precursor to form BT on MWCNTs. By using this strategy we found that BT 

particles did not adhere to the CNTs walls during the synthesis process. This process also 

resulted in the formation of reasonable amounts of BaCO3. This lead to the second 

strategy. We used a sol gel hybrid hydrothermal method to cover MWCNTs with BT. In 

this case the formation of BaCO3 was significantly reduced, due the limited access of Ba 

ions (already entrapped between Ti amorphous networks) to the C skeleton. 100 nm 

structures of MWCNTs – BT structures were fabricated, but unfortunately the coverage 

of the tubes was not totally complete. The selective (or semi) covering with BT of the 
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MWCNTs was suggested to be due to the covalent functionalization, which results in the 

formation of carboxylic and hydroxyl groups on the defect sites of CNTs. Therefore this 

functionalization is very local and not uniform through-out the tubes. Local electrical 

measurements by PFM proved the ferroelectric nature of the MWCNTs-BT structures 

with an electromechanical behaviour of 15pm/V. From the above studies we proved that 

use of sol gel hybrid hydrothermal method is a suitable methodology to cover uniformly 

CNTs at low temperature. 

To maximise the coverage of MWCNTs with BT the non-covalent 

functionalization of MWCNTs was exploited, using in this case SDS. In non-covalent 

functionalization SDS molecules adsorbed uniformly on the surface of MWCNTs (in 

contrast to the selective adsorption verified in covalent functionalization) and results in 

large functionalized area. SDSMWCNTs-BT structures were obtained by sol gel hybrid 

method. It was found that the initial concentration of the BT precursor has a significant 

effect on the morphology of the tubes. Conformally covered SDSMWCNTs with BT 

having diameters in the range from 20 to 200 nm were obtained from a 0.01 M BT solution 

and at 250 ºC. HRTEM confirms that non covalent functionalization, in this case with 

SDS, plays a crucial role on the covering of MWCNTs. The local PFM response These 

MWCNTs-BT tubes are ferroelectric with a d33 piezoelectric coefficient of 2 pm/V. 

MWCNTs were used as templates to fabricate 1D BFO nano structures. It was 

observed by TEM that the use of nitric acid based solution of BFO results in the opening 

and filling of MWCNTs with BFO. However, during the crystallization process of BFO 

above 350 ºC, the MWCNTs oxidize. The decrease in the oxidation temperature for the 

MWCNTs was a result of the severe damage caused in the MWCNTs during the 

processing step. Monophasic BFO was obtained at 420 ºC/2 h for MWCNTs-BFO, 

whereas BFO (without CNTs) under the same heating conditions depicts the presence of 

secondary phases (Bi2O3). The oxidation of MWCNTs decelerates the formation of 

secondary phase due to the reducing of oxygen atmosphere. HRTEM of BFO crystallites 

obtained from MWCNTs-BFO shows BFO nano structures having the aspect ratio of 1:3 

or above, and the diameter in the range of ~20-50 nm. Week ferromagnetic loops with 

coercive field of 956 Oe at 5 K were measured in these BFO nano structures. 
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In the last part of this work, we exploit the potential of using Vertically Aligned 

(VA) MWCNTs as a bottom conducting electrode to replace the expensive metal 

electrodes. A successful coating of BFO on the surface of VA-MWCNTs was 

demonstrated using RF sputtering. The optimum parameters for getting uniform BFO film 

on the surface of VA-MWCNTs are 450 ºC for 2 h. HRTEM studies prove the conformal 

covering of MWCNTs with BFO. The local properties measured by PFM clearly illustrate 

the nanometric domains of BFO on VA-MWCNTs that can be reversed from one 

direction to another under the external field. The M-H curves from BFO films on VA-

MWCNTs show small opening of the magnetization loop near zero, indicating the 

presence of a weak ferromagnetic nature of these BFO films, which might be due to size 

and/strain effects.  

From the above conclusions it is clear that MWCNTs can be uniformly covered 

with FE oxides using low cost chemical solution method (presented in Table 8-1) and the 

obtained MWCNTs-FE depicts local ferroelectric properties. These results are of 

particular relevance in 3D ferroelectric nano capacitors in which CNTs are proposed as 

bottom electrodes or template to fabricate 1D nano ferroelectric structures. These 

composites can be used for 3D FERAMs devices but also for photovoltaic, capacitors and 

other microelectronic applications.  

Future work 

Although the presented work responds to many of the current open questions it raises 

many others, opening future avenues for further research. Here some of them: 

To identify the exact role or MWCNTs in the early oxide phase formation in-situ 

HRTEM studies is required.  

After the proof of the concept of MWCNTs-FE by low temperature and cost 

synthesis a full detail electrical characterization is needed. Issues as reliability, fatigue, 

endurance are key points for future practical application of these 1D capacitors. Studies 

on the electrical properties as a function of temperature, electric field and magnetic field 

are required. Since the ferroelectric performance has a direct relation with domain 

structure, domain studies should be conducted. 
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Studies on the functionalization of the surface of the tubes as well as on the 

optimal conditions to fill MWCNTs with FE will add knowledge and will help to design 

methods by which solution will only fill the tube without getting adsorbed on the outer 

walls of MWCNTs. This will allow to construct patterns on and around the tubes adding 

complexity to the MWCNTs – FE structures. 

Table 8-1 Illustrate the summary of present work on the covering of MWCNTs with 

Ferroelectric oxides. 

Type of MWCNTs 

Coating 

Ferroelectric (FE) 

Materials 

Method / Precursors 
Remarks on Covering 

MWCNTs with FE 

Acid functionalized 

MWCNTs 

PbZr0.52Ti0.48O3 

(PZT) 

Sol Gel / Lead acetate, 

titanium tetra-isopropoxide 

and zirconium tetra-n-

propoxide 

Uniform coverage of 

MWCNTs by PZT 

Acid functionalized 

MWCNTs 
BaTiO3 (BT) 

Hydrothermal / Barium 

acetate or Barium nitrate, 

titanium isopropoxide 

No covering, BT 

nucleate away from the 

surface of MWCNTs 

Acid functionalized 

MWCNTs 
BaTiO3 (BT) 

Sol gel Hydrothermal / 

Barium acetate and 

titanium isopropoxide 

Localized covering of 

MWCNTs with BT 

SDS functionalized 

MWCNTs 
BaTiO3 (BT) 

Sol gel Hydrothermal / 

Barium acetate and 

titanium isopropoxide 

Conformal covering of 

MWCNTs with BT 

Acid functionalized 

MWCNTs 
BiFeO3 (BFO) 

Sol gel / Bismuth nitrate 

and iron nitrate 

MWCNTs act as 

templates to form BFO 

1D rods 

Vertical Aligned -

MWCNTs 
BiFeO3 (BFO) 

RF sputtering / Bismuth 

oxide and iron oxide 

Conformal forming of 
BFO thin layer on 

surface of VA-

MWCNTs 
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