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resumo 
 

 

A presente tese de doutoramento foi dedicada ao estudo da laminagem 
assimétrica (ASR) como técnica alternativa para a melhoria das propriedades 
mecânicas das ligas de alumínio-magnésio e aço IF durante processos 
industriais de conformação plástica. 
As ligas de alumínio são bastante atrativas devido às suas propriedades 
específicas, nomeadamente baixa densidade e resistência à corrosão. No 
entanto, a sua baixa formabilidade limita o seu campo de aplicação. A 
formabilidade das ligas de alumínio pode ser melhorada através da alteração 
da textura cristalográfica. Assim, parte desta dissertação é dedicada ao 
desenvolvimento de uma textura compatível com formabilidade acrescida, 
através da técnica ASR. A ASR foi conduzida de duas formas distintas 
designadas ASR – contínua e ASR – com trajetória invertida. O impacto da 
deformação de corte imposta pela ASR no desenvolvimento da textura e 
comportamento mecânico pretendidos foi analisado em detalhe. A textura 
cristalográfica desenvolvida produz o aumento da anisotropia planar. A 
evolução da textura cristalográfica foi simulada com recurso aos modelos 
“self-consistent” e Taylor. 
O aço IF foi o segundo material estudado. Dada a sua vasta utilização na 
indústria automóvel pretende-se investigar o efeito da deformação de corte 
desenvolvida durante a ASR nas suas propriedades micro e macro com o 
intuito de melhorar a resposta a solicitações mecânicas. No aço IF foram 
também estudadas as duas condições de ASR anteriormente referidas. De 
acordo com as observações realizadas por microscopia ótica e microscopia 
de força de atómica as morfologias dos grãos obtidas durante o processo 
ASR e laminagem convencional são semelhantes. As observações realizadas 
por microscopia eletrónica de transmissão revelaram que durante a ASR se 
formam nano células de deslocações com forma equiaxial. A estrutura 
desenvolvida deverá estar associada à deformação de corte imposta durante 
a ASR. O comportamento mecânico do aço recozido e deformado foi avaliado 
através de ensaios de tração uniaxial. Para valores de redução de espessura 
da ordem dos 18% os provetes pré-deformados por ASR apresentam valores 
de tensão mais elevados do que os provetes pré-deformados em laminagem 
convencional. Para reduções de espessura da ordem dos 60% verificaram-se 
resultados opostos. A análise de textura indicou que o componente de 
laminagem se desenvolve de forma intensa para reduções de 60%, pelo 
contrário, a estrutura refinada resultante da ASR parece estar na origem do 
valor elevado de tensão observado após pré-deformação de 18%.  
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abstract 
 

This Ph.D. research focuses on asymmetric rolling (ASR), as an alternative 
method for improving mechanical responses of aluminium-magnesium alloy 
and interstitial free (IF) steel regarding industrial requirements.  
Aluminium alloys are attractive materials in various industries due to their 
appropriate properties such as low density and corrosion resistance; 
however, their low formability has limited their applications. As formability of 
aluminium alloys can be improved through texture development, part of this 
dissertation is dedicated to producing the desired crystallographic texture 
with the ASR process. Two types of ASR (i.e. reverse and continuous 
asymmetric rolling) were investigated. The impact of shear deformation 
imposed by ASR processes on developing the desirable texture and 
consequently on mechanical behaviours was observed. The developed shear 
texture increased the normal and also planar anisotropy. Texture evolution 
during plastic deformation as well as induced mechanical behaviour were 
simulated using the “self-consistent” and Taylor models.  
Interstitial free (IF) steel was the second material selected in this dissertation. 
Since IF steel is one of the most often used materials in automotive 
industries it was chosen to investigate the effect of shear deformation 
through ASR on its properties. Two types of reverse and continuous 
asymmetric rolling were carried out to deform IF steel sheets. The results of 
optical microscopy and atomic force microscopy observations showed no 
significant difference between the grains’ morphology of asymmetric and 
conventionally rolled samples, whereas the obtained results of transmission 
electron microscopy indicated that fine and equiaxed dislocation cells were 
formed through the asymmetric rolling process. This structure is due to 
imposed shear deformation during the ASR process. Furthermore, the 
mechanical behaviour of deformed and annealed sheets was evaluated 
through uniaxial tensile tests. Results showed that at low thickness 
reductions (18%) the asymmetric rolled sample presented higher stress than 
that of the conventionally rolled sheet; while for higher thickness reductions 
(60%) the trend was reversed. The texture analyses indicated that intense 
rolling texture components which developed through 60% thickness 
reduction of conventional rolling cause a relatively higher stress; on the 
contrary the fine structure resulting from ASR appears to be the source of 
higher stress observed after pre-deformation of 18%.  
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Nowadays, automotive, aerospace, structural and food packaging industries are the main 

fields of metal forming industries. Generally with a view to meeting environmental and 

economic concerns, engineers and manufacturers need to design lighter and safer products, 

and also with more complex shapes. This requires producing materials with extra ordinary 

properties.  

About 90% of all metal production starts off as cast. However, a very large proportion of 

this is then processed by metal forming processes, either to improve the structure and 

properties and/or to give the desired final shape (or close to that) required. The rolling 

process can be regarded as the principal metal forming process, in which the metallic sheets 

are compressed and squeezed by working-rolls. Currently, millions of tons of rolled steel 

and aluminium alloys are produced annually in the world. Hence this is a field of 

manufacturing where improving mechanical properties through optimizing the parameters 

could translate into considerable economic benefits. 

The rolling process often introduces anisotropy to metallic sheets. Anisotropy is the state of 

a material possessing properties depending on directionality of the material. Anisotropic 

mechanical behaviour of rolled materials which are associated with the texture developed 

in the rolling process is not desirable for some applications such as deep drawing 

industries. This results in thinning and earing problems during the process. The asymmetric 

rolling process, as a derivation of the rolling process, seems to have the potential to develop 

appropriate textures in metallic sheets to solve these problems. Furthermore in the literature 

it has been shown that the asymmetric rolling process is capable of refining the 

microstructure and changing its morphology. The prominent factor of asymmetric rolling 

which distinguishes it from the rolling process is its potential to distribute uniform shear 
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deformation throughout the sample thickness. This shear strain promotes the development 

of shear texture and microstructure refinement. 

The main objective of this thesis is to study the effect of asymmetric rolling on the 

mechanical behaviours of aluminium alloys and steel sheets and evaluate the impact of 

shear deformation on texture evolution and microstructure changes. The study of the 

influence of shear deformation imposed by asymmetric rolling on samples with two 

different crystallographic structures (i.e. face centre cubic of aluminium alloy and body 

centre cubic of IF steel) may give us a more comprehensive view of this process which 

makes it possible to improve the mechanical properties of the materials. 

The current thesis is structured into four chapters, the introduction being the first. 

Subsequently, the asymmetric rolling process as a severe plastic deformation method is 

presented in the second chapter. Additionally, the basic concepts of plastic deformation 

mechanisms of cubic materials are discussed. Furthermore, the main crystal plasticity 

theories including their benefits and deficiencies are briefly introduced. Chapter 3 deals 

with the materials observed in this work and also experimental methodologies. In addition 

to characterizing the received materials, preliminary results are presented in this chapter. 

Chapter 4 is dedicated to the results and discussion of both materials in the process. A list 

of conclusions is also given chapter 5. 

 



 
 
 
 
 

  chapter 2- bibliography review 

17 

 

 

 

 

 

 

 

 

 

 

Chapter 2 

Bibliography review 

 

 

 

 



 
 
 
 
 

asymmetric rolling of AA-5182 and IF steel sheets 

18 

 

 

  



 
 
 
 
 

  chapter 2- bibliography review 

19 

 

 

 

 

 

 

In this chapter, a general introduction to sheet metal forming is provided, with a focus on 

microstructure and crystallographic texture evolution during plastic deformation. 

Additionally, the asymmetric rolling (ASR) process as a new severe plastic deformation 

(SPD) method is introduced. It is shown that shear strain is a significant feature of SPD 

processes. Likewise the impact of shear deformation provided by ASR on microstructure 

and crystallographic texture is discussed. Due to the great practical interest in a 

deformation polycrystalline theory, a large number of studies have been devoted to various 

theories. In this chapter, a short review of crystal plasticity models that have been used to 

predict texture evolution and its resulting mechanical responses is presented.  

2-1 severe plastic deformation techniques 

Materials processing by severe plastic deformation (SPD) have been under intense focus in 

the research community the last decade due to the unique mechanical properties obtainable 

by SPD processing. The process of SPD is based on intense plastic deformation of a work-

piece, resulting in alteration of the microstructure and texture. Thanks to these new 

techniques, a new horizon has opened for processing metallic materials. 

Several SPD processes have been proposed in order to optimize the microstructure and 

crystallographic texture and present better mechanical properties, such as equal channel 

angular pressing and accumulative roll bonding. Also, some other developed techniques 

which originated from ECAP are suggested.  

2-1-1 traditional SPD processes  

Equal channel angular pressing: The equal channel angular pressing (ECAP) process 

was first developed by Segal [Segal 1981]. In this technique shear plastic deformation is 
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work-rolls. In asymmetric rolling a third cross shear deformation zone is formed between 

the backward-slip zone and the forward-slip zone. Both compressive and shear stresses 

occur simultaneously in the cross shear deformation zone.	

2-2-2 forces and torque 

The rolling power is applied to a rolling mill by applying a torque to the rolls. This power 

is expended principally in different ways; the necessary energy for deforming the specimen 

and the necessary energy to overcome frictional forces. The rolling load is distributed over 

the arc of contact in the typical friction hill pressure distribution which describes the profile 

of the rolling pressure across the contact arc. Numerous works have been carried out 

developing the analysis of treatments of rolling. Slab method, slip line field theory and 

finite element method are the main theoretical methods to attain rolling force and rolling 

torque. Slab method is the simplest method which is aimed at expressing the rolling force 

and rolling torque in terms of geometry of the deformation and the strength properties of 

the material. In this method, a differentially thick slab of the material is selected 

perpendicular to the rolling direction in the deformation region. Force balance for the slab 

results in a differential equation, which is solved either by close form analytical methods or 

numerical methods. The constants of integration are obtained by applying the appropriate 

boundary conditions [e.g. Dieter 1988 and Hosford 1993]. In the following section the 

rolling force and torque in both conventional and asymmetric rolling processes will be 

analysed.  

 The assumptions for slab analysis of rolling pressure and torque are:  

‐ The rolls are rigid 

‐ The material is elastic-plastic 

‐ There is no width expansion during the process- plane strain condition 

‐ The stresses are uniform in the contact area 

‐ The friction conditions are uniform along the contact length, although the upper and 

lower coefficient friction can be different (in the ASR process). 

‐ The plastic flow at the entrance and exit are assumed to be horizontal. 

‐ The principal axes are in the directions of the applied loads. 
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The balance of forces along x and y directions in three different zones and the boundary 

conditions make it possible to describe the roll pressure p when the sheet passes through 

the roll gap. Here, q0 is the front-tension force and qi is the back-tension force. Using 

equilibrium conditions of the deformation zones and also with the Von Mises yielding 

criterion:  

݌ ൅ ݍ ൌ 2݇         (2.3),   

where k is the yield strength in shear. The general equation of rolling pressure equation was 

obtained by Gao et al. [Gao 2002]: 

̅݌ ൌ ௫̅	ఓഥି݁ܥ ൅ ሺ௫̅
య

ଷఓഥ
െ ௫̅మ

ఓഥమ
൅ ቀ

ଵ

ఓഥ
൅ ଵ

ఓഥయ
ቁ ݔ̅ െ ቀ

ଵ

ఓഥమ
൅ ଵ

ఓഥర
ቁሻ     (2.4) 

where 

̅݌ ൌ ௣

ଶ௞
,													 ߤ̅ ൌ ௘ටߤ

ோ

௛బ
,													 ݔ̅ ൌ ݊ܽݐܿݎܽ ௫

ඥோ௛బ
											  

where R is roll mill diameter, μe is the effective friction coefficient and x is the distance 

from the vertical line through the centres of the working-rolls. The constant C is related to 

the boundary condition which can be obtained.  

The boundary condition for zone iii: 

௘ߤ ൌ ଵߤ ൅ ଴̅݌												,	ଶߤ ൌ 1 െ
଴ݍ
2݇
	ሺܽݐ	ݔ ൌ 0ሻ																																																				ሺ0 ൑ ݔ ൑  ௡ଶሻݔ

And in zone i: 

௘ߤ ൌ െߤଵ െ ଴̅݌									,	ଶߤ ൌ 1 െ
୧ݍ
2݇
	ሺܽݐ	ݔ ൌ ௡ଶݔሺ																																																				ሻܮ ൑ ݔ ൑  ሻܮ

And in zone ii, shear region: 

௘ߤ ൌ ଵߤ െ ௦̅݌												,	ଶߤ ൌ ݔ	ݐሺܽ	୤̅݌ ൌ ௦̅݌			,௡ଶሻݔ ൌ ݔ	ݐሺܽ	ୠ̅݌ ൌ ௡ଶݔሺ										௡ଵሻݔ ൑ ݔ ൑  ௡ଵሻݔ

where xn1 and xn2 are the positions of neutral points which can be determined using the 

boundary conditions of ps=pb at xn1 and also ps=pf at xn2.  
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2-3 slip system: a plastic deformation mechanism 

Plastic deformation occurs by sliding of one part of a crystal relative to another along the 

certain planes. Unlike elastic deformation involving only the stretching of interatomic 

bonds, slip requires the breaking and re-forming of interatomic bonds and the motion of 

one plane of atoms relative to another.  

In order for plastic deformation to take place, dislocations move through the grains. They 

do not move with the same degree of ease on all crystallographic planes in all 

crystallographic directions. Observations show that slip tends to occur preferentially on 

certain crystal planes and in certain specific crystal directions. These planes are known to 

the slip planes and the direction of the dislocation movement is called the slip direction. 

The combination of the slip plane and the slip direction is termed the slip system. The slip 

system depends on the crystal structure and is such that the atomic distortion that 

accompanies the motion of a dislocation is minimal. Usually in the crystals, slip plane is 

the plane with the most dense atomic packing. The slip direction corresponds to the 

direction in this plane that is the most closely packed with atoms. As shown in Fig. 2.18 the 

dominant slip systems vary with the material’s crystal lattice. In the case of face centre 

cubic (FCC) crystals, slip occurs mostly on {111} octahedral planes and in <110> 

directions which are parallel to cube face diagonals. In all, there are 12 such slip systems 

(four unique {111} planes, and within each plane three independent <110> directions) 

[Kocks 1998]. In body centre cubic (BCC) crystals, slip occurs in the <111> cube diagonal 

direction and on {110} dodecahedral planes. In this structure, dislocations also slip on 

other planes such as {112} and {123} under various conditions, and sometimes the 

behaviour can be adequately described by pencil glide with a <111>slip direction. There 

are 48 possible slip systems, which are the combinations of these three planes and pencil 

glide direction [Kocks 1998]. 
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2-3-2 plastic deformation of polycrystals 

Since polycrystal materials are formed of a significant number of crystals with different 

orientations, plastic deformation of these materials is quite complex. Due to the random 

orientation of grains, the direction of dislocation slip varies from one grain to another. With 

the purpose of studying the plastic deformation of polycrystal materials one needs to know 

detailed information about crystallographic orientation and dislocation structure of 

polycrystals. 

2-3-2-1 crystallographic orientation 

2-3-2-1-1 basic concepts  

Generally, the grains of a polycrystal material possess different crystallographic orientation 

from that of their neighbours. To describe the orientation of a crystal relative to 

macroscopic reference, one often specifies the Miller indices of two directions: the normal 

of the plane {hkl}, and a line in it, <uvw>. For instance in the case of sheet rolling, the 

orientation {hkl}<uvw>, means that a {hkl} plane is parallel to the rolling plane, and a 

<uvw> direction is parallel to the rolling direction. 

In order to introduce an orientation, terms of reference are required, which are called a 

coordinate system [Kocks 1998 and Bunge 1982]. Two Cartesian systems are necessary:  

1. The sample coordinate system S= {s1 s2 s3}:  The axes of the sample are chosen 

according to important surfaces and directions associated with the external shape of 

the sample. The sample coordinate systems in sheet metal rolling are the rolling 

direction (RD); the transverse direction (TD); and the normal direction (ND). 

2. The crystal coordinate systems C= {c1 c2 c3}: The axes of the crystal are 

specified by the directions in the crystal which usually are adapted to the crystal 

symmetries. For instance, in cubic crystals, the axes [100], [010] and [001] are 

usually assumed as the crystal coordinates.  

The crystal coordinate system (Cc) can be transformed to the sample coordinate system (Cs) 

with the orientation matrix (g) which contains the rotations of the sample coordinates onto 

the crystal coordinates.  
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cluster to a greater degree about a particular orientation. This is called preferred orientation, 

or texture and leads to present directional properties. Preferred orientation forms during 

deformation and is modified through plastic deformation and heat treatment processes.  

2-3-2-1-2 pole figure and ODF 

The normal of any plane in a crystal can be indicated as a point on the unit reference sphere 

which is a sphere with radius 1 notionally residing around the crystal. The first point of the 

vector coincides with the centre of the sphere, and the second point lies on the surface of 

the sphere. Here, a similar concept can be used for a crystallographic direction which needs 

two points for each direction.  

The orientation of a single crystal located in the centre of a unit sphere can be obtained if 

the sphere reference system is set as the macroscopic reference system (RD, TD, and ND). 

Also, if a polycrystal is located in the centre of the unit sphere, the distribution of 

orientation of the crystals relatively to the sample reference system can be obtained.  

Due to difficulty of representation of a 3-D orientation on the unit sphere and also 

measuring angular distances between them, a 2-D representation is required. The pole 

figure which is based on the stereographic projection is a method of 2-D representation.  

The position of a given pole on the sphere is commonly characterized in terms of two 

angles (Hansen 1978): The angle α describes the azimuth of the pole, where α = 0° is the 

north pole of the unit sphere, and the angle β characterizes the rotation of the pole around 

the polar axis, starting from a specified reference direction (Fig. 2.23). 

As mentioned above, in order to characterize the crystallographic orientation of a crystal, 

the spatial arrangement of the corresponding poles in terms of the angles α and β has to be 

determined with respect to the sample coordinate system S. In a sheet rolling study, the 

rolling direction RD is usually chosen to be the north-pole and the rotation angle β is 0° for 

the transverse direction TD. 
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2-3-2-1-3 important texture types in FCC and BCC materials 

A considerable number of investigations have been carried out in the characterization of 

sheet metal textures and among those FCC and BCC materials receive much attention in 

this work, since the research is focused on the study of these crystallographic textures. The 

majority of texture researchers investigate conditions leading to favourable texture for 

particular applications. Here there is a list of significant texture components of FCC and 

BCC materials. 

 FCC materials 

The main slip system in FCC materials are {111} <110>, consisting of 12 symmetrically 

equivalent variants. Activity of these slip systems establishes various textures during 

different processes. Table 2.1 summarizes the main FCC texture components. In the 

following section, the main components of aluminium in different states will be discussed. 

Table 2.1: the texture components of FCC material 

Label 
Miller indices 

{h,k,l}<u,v,w> 

Euler angles 
texture type 

φ1 ɸ φ2 

cube {001}<100>  0  0  0  Recrystallization 
texture 

components Goss {110}<001>  0  45  0 

Copper {112}<111>  90  35  45 

Rolling texture 
components Brass {011}<211>  35  45  0 

Dillamore {4 4 11}<11 11 8>  90  27  45 

E {111}<110>  60  54.7  45 

shear texture 
components 

F {111}<112>  90  54.7  45 

H {001}<111>  0  0  45 

Figure 2.25 depicts the presented FCC components in ODF sections in order to simplify 

studying the texture evolution. 
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properties after particular processes. Also, if simulations with a physical theory can 

satisfactorily explain experimental results, it is likely that the underlying processes are 

understood and can be generalized. Through the plastic deformation of materials in 

addition to a plastic deformation of each grain, they tend to rotate in order to gain 

appropriate orientations. Since a grain in a polycrystal bulk is in the contact with its 

neighbours, it is not free to deform plastically as if it was a single crystal. So, in order to 

keep the contact of grains, they should accommodate the shape changes of their neighbours 

through deformation. A lot of effort has been devoted to different approximate theories in 

order to explain the plastic deformation of polycrystals with this condition. In the following 

section, a review of crystal plasticity models is given. These models are generally classified 

into lower bound (Sachs), upper bound (Taylor) and self-consistent models. Advantages 

and disadvantages of these models in texture predictions are also discussed. 

Sachs-Type Model: The Sachs model [Sachs 1928] is the first ever crystal plasticity 

model. According to this model, it is assumed that the resolved shear stress on the principal 

slip system is the same for all crystallographic grains, and is identical to the critical 

resolved shear stress. This hypothesis implies that the stress tensor in each grain is 

proportional to the macroscopic stress tensor. It is also assumed that each grain deforms by 

single slip system (s) with the highest resolved shear stress and there is no kinematical 

constraint due to grain interactions. Under these assumptions, grains having distinct 

crystallographic orientations are deformed by different activated slip systems leading to 

unlikely overlaps and gaps at grain boundaries [Gmabin 1997]. Under these circumstances 

and according to Schmid’s law (Eq. 2.8), the behaviour of a polycrystal is given by: 

߬௖ ൌ൏ ݉ ൐	. 	ߪ 	 	 	 	 	 	 	 (2.12) 

Here < m > is the average value of the Schmid factors and ߬௖ is the critical resolved shear 

stress which is considered the same for all the grains. 

There are at least two objections to Sachs’ approach. Firstly, it is not possible to maintain 

compatibility among the grains when all the grains are assumed to deform by single slip. 

Secondly, it is assumed that the equilibrium of stresses is valid inside grains; however, it 

cannot be established across grain boundaries. To overcome the compatibility problem, 
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Taylor (Taylor 1938) proposed a model that strictly enforces the compatibility by imposing 

an overall applied strain which will be identical for all grains in the microstructure.  

Taylor model: The full-constraints Taylor (FC-Taylor) model, proposed by Taylor [Taylor 

1938], is one of the most applicable models of crystal plasticity. In this model, it is 

assumed that the microscopic plastic strain is equal to the macroscopic plastic strain, while 

elastic strains are neglected. One of the advantages of this model is that the compatibility 

equations are satisfied since it deals with a uniform strain field in the entire microstructure; 

as a result, all grains plastically deform in the same way in accordance with the 

macroscopic strain. In spite of the satisfactory nature of the compatibility equations and 

homogeneity of plastic strain throughout the polycrystal in the Taylor model, the stress 

equilibrium at grain boundaries is neglected.  

In the FC-Taylor model, it is assumed that there must be at least five activated slip systems 

in each grain at the same time. Minimizing the dissipated deformation energy, W, is 

responsible for selecting the set of appropriate slip systems in each grain. On the other 

hand, the critical resolved shear stress is independent of the slip system. Regarding the 

equivalence of internal and external plastic work [Kocks 1970], the dissipated deformation 

energy is derived as: 

ሺܹሻ௠௜௡ ൌ ൭෍߬௖௦|ߛ௦|
௦ୀହ

௦ୀଵ

൱
௠௜௡

ൌ 	 ߬௖ ൭෍|ߛ௦|
௦ୀହ

௦ୀଵ

൱
௠௜௡

	 

Here, ߬௖௦ and ߛ௦ are the critical resolved shear stress and shear stress in a particular slip 

system, respectively. By equivalence between the internal and external plastic work leads 

to: 

෍ ௜,௝ߪ

௜,௝ୀଷ

௜,௝ୀଵ

௜,௝ߝ ൌ .ߪ	 ߝ ൌ ߬௖ ൭෍|ߛ௦|
௦ୀହ

௦ୀଵ

൱
௠௜௡

 

where, σ and ε present the equivalent Von-Mises stress and strain respectively. The Taylor 

factor for an individual crystal, M, is defined as:  
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ܯ ൌ
ߪ
߬௖
ൌ
ሺ∑ ௦|௦ୀହߛ|

௦ୀଵ ሻ௠௜௡

ߝ
 

As can be expected the Taylor factor in each crystal depends on its orientation in respect to 

the applied stress tensor. The average Taylor factor, ܯഥ , for a polycrystal is obtained by its 

volume average weighted by the ODF function: 

ഥܯ ൌ .௚ܯ׬  ௚݀݃        (2.13)ܨ

 thus the macroscopic behaviour of polycrystals is described by: 

ߪ ൌ .ഥܯ ߬௖         (2.14) 

As was mentioned before, in the literature, the Sachs model is used as a lower bound, and 

the FC-Taylor model as an upper bound. Both models have some deficiencies and benefits. 

They can be improved by using intermediate conditions, by relaxing the strict constraints 

imposed by each model. The Taylor model was modified with assuming that when grains 

reorient and change their shapes, it is possible to partially relax the strict compatibility 

requirements imposed in the Taylor model. The modified Taylor model is known as 

relaxed-constraints (RC-type). Non-uniform deformations that may appear at grain 

boundaries are excluded in the method. Another RC-type model is the LAMEL model that 

has been developed by Van Houtte [Houtte 1999 & 2005]. According to this model, the 

average shape change of a set of two stacked grains is taken to be equivalent to the average 

shape change of the polycrystal, but in each of the two grains, relaxation is allowed to take 

place.  

Self-Consistent Model: All theories based upon strain uniformity (Taylor-type models) 

fulfil compatibility conditions but not equilibrium at grain boundaries. In 1987, Molinari 

proposed a self-consistent approach for the large deformation of polycrystals [Molinari 

1987]. In this approach, equilibrium and incompressibility equations are used to arrive at an 

integral equation for the local velocity gradient. This integral equation can then be solved 

via different approximate schemes. The principle of the self-consistent scheme is that the 

interactions between a particular grain and all others are simulated by those between the 

grain considered and a homogeneous equivalent medium (HEM). In the self-consistent 
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model of Molinari, the equilibrium and the incompressibility conditions were solved using 

the traditional Green’s function method. An important advantage of Molinari’s Green’s 

function approach is that it fits naturally with correlation functions. Since the plastic 

deformation occurs by dislocations sliding which is an inherently rate-dependent process, it 

is reasonable to extend crystal plasticity theory for time dependent plasticity. Therefore, the 

self-consistent model is incorporated with a rate-dependent viscoplastic relation such that 

the viscoplastic compliance tensor of the polycrystal is determined in each strain increment 

in a self-consistent manner. The viscoplastic self-consistent (VPSC) model is well suited to 

model large strain behaviour of polycrystals. It accounts for the plastic anisotropy of each 

grain, as well as that of the polycrystal. It neglects elasticity at large strains. Each grain is 

modelled as an ellipsoidal inclusion that is embedded into the HEM with the average 

properties of the whole polycrystal. In this model, with the help of the viscoplastic 

compliance tensor and by solution of the Eshelby inclusion problem, the stress and strain 

state of each individual crystal is determined.  

Viscoplasticity is achieved by introducing a simple power-law micro-constitutive relation 

that expresses the shear rate (ߛሶ ௦ሻ of each slip system (s) as a function of the corresponding 

resolved shear stress, ߬௦: 

ሶߛ ௦ ൌ 	 ሶ଴ሺߛ
ఛೞ

ఛబ
ೞሻ
௡         (2.15) 

where γሶ ଴ and  τ଴
ୱ  are the reference shear rate and critical resolved shear stress on the 

system, respectively, and n is the inverse strain rate sensitivity coefficient of the material. 

For self-consistency, the macroscopic stress and strain rate of the HEM can be set equal to 

the average of the stresses and strain rates of all the individual grains. Unlike the FC-Taylor 

model, the stress and strain rate of each grain can deviate from the corresponding 

macroscopic quantities, as well as deviate from each other.  

One consequence is that each grain changes its form according to its local velocity gradient 

and deformation history. Another important consequence of the self-consistent formulation 

is that a grain no longer needs to have five independent slip systems to deform. This feature 

is especially important for non-cubic crystal structures (e.g. HCP materials), where the 

number of available slip systems could be less than five on the basal or prismatic slip 
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planes. Most modifications, developments, and implementation of self-consistent models 

can be found in different works [Molinari 1987, Molinari 1997, Lebensohn 1994 and 

Lebensohn 1999]. 

2-3-2-2 dislocation microstructure 

The generation and movement of dislocation loops, and the subsequent interaction and 

recovery of the dislocations are the fundamentals of the evolution of the deformation 

structure [e.g. Dieter 1988 and Humphreys 1996]. Since in high stacking fault energy 

materials making the partial dislocations into a dislocation is easy, therefore cross slip and 

consequently also dynamic recovery are promoted.  

The mobile dislocations which are produced through plastic deformation will interact both 

with each other and also obstacles like solute atoms and particles. Accumulating the 

dislocations into the materials leads to an increase in the total stored energy. But the system 

tries to reduce this stored energy by either the dislocation rearrangement which leads to 

low-energy configurations or through dynamic recovery processes where dislocations 

annihilate each other [Humphreys 1996].  

Regarding rearrangement of dislocation through plastic deformation, there are significant 

studies describing deformation microstructures in different materials [Bay 1992 and 

Hughes 2000]. It is presumed that inside a grain the combination and number of 

simultaneously active slip systems vary from point to point. The number of active slip 

systems at each location is generally lower than the five predicted by the Taylor model (see 

the section about Taylor model in § 2-3-2-1-4) which is favourable. So, the grain starts to 

subdivide into volume elements. Within one element the slip pattern is different from the 

adjacent one, but collectively they satisfy the Taylor requirement for strain 

accommodation. 

These volume elements are denoted cell block (CB) which consists of a number of 

neighbouring dislocation cells (DCs) surrounded by long flat dislocation boundaries. These 

boundaries arise out of geometrical requirement, since the slip systems are different on 

either side of them. Hence, they are named geometrically necessary boundaries (GNBs). 

Usually the misorientations of GNBs are too high, so they are famed as high angle 
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systems, the material and also the deformation conditions. It was reported that in the 

uniaxial tensile test, dislocations aligned with the plane of active slip system in most grains 

[Fernandes 1938] and the grains tend to be elongated in the load direction. A similar 

morphology is formed through the rolling process of aluminium and steel. It is worthy to 

note that IDBs and GNBs are clearly studied in the samples deformed by uniaxial tension 

or rolling. However, in the SPD methods where shear deformation are imposed through the 

process the distinction between IDBs and GNBs are lost and the distinction can be simply 

made between HAB and LAB [Bowen 2004]. Also it was reported that substructure of the 

specimen deformed by asymmetric rolling as a SPD process appears in an equiaxed 

organization which is attributed to the imposed shear strain [Kim 2002]. The stacking fault 

energy of the materials can also control the microstructure, i.e. a higher number of 

activated slip systems leads to forming more equiaxed cells whereas fewer activated slip 

systems results in an elongated substructure during the process [Gracio 1989].  

2-4 formability of materials 

An important concern in forming processes is whether the desired process can proceed 

without failure of the sample. Therefore, parameter of formability of materials is defined as 

their ability to undergo plastic deformation through a forming process without failure. The 

formability of materials is a complicated topic which is strongly influenced by not only a 

material’s properties such as microstructure and texture but also process conditions such as 

strain path, strain rate and temperature. Regarding the scope of this work, the effect of 

some of the parameters on the materials formability will be presented in the following 

section. 

2-4-1 effect of texture  

Anisotropy of mechanical properties of metallic sheets is a macroscopic behaviour which is 

introduced by the R-value (Lankford coefficient). The R-value is defined as the ratio of 

plastic strain in the width direction to that in the thickness direction of the sheet under 

tensile loading (Eq. 2.16). A high R-value suggests that there is a high resistance to 

thinning resulting in higher formability of the material.  
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determine the macroscopic behaviour of the material. The presence of grain boundaries has 

an effect on the deformation behaviour of the material by serving as an effective barrier to 

the movement of glide dislocations. According to the work of Hall and Petch [Hall 1951 

and Petch 1953], the yield strength of a polycrystal material (σ௬ሻ, could be given by: 

௬ߪ ൌ ௜ߪ ൅ ݇௬݀
ିଵ ଶൗ         (2.19) 

where ݇௬ and d are friction stress, constant parameter related to the material and grain size 

respectively; here, also the overall resistance of lattice to dislocation movement is 

presented by σ௜. So, concerning the Hall-Petch relation, higher yield strength can be gained 

by decreasing the size of grains. However, for very fine -grain materials, yield strength is 

predicted up to the theoretical shear stress, using the Hall-Petch equation. Therefore, a 

more general model which deals with the relationship of dislocation density and yield 

strength is derived as: 

σ௬ ൌ σ௜ ൅ αGbඥ(2.20)        ߩ 

where σ௬ and σ௜  have the same meaning as in equation 2.19 and  ߩ  is the dislocation 

density. It is noted that dislocation was generated at the grain boundaries and 

experimentally shown that the dislocation density ߩ was inversely proportional to the grain 

size; i.e. equation 2.19 has the same concept as equation 2.20. The produced dislocation 

rearrange to a more stable state and form LAB and HAB boundaries as discussed before.  

The low angle boundaries (e.g. IDBs) cause hardening through dislocation effects while the 

high angle boundaries (e.g. GNBs) cause hardening through size effect; i.e. they act as 

barriers against further dislocation movements [Kang 2007].  

With the goal of improving mechanical behaviours in the engineering application, 

continuous efforts have been devoted to developing techniques for grain refinement. The 

SPD methods noted in the previous section have become one of the most promising 

methods to reach this goal. The mechanical response of the materials is modified through 

grain refining to a sub-micrometre range using SPD methods.  
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2-4-3 effect of strain path 

There is a number of different complex forming processes to produce an engineering piece. 

Depending on the final shape, it may involve change of deformation mode. The more 

complicated the final shape is, the greater the variety of strain paths required. Change in the 

plastic deformation path through processes influences the formability of the materials. 

A number of researches have been carried out to observe the strain path change influences 

on the stress-strain curves in materials [Wagoner 1983]. In order to study the mechanical 

properties of materials after change of strain path, it is important to know the behaviour of 

glide dislocations under these conditions. The effect of pre-strain on dislocation 

substructure in different engineering materials has been studied. In these materials, the 

dislocation structure induced by the pre-strain becomes unstable. While the microstructure 

is going to be disrupted and dissolved, a new dislocation structure typical of the new strain 

path forms. In addition, a change in strain path leads to activate different slip systems upon 

the direction of loading which results in the appearance of various textures.  

For characterizing the effect of pre-strain on mechanical properties, Schmitt proposed a 

scalar parameter that provides an estimate of amplitude of the strain path change. This 

parameter is a unique and non-ambiguous definition for any sequence of two linear strain 

paths [Schmitt 1994]. 

α ൌ
க౦౨౛∶	க౦
หக౦౨౛ห	.หக౦ห

         (2.21) 

where εpre is the tensor corresponding to the first plastic strain and εp the tensor 

representing the plastic part of the subsequent deformation. The parameter	α is cosine of 

the angle between two vectors which represent first and second strain path. Hence, it can be 

varied between -1 up to 1 for different strain path changes [e.g. Gracio 2000, Nesterova 

2001 and Barlat 2003]. Usually Schmitt factor influence on mechanical properties in the 

subsequent strain path during a complex plastic deformation. This effect can be 

characterized in two different categories: (a) lower initial follow stress with increased strain 

hardening; and (b) an increased initial follow stress accompanied by a lower strain 

hardening [Wagoner 1983].  
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In this chapter the materials and experimental methodologies are introduced. Also 

preliminary results required for further studies are presented in addition to designed 

experiments. The strategy for selection of the materials subjected to investigation in this 

work takes into consideration the influence of the ASR process on two of the most used 

engineering materials. Among engineering materials, aluminium alloys and steels have 

been extensively used in industries due to their properties and abundance. In this study an 

aluminium-magnesium alloy and also interstitial free (IF) steel were chosen to explore the 

effect of shear strain imposed by the ASR process on their mechanical properties. In 

following section, the initial properties of each case are given. 

3-1 AA-5182 

In the recent years, aluminium alloys have been considered to be one of the most often used 

materials in several industrial applications as they possess a good combination of high ratio 

of strength to weight and good corrosion resistance. Appropriate properties of aluminium 

alloys cause them to be used in a wide range of applications; e.g. packaging, marine, 

aeronautic and automotive industries (Fig. 3.1). Improving the mechanical properties of 

these materials may lead to reducing the weight of the structure which translates into less 

fuel consumption and associated environmental advantages. Among aluminium alloys 

(5xxx series alloy), a non-heat treatable aluminium-magnesium alloy was selected for this 

work. The presence of magnesium as the main alloying element in the 5xxx series leads to 

solute hardening of the alloy, and efficient strain hardening, resulting in good strength. This 

strength, combined with the appropriate formability and also other excellent properties (e.g. 

corrosion resistance, high quality anodising ability and weldability) of the 5xxx series alloy 

results in many applications. However, there is a major problem which is the low deep 

drawability. It makes this alloy an interesting choice for this work since the ASR process 
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The high strength of this aluminium alloy obtained through tensile tests is due to the 

interaction of Mg atoms with mobile dislocations. Also the solute Mg atoms in this alloy 

cause the serration in the strain-stress curve to appear which is called Portevin-Le Chatelier 

(PLC) effect (Fig. 3.4). The number of mobile dislocations is increased by plastic 

deformation (here tension). When these dislocations are temporarily arrested at dislocation 

tangles, the segregated Mg atoms around the tangles diffuse by pipe diffusion to these 

arrested dislocations. They then form atmospheres around the dislocations which leads to 

their being locked. When the applied force is raised high enough, the dislocations break 

away from the atmosphere and move freely toward the next tangles. Repeating the pinning 

and unpinning process leads the serrations in the stress-strain curve to appear [Wen 2004]. 

 

Figure 3.4: the serration appeared during uniaxial tension in AA-5182 

Figure 3.5 presents the variance of R-value of initial sample by the angle from RD. This 

figure indicates that the R-value of as received sheet sample in the RD is 0.58, which 

decreases slightly to 45° from the RD and then rises up to 1.1 in the TD. Hence regarding 

eq. 2-17 & 2-18, the normal and planar anisotropy of this material are 0.59 and 0.48 

respectively.  
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 The yield strength and uniform elongation obtained by uniaxial tension in RD are briefly 

shown in Fig. 3.10. The specimens present approximately 20% uniform elongation and the 

same value of yield stress after annealing at 280°C for 45 minutes. As can be seen in the 

figure, C-ASR and R-ASR are more sensitive to temperature in heat treatment compared to 

the same sample rolled by CR. Regarding these results the heat treatment at 280°C for 45 

minutes was chosen as an appropriate annealing condition for the rest of the experiments. 

 

Figure 3.10: influence of annealing temperature (for 45 minutes) on the yield strength and uniform 
elongation obtained by uniaxial tensile tests in RD of CR, C-ASR and R-ASR deformed samples 
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minutes. Subsequently, tensile tests were performed at room temperature along 0°, 45° and 

90° with respect to the RD. These tests were performed at a strain rate of 10-4s-1. The 

change of the width and length of each samples were measured to obtain R-values. 

3-1-3 modelling  

For the modelling, we use the viscoplastic self-consistent (VPSC) model of Molinari et al. 

[Molinari 1987] which was further developed by Lebensohn and Tome [Lebensohn 1992]. 

In this, plasticity occurs by crystallographic slip on {111} <110> slip systems. The initial 

critical resolved shear stress is assumed the same for all systems.  

3-1-3-1 prediction of texture evolution through rolling 

The X-ray data of the initial samples (Fig. 3.9) were used as input files for the VPSC 

model. The macroscopically imposed velocity gradient for the sheets under CR and ASR 

processes is approximated by plane strain compression for CR and combined plane strain 

compression and shear for ASR: 

஼ோܮ ൌ ൥
ሶ݁ଵଵ 0 0
0 0 0
0 0 ሶ݁ଷଷ

൩,			ܮ஺ௌோ ൌ ൥
ሶ݁ଵଵ 0 ሶ݁ଵଷ
0 0 0
0 0 ሶ݁ଷଷ

൩     (3.1) 

Here ሶ݁ଵଵ, ሶ݁ଷଷ and 
ଵ

ଶ
ሶ݁ଵଷ are strain rate components with indices 1, 2 and 3 representing the 

normal, transverse and rolling directions, respectively. The tensor L presents the 

macroscopic velocity gradient.  

3-1-3-2 prediction of mechanical behaviours 

For the mechanical behaviour of the rolled samples under tensile tests, the VPSC model 

was used to simulate the tensile stress-strain curves of different samples. Furthermore, in 

order to predict the macroscopic anisotropy (R-value) of the polycrystalline aggregates, 

both the VPSC polycrystalline model and the Taylor model were used and the predicted 

results were compared to the experimental ones. 
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In the above mentioned plasticity models, we used Voce law for strain hardening which is 

characterized by an evolution of the threshold resolved shear stress, ߬, with accumulated 

shear strain, Г, in each grain of the form [Tome 1984]: 

  ߬ ൌ ߬଴ ൅ ሺ߬ଵ ൅ ଵГሻሺ1ߠ െ ݌ݔ݁ ቀെГ ቚ
ఏబ
ఛభ
ቚቁሻ      (3.2) 

Here, τ଴, θ଴, θଵ and (τ଴+τଵ) are the initial critical resolved shear stress (CRSS), the initial 

strain hardening rate, the second strain hardening rate and back extrapolated CRSS, 

respectively. To determine these parameters, we used tensile stress-strain response of a 

conventional rolled sample as a reference (Fig. 3.11). The following parameter values are 

therefore determined by fitting: 

߬଴= 55,   ߠ଴= 455,  ߠଵ= 22 and  ߬ଵ= 72 MPa 

 

Figure 3.11: stress-strain curve of CR and annealed sample and also the fitted curve using Voce law 
parameters 
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directions of RD, TD and 45° from the RD. The tests were performed at room temperature 

and a constant engineering strain rate of 10-4s-1. The stress-strain curves of different 

directions from RD are shown in Fig. 3.13.  

 

Figure 3.13: stress-strain curves of initial sample in various directions from RD 

R-value of sheet IF steel in three different directions from RD is shown in figure 3.14. This 

figure indicates that the R-value of the as received sheet sample is higher than those in an 

Al-5182 sheet which is desirable for deep drawing applications.  

 

Figure 3.14: R-value in various directions from RD 
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In the next round of tests we investigated, the effect of the total reduction by imposing, 

respectively, thickness reductions of 5, 10 and 20% in each of the 4 passes. Subsequently, 

the tensile specimens were prepared along the RD from CR, R-ASR and C-ASR samples 

and annealed at 550°C for one hour. The tensile tests were applied at ambient condition and 

an engineering strain rate of 10-4s-1. 

3-2-3 microstructure observation 

An optical observation and also an atomic force microscopy were carried out to study the 

microstructure change on the TD planes resulting from CR and ASR processes. Also with 

the goal of investigation of substructure of rolled samples, a 300kV Hitachi H-9000 

transmission electron microscope (TEM) was used. TEM specimens were prepared from 

the mid thickness of the sheet sample and parallel to the ND plane. Initially the samples 

were mechanically polished and then electropolished with a jet thinner machine. 

3-2-4 thermal stability 

 With the purpose of studying the thermal stability of rolled specimens, the rolled samples 

underwent different annealing treatments at 500-700°C for 1 hour in an electrical furnace. 

Tensile test have been carried out at a strain rate of 10-4s-1. 

Figure 3.16 indicates the variation of yield strength and uniform elongation of 60% R-ASR 

and CR sheet samples after different temperatures of annealing. It can be seen that 

increasing the temperature from 550 to 625°C does not show any significant change in the 

yield strength; however, increasing the temperature from 650 up to 700°C leads to a slump 

of stress level and increases the uniform elongation in the stress-strain curves.  
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Figure 3.16: thermal stability of ASR sample: influence of annealing temperature on the yield stress 
and uniform elongation of the IF steel sheets 

Figure 3.17 presents the microstructure of the asymmetrically rolled and heat treated 

samples at various temperatures. Heat treatment up to 650°C does not lead to a change in 

the microstructure whereas annealing at 700°C results in equiaxed recrystallized grains; i.e. 

annealing at lower temperatures may only cause recovery. 
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Figure 3.18: the first and second pass of various strain routes: a) CR, b) R-ASR and c) C-ASR 
processes 

Here, γ is the shear strain imposed through the ASR processes and also ԑ11 is the 

compressive strain in deformation routes. According eq. 2-21 α parameters for two passes 

of each process are given as: 

a)     ߙ஼ோ 					ൌ 	
ԑభభ.ԑభభାሺିԑభభሻ.ሺିԑభభሻ

ඥԑభభమାሺିԑభభሻమ	.		ඥԑభభమାሺିԑభభሻమ
ൌ 1             
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b)   ߙோି஺ௌோ ൌ 	
ԑభభ.ԑభభାሺିԑభభሻ.ሺିԑభభሻା൫

ఊ
ଶൗ ൯.൫ିఊ ଶൗ ൯ା൫ିఊ ଶൗ ൯.൫ఊ ଶൗ ൯

ටԑభభమାሺିԑభభሻమାሺ
ఊ
ଶൗ ሻమାሺିఊ ଶൗ ሻమ.		ටԑభభమାሺିԑభభሻమାሺି

ఊ
ଶൗ ሻమାሺఊ ଶൗ ሻమ

ൌ
ԑభభమି	൫

ఊ
ଶൗ ൯
మ

ԑభభమା൫
ఊ
ଶൗ ൯

మ ൏ 1  

c)    ߙ஼ି஺ௌோ 	ൌ 	
ԑభభ.ԑభభାሺିԑభభሻ.ሺିԑభభሻା൫

ఊ
ଶൗ ൯.൫ఊ ଶൗ ൯ା൫ఊ ଶൗ ൯.൫ఊ ଶൗ ൯

ටԑభభమାሺିԑభభሻమାሺ
ఊ
ଶൗ ሻమାሺఊ ଶൗ ሻమ.		ටԑభభమାሺିԑభభሻమାሺ

ఊ
ଶൗ ሻమାሺఊ ଶൗ ሻమ

ൌ
ԑభభమା	൫

ఊ
ଶൗ ൯
మ

ԑభభమା	൫
ఊ
ଶൗ ൯
మ ൌ 1  

The calculated α parameters for two passes of CR and C-ASR equal 1, which means the 

strain path did not change between the passes whereas in R-ASR process the α parameter is 

less than 1 which depends on the magnitude of γ relatively to ԑ11; e.g. the α parameter of 

two passes of R-ASR process equals 0 for value of ߝଵଵ ൌ
ఊ

ଶ
 . For α parameters close to 0 the 

new slip systems become active which were latent in the first pass. On the contrary, 

through the second pass of CR and C-ASR dislocations glide on the same slip systems used 

in the previous pass.  

It should be noted that in the calculations, it was assumed that the ratio of 
ԑభభ
ஓ

 is the same 

for both passes of C-ASR processes. The change of 
ԑభభ
ஓ

 ratio may lead to having a different 

strain path in the second pass of C-ASR, also.  
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4-1-3 mechanical behaviour 

4-1-3-1 stress-strain curves 

For the macroscopic stress-strain response of the rolled sheets, figure 4.6 shows the tensile 

stress-strain curve response of the AA-5182 samples rolled by CR, R-ASR and C-ASR 

after heat treatment. We note that the samples produced by R-ASR and C-ASR processes 

possess less strain hardening than the sample rolled by CR process. In figure 6 we also 

plotted the predicted stress-strain curves using the VPSC model. As can be seen, the 

agreement is fairly good for both ASR processes. We note that the tensile stress-strain 

response of the conventionally rolled sample was used to determine the hardening 

parameters as explained in chapter 3.  

 

Figure 4.6: the experimental and simulated (VPSC approach) stress-strain curves of R-ASR, C-ASR 
and CR samples in RD 
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4-1-3-2 plastic anisotropy of mechanical behaviours 

Figure 4.7 shows the experimentally measured R-value of different samples. In this figure, 

we also show the R-values for the as received recrystallized sheets (Fig. 4.7a). This figure 

shows that the R-value of the recrystallized sample in the RD is 0.58 which decreases 

slightly to 45° from the RD and then rises to 1.1 in the TD. The variation of R-value of the 

conventionally rolled sample with respect to the tensile load direction is shown in Figure 

4.7b. In contrast to the recrystallized sample, there is a steady increase from 0° to 45° from 

the RD. However, the R-value decreases in the TD. Figure 4.7c represents the variation of 

R-value of the samples deformed by the C-ASR process which is 0.97, 1.17 and 0.73 in the 

RD, at 45° from the RD and in the TD, respectively. This translates into an increase from 

0° to 45° then a decrease from 45° to 90° (TD). A similar trend can be seen in the sample 

rolled by R-ASR in Figure 4.7d, but with lower values.  

Figure 4.7 also represents the R-value variation with the angle from the RD of the samples 

obtained by the VPSC model. In this figure, the variation of the R-value with the tensile 

direction predicted by the VPSC model, exhibits a similar trend. However, Figure 4.7a 

shows that the VPSC prediction overestimates the experimental data in various directions. 

In addition, Figure 4.7b indicates that the VPSC model prediction for the conventionally 

rolled sample overestimates the experimental results at 45 and 90° directions from the RD, 

but predicts well the R-value in the RD. Furthermore, the predicted R-values of the sample 

deformed by the C-ASR, in the RD and at 45° from the RD are higher than the 

experimentally measured ones (Fig. 4.7c). However, for the sample subjected to R-ASR, 

the prediction of R-value in these two directions is in good agreement with the 

experimental results (see Fig. 4.7d). In the TD direction, the predicted R-value slightly 

overestimates the experimental value for both C-ASR and R-ASR. 

Since the Taylor model is one of the most used approaches, we have also used this model 

to predict the R-value. The predicted results are shown in Figure 4.7 in comparison to the 

experimental ones and to the VPSC predictions. The obtained results show that the Taylor 

predictions follow similar trends as the VPSC predictions but with lower estimated R-

values (Fig. 4.7acd), except for the conventionally rolled samples for low angles from the 

RD (Fig. 4.7b). 
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smaller than that in the recrystallized sample. The high ܴ may lead to increase the 

resistance to thinning. In addition the low planar anisotropy (small lܴ߂l) may result in 

increasing the resistance to earing in deep drawing applications. Therefore, these 

parameters are important for the practical applications, particularly deep drawing, to avoid 

earing and thinning problems as discussed in chapter 2. 

Table 4.1: normal and planar anisotropy of CR, C-ASR and R-ASR samples 

anisotropy 
   sample 

Normal anisotropy: 
 ഥࡾ

Planar anisotropy: 
lઢࡾl 

recrystallized state 0.59  0.48 

CR 0.70  0.19 

C-ASR 0.98  0.28 

R-ASR 0.89  0.34 

4-1-4 discussion- simulation of individual texture components 

The study focuses on producing the desirable texture in aluminium alloy sheets to improve 

its drawability. Figures 4.3-4.5 show the effect of shear strain on the crystallographic 

texture development during ASR processes. As mentioned before, the prominent texture 

components in these figures are dominated by the E, the F and the H components. The 

mechanical properties of these shear components have been investigated in previous works 

[Lequeu 1988, Bacroix 1999 and Sidor 2008] where it has been shown that they possess 

good anisotropic properties, appropriate for deep drawing applications.  

4-1-4-1 Texture 

 The texture produced by a single pass of ASR contains these shear components which 

become more pronounced after the second pass in C-ASR. However, reversing the sheet 

sample in the second pass of R-ASR leads to shifting these components by 180° in φ1 axis 

which are still shear texture components. The results indicate that both types of ASR 

processes (C-ASR and R-ASR) are capable of producing shear textures. According to 

Figures 4.2-4.5, it is obvious that the polycrystal simulations of the texture evolution in CR 

and C-ASR strain modes are successfully predicted but with different intensities. However, 

discrepancy between the predicted and the experimental textures is obtained for the sample 
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subjected to R-ASR. These texture components produced by ASR processes are also 

reported in the results of Kim et al. [Kim 2002]. 

4-1-4-2 Tension 

 This work also provides a correlation between the experimental mechanical responses and 

polycrystal modelling predictions. From figure 4.6, the tensile stress-strain curves of the 

samples produced by CR, C-ASR and R-ASR for both experimental and simulation are in 

good agreement. With the purpose of understanding the role of different texture 

components on the macroscopic behaviour, VPSC modelling was carried out to simulate 

the behaviour of each individual component through a uniaxial tensile test as shown in Fig. 

4.8. In spite of higher value of E and F (shear components) than copper and brass (rolling 

components) in the lower strain, rolling components present more strain hardening than 

shear ones. Hence the existence of Copper and Brass texture components is responsible for 

more strain hardening of the sample produced by CR compared to the samples rolled by 

ASR processes observed in Fig. 4.6. 

 

Figure 4.8: VPSC simulation of uniaxial tension in RD of individual texture components 
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4-1-4-3 plastic anisotropy 

 Figure 4.7 shows the mechanical plastic anisotropy of the recrystallized sample and the 

specimen deformed by CR and ASR processes. In these results we observed that the texture 

of the recrystallized sample leads to a low value of normal anisotropy (Fig. 4.7a) compared 

to that of CR (Fig. 4.7.b). By comparing these curves to the ones simulated for each 

individual texture components of the recrystallization texture provided in figure 4.9, it can 

be shown that the relatively low R-value with the V-shaped profile found in the 

recrystallized sample is due to the cube component, whereas the larger R-value obtained in 

TD is attributed to the Goss texture component. 

 

Figure 4.9: R-value simulation (VPSC) of recrystallization components in different direction from the 
RD 

As already mentioned in the previous part of § 4-1-3-2, the results of anisotropy properties 

of the deformed samples indicate that the R-value of ASR samples possess a higher R-

value while presenting higher planar anisotropy as well.  
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By comparing the results in Fig.7bcd and the curves simulated by VPSC of rolling and 

shear components, shown in Fig. 4.10, this raises the idea that the presence of shear texture 

components results in a relatively high R-value. The VPSC simulated R-value trends of 

individual components in figures 4.9 & 4.10 are in qualitative agreement with the previous 

works [e.g. Lequeu 1988 and Inoue 2007].  

 

 

Figure 4.10: R-value simulation (VPSC) of a) rolling and b) shear texture components in different 
direction from the RD 
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Figure 4.10 indicates that copper and brass which are the main components in the sample 

rolled by CR are generally associated with higher normal anisotropy and maximum at 

45°from RD. On the other hand, the E and the F texture components developed in ASR 

processes lead to increase the normal anisotropy under the uniaxial tension (see Fig. 4.7cd 

and Fig. 4.10b). However, developing these textures leads to increasing planar anisotropy 

in comparison with the conventionally rolled sample. This can be a limitation of these 

processes which should be investigated in future works.  

Consequently, regardless of the exact value of the simulations in figures 4.8-4.10 offering a 

relative comparison of mechanical responses of various crystallographic texture 

components, one may conclude that crystallographic texture may control the macroscopic 

behaviours of this material. Generally, the difference between experimental results and 

predicted ones by the models in figures 4.6 & 4.7 could be due to texture gradient effect in 

the thickness or due to microstructural effects such as grain size, grain shape and 

dislocation structure. 

4-2 IF steel 

4-2-1 texture development under rolling 

Figure 4.11 shows the φ2=45° section of ODF presentation of the sheets deformed through 

CR and C-ASR. In both specimen γ and α fibres are pronounced. However, the γ fibre in 

the C-ASR sample is more uniform and weaker in comparison with the γ fibre of the CR 

sample. The E1 and the i texture components appeared in the sheet conventionally rolled as 

illustrated in Fig. 4.11a.  
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Figure 4.19: true stress-strain curves of asymmetric rolled samples under different strain paths 

The difference in the stress-strain curves of the CR and ASR samples in tension shown in 

Fig. 4.19 may be attributed to the micro-features formed through pre-strain. In order to 

understand the materials’ behaviour through strain path change, the α parameter was 

calculated regarding § 2-4-3; i.e. the C-ASR and uniaxial tension are subjected as pre- and 

subsequent strain paths respectively in Eq. 2.21. The macroscopically imposed plastic 

strain for the sheets under these two plastic deformation routes in an isotropic case (Rθ = 1) 

is approximated by ԑC-ASR and ԑten:  
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   (4.2) 

where ԑଵଵ and γ are compression and shear strains imposed in C-ASR, respectively; and θ 

is the angle between tensile test direction and rolling direction. Different relative ratios of 
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shear on compressive strain (
ୢஓ

ୢԑభభ
ሻ	are applied in order to evaluate the influence of the 

amount of shear strain imposed in C-ASR on the α parameter of in the sequence of C-ASR 

and tension strains. Figure 4.20 presents the variation of the α parameter of different ratios 

of (
ୢஓ

ୢԑభభ
ሻ in various directions from RD. It is obvious that the (

ୢஓ

ୢԑభభ
ሻ ൌ 0 is related to the CR 

where no shear strain were imposed in the metallic sheet during the process. Consequently, 

according to the plotted curves in Fig. 4.20, increasing shear strain and/or keeping ԑ11 low 

(lower reduction) through C-ASR may lead to a decrease in the α parameter. The extreme 

slump of α parameter induced by a shear strain occurs in RD (i.e. C-ASR and tension were 

carried out in RD).  

 

Figure 4.20: α parameter of sequence of strain paths: C-ASR (different	 ઻܌
ԑ૚૚܌

) and uniaxial tension 

In a real condition of experiments where the rolled sheets are anisotropic and with the 

measured ratio of	 ୢஓ
ୢԑభభ

 , the α parameters were calculated as 0.93 and 0.81 for the sequences 

of CR and C-ASR respectively, followed by a uniaxial tension in RD. The details of the 

anisotropic case and calculations are given in appendix A.  
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As a matter of fact, the calculations of both cases (one plotted in Fig. 4.20 and the case 

measured experimentally) show that the α parameter of CR is higher than that for C-ASR 

when followed by a uniaxial tensile test in RD. It is true that the difference of the 

calculated α parameters between CR and C-ASR is not very significant. But the study 

indicates that some new slip systems of C-ASR sample were activated in tension which had 

been latent during C-ASR process; but in the CR sheet, the previously activated slip 

systems of pre-strain (CR process) are involved in the plastic deformation through the 

tensile test. Hence, different behaviour of CR and C-ASR samples in the tensile test (Fig. 

4.19) can be due to activity of different slip systems in these specimens.  

Figure 4.21 shows the stress-strain curves (tensile test) of the samples deformed under CR, 

C-ASR and R-ASR for 60% reduction. The result indicates that there is no difference 

between C-ASR and R-ASR curves, while the ultimate strength (UTS) of CR curve reaches 

10 MPa higher than those of ASR samples. The small difference between the curves may 

be attributed to large amount of imposed plastic deformation through rolling processes 

translating high dislocation density. This means that the fined equiaxed substructure of 

ASR samples (observed in Fig. 4.12-4.18) and strong rolling texture of CR sheet (observed 

in Fig. 4.11) becomes ineffective on the stress-strain curves shown in Fig. 4.21.  

 

Figure 4.21: true stress-strain curves of uniaxial tensile test in RD 
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In order to avoid sample fracture through the tensile test and observe the impact of 

microstructure and texture on the mechanical behaviours, heat treatment was carried out, 

with the results obtained in § 3-2-4. Figure 4.22 shows the stress-strain curves (tensile test) 

of the samples deformed under CR and C-ASR with different reductions per pass followed 

by annealing at 550°C for one hour. Each sample was subjected to 4 passes giving rise to 

total deformations ranging approximately from 18% to 60%. It can be noticed that for low 

reductions (18%) the stress curve for the C-ASR sample presents the highest stress and for 

60% reduction the highest stress level was detected for the CR sheet. Such a phenomenon 

leads to the appearance of a transient behaviour for reduction ratios around 36%. However, 

the uniform elongations through tensile test for each group of deformation are similar (see 

Fig. 4.22). 

 

Figure 4.22: true stress- strain curves of CR and C-ASR samples after annealing 

Furthermore, the Lankford coefficient of deformed samples in the rolling direction given in 
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slightly increase in the R-value of the deformed sheets. However, at 36% reduction, the R-

values of both samples are approximately the same.  

Table 4.2: R-value in RD of different reductions of CR and C-ASR 

       reduction 

process 
18% 36% 60% 

C-ASR 0.75  0.80  0.78 

CR 0.65  0.81  0.62 

As already explained in chapter 2, factors of microstructure and crystallographic texture 

determine the mechanical properties. An annealing at 550°C for one hour (a recovery heat 

treatment) may result in a rearrangement of substructure induced by plastic deformation 

processes (shown in Fig. 4.16 & 4.17) which causes misorientation angles of dislocation 

cell walls to increase. Additionally, crystallographic orientations of the deformed sheets 

remained unchanged through the recovery annealing. The texture of C-ASR and CR 

samples presented in figure 4.11 indicated that both samples possess the same components 

but with the different intensities; i.e. the i and E1 components in the CR sample appeared 

with higher intensities. Consequently, the resulting feature after low temperature annealing 

of C-ASR samples in comparison with the CR ones, is a fine and equiaxed substructure and 

a relatively lower intense rolling texture.  

In order to evaluate the impact of produced texture in the mechanical response, VPSC 

approach was carried out to simulate the behaviour of each individual texture component 

through tensile test in RD as plotted in Fig. 4.23. The variation of <M> of rolling texture 

components of the i, E1 and E2 present a similar trend and higher than those of F1 and F2 

components in each amount of strain, whereas the recrystallization texture components 

(e.g. cube and goss) behave with the lowest ones. 
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Figure 4.23: simulation (VPSC approach) of the mechancial behaviour through tension in RD of 
individual texture components (BCC)  

The simulated curves reveal that the relatively strong rolling texture of the CR sheet 

(particularly i and E1 components) may lead to increase the stress through tension in RD. 

On the contrary, concerning the Hall-Petch relationship given in § 2-4-2, a fine 

microstructure of C-ASR sheets may raise their stress levels higher than CR sample with a 

coarse microstructure.  

In various reductions of pre-strain, the factor of fine microstructure of the C-ASR specimen 

leads to increase the strength; but in the higher reduction (60% total reduction in thickness) 

where the CR sheet has higher UTS point, the impact of crystallographic texture gets more 

effective. In the other words, due to the small pre-strain of 18% total reduction, the new 

textures have not completely developed while in 60% total reduction sheets the fully 

developed texture affects the mechanical response and increases the stress levels through 

tension in RD (see Fig. 4.22).  
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In this thesis, asymmetric rolling as a new method to produce the metallic sheets with 

enhanced properties regarding industrial requirements was studied. In order to achieve this 

goal a comprehensive view of the process in metallic sheets is needed. Since aluminium 

alloys and steels are two significant metals used in industries, this work was dedicated to 

studying the ASR process on the micro and macro behaviours of these two important 

metallic materials. In this chapter, conclusions from the research are drawn and 

recommendations are given for further research. 

5.1 general conclusions 

5.1.1 AA-5182 

Due to the appropriate properties of aluminium alloys, particularly their high strength-to-

weight ratio, they are getting more interest from industry. However, their anisotropic 

mechanical responses limit their applications. Part of the work focused on the influence of 

shear strain in ASR on texture development in the AA-5182 alloy. Furthermore, the 

mechanical responses of the induced texture were studied. Additionally, the self-consistent 

model was carried out to simulate texture developing and also the induced mechanical 

properties. In order to understand the contribution of each individual texture components in 

mechanical behaviours, the behaviours were observed using polycrystal approaches. The 

conclusions obtained around the ASR process of AA-5182 sheets are listed in brief below: 

 The results revealed that the asymmetric rolling process can be interpreted as the 

combination of shear and plane strain compression. The optimization of its 

parameters led to impose a uniform shear strain on the sheet thickness. The shear 

deformation could be formed through CR process too, but only in the regions 
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close to the sheet surface, which is negligible. The shear strain near the sheet’s 

surface is due to the friction between the working-rolls and the specimen.  

 The results indicate that the shear strain imposed by the ASR process developed 

shear texture components in the sheet thickness. The E, F and H components 

pronounced through the first pass of ASR became more intense through the 

second pass of C-ASR. Whereas the second pass of R-ASR resulted in shifting the 

components along the φ1 axis.  

 The VPSC simulation results of texture evolution show that the prediction results 

are in qualitative agreement with the experimental ones; i.e. the shear components 

appeared in the ASR sheets and rolling components were formed through the CR 

process. 

 In order to evaluate the impact of strain path change through the ASR (and the 

CR) processes, the α parameters of each process were calculated. An α parameter 

of less than 1 for two passes of R-ASR where the sample direction changes 

between the passes was obtained, and of 1 for two passes of C-ASR (and also 

CR). The calculated α parameters indicate that the same slip systems are activated 

in the same direction in the first and second pass of C-ASR (and CR); while the 

activity of slip systems and/or the directions differs in the second pass of the R-

ASR process. 

 The uniaxial tensile test of the samples deformed by CR, C-ASR and R-ASR 

processes was carried out. The results indicate that the strain hardening rate in the 

CR specimen is higher than those of C-ASR and R-ASR samples; and also the C-

ASR and R-ASR samples behaved in a similar way. Furthermore, the simulated 

stress-strain curves of the corresponding textures induced by each process showed 

similar behaviours (i.e. higher strain hardening rate of CR sample relatively to the 

ASR samples). The simulation of each individual texture component shows that 

the E, F and H components (shear texture) yield with lower strain hardening rates 

compared to those of copper, and brass components (rolling texture). 

 The results of R-value obtained through the tensile test in different directions 

indicate that ASR sheets possess higher normal anisotropy (desirable) and also 

slightly higher planar anisotropy compared with the CR sample results. This 

means that ASR processes of aluminium alloys may aid designers to solve low 



 
 
 
 
 

  chapter 5- general conclusions 

123 

 

 

normal anisotropy of rolled aluminium sheets; but they still have the earing 

problem in deep-drawn cups. 

 The predicted R-value variations with the angle from RD for recrystallized, CR 

and two types of ASR samples by the Taylor and VPSC model indicate similar 

trends. The comparison of R-value of each case with the simulated R-value of 

each individual texture component reveals that anisotropic mechanical behaviour 

of each specimen is due to its particular texture developed in the plastic 

deformation process.  

5.1.2 IF steel 

Two types of ASR process were carried out on the interstitial free steel to study the impact 

of shear strain on the macro and micro properties of this important material. The influence 

of shear strain on crystallographic texture development as well as microstructure change 

was taken into consideration. The induced mechanical responses of the ASR samples were 

evaluated, and the effect of level of shear strain in ASR on the activity of slip systems in 

the subsequent strain mode (i.e. uniaxial tensile test) was also investigated.  From the 

results obtained the following conclusions can be drawn: 

 Texture analyses indicate that the developed texture of ASR samples is more 

uniform and weaker than the texture measured from the CR sample.  

 The microstructural analysis using optical and atomic force microscopies indicate 

no great difference in the morphology of two rolled samples by ASR and CR 

processes. However, dark regions inside grains detected in 60% reduction of the 

ASR sheet that did not appear in the CR sample. This could be due to the various 

dislocation organizations in the ASR sheet.  

 The substructure analyses of the ASR and CR samples observed by transmission 

electron microscopy reveal different features in terms of their morphology and 

size. The dislocation organization formed during the C-ARS is equiaxed and fine 

compared to that formed during the CR process; i.e. the relatively larger 

dislocation cells in the CR specimen are elongated along the rolling direction. 

This observation was mostly seen in higher deformed samples. Since the sample 

direction had been changed in the R-ASR process (i.e. lower α parameter than C-
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ASR), the substructure of R-ASR sample was detected with a small discrepancy 

from C-ASR sample especially in its size. But it also showed an equiaxed 

substructure which may be attributed to the imposed shear strain through the R-

ASR passes.  

 The tensile test results indicate that the mechanical properties of 18% C-ASR and 

R-ASR are similar; but the CR specimen yielded at a relatively lower stress level.  

 The calculated α parameter in the sequence of C-ASR and uniaxial tension shows 

that a higher level of ASR (i.e. an increase in the ratio of 
ୢஓ

ୢԑభభ
) through the pre-

strain results in a lower α parameter; i.e. the higher ASR levels causes new slip 

systems to be active and/or dislocations to glide in opposite directions in tension. 

This observation also indicated that for the sequence of CR process (i.e. 
ୢஓ

ୢԑభభ
 = 0) 

followed by tension, the α parameter reached its maximum value. The extreme 

variation of the α parameter with the 
ୢஓ

ୢԑభభ
	ratio occurred when rolling direction 

and tensile test direction were parallel (i.e. θ=0).  

 The effect of reduction on the stress-strain curves of the rolled and annealed 

samples were studied: for low reductions, the stress-strain curve of the ASR 

sample reveals the highest stress while for 60% reduction the highest ultimate 

strength was recorded for the CR sample; i.e. it presented this transient 

phenomenon at around 36% reduction of rolling. The experimental results 

indicated that generally the fine structure induced by ASR process may lead to 

increase the sheet’s strength in various amount of reductions; however, the impact 

of strong rolling texture developed through the CR process has reverse effect and 

increase the stress level through tension in RD. In 18% reduction where the ASR 

sheet presented higher stress, due to a small amount of plastic deformation, the 

rolling texture have not developed completely in the CR sample and fine structure 

of ASR sheet caused to increase the stress in tensile test. But, in 60% reduction 

the higher stress of the CR sheet may be attributed to its strong rolling texture 

compared to the ASR specimen. 
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 5.2 future researches 

Based on the observations obtained, the following proposals are suggested for future work: 

 In order to fully understand the role of shear deformation imposed by the 

asymmetric rolling process in dislocation organization and substructure 

analysis particularly in TD and RD planes, additional microstructural analyses 

are recommended such as the electron back-scattering diffraction (EBSD) 

technique. 

 With the goal of increasing shear strain through the asymmetric rolling 

process, optimizing parameters is require, for which finite element methods 

(FEM) may be useful. 

 Further study can be conducted on different materials with various 

crystallographic structures such as magnesium alloys. This gives us a more 

comprehensive understanding of the process.  
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The materials’ behaviours after change in strain path in a complex strain mode was taken 

into consideration in § 2-4-3. The activity of different slip systems and their corresponding 

in the plastic deformation after strain path change were discussed. Additionally, the 

specific case of a tension of the C-ASR sheet were studied and the α parameter regarding 

this strain routes change for an isotropic condition were calculated in § 3-3. In “Appendix 

A”, the α parameter of the tensile test of the C-ASR sample for anisotropic condition are 

studied and the α parameter regarding this strain routes change are calculated. Generally, 

the α parameter of two sequence strain paths of ԑC-ASR and ԑten are given as:  

ߙ ൌ ఌ಴షಲೄೃ	∶		ఌ೟೐೙
|ఌ಴షಲೄೃ|		.		|ఌ೟೐೙|

	        (A.1) 

where ԑC-ASR and ԑten are strain tensors of the C-ASR (pre-strain) and tensile test, 

respectively. The ԑC-ASR is obtained as: 

ԑେି୅ୗୖ ൌ ൦
ԑ୮ 0 γ

2ൗ
0 0 0
γ
2ൗ 0 െԑ୮

൪       (A.2) 

Here, ԑp is the compressive plane strain and γ is the shear strain imposed in the C-ASR 

process throughout the thickness of the sample. The tensile test tensor, ԑten is determined as:  

ԑ௧௘௡ ൌ ቎
ԑᇱଵଵܿݏ݋ଶߠ ൅ ԑᇱଶଶ݊݅ݏଶߠ ሺԑ′ଶଶ െ ԑᇱଵଵሻܿߠݏ݋. ߠ݊݅ݏ ԑᇱଵଷ
ሺԑ′ଶଶ െ ԑᇱଵଵሻܿߠݏ݋. ߠ݊݅ݏ ԑᇱଵଵ݊݅ݏଶߠ ൅ ԑᇱଶଶܿݏ݋ଶߠ ԑᇱଶଷ

ԑᇱଷଵ ԑᇱଷଶ ԑᇱଷଷ

቏  (A.3) 

where θ is the angle between tensile test and rolling directions. Additionally, ε′ depending 

on the Lankford coefficient of the angle θ is obtained as: 
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ԑ′ ൌ

ۏ
ێ
ێ
ۍ
1 0 0
0 െ

ோഇ
ଵାோഇ

0

0 0 െ
ଵ

ଵାோഇے
ۑ
ۑ
ې
        (A.4) 

Hence, we have: 

ԑ௧௘௡ ൌ

ۏ
ێ
ێ
ێ
ݏ݋ܿۍ

ଶߠ െ ሺ
ோഇ

ଵାோഇ
ሻ݊݅ݏଶߠ ሺ

ିଶோഇିଵ

ଵାோഇ
ሻܿߠݏ݋. ߠ݊݅ݏ 0

ሺ
ିଶோഇିଵ

ଵାோഇ
ሻܿߠݏ݋. ߠ݊݅ݏ ߠଶ݊݅ݏ ൅ ሺെ

ோഇ
ଵାோഇ

ሻܿݏ݋ଶߠ 0

0 0 െ
ଵ

ଵାோഇے
ۑ
ۑ
ۑ
ې

  (A.5) 

Consequently, the α parameter for the sequence of C-ASR and tension is obtained using 

relations of A.1, A.2 & A.5: 

௧௘௡			,	஼ି஺ௌோ	ߙ ൌ															         

ԑ୮. ቀ	cosଶθ െ ቀ
R஘

1 ൅ R஘
ቁ sinଶθቁ ൅ ԑ୮. ቀ

1
1 ൅ R஘

ቁ

ට2. ԑ୮ଶ ൅
γଶ
2 .

ඨቀcosଶθ െ ቀ
R஘

1 ൅ R஘
ቁ sinଶθቁ

ଶ
൅ ሺsinଶθ ൅ െ

R஘
1 ൅ R஘

cosଶθሻଶ ൅ 2. ሺ
െ2R஘ െ 1
1 ൅ R஘

cosθ. sinθሻଶ

 

(A.6) 

The α parameter of the sequence of C-ASR followed by tension, regarding samples’ 

anisotropy and experimental parameters is obtained as 0.81 in rolling direction (i.e. θ=0). In 

the case of CR process where no shear strain were imposed through the thickness of the 

sample (i.e. γ=0), this parameter calculated as 0.93 for the rolling direction. 

 

 

 


	1- beginning of the thesis.pdf
	2- index
	3- chapters 1
	4- chapters 2
	5- chapters 3
	6- chapters 4
	7- chapters 5
	8- ref
	9- chapters apendix

