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palavras-chave 

 
Piroeletrólise do ferro, fusão de zona, ânodos consumiveis, eletrólitos fundidos, 
espinelas 

resumo 
 

 

Esta tese de doutoramento pretendeu demonstrar o conceito de piroeletrólise 
de ferro à escala laboratorial. Visou-se a deteção de objeções fundamentais 
e/ou restrições críticas, de modo a propor conceitos exequíveis para o método 
global e para elétrodos adequados, e identificar mais claramente os principais 
requisitos. O principal esforço foi dedicado ao estudo de materiais de ânodo 
adequados para o desenvolvimento de unidades industriais de larga escala, 
com eletrólito fundido à base de silicatos. O conceito compreende ânodos 
consumíveis à base de óxidos de ferro e um elétrodo de Fe fundido, com uma 
camada intermédia de Fe sólido entre o metal fundido e os refratários. 
Adicionalmente, foi testado um conceito alternativo de piroeletrólise com 
membrana bloqueadora eletrónica, e foram desenvolvidos protótipos com 
base neste conceito. 
O eletrólito fundido baseou-se numa composição de aluminosilicato de 
magnésio com um mínimo de temperatura liquidus, com diferentes teores de 
óxido de ferro. Foram realizados estudos de desvitrificação, cristalização de 
óxidos de ferro ou outras fases e alterações redox da razão Fe

2+
/Fe

3+
, 

recorrendo à fusão de zona por laser, a diferentes velocidades. Estes estudos 
visaram a obtenção de critérios fundamentais para a dissolução de matérias-
primas (óxidos de ferro) no eletrólito fundido, para avaliar a compatibilidade de 
espinelas à base de magnetite com potenciais ânodos e para prever as 
implicações de gradientes térmicos e/ou deficiente regulação térmica.  
Foram preparados e testados diversos protótipos laboratoriais, para 
demonstrar o conceito de piroeletrólise com bloqueamento eletrónico e para 
identificar as questões mais críticas e desafios deste conceito. O 
comportamento destas células em condições de operação com e sem 
bloqueamento eletrónico originou informações muito pertinentes sobre as 
propriedades de transporte do eletrólito fundido (i.e., condutividades iónica e 
eletrónica), a sua variação sob polarização anódica e catódica, as limitações 
de eficiência faradaica e a ocorrência de reações eletroquímicas parasitas ou 
secundárias.  
O conceito de ânodos consumíveis baseou-se em espinelas com 
composições derivadas da magnetite, em virtude da esperada estabilidade 
redox a altas temperaturas, mesmo em condições oxidantes. A composição 
destas espinelas foi ajustada para melhorar a sua refrataridade e a 
estabilidade em condições redox mais alargadas (T, pO2 e sobretensão 
anódica), sem excessivo prejuízo para a condutividade elétrica, estabilidade 
termomecânica e outros requisitos. As alterações de composição dos 
materiais de ânodo consumíveis também foram determinadas pelos 
constituintes do eletrólito fundido, de modo a prevenir contaminações 
inaceitáveis e para minimizar a velocidade de dissolução dos ânodos 
consumíveis. Outras alterações de composição tiveram o propósito de incluir 
componentes de aços ou ligas de ferro (Cr, Mn, Ni, Ti). 
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abstract 

 
The main purpose of this PhD thesis was to provide convincing demonstration 
for a breakthrough concept of pyroelectrolysis at laboratory scale. One 
attempted to identify fundamental objections and/or the most critical 
constraints, to propose workable concepts for the overall process and for 
feasible electrodes, and to establish the main requirements on a clearer basis. 
The main effort was dedicated to studying suitable anode materials to be 
developed for large scale industrial units with molten silicate electrolyte. This 
concept relies on consumable anodes based on iron oxides, and a liquid Fe 
cathode, separated from the refractory materials by a freeze lining (solid) 
layer. In addition, one assessed an alternative concept of pyroelectrolysis with 
electron blocking membranes, and developed a prototype at small laboratory 
scale. 
The main composition of the molten electrolyte was based on a magnesium 
aluminosilicate composition, with minimum liquidus temperature, and with 
different additions of iron oxide. One studied the dynamics of devitrification of 
these melts, crystallization of iron oxides or other phases, and Fe

2+
/Fe

3+
 redox 

changes under laser zone melting, at different pulling rates. These studies 
were intended to provide guidelines for dissolution of raw materials (iron 
oxides) in the molten electrolyte, to assess compatibility with magnetite based 
consumable anodes, and to account for thermal gradients or insufficient 
thermal management in large scale cells. 
Several laboratory scale prototype cells were used to demonstrate the concept 
of pyroelectrolysis with electron blocking, and to identify the most critical 
issues and challenges. Operation with and without electron blocking provided 
useful information on transport properties of the molten electrolyte (i.e., ionic 
and electronic conductivities), their expected dependence on anodic and 
cathodic overpotentials, limitations in faradaic efficiency, and onset of side 
electrochemical reactions. 
The concept of consumable anodes was based on magnetite and derived 
spinel compositions, for their expected redox stability at high temperatures, 
even under oxidising conditions. Spinel compositions were designed for 
prospective gains in refractoriness and redox stability in wider ranges of 
conditions (T, pO2 and anodic overpotentials), without excessive penalty for 
electrical conductivity, thermomechanical stability or other requirements. 
Composition changes were also mainly based on components of the molten 
aluminosilicate melt, to avoid undue contamination and to minimize the 
dissolution rate of consumable anodes. Additional changes in composition 
were intended for prospective pyroelectrolysis of Fe alloys, with additions of 
different elements (Cr, Mn, Ni, Ti). 
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Foreword  

 

Overwhelming evidence of global warming and its undisputable risks for the human 

societies are rising the urgency to implement policies to suppress greenhouse gas 

emissions (CO2, CH4, …), with specific initiatives for industrial sectors, transportation, 

agriculture, domestic and office energy needs, etc. Iron/steelmaking is one of industrial 

sectors with highest energy consumption, relying mainly on consumption of coal as a 

reducing agent and other fossil fuels to sustain very high temperatures. These specific 

conditions imply much higher environmental impact compared to other energy intensive 

industries, such as aluminium production. The main difference is the ability to develop 

electrolytic technologies, with prospects to rely on renewable energy sources such as 

hydroelectric. Thus, steel industry has also been urged to seek alternative technologies to 

reduce its CO2 emissions, including breakthrough electrolytic concepts such as direct 

electrochemical reduction of iron oxides in alkaline conditions, electrolysis in molten 

halides at intermediate temperatures, and pyroelectrolysis in molten oxide electrolytes at 

very high temperatures. The pyroelectrolysis concept is still very far from industrial 

implementation and it even lacks convincing academic demonstration. Thus, this was 

taken as the main scope of this PhD thesis. 

Key requirements for conclusive demonstration of pyroelectrolysis in oxide melts 

include development of suitable electrodes and molten oxide compositions with good 

transport properties (high ionic conductivity and nearly unit transport number) and other 

suitable requirements to assist electrode kinetics (wettability of electrodes, low viscosity 

to facilitate elimination of oxygen bubbles, etc.). Though development of suitable 

molten oxide electrolytes is not trivial, this is probably the less critical issue. This task 

can rely on detailed information on properties of glass melts, as well as on those relevant 

for volcanic melts, corresponding frozen-in conditions in basaltic rocks, and useful 

information on redox changes of iron oxides in a variety of aluminosilicate melts. The 

author contributed to this development mainly in Chapters 3 and 6. The experimental 

studies in Chapter 3 were mostly based on Laser floating zone (LFZ) method, taking 

advantage of the author´s previous experience.  
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Chapter 6 is dedicated to demonstration of a novel concept of pyroelectrolysis with 

electron blocking, to demonstrate prospects that will allows reduction to metallic Fe, 

with high faradaic yields, except on reaching excessive depletion of iron oxide in the 

aluminosilicate melt. Experimental cells operated without electron blocking demonstrate 

that direct electrolysis mode fails to deliver acceptable faradaic yields and is, thus, still 

very arguable.  

A plausible concept for the cathode may rely on a liquid Fe layer with a freeze lining 

layer to avoid direct contact with refractories. This requires temperatures above melting 

of metallic Fe, and other major difficulties, mainly if one seeks implementation at 

laboratory scale, without undue costs.  Thus, one readily recognized that noble metals 

would be the only choices as cathode material to perform experimental studies of 

pyroelectrolysis, as described in Chapter 6. One important conclusion of this work also 

refers to drastic disintegration of Pt cathodes in pyroelectrolysis, showing that noble 

metals may be ill-suited for such application.  

Still, the greatest uncertainties concern the development of workable anodes, taking into 

account the extremely aggressive nature of oxide melts at very high temperature under 

anodic polarization, which exclude any prospects to use common metallic electrodes and 

even raises doubts about the inertness of noble metals, independently of their prohibitive 

costs. Thus, one proposed a rather unique concept of consumable anode, based on 

magnetite and related multicomponent spinels. The composition of these spinels were 

selected mainly in the system Fe-Al-Mg-O, with other additions corresponding to the 

components of special steels (Ni, Cr, Nb, Ti, Mn, Si, Zr,…). The compositions were 

designed to meet suitable requirements (refractoriness, electrical conductivity, redox 

stability under the expected redox conditions, tolerance to thermal gradients and thermal 

shock,…), and also to be compatible with the intended metallic product (Fe or its alloys) 

and with the molten electrolyte, to retain sufficiently slow dissolution and to avoid 

undue contamination. These studies are reported mainly in Chapter 4, and include 

guidelines for relevant composition-structure-properties, which may also be used for 

other spinels, intended for applications at different temperatures, from room temperature 

up to very high temperatures. Additional contributions are presented in Chapter 5, taking 

advantage of the uniqueness of LFZ technique to attain much higher temperatures and to 

facilitate specific heat treatments. 
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1  Introduction 

A state of art and surround areas of steelmaking industry will be described in this 

chapter, together with actual problematic issues and proposed solutions. The chapter will 

present the description of relevant processes and methods for iron production, from 

fundamental viewpoint. It will also introduce the approaches, proposed in this thesis, and 

briefly describe the related limitations and possible ways to overcome them. Special 

attention will be given to structural, physical and chemical properties of spinel-type 

materials, as alternative electrode materials, and the Laser Floating Zone (LFZ) method, 

as a tool to access relevant process mechanisms in harsh and experimentally difficult 

conditions. The index of the chapter follows below: 
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1.3.2 Electrical properties & mechanisms .......................................................... 31 

1.3.3 Application as anodes ................................................................................ 33 

1.4 The laser floating zone method ......................................................................... 37 

1.4.1 Method development ................................................................................. 37 

1.4.2 Applications & improvements of LFZ technique ...................................... 43 
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1.1 Steelmaking industry nowadays 

Iron production is one of the technological pillars of our civilization. The modern human 

deals with iron and steel everywhere. It can be found in transport, housing, energy, 

agriculture, water supply and infrastructures due its unique combination of strength, 

formability and versatility [Worrell2010, WSA2013]. 

Considering the wide application of iron and steel alloys, it is not surprising that the last 

year (2013), the world steel industry produced 1.6 billion tonnes of steel from iron ore 

and recycled steel. 

Production of steel is usually a combined process that begins with production of pig 

iron. The resulting “hot metal” (liquid iron) is immediately afterwards processed into 

steel [Kim2002, Schinko2014]. Further processing of iron into steel is an exothermic 

process, as excess of carbon in the pig iron is burned with oxygen, being one of the CO2 

source emissions [EWC2014, Schinko2014, STEP2014]. In fact, 90 to 97 % of CO2 

emissions result from the coke preparation for iron production and, hence, any 

improvements in the iron production would greatly affect the CO2 emissions in steel 

production [Schinko2014]. 

Once produced steel becomes almost permanent resource, since it is 100 % recyclable 

and has a very long life cycle without loss of properties, making the steel unique and 

valuable [Worrell2010, WSA2013]. The steel industry believes that sustainable 

development must meet the needs of the present, without compromising the ability of 

future generations to get their own needs. It is for this reason that life cycle assessment is 

of vital importance [Worrell2010, WSA2013]. 

It is known that after steel discovery its use has overtaken the iron due its durability and 

malleability. In industrial and commercial matters steel is more spoken, while in research 

is given more importance to iron production. The present work focuses on iron making 

process, as an important part of steel production.  

The main worldwide producers of steel and their evolution in the last eleven years are 

presented in Figure 1.1. One should notice the evolution of China as a main producer, 

while others countries decrease its production.  
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Although Chinese output also fell at the onset of the global crisis, China was the first to 

recover and, after 2009, producing crude steel at new monthly records until nowadays 

[UKS2009]. Portugal, as curiosity, occupied the 43 world rank position with 1.9 Mt 

(mega Tons) of steel production in 2012 [WSA2013]. 

 

Figure 1.1 – Evolution of main steel producing countries. [WSA2013, Worrell2010], CIS = 

Byelorussia, Kazakhstan, Moldova, Russia, Ukraine, Uzbekistan; NAFTA = Canada, Mexico, United 

States; Others Asia: India, South Korea, Taiwan, Australia and New Zealand. 

Table 1.1 presents the major steelmaking producers worldwide and their contribution, 

related to the worldwide steel production in 2013. From the average percentages of the 

steelmaking producer we can imagine the numbers of existence companies in this 

industry. It’s also noteworthy the gap between the production of first position and others. 

Table 1.1 – Steelmaking producers worldwide ranking [WSA2013]. 

Rank Company 
% 

Production 
 Rank Company 

% 

Production 

1 ArcelorMittal 5.85%  10 Ansteel Group 1.89% 

2 
Nippon Steel & Sumitomo 

Metal Corporation 
2.99% 

 
11 Shandong Group 1.44% 

3 Hebei Group 2.68%   Tata Steel 1.44% 

4 Baosteel Group 2.67%  12 U.S. Steel 1.34% 

5 POSCO 2.49%  13 Nucor 1.26% 

6 Wuhan Group 2.28%  14 Gerdau 1.24% 

7 Shagang Group 2.02%  15 Maanshan 1.08% 

8 Shougang Group 1.96%  16 Hyndai Steel 1.07% 

9 JFE 1.90%  17 RIVA Group 1.00% 
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1.1.1 Conventional iron and steelmaking 

Iron ores rocks and minerals from which metallic iron can be economically extracted are 

found in diverse worldwide locations (Figure 1.2). The iron found in the content ranges 

from 25 to 65 % and itself is either found in the form of hematite (Fe2O3) or magnetite 

(Fe3O4). The treatment of ore starts with the removal of earth and the sizing of the ore 

into pieces that range from 15 to 40 mm [Worrell2010, Muwanguzi2010, Mohanty2012, 

Nadoll2014]. 

 

 

Figure 1.2 – Mineral map of the world [Mapworld2014]. 

The major compounds found in the iron ore are: SiO2, Al2O3, Fe2O3, MnO, MgO, CaO, 

Na2O, K2O, TiO2, P2O5. Other elements can be  present in very trace amount, being its 

percentage dependent on mine site and raw materials available [Santos1965, 

Mohanty2012, Muwanguzi2010]. However, each source of iron has its own peculiar 

mineralogical characteristics and requires specific beneficiation and metallurgical 

treatment to get the best product out of it [Santos1965, Muwanguzi2010, Mohanty2012]. 
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Steel production involves numerous processes/steps that can be laid out in various 

combinations depending on the products mix, available raw materials, energy supply and 

investment capital. The iron and steel industry produces a variety of products from slabs, 

ingots to thin sheets, depending of the production routes (Figure 1.3) [Kim2002, 

Hu2006, Worrell2010, Pardo2012, EWC2014, IS2014, Nadoll2014]. 

 

Figure 1.3 – Simplified scheme of iron and steel production routes [Pardo2012]. 

Key characteristics of the main processing routes used in the production of crude steel, 

are the following [Kim2002, Hu2006, Worrell2010, Pardo2012, EWC2014, IS2014]: 

 In Blast Furnace (BF)/Basic Oxygen Furnace (BOF) route, pig iron is produced 

using mainly iron ore (70 to 100%) and coke in a blast furnace, and then turned 

into steel in a basic oxygen furnace. Due to the inclusion of coke making and 

sintering operations, this route is highly energy intensive; 

 Electric Arc Furnace (EAF) route is primarily based on scrap for the iron input 

and has significantly lower energy intensity compared to the BF/BOF route due 

to the omission of coke making and iron making processes; 
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 Direct Reduced Iron (DRI)/EAF route, based on iron ore and often scrap for the 

iron input. Energy intensity of DRI production can be lower than BF route, 

depending on the size, and fuel and ore characteristics. 

These production routes are expected to remain the mainstay of steel production for 

years to come [Hu2006, Worrell2010, Pardo2012, EWC2014, IS2014].  

 

1.1.2 Alternative processes for iron and steelmaking production 

The processes of iron and steelmaking are not only high-energy consumptive, but also 

the major source of air pollution, also requiring an intensive use of fossil fuels 

[Wang2007, Hiu2013, EWC2014]. The iron and steel industry require much raw 

material, since more than half of the mass input becomes outputs in the form of off-gases 

and solid wastes/by-products [IPPC2001].  

For these reasons over the past 40 years, the European steel industry has more than 

halved its energy intensity and, therefore, reduced corresponding CO2 emissions 

[IPPC2001, UKS2009, Hiu2013, EWC2014, IS2014]. This is one of the highest levels of 

energy conservation achieved by any industrial sector. This means that steelmaking 

processes are now so optimised that they are close to theoretical thermodynamic limits 

realised [UKS2009, Hiu2013, IS2014]. No simple process is available off-the-shelf that 

will help make further reductions. As a result, hot metal produced via the blast furnace 

route must be placed on a completely new technological path if one desires a significant 

advance [UKS2009, Hiu2013, IS2014]. 

Even the big efforts, made in the past, to reduce emissions by reuse and recycling solid 

metallic wastes, yielding to a considerable amounts of material to recycle disposed in 

landfills, without possibilities to expedite and convert as new material (by recycling) due 

how the process it’s made. [IPPC2001, Hu2006]. Iron has been made in blast furnaces 

for more than 500 years. Blast furnaces require coke, and coke plants are expensive and 

have many environmental problems associated with their operation. Thus, it would be 

beneficial from an economical and environmental point of view to produce iron ore 

without the use of coke [IPPC2001, EWC2014].  
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Nowadays, nearly all blast furnaces reduce their coke consumption significantly by 

means of reductant injection at tuyeres [IPPC2001]. However, coke cannot be fully 

replaced in a blast furnace because of its burden supporting function. The minimum blast 

furnace coke rate is approximately 200 kg/t pig iron [IPPC2001]. 

The blast furnaces have evolved into highly efficient reactors. However, other 

techniques are now available which present a challenge to the blast furnace route for pig 

iron production [IPPC2001].  

Pressure for improvements exerted on steel producers lead to creation of a European 

consortium in a R&D programme, seeking to develop radical new iron ore based 

steelmaking technologies called ULCOS (Ultra Low CO2 Steelmaking) [UKS2009]. 

This consortium is composed by all major EU steel companies, of energy and 

engineering partners, research institutes and universities and is supported by the 

European commission, started in 2005 with a financial support of 60 million €, for 

cooperative research & development initiative with the aims deliver a 50% reduction in 

CO2 emissions from steel production in 2050 [UKS2009, IS2014].  

Until now ULCOS program has investigated over 80 different options for these new 

concept routes, using modelling and laboratory approaches to evaluate their potential, in 

terms of CO2 emissions, energy consumption, operating cost and sustainability. From the 

various technological options, four broad families of process routes have been selected 

within the ULCOS programme (Table 1.2), for further investigation and eventual scale 

up [UKS2009, ETP2010, Pardo2012, IS2014]. 

These technologies can be divided into two types [Pardo2012]:  

 Industrial innovative technologies, which have been demonstrated already on an 

industrial scale, but whose use are not widespread in the European Iron & Steel 

sector; 

 Promising technologies for the medium term, which are currently under 

development. 
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The driving force for developing new processes for steelmaking usually involves around 

one of three major cost factors [Welch1999, Pardo2012]:  

 Electrical energy reduction demands, because of the so-called inefficiency; 

 Capital cost reduction of the reactor per annual production tonne; 

 Environmental considerations (compliance with existing greenhouse gas 

regulations). 

 

Table 1.2 – Four breakthrough technologies for the iron and steel  industry [Sadoway95, Wang2007, 

US2007, Allanore2008, UKS2009, ETP2010, Kim2011, Wang2011, Pardo2012, IS2014, STEP2014]. 

Technology R&D needs 

Blast furnace  

The top gas of the blast furnace goes through CO2 capture and the remaining 

reducing gas is re-injected at the base of the reactor, which also operates with pure 

oxygen rather than hot blast (air). This has been called the Top Gas Recycling 

Blast Furnace (TGRBF). The CO2-rich gas stream is sent to storage. 

Smelting reduction 

process 

Based on the combination of a hot cyclone and of a bath smelter called HIsarna 

and incorporating some of the technology of the HIsmelt process. (The raw 

materials for the process, which are coal and iron ore, remove the need for coke 

ovens and sinter plants in the integrated steel route). The process also uses pure 

oxygen and generates an off-gas which is virtually ready for storage. 

Direct reduction 

process 

Produces Direct Reduced Iron (DRI) in a shaft furnace, either from natural gas or 

from coal gasification (ULCORED). Off-gas from the shaft is recycled into the 

process after CO2 has been removed and captured, which leaves the DR plant in a 

concentrated stream for storage. 

Two electrolysis 

concepts 

(are at the early 

stages of research) 

In an early stage of research, produce metal either from a water alkaline solution 

at around 100 °C (electrowinning process - ULCOWIN). 

Steelmaking temperature with a molten salt electrolyte made of slag 

(pyroelectrolysis - ULCOLYSIS). 
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The electrolysis concept, which leads directly to final products, is to be compared to a 

whole raw material preparation step, which has an energy consumption of 15 to 20  10
9 

J / t liquid steel, with a similar order of magnitude. The technology might be attractive in 

terms of CO2 emissions, if it is low the carbon emission during electricity production 

[Hu2006]. The next section will discuss the advantages and disadvantages of the molten 

oxide electrolysis (MOE) process. 
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1.2 Molten oxide pyroelectrolysis: concept & challenges 

As described above, the electrolysis is being investigated for steel industry application as 

a carbon-clean route that scopes with the potential environmental constraints on 

emissions. Among all methods under consideration, only MOE produces liquid metal 

from oxide feedstock (Figure 1.4), and compared with traditional methods of extractive 

metallurgy offers both a substantial simplification of the process and a significant 

reduction in energy consumption [Hu2006, Kim2011, Allanore2013, EWC2014].  

 

Figure 1.4 – Concept for iron pyroelectrolysis [Sadoway95]. 

The earliest attempt of electrowinning iron (the formation of iron by electrolysis) from 

carbonates appears to have been in 1944, as an unsuccessful attempt of iron  

electrodeposition from sodium carbonate, peroxide, metabore mix at ~ 500 ºC. The 

process resulted in sodium and magnetite (iron oxide) deposition, rather than iron 

extraction [STEP2014]. Other attempts have focused on iron electrodeposition from 

molten mixed halide electrolytes, which has not provided a successful route to form iron, 

or aqueous iron electrowinning that is hindered by thermodynamic limitations and slow 

kinetics at low temperature [STEP2014]. 
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Electrolysis with molten electrolyte is a well-known method used for commercial 

production of aluminium, magnesium, sodium, potassium, lithium, beryllium, titanium, 

[Cooper2006], silicon [Barron2010], among others. The electrolysis in molten salts was 

proved to be a techno-economically feasible for these elements [Chen2000, Mishra2005, 

Tan2009, Arriesgado2011]. 

Several other reactive metals, such as lanthanides and actinides, also make use of molten 

salt processing for extraction and refining [Mishra2005]. The high temperature 

associated with the generation of significant quantity of waste, needs to develop 

alternative processes that have low waste or ideally a ‘zero-waste’ generation. Low 

temperature multicomponent molten salts, as well as room temperature ionic liquids 

have been developed for materials processing [Mishra2005]. 

The reduction mechanism in MOE is similar to Hall-Héroult process for aluminium 

production, which consists of the electrolytic decomposition of aluminium oxide, 

dissolved in a molten fluoride solvent, comprising cryolite: Na₃AlF₆, (Fig. 1.5).  

 
 

Figure 1.5 – The Bayer-Hall-Héroult process produces primary aluminium from bauxite ore 

[DoITPoMS2014]. 

However, these two processes are fundamentally different in relation to the 

compensating oxidation reaction at the anode. In the Hall-Héroult cell, oxidation 

requires the attendant consumption of the carbon anode resulting in the generation of 

carbon dioxide [Kim2011]. 

In the case of titanium oxide, the solid TiO2 dissolves into electrolyte (liquid of BaO or 

cryolite) as Ti
4+

 and O
2-

. By introducing electrodes to the system and running a current 

from the positively charged anode to the negatively charged cathode, the ionic species 
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will migrate to the oppositely charged electrode and donate or receive electrons to 

neutralize to an uncharged valence structure [Cooper2006].  

As example the titanium reduces at the cathode as: 

Ti
4+

 + 4e
-
  Ti (s)

 (1.1) 

while the oxygen is oxidized to gas at the anode as: 

O
2-

  
1

2
 O2 (g) + 2e

-  (1.2) 

complete the ionic current [Cooper2006].  

In order to successfully harvest the liquid titanium, the molten oxide must have less 

density, so the titanium can sink to the bottom [Cooper2006]. Also, the process would 

use a conductive crucible as the cathode, so that the titanium forms at the bottom of the 

cell [Cooper2006]. Typically, if solid metal is drawn out of the solution at temperatures 

below the melting point of the metal, it will electroplate the cathode as a solid, which 

will continue to conduct and grow layers of the deposited metal [Cooper2006]. 

The ideal process should produce ‘zero’ waste and the metals can be recovered from 

inexpensive oxides/chlorides without the need for an expensive reductant. Operational 

costs include graphite anode, electric power and recyclable salt only. The process is also 

amenable to allow production directly by incorporating co-reduction of respective oxides 

[Mishra2005]. 

In the case of iron, to meet the production requirements of an industrial process, the 

anode must sustain high current densities, potentially exceeding 1 A/cm
2
. Under these 

conditions most of metals are poor candidates for anode materials, due to the effects 

from strongly oxidizing anodic conditions [Kim2011]. 

Anodic oxidation can be a strong constraint on the metal-producing efficiency of the 

electrolytic system. Therefore, the identification of optimal materials for the cell anode 

is critical for the success of the electrolytic system [Cooper2006, EWC2014]. As a 

consumable alternative, the graphite anode produces just as much CO2 as the 

conventional process, which is environment unfriendly and gives an opposite direction 

for the CO2 greenhouse evolution of the intent of MOE for iron [Kim 2011, Wang2012, 

Lantelme2013, EWC2014]. 
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Preliminary studies of iron pyroelectrolysis in glass slags melts at high temperature have 

shown the complexity of the process and demonstrated that it is quite far away from 

pilot scale or industrial application [Sadoway94, Sadoway95, US2007, Kim2011, 

Wang2011]. 

In addition, big challenges still exist for iron production by MOE due the process 

conditions, such as [Mishra2005, kim2011, Allanore2013, EWC2014]: 

 Extremely high temperatures (the melting point of iron is ~ 1575 ºC); 

 High solubilizing power of a multicomponent oxide melt; 

 Under anodic polarization most metals inevitably corrode in such conditions; 

 Iron oxide undergoes spontaneous reduction on contact with most refractory 

metals and even carbon; 

 Development of the anodes, tolerant to the extreme conditions imposed by high 

temperature of the melt; 

 Evolution of pure oxygen gas at atmospheric pressure; 

 Assessing the efficiency impact of ionic and/or electronic conductivity of salts 

and glass melts, containing dissolved iron oxide; 

Next sections will discuss the work done until now and the challenges in terms of 

materials choice for cell elements. 

1.2.1 Electrochemical cell 

An electrochemical cell is defined as a device capable of either obtaining electrical 

energy from the chemical reactions or facilitating the chemical reactions by the electrical 

energy.  

An electrochemical cell contains two electrodes, the anode and the cathode. The anode is 

an electrode where oxidation occurs, while the cathode is where reduction occurs 

[Tilquin95]. In general, a liquid (electrolyte) separates the two electrodes and serves as a 

galvanic contact between the electrodes. The electrolyte solution form an interface at 

which the electrolysis process takes place [Tilquin95]. 

A common example of an electrochemical cell is a standard 12 V battery. A galvanic cell 

(battery) contains two electrodes which are separated by a liquid (electrolyte), therefore 

the electrode reactions are also separated.  
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As an example, the experiment performed by Keller et al. for aluminium production with 

a tin oxide anode in a cell are shown schematically in Fig. 1.6a [Keller1997], while for 

MOE of iron is presented in Fig. 1.6b with an atmosphere control [Kim2011]. The 

position of the cathode and anode will determine the deposited iron and oxygen. 

In a galvanic cell the electrochemical reaction proceeds spontaneously, that can be used 

as energy sources. The Gibbs free energy of cell reaction depends who made the work: 

 by the battery: r G  0; 

 on the battery: r G  0. 

In the electrolysis cell, a non-spontaneous reaction is driven by an external source of 

current, e.g. a battery is charged (the work is done on the battery).  

 

Figure 1.6 – Schematic of experimental set-up: a) testing tin oxide electrodes [Keller1997], b) Molten 

iron oxide electrolysis [Kim2011]. 

This way, the cell reaction potential, should be: 

- z F Ecell = r G (1.3) 

where Ecell, the cell reaction potential is the potential difference between electrodes, z the 

number of moles of electron transferred in the cell reaction, F the Faraday constant and  

z F Ecell is the maximum work that can be done by the cell. The thermodynamic sign 

convention for spontaneous (natural) processes is: 

r G  0 thus  Ecell ≥ 0 (1.4) 

Ecell is measured. 

a)  b) 
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At the conditions given, Ecell is a measure of maximum work the cell could do. From the 

measured Ecell, knowing the cell reaction itself, the reaction Gibbs free energy can be 

calculated. If diffusion current should be taken into account the d (diffusion potential): 

dcellMF EE   (1.5) 

the electromotive force EMF is measured instead of Ecell. In this case a non-

thermodynamic quantity is added to Ecell. In many case d  can be minimized down to 

several mV by the application of a salt bridge, and Ecell and EMF can be taken equal. 

When the cell reaction is in chemical equilibrium (at T = 0, p = 0) 

0and0  cellr EG  (1.6) 

the system is incapable to do any work. 

A single liquid phase contains both the oxidized and reduced forms of electrode reaction. 

A noble metal electrode, e.g. Pt senses the potential difference between the bulk of 

solution and the metal. The electron exchange occurs in the liquid phase.  

The electrochemical process which determines the electrode potential of redox electrode 

is given by:  

Pt(s)│Fe
2+ (aq), Fe

3+
 (aq) 

(1.7) 

Fe
3+

 + e
-
  Fe

2+
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where  32  and 
FeFe

aa is the activity of Fe
2+

 and Fe
3+

 in the cell. The electrode potential is 

identical to the standard potential. 

0
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The electrode potential is less than the standard potential: 

0

Fe/FeFe/Fe 3232     (1.9) 

In our case, since we want study the sample and its conductivity at high temperature, 

was necessary the development of another kind of cell based in this method. As will be 

shown and described in chapter 2, we plan to use an electrochemical cell of YSZ (Ytria 

Stabilized Zirconia). This material has exceptional thermochemical stability, allows 

using with melted metals [Fergus1998] or melted glass [Yamashita2008]. This solid 

electrolyte allows the implementation of unique and innovate electrochemical systems 

[Inoishi2012]. 

In MOE, the decomposition of iron oxide, dissolved in electrolyte melt, occurs as 

following: 

Fe3O4  Fe
2+ 

+ O
2-

 + Fe2O3  Fe (l) + O2 (g) + Fe2O3 

Fe2O3  2 Fe
3+ 

+ 3 O
2-

  Fe (l) + O2 (g)
 

(1.10) 

Electrochemically-produced ions can turn into different species depending of the pH of 

reactive media. More significant changes occur for iron, as it is further oxidized in 

solution once produced, even by oxygen. In this respect, it is known that Fe
2+

 oxidizes 

very slowly in contact with dissolved oxygen to Fe
3+

 in acidic media, according with  

Eq. 1.10 [Jiménez2012]. 

In each electrode the following reactions can occur: 

Cathode: Fe
2+

 + 2e
-
  Fe (aq) 

1.11 
Anode: O

2-
  ½ O2 (g) + 2e

-
 

In order to measure the efficiency of the electrolysis process, we can apply the Faraday’s 

law, which allow to calculate the weight of the metal produced (m): 

𝒎 =  
𝟏

𝑭
 
𝑸 𝑴

𝒏
 (1.12) 

where F is the Faraday constant, Q is the total charge passed through the system, M is 

the molar mass of the metal, and n is the valence number of the metal ions in solution 

[Cooper2006]. The charge can be obtained by:  

Q = i t (1.13) 

where, i is the current passing through the cell and t the time that current was held 

(coulombs = amperes x second) [Cooper2006].  
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Faraday theory is not equipped to handle systems where multivalent states are as 

abundant and unpredictable, as titanium or iron [Cooper2006, Jiménez2012]. Still, the 

positive relationship between charge and metal production remains, so higher operating 

current densities would lead to higher throughput of metals production [Cooper2006].  

The electrolysis process can be studied by the Current-Voltage (CV) measurements, 

which is useful for picking out electrical and kinetic properties as they relate to metal 

reactivity and oxide formation, they do not represent the steady-state conduction 

properties that would govern an always-on electrolytic cell. However, feedstock the 

electrolysis of metal oxides, the cell maintains a consistent setting over a long time-

frame. The electrochemical cell can be treated as an electrical device described by 

voltage and current characteristics. [Cooper2006].  

The relevant properties can be also measured through cycles, including: 

 potentiostatic (PS), constant voltage is maintained 

 galvanostatic (GS), constant current is maintained 

 potentiodynamic voltammometry (PDV)[Cooper2006] 

The main difference between these techniques is the voltage/current scan speed 

[Cooper2006]. CV scans return the current densities that a voltage is capable of 

producing in the cell [Cooper2006].  

The PDV scans it done with a slowly rate (~ 0.2 mV/s) to give a better idea of the long-

term behaviour of the cell as a steady-state current [Cooper2006]. PS is even more long 

term as individual voltages are held for about 10 minutes and the average current is 

assessed based on that time-frame [Cooper2006]. 

This type of measurement can also be used to determine the corrosion layer thickness 

and the level of electrodeposition. The GS data should be consistent with the PS data, as 

both are merely holding one parameter constant and measuring the other, which is a 

direct function of the constrained parameter [Cooper2006]. 

The electrolytic voltagrams are non-linear is most cases, with critical potentials required 

to activate the electrolytic reaction and unlock current flow. The metal may reduce and 

deposit above a certain potential, with the molten oxide species (e.g. barium in the 

titanium system) actually reducing and depositing at the cathode at another higher 

potential [Cooper2006, EWC2014].  
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The same behaviour can be observed for oxygen evolution at the anode. However, while 

metal deposition at the cathode (according to Eq 1.11), still allows the conduction of 

electrons into the melt to continue the electrolysis, oxygen formation at the anode occurs 

as bubbles, which cover and insulate the anode, preventing electrical current flow 

(uptake of electrons from oxygen anions) [Tilquin95,Cooper2006, EWC2014]. It is 

noteworthy that MOE was also mentioned as a promising route for generation of oxygen 

for extra-terrestrial exploration [Wang2011, Allanore2013]. 

The efficiency of an electrochemical cell largely depends on the partial contribution of 

the electronic component into the ionic conductivity of electrolyte. Thus, assessment of 

this contribution is an important task. As an example, the Hebb-Wagner process is a 

technique based on the oxygen ions blocking movement, putting a membrane under a 

gradient of oxygen partial pressure [Pérez2011]. 

Somewhat similar approach was applied to the experimental electrolysis simulation 

performed in this work, in order to understand the impacts from electronic and ionic 

conduction. 

1.2.2 Electrolyte materials 

In the electrolysis process the electrolyte type used represents a process challenge, as 

shown in Table 1.3. The MOE becomes viable the mass production of aluminium and 

other metals by electrolysis in molten media [Sadoway94, Sadoway95, EWC2014], 

included metals with great technological importance like titanium [Sadoway94, 

Sadoway95, Fried2004, Mishra2005, Cooper2006, US2007, Kim2011]. 

Table 1.3 – Electrolyte-related challenges in electrolysis technology [Haarberg2005] 

Possibilities Problems/Challenges 

Aqueous solutions 

Low current efficiency 

Low current density 

Large space required 

Molten Salts 
Low Fe2O3 solubility 

No inert anode 

Molten oxides 

High temperature 

Corrosive electrolyte 

Electronic conduction 

No inert anode 
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The melt salts processing, possibilities to perform electrolysis by melts due to its 

capabilities to dissolve materials with high concentrations when compared to the 

presented by aqueous solutions [Mishra2005]. 

One of the problems in the process with aqueous solutions and molten salts include the 

use of various salt mixtures of chlorides, with additions of fluorides, that generate a 

considerable amount of contaminated waste that has to be processed before recycling or 

disposal [Mishra2005]. Beyond the high solubility, high temperature operation during 

molten oxide electrolysis also increases the ionic conductivity and promotes the reaction 

at the electrode, leading to higher current densities [Sadoway94, Mishra2005]. Further, 

high temperature can contribute for partial endothermic reduction, converting hematite 

into magnetite, for instance. The electrolysis with molten glass can also allow the use of 

slags with lower quality, without previous separation of harmful impurities [Sadoway95, 

Mishra2005, US2007, Kim2011, Wang2011], as will be discussed later. At the same 

time, the electrolyte composition should be optimized to meet a plurality of 

requirements. For example, the melting point of the slag must be less than 1450 ºC 

[Kim2011]. 

The literature data suggest a correlation between mixed transport properties of glasses or 

molten salts with the coexistance of different iron oxidation sates [Wang2011], which 

raise a risk of internal short-circuit, as a result of partial reduction at the cathode        

(Fe
3+ 

+ e
- 
→ Fe

2+
) and reoxidation at the anode [Wang2011].  

It is convenient to express the melt chemistry of this system in terms of its Lewis acid-

base properties. In an oxide melt, silica polymerizes and acts as an electron-pair 

acceptor. Hence, melts high in silica are termed acidic [Kim2011]. Dissociating into 

alkaline-earth cations and oxide anions, magnesia and calcia act as electron-pair donors. 

Thus, melts high in magnesia or calcia are termed basic [Kim2011].  

The valence of the iron in the electrolyte also depends on the pH of the electrolyte. This 

behaviour can be analysed through thermodynamic databases by means of Eh-pH 

diagrams also known as Pourbaix diagrams (Fig. 1.7) [Verink2000, Takeno2005]. An 

Eh-pH diagram depicts the dominant aqueous species and stable solid phases on a plane 

defined by the Eh and pH axes [Verink2000, Takeno2005]. 
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The electrode potential for cathodic protection is represented by the equilibrium 

coexistence line between ferrous ion and iron in Fig. 1.7. The domain of potential and 

pH, in which anodic protection may be considered, is represented by the passive region 

(either Fe3O4 or Fe2O3), but care should be exercised to control the ratio Fe
2+

:Fe
3+

 in 

order to allow the electric conduction in the electrolyte [Verink2000]. 

 

Figure 1.7 – Eh-pH diagrams of the system Fe-O-H, 25 ºC, 1 atm (considering as solid substances 

only Fe, Fe3O4, and Fe2O3) [Takeno2005].  

If the electrode potential falls in a corrosion regime (e.g., in the region where ferrous ion 

is stable) it is possible to stop corrosion either by adding an oxidant that would bring the 

electrode potential into the region of Fe2O3 stability by raising the electrode potential, or 

by changing the pH in the alkaline direction, so as to move horizontally into the passive 

region, or by cathodic protection that has the effect of lowering the potential into the 

immunity region. It should be emphasized that the predictions made by using the 

Pourbaix diagram should be tested prior to actual use, since the formation of a reaction- 

product film does not necessarily mean that this film is protective [Verink2000]. 
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The standard free energy of formation is directly related to the standard potential of an 

electrochemical reaction via the Nernst equation. Assuming activities that will not 

contribute to the applied potential at which metal oxide will be separated to metal and 

oxygen gas, any metal oxides lying below iron oxide will reside in the melt so long as 

sufficient iron ions are available for reduction. A metal with less electropositive than 

iron, will deposit at the cathode. The Ellingham diagram (Fig. 1.8) illustrates this 

concept. While potassium oxide and sodium oxide would have aided in lowering the 

melting temperature of the electrolyte and enhancing the ionic conductivity, they could 

not serve as fluxing agents in this system [Gmitter2008]. 

 

Figure 1.8 – Ellingham diagram at 1 atm p(O2) illustrating metal oxides suitable for the electrolyte 

in a molten oxide electrolysis cell [Gmitter2008]. 

Therefore, the design of an electrolyte for MOE is an important task for optimizing the 

energetic efficiency of the process, as well as the stability of the refractory or the anode 

materials [Wang2012, Allanore2013].  

The supporting electrolyte components are oxides, encompassing: silica (SiO2), alumina 

(Al2O3), magnesia (MgO) and calcia (CaO) [Wang2012, Allanore2013]. These oxides 

are mainly present in iron ore (Fe2O3, SiO2, Al2O3) and others constituents formers of 

slag (MgO, CaO) [Santos1965, Muwanguzi2010, Mohanty2012]. Principally they allow 

the use of consumable anodes based on magnetite, also taking into account the structural 

and redox stability issues [Jung2004, Guignard2008]. 
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Figure 1.9 – Phase diagrams of vitreous systems to consider [Jung2004, Ana1997]. 

Previous results, obtained for magnesium aluminosilicate glass systems (MAS) doped 

with iron oxide [Smith2000, Wiedenroth2003], indicate good prospects for this glass 

system as a potential electrolyte material. Figure 1.9 presents some phase diagrams of 

the systems, which are considered to be promising in this sense. The selection of the 

composition should be performed in order to achieve the dissolution of iron in their 

midst, and also using the anodic/cathodic polarization. 

1.2.3 Anode concepts & materials 

One of the main challenges in this new approach is the selection of the optimal materials 

for the electrodes [Cooper2006]. The Table 1.4 shows examples of different types of the 

electrodes. However, one should consider the harsh conditions of the pyroelectrolysis 

process, which can facilitate a large number of reactions between the electrode and 

electrolyte, especially under condition of anodic polarization.  
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Table 1.4 – Conventional electrode types and applications [Kharkiv2012]. 

Electrode 

type 
Example Description 

Electrode reaction 

(in reduction direction) 

Metal 

metal-ion 
Cu(s)│Cu

2+
(aq) 

Metal bathed in 

electrolyte containing its 

own ions. 

Cu
2+

(aq)+2e→Cu(s) 

Ion – ion 

(redox) 
Pt(s)│Fe

3+
,Fe

2+
(aq) 

Noble metal in contact 

with solution of a redox 

couple 

Fe
3+

(aq)+e→Fe
2+

(aq) 

Metal 

insoluble 

salt 

Hg(s)│Hg2Cl2(s)│KCl(aq) 

Metal in contact with its 

insoluble salt (i.s.) and a 

solution containing a 

soluble anion of the i.s. 

Hg2Cl2(s)+2e→2Hg+2Cl
- 

Gas Pt(s)│H2(g) │H
+
(aq) 

Noble metal in contact 

with a saturated solution 

for a gas and contains the 

reduced or oxidized form 

of the gas 

H
+
(aq)+e→1/2H2(g) 

Until now, MOE has been demonstrated using anode materials that are consumable 

(graphite for use with iron-alloys and titanium) or unaffordable for terrestrial 

applications (iridium for use with iron). To enable metal production without process 

carbon, MOE requires an anode material that resists to the depletion while sustaining 

oxygen evolution [Allanore2013]. 

Allanore et al. had shown that anodes comprising chromium-based alloys exhibit limited 

consumption during iron extraction and oxygen evolution by MOE [Allanore2013]. The 

anode stability is due to the formation of an electronically conductive solid solution of 

chromium(III) and aluminium oxides with corundum structure. These findings make 

more feasible larger-scale evaluation of MOE for the production of steel, and potentially 

provide a key material component enabling mitigation of greenhouse gas emissions 

while producing metal of superior metallurgical quality [Allanore2013]. 

The CV effects include the polarization of the IV curve due to mass transport kinetics 

[Cooper2006]. The three basic steps of electrolysis at the anode are [Cooper2006]:  

 O
2-

 anion arrives at the anode surface; 

 electrons transfer from the anion to the anode (oxidation); 

 oxygen departs the anode surface as a gas. 

If one of these steps is slower than the others, it will limit the electrolysis reaction and 

prevent the system from reaching equilibrium [Cooper2006]. 
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However, while metal deposition at the cathode still allows the conduction of electrons 

into the melt to continue the electrolysis, oxygen formation at the anode (anode 

oxidation) can be a strong constraint on the metal-producing efficiency of the 

electrolytic system [Cooper2006]. Therefore, the identification of optimal materials for 

the cell anode is critical to the success of the electrolytic system [Cooper2006]. 

The candidate materials for anode electrode must be capable of [Cooper2006, 

Gmitter2008, wang2011, Vasudevan2013]: 

 Enduring the high temperature hold-points (1575 ºC) that accompany the 

electrolysis process; 

 Withstand as minimally reactive and have low solubility/consumable as possible 

to the melt (electrolyte) and the products; 

 Maintain high current density to maximize the metal production throughput, 

where intermediate phases must not be soluble nor electronically insulating; 

 Exhibit low volatility of metal and metal oxides; 

 Match price and supply levels to be economically feasible; 

 Withstand anodic polarization without becoming significantly oxidized; 

 Possess sufficient wettability for intimate interfacial contact with electrolyte; 

 Have robust mechanical properties including resistance to thermal shock and 

creep. 

As mentioned before the noble metals such as platinum and iridium are extremely 

expensive, but are expected to be stable at high temperature and non-reactive 

[Cooper2006, Kim2011, Wang2012]. Molybdenum, tungsten, and carbon are cheap and 

have sufficiently high melting temperatures, but could form oxides too easily to serve as 

continually conductive or non-consumable anodes [Cooper2006]. 

The concept of an oxide-mediated inert anode should not be limited to iridium metal and 

molten oxide melts. In principle, the anodic behaviour of other noble metals including 

Pt, Rh, Au, and Ag may be explained to the extent that they form an intermediate 

compound by chemical combination with a constituent of the electrolyte [Wang2011]. 

Thus, one might possibly be able to obtain an inert anode by adjusting relative rates 

through control of temperature, electrolyte composition, and metal alloy composition 

[Wang2011]. 
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The anodes used in electrochemical cells can be made of metallic, non-metallic or 

semiconducting materials. In recent years, the quest for the development of 

indestructible anodes either as a substitute for costlier anodes or to increase the life of 

the anodes in electrochemical industries, has grown very much and with the increasing 

interest in the scientific development of inert and insoluble anodes. A healthy 

competition is set up to carry out considerable amount of research both in the 

improvement of the existing anodes or in the development of new anodes. The complex 

nature and the problem evaluation stems from the number of variables involved such as 

electrode life, operating conditions or use cell and replacement costs [Vasudevan2013]. 

Carbon is generally regarded as a consumable anode for molten-salt electrolysis 

technologies [Lantelme2013]. However, the situation may change if the species 

discharged in the anode exhibits minor or no affinity with carbon [Lantelme2013]. In 

fact, carbon was used successfully as an inert anode for industrial Mg extraction where 

molten MgCl2 was electroreduced with the evolution of chlorine gas in a carbon anode 

[Lantelme2013].  

According to the results of previous works [Yaremchenko2011, Kovalevsky2012],      

(Fe, Al, Mg)3O4 spinels show the appropriate electrical and redox properties, to be 

considered as alternative anode materials for pyroelectrolysis process.  

This type of anode combine adequate conductivity without prejudice the environment 

and compatibility with corresponding melts at temperatures above the melting iron       

(> 1550 °C), to allow the obtaining of iron in the liquid state. Chapter 1.3 will describe 

the structural and other relevant properties of magnetite-based spinels. 

1.2.4 Experimental results and limitations of electrolysis process 

For molten salts electrolysis there exist several studies, such as reported in [Keller1997, 

Haarberg2005, Wang2008, Gibilaro2011]. To MOE the number of reported studies is 

more restricted, however, will described some examples found in the literature. 

Wang et al. studied the electrochemical decomposition of FeO dissolved in an alumino-

silicate melt to produce oxygen gas and liquid metal at 1575 ºC [Wang2011]. They 

demonstrated that iridium can serve as an oxygen-evolving anode in an oxide melt at 

extremely high temperature.  
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Several proposed mechanisms explain the performance of iridium and provide guidance 

to future efforts aimed at development of inert anodes for other electrolytic systems 

[Wang2011].  

The anodic behaviour of the Ni0.94Si0.04Al0.02 metallic electrode in molten NaOH at     

500 ºC was also investigated by Shubo Wang et al. [Wang2012]. The oxygen evolution 

at the interface of Ni0.94Si0.04Al0.02 anode had proved to be environmentally friendly. 

Furthermore, the successful production of iron at the cathode revealed that the 

Ni0.94Si0.04Al0.02 alloy could be a good candidate of inert anode in molten NaOH system 

to produce metals and alloys, whose corresponding oxides are less stable than Na2O, 

without greenhouse gas emissions [Wang2012]. 

Other work performed by Kim et al. with an electrolyte containing multiple oxides 

(CaO, MgO, SiO2, Al2O3), in which iron oxide (Fe2O3) was added to the melt at a 

concentration of 9.1 wt% as feedstock for iron making by pyroelectrolysis [Kim2011]. 

In this experiment, yttria-stabilized zirconia crucibles were used as the electrolyte 

container. Chromium alloyed with 0 to 30 wt% of iron (Cr1-xFex alloy, x ranging from    

0 to 0.30), has been assessed for its suitability as an oxygen-evolving anode, while 

molybdenum was used as the cathode [Kim2011]. The experiment was continuously 

flowed with an inert atmosphere of high-purity helium. The monitoring of the oxygen 

level and the gas flow-rate at the reactor outlet allowed them to estimate the anodic 

faradaic efficiency, specific to this laboratory configuration [Kim2011]. However, the 

author also addressed the limitation of this method, because part of the oxygen is 

consumed by the oxidation of the metallic parts present into the tube furnace, in 

particular at the molybdenum current collectors [Kim2011].  

The rate of anode consumption was shown to be dramatically different in a slag, rich in 

calcia, where the iridium consumption rate was ~ 20 times greater than in slag rich in 

silica, under similar experimental conditions [Kim2011]. Noteworthy is the fact that 

slag, rich in calcia, has a higher electrical conductivity and much lower viscosity than 

slag rich in silica. The author found that viscosity of the melt influenced mass transport, 

including the rate of delivery of oxygen bearing ions to the electrode and the rate of 

removal of oxygen gas, while electrical conductivity will influence the kinetics of 

corrosion [Kim2011]. 
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The higher corrosion rate of iridium observed in the higher basic electrolyte may be 

related to iridium specification [Kim2011]. Basic melts attack iridium owing to the high 

concentration of free oxide ion coupled with the low viscosity, which results in 

unimpaired mass transport [Kim2011].  

This result shows the problems of using a noble metal as electrode, due its corrosion 

during electrolysis process. Those experiments were conducted at currents ranging from 

2 to 9 A during 1.5 and 6 h. After electrolysis, both electrodes were raised out of the melt 

to a cold zone in the furnace to assess the reaction products [Kim2011]. 

In the work, performed by Cooper et al., carbon, tungsten, platinum, and iridium were 

examined as candidate anode materials for an electrolytic cell [Cooper2006]. The 

materials were pre-selected to endure high process temperatures and were characterized 

for inertness and high current density during electrolysis using voltammometric 

techniques. Inertness is viewable through current discrepancies dependent on voltage 

scan direction at low voltage, consumption of current by metal oxide formation, and ease 

of surface oxide electro-stripping. During electrolytic oxidation is observable a current 

density maximization for high voltages [Cooper2006]. While carbon, tungsten, and 

platinum formed oxides surface, iridium remained quite inert. The voltage hold-time was 

found to affect the current density, the platinum presented a best performance during 

cyclic voltammometry, but iridium was for potentiostatic regime in the electrolysis 

process. The intermediate potentiodynamic scan-rate displays the transition from 

platinum to iridium dominated current density [Cooper2006]. 

The authors also observed a direct relation between voltages and electron transfer, where 

the voltage increases (more access to charge), and the current increases as well 

[Cooper2006]. For higher voltages (above 2.0 V), the electron transfer is sufficient, but 

the mass transport of oxygen to and from the surface is insufficient, so increasing the 

voltage does not increase the current significantly (only faster oxygen movement would 

increase current) [Cooper2006].  

In general, these results show the inherent complexity of the processes, taking place in 

high-temperature electrolysis systems and related difficulties for experimental 

assessment and eventual scale-up to the industrial applications. 
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1.3 Relevant properties of spinel-type materials 

Iron oxides exist in many forms in nature, with magnetite (Fe3O4), maghemite (-Fe2O3), 

and hematite (-Fe2O3) being probably the most common. These three oxides are also 

very important technologically, and they are therefore the subject of many reviews 

[Allanore2008, Ovsyannikov2008, YamashitaASS2008, Teja2009] and ref. therein. 

The magnetic properties of iron oxides have been exploited for a broad range of 

applications, including magnetic seals and inks, magnetic recording media, catalysts, 

ferrofluids, contrast agents for magnetic resonance imaging and therapeutic agents for 

cancer treatment [Teja2009], magnetic fluids, magnetic separation, magnetic resonance 

imaging as well as drug targeting [Hu2010], as pigments, magnetic materials, catalysts, 

magnetic recording medium [Hiremath2003, Cartaxo2007]. 

The shape and size of Fe3O4 significantly influence the properties, because of that, great 

efforts have been devoted to achieve controlled synthesis of Fe3O4 [O'Neill1983, 

Teja2009, Hu2010], since electrical and magnetic properties are strongly dependent on 

the chemical composition, cation distribution and preparation method [O'Neill1983, 

Hiremath2003]. 

1.3.1 Structural properties 

From iron oxides, -Fe2O3 and magnetite Fe3O4 have inverse spinel structure, showing 

interesting electrical, thermal, magnetic and catalytic properties [Hiremath2003, 

Cartaxo2007, YamashitaASS2008, Skomurski2010]. In ambient conditions magnetite 

adopts a cubic spinel structure (space group Fd3m) with the inverse configuration. In 

terms of formal oxidation states the Fe
3+

:Fe
2+

 ratio corresponds to 2:1, and the chemical 

composition can be expressed as (Fe
3+

)
tet 

[Fe
2+

, Fe
3+

]
oct 

O4 [O'Neill1983, Harrison1999B, 

Hiremath2003, Ovsyannikov2008, Skomurski2010, Nadoll2014].  

The inverse spinel structure can be also represented as AB2O4, where A represents a 

divalent cation such as Mg, Fe
2+

, Ni, Mn, Co, or Zn, and B represents a trivalent cation 

such as Al, Fe
3+

, Cr, V, Mn or Ga [Nadoll2014]. Titanium, with a 4+ charge, can also 

occupy the B site when substitution is coupled with a divalent cation [Nadoll2014]. 
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Octahedral sites (oct) in the magnetite structure are randomly occupied by sub equal 

numbers of ferric (Fe
3+

) and ferrous (Fe
2+

) iron atoms, whereas tetrahedral sites (tet) are 

exclusively occupied by the smaller ferric iron atoms (Fig. 1.10A) [Skomurski2010, 

Nadoll2014]. 

 
Figure 1.10 – Cubic inverse spinel structure of magnetite (a) and common cations that can substitute 

for Fe
3+

 in the tetrahedral sites (b) and Fe
2+

/Fe
3+

 in the octahedral sites (c) [Nadoll2014]. 

 

Fig. 1.10 shows the cubic inverse spinel cell (a), and two diagrams illustrate the 

relationship between the ionic radius and cation charge for the tetrahedral site (b) and the 

octahedral site (c) [Nadoll2014]. The incorporation of foreign cations is more likely 

when the substituting cation has a similar charge and ionic radius [Nadoll2014]. 

The metal substitution (e.g., Cr, Co, Mn, Ni, Ti, Mg, Al, Ga, etc) in magnetite as       

Fe3−x Mx O4 (M = metal), had been reported to produce systematic variation in magnetic 

properties, e.g., saturation magnetization, the Curie temperature change, coercivity and 

electrical resistivity changes [O'Neill1983, Hiremath2003, Petric2007, 

Ovsyannikov2008, Varshney2012, Liang2013, Nadoll2014]. Other cations such as Nb, 

Ti, V, Cr, and Mn can occur in different oxidation states, and their incorporation is 

strongly dependent on the redox conditions. For example, V becomes incompatible in 

strongly oxidizing conditions, as it transforms to 5+ oxidation state [Nadoll2014]. 

a)  

 
 

b) c) 
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1.3.2 Electrical properties & mechanisms 

The electronic transport in magnetite and related iron-based spinels is assumed to occur 

via small polaron hopping between Fe
2+

 and Fe
3+

 cations (with Fe
2+

 ion representing 

localized n-type charge carrier) and is restricted to the octahedral cation sites in the 

spinel structure [Nell1991, Modi1996]. In agreement with this consideration, the highest 

conductivity is characteristic for undoped stoichiometric magnetite, which has the 

inverse spinel structure and, therefore, offers the maximum possible concentration of 

Fe
3+

 and Fe
2+

 cations in the octahedral sublattice [Park1999, Domingues2013]. Some 

works suggest that the substitution with magnesium decreases bivalent iron 

concentration and, consequently, electronic conductivity [Park1999, Domingues2013]. 

For that reason in the high-temperature range and oxygen partial pressure of 10 Pa, 

Domingues et al. had found an electrical conductivity of Fe2.3Mg0.7O4±δ ceramics ∼ 2.3 

times lower than in Fe3O4 (fig 1.11) [Domingues2013].  

 

 

Figure 1.11 – Temperature dependence of electrical conductivity of Fe2.3Mg0.7O4±δ ceramics 

measured in different atmospheres and preparation method (mechanical activation (MA), and a 

glycine–nitrate process (GNP)) [Domingues2013]. 

A similar result was obtained by Kovalevsky et al. for Fe3−xAlxO4 spinel in the 

concentration range 0.1 ≤ x ≤ 0.4, where the total conductivity at 1773 K and p(O2)       

∼ 10
−5

 to 10
−4

 atm was found to be only 1.1 to 1.5 times lower than for pure magnetite 

[Kovalevsky2012]. 
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Oxidation mechanisms and thermal volume changes in magnetite is an important issue 

for anode application. Forsmo et al. had studied it in iron ore pellets (Fig. 1.12), being 

function of raw material particle size and porosity [Forsmo2008].  

When a pellet starts to oxidize, a shell of hematite is formed around the pellet while the 

core still is magnetite. Expansion of about 0.52 % was measured during oxidation 

between 330 and 900 °C [Forsmo2008]. The extent of contraction was not influenced by 

raw material particle size or the original porosity in pellets. Simultaneously with the 

contraction in the hematite shell, linear expansion in the magnetite core took place. 

Sintering started earlier in the magnetite core (950 °C) compared to the hematite shell 

(1100 °C) [Forsmo2008]. The difference in sintering rates increased with particle size in 

the magnetite. A finer grind in the raw material would, therefore, promote the formation 

of hematite and magnetite [Forsmo2008]. 

 
Figure 1.12 – Oxidation curves (TG) for different sized magnetite particles, heated at 5 °C/min in 

16% O2 [Forsmo2008]. 

The transition element doping as X = Ti, Cr, Mn, Co, Ni, Cu, and Zn in magnetite        

(X Fe1−)
tet 

[X1− Fe1+]
oct 

O4 with  as the inversion parameter, has been reported by 

Varshney et al. [Varshney2012].  

Doping with a transition element leads to a change in the electrical resistivity due to the 

cation distribution between tetrahedral (tet) and octahedral (oct) sites in Fe3O4 

[Varshney2012]. The charge density changes with different dopants, such as with Zn, Ti, 

and Al. The nonmagnetic dopants enter at different lattice positions as Zn
2+

 at 

tetrahedral, Ti
4+

 at octahedral, and Al
3+

 both at tetrahedral as well as octahedral site 

[Varshney2012]. 
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Zn as dopant enters at tetrahedral site in the Fe3O4, and the electrical resistivity for         

x < 0.035 show a first order Verwey transition. While x = 0.035, Fe3−x Znx O4 show the 

second order transformation and for above doping concentration (0.13 ≤ x ≤ 0.29) the 

electrical resistivity of Fe3−x Znx O4 show only a small variation in resistivity. Cu 

substitution occur in octahedral site of the spinel lattice in Fe3−xCuxO4, and no Verwey 

transition was observed in the range of 0.20 ≤ x ≤ 1.0 [Varshney2012]. 

The substitution of Fe
3+

 ions by Ti
4+

 ions is evidenced from the changes in the electrical 

resistivity due to charge localization at the octahedral Fe sites. The electron hopping is 

the conduction mechanism between two adjacent octahedral sites in the spinel lattice and 

a transition between Fe
2+ ⇔ Fe

3+
 ions or Ti

4+ ⇔ Ti
3+

 might take place [Varshney2012]. 

The resistivity measurements clearly demonstrate that in Fe3−xTix O4, as in magnetite, 

there only occurs one well-defined phase transition. Samples with x ≤ 0.03 exhibit a 

phase transition of first order; while for x ≥ 0.10 the transitions is of second or higher 

order and nature of the resistivity mechanism is related to small polaron conduction 

[Varshney2012]. 

The lattice expansion observed was due to the partial replacement of Fe
3+

  ions by Ti
4+

 

ions, leading to a periodical ordering of Fe
3+

 and Fe
2+

 ions in the octahedral 

crystallographic site of Fe3O4. The samples show ferrimagnetic behaviour (Fe
3+

 

oxidation states) of the Ti
4+

 based magnetites and suggest a preferential occupation of 

octahedral magnetite sites with spinel structure [Varshney2012]. This effect is also 

mentioned in the O'Neill et al. work, where they were able to predict accurately the unit 

cell parameters and oxygen parameters, using a set of ionic radii, observing lightly 

modifications on the properties of several spinels types [O'Neill1983]. 

1.3.3 Application as anodes 

Oxide electrodes with spinel structure, have been extensively studied due to their 

promising catalytic activity as anodes for the oxygen evolution and reduction, namely 

those containing cobalt [Cartaxo2007]. During the last decades cobalt ferrite (CoFe2O4) 

was proposed as anode materials for lithium-ion batteries, as reported by Cartaxo et. al. 

[Cartaxo2007]. 
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As described previously, the materials proposed for the anodes, should combine 

adequate electrical conductivity without loss of compatibility with molten base, and 

refractoriness at temperatures above melting point for iron (> 1550 ºC), to achieve iron 

in the liquid state, like in aluminium production by electrolysis process.  

Magnetite combines a good refractoriness and electronic conduction for these operating 

conditions (temperature and oxygen activity), and its dissolution does not contaminate 

the process. However, the redox stability of the magnetite is limited, and the conditions 

for the anodic polarization can promote the oxidation of magnetite to hematite. This 

change will require increasing temperature in the electrolysis process, increasing the 

difficulties for implementing this technology.  

Thus, the development of new spinels derived from magnetite with better redox stability 

refractoriness is required [Wang2011, Yaremchenko2011, Kovalevsky2012].  

With this regard, an eutectic composition in the system based in Si – Mg – Fe – O allows 

the possibility of use magnetite or other spinels from the system (Fe, Al, Mg)3 O4 at a 

temperature higher than melting iron with suitable characteristics to use as consumable 

electrode concept [Jung2004, Guignard2008, Yaremchenko2011].  

Other compositions could be used to ensure appropriate compromises between the redox 

stability at different temperatures and adequate electronic conduction in the extreme 

conditions, imposed by the pyroelectrolysis process. It is also noteworthy that the study 

of ferrites MFe2O4 (M = Ni, Co, Cu, etc.) can contribute highly to other technologies, 

such as for industrial electronic or magnetic components, in view of the versatility of the 

material properties, such as high anisotropy, high coercivity, mechanical strength, 

chemical stability, and moderate saturation magnetization magneto-resistance 

[Petric2007, Kumbhar2012]. 

Moderate additions of aluminium were found to be promising to improve the 

refractoriness of Fe3O4-based materials without significant reduction of the electrical 

performance [Kovalevsky2012]. Weak p(O2)-dependence of the conductivity and phase 

stability at 1673 to 1773 K suggest a broad range of conditions where Fe3−xAlxO4-based 

anodes can be successfully used in the pyroelectrolysis process.  
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However, insufficient redox stability at lower temperatures causes dimensional changes 

and loss of mechanical integrity in the course of thermal cycling, imposing certain 

restrictions on the applications of such electrodes. One promising strategy is to include 

co-doping of magnetite with Mg and Al in the concentration range where aluminium 

provides an improvement of refractoriness without significant deterioration of electric 

properties, whilst magnesium increases the tolerance against oxidative decomposition 

[Kovalevsky2012]. 

Similar study was performed by Yaremchenko et al. for (Mg, Fe)3 O4 based spinel, where 

the temperature dependencies of the electrical conductivity exhibit a complex behaviour 

associated with changes in the major defect-chemistry mechanism and kinetically frozen 

cation distribution in the spinel lattice below 800 K [Yaremchenko2011].  

While the level of electronic transport increases with iron content above 1370 to 1470 K, 

the conductivity behaviour in the intermediate-temperature range is strongly affected by 

temperature variations of the cation nonstoichiometry and cation redistribution between 

the octahedral and tetrahedral sublattices. Within the phase stability domain, the 

electronic transport is essentially p(O2)-independent [Yaremchenko2011].  

These results highlight a promising type of material to be used as consumable anode in 

iron pyroelectrolysis. Still, further optimization of the relevant properties is obviously 

needed. 
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1.4  The laser floating zone method 

In the present work the Laser Floating Zone (LFZ) technique, was used to study the 

material for electrolyte (molten) and electrode (spinels) application. The LFZ is a 

peculiar and matured technique that belongs to a non-conventional group of techniques 

used for crystals production, presenting the advantages of growth of high melting point 

materials. Moreover, being a crucible free process allows the production of high purity 

crystals and composite fibres, avoiding mechanical stress and contamination during the 

solidification process due to the crucible material. [Kirkpatrick1975, Ritzert1996, 

Costa2005].  

1.4.1 Method development 

In 1902 A. Verneuil started to grow crystals using the method of flame fusion growth 

(fig 1.13a, b). For the first time, it was achieved the control of nucleation and thus single 

crystal of ruby and sapphire with melting points above 2000 ºC were grown 

[Scheel2003]. In this method the fluid medium consists in a melted material obtained by 

a flame [Kirkpatrick1975, Scheel2003]. A. Verneuil can be regarded as the father of 

crystal growth technology as his principles of nucleation control and crystal-diameter 

control were adapted later in most growth methods from melt, like Tammann, Stober, 

Bridgman, Czochralki, Kyropoulos, Stockbarger, etc. The important crystal pulling from 

melts named after Czochralski was effectively developed by Teal, Little and Dash       

(fig 1.13b) [Scheel2003]. 

   

1 rod holder  
 

2 raw material  

 
3 molten zone, 

 

4 induction coil,  
 

5 growing single 

crystal, 

Figure 1.13 – Crystal growth from the melt, a and b) according to Verneuil method, c) improved 

system floating zone, adapted from [Leipner2014]. 

a)    b)           c) 
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The discovery of the transistor at Bell Laboratories imposed the need to produce single 

crystals of semiconductor materials, being the first one germanium. Relatively large Ge 

crystal were produced in 1950 by Teal and Little using the process of crystal pulling 

from the melt [Scheel2003]. The multi-disciplinary nature of crystal growth technology 

and layer fabrication and the complex multi-parameter processes, where ten or more 

growth parameters have to be compromised and optimized, and also the scaling problem 

have blocked the scientific development of this important area. The deep understanding 

of the mechanism on experimental conditions allowed growing flat surfaces and 

interfaces of materials for important applications areas such as the case of optoelectronic 

and superconducting devices [Scheel2003]. 

The crystal growth process has suffered several improvements from its beginning. The 

power source to melt material started with a flame, which was improved by the 

employment of other power sources like induction coil (Fig. 1.13c), furnace, lamps and 

more recently laser systems as melting source [Ritzert1996, Scheel2003, Leipner2014]. 

The introduction of laser heating for the production of fibre shaped materials permits the 

development of high melting point materials almost impossible with conventional 

heating. 

The equipment to grow single crystal fibres by the LFZ process (Fig. 1.14) has a 

workstation composed by systems that allow controlling and monitoring the growth 

process. Some systems obtain a uniform molten zone through a mirrors setup for shape 

manipulation of the laser beam (fig 1.14) [Ritzert1996, Costa2005, Carvalho2014] and 

also by rotational motion of the feed and seed rods [Costa2005, Carvalho2014].  

 
Figure 1.14 – Illustration of the laser floating zone apparatus [Carvalho2013]. 
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The laser system must be sufficiently powerful to melt the material and maintain a stable 

condition of the molten zone [Ritzert1996]. Several types of laser systems here been 

used to grow materials, such as Nd:YAG [Costa2004, Diez2009], CO2 [Costa1999, 

Costa2013, Ferreira2012] and more recently diode lasers [Ito2013]. 

The LFZ technique is basically a floating zone-like method where the heating element is 

a focused laser ring to create the molten zone. The growing process starts with basically 

four steps:  

i) the alignment of the seed and pedestal rods, both centralized in the optical 

axis of the laser beam;  

ii) the formation of a molten zone on the top of the rods increasing the laser 

power;  

iii) the seed and feed rods are slowly and simultaneously brought together into 

laser beam until the molten tips and both touch each other to form a stable 

molten zone (Fig. 1.15); 

iv) the motors start the pulling and rotation. This occurs after the equilibrium of 

molten zone, with its uniform temperature profile established.  

To keep a constant volume, it is necessary to feed and pull at a fixed rate, since the 

crystal growth process is based in a mass conservation principle [Ritzert1996]. The ratio 

speeds between feed and seed rods determine the diameter of the as-grown fibre 

[Ritzert1996, Costa1999]. 

The main regions involved in LFZ process can be seen in Fig. 1.15: the feed rod, the 

molten zone and fibre single crystal. It is essential that the laser power remains stable 

and focused, so that the molten zone stays uniform during all growth process.  

The growth speed and thermal conductivity of the material control the temperature 

gradient in the feed rod and crystal [Ritzert1996]. If the thermal gradient is high due to 

the lower thermal conductivity, the crystal is instantaneously “quenched” as it leaves the 

molten zone, causing higher residual stresses. A different effect occurs in the feed rod, as 

it decreases in temperature away from the melt, the powders change from highly sintered 

solids to loosely bonded powders, and eventually to loose powders that are hot enough 

to drive off the binder material but not hot enough to be sintered [Ritzert1996]. 
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Figure 1.15 – Solid–liquid interface of a zirconia-mullite material growth by the LFZ method 

[Carvalho2014]. 

In the LFZ process the melt automatically adjusts to exactly the composition required to 

produce the appropriate steady state growth conditions [Costa2005]. Materials with high 

thermal conductivities tend to create internal stresses and become more difficult to grow 

than materials with low thermal conductivities. In some cases, fast growth can be 

advantageous due to the reduce time in the molten zone minimizing the vaporization 

process. However, in most cases, slow pulling rates originate crystals with superior 

crystallinity. Obviously, there are optimum experimental conditions that give the best 

results for each specific system [Ritzert1996].  

The principal growth parameters that play a key role during growth of single crystals are 

feed rod characteristics, the growth rate, the growth atmosphere and its pressure, the 

temperature gradient, the molten zone temperature and the rotation rate. The effect of 

these parameters becomes even more acute in the growth of materials which may have 

intrinsic properties such as high density, low surface tension or a complicated phase 

diagram [Koohpayeh2008]. The growth parameters and their possible influences are 

summarized on Table 1.5. 
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Table 1.5 – Standard growth parameters and their possible influences during LFZ growth, adapted from [Koohpayeh2008]. 

Parameter Influence 

Feed rod 

characteristics 

 A poorly compacted feed rod can lead to bubble formation in the molten zone or penetration of the melt into the feed rod, and 

also bubble formation in the growing crystal. 

Crystallization 

rate 

 Crystal growth at lower growth rates generally yields larger crystals; 

 Slower growth rates give crystals with more homogeneous compositions and without second phases or inclusions. However, 

depending on the material and its phase stability, faster growth rates are sometimes needed to obtain crystals without 

inclusions; 

 Crack formation is reduced when lower growth rates are used; 

 Lower growth rates can lead to better crystal alignment and help to preserve the growth direction; 

 Both higher and lower growth speeds can suppress the formation of low angle grain boundaries and twinning, depending upon 

the material in question; 

 A lower growth rate is favourable for growing bubble-free crystals; 

 In general, using a lower growth rate is more likely to give a planar growth front; 

 The stability of a molten zone can be increased using either lower or higher growth speeds, depending upon the material in 

question. 

Temperature 

gradient on 

molten zone 

 Larger temperature gradients along the growth direction are more likely to cause cracking in the growing crystal due to 

thermal stresses; 

 A sharper temperature gradient can lead to a concave solid/liquid interface towards the melt, while a reduction in the 

temperature gradient can give a convex interface; 

 A steep temperature gradient helps to reduce the length of melting zone which can lead to a more stable molten zone; 

 A lower molten zone temperature can help to prevent evaporation of components during growth and give a more homogeneous 

crystal. 

Rotation rate 

 Rotation is usually used to ensure efficient mixing in the molten zone; 

 More homogeneous heating within the melt and around the sample can be achieved using rotation; 

 Using a higher rotation rate can be a way of lowering the convexity of the interface, so giving a more stable molten zone; 

 Rotation can lead to the formation of defects such as bubbles and low angle grain boundaries in the growing crystal. 
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1.4.2 Applications & improvements of LFZ technique  

Crystal-growth technology including layer fabrication technology is of greatest 

importance for energy saving, for renewable energy, and for novel high technologies 

[Scheel2003]. In the last decades the growth of amorphous and crystalline materials 

(single and polycrystals), have been successfully reported in several material science 

area [Ritzert1996, LLorca2006, Costa 2004, Costa2005, Carrasco2009, Carvalho2010, 

Soares2011, Ferreira2012] and ref therein.  

LFZ process has been developed into a quick extremely useful laboratory process to 

investigate amorphous, single-crystal and poly-crystals fibres that can be obtained by 

directional solidification from a melt induced by a beam laser incidence on the material 

[Ritzert1996]. This method was already used to study phase transformation kinetics, 

diffusion phenomena and crystallization path of different systems [Costa1999, 

Costa2001, Costa 2005]. 

The LFZ technique allows to produce oriented, small-diameter crystals that meet the 

requirements for high-temperature applications in today’s advanced matrices 

[Ritzert1996], like high quality single crystals of a variety of oxides [Ritzert1996, 

Guptasarma2004, Carvalho2010, Soares2011], eutectic structures [LLorca2006, 

Carvalho2013] and highly oriented polycrystalline materials [Costa2005, Carrasco2009, 

Ferreira2012, Graça2013, Ramana2014]. 

Polycrystalline materials prepared by the LFZ method can achieve preferential crystals 

alignment due to the strong thermal gradient at the solidification interface [Ritzert1996, 

Costa 2005, Koohpayeh2008, Ferreira2012, Ramana2014]. Another advantage of the 

LFZ method is the high temperature reach due to the beam focus system. This technique 

allow the formation of high temperature metastable phases and the crystallization of 

incongruent phases due to high thermal gradients generated at the melt/fibre interface 

which can reach values of 10
3
 to 10

4
 ºC/cm [Ritzert1996, LLorca2006]. 
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An improvement of the LFZ process can be made by the application of electrical 

stimulation during the growth process denominated as Electrically Assisted Laser 

Floating Zone (EALFZ). This technique was initially developed for superconductors 

materials processing, allowing to obtain an improvement on the crystals alignment, 

resulting in a very high electrical current density [Carrasco2009, Costa2004, Costa2005, 

Costa2013].  

More recently, this technique has been applied to thermoelectrical materials, resulting in 

a power factor improvement [Ferreira2012, Madre2013]. In these works the current 

intensity and polarization revealed important influences on phase formation, morphology 

and grain alignment. This improvement can also be used to stimulate the 

pyroelectrolysis process in a quick way, due to the complexity of the pyroelectrolysis 

process and the extreme conditions that are necessary in conventional methods.  

The LFZ method present some feasibility for the in situ, using the current or voltage 

appliance and the use of controlled atmospheres, allowing transformations or 

interactions between materials at very high temperatures [Ritzert1996, LLorca2006, 

Peña2007, Abell2008, Carrasco2009, Ferreira2012,]. The melting technique plus current 

appliance allow not only to stimulate the pyroelectrolysis process but also to study the 

interface reactions electrode/melted that occur at high temperature, in order to prepare 

materials to use as electrodes. 
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2 Experimental procedure 

This chapter will briefly disclose the application of Laser Floating Zone method (LFZ) 

for preparation and studies of the electrolyte and spinel compositions. The 

electrochemical cell preparation to simulate the pyroelectrolysis process will be also 

described in detail, together with the techniques used for samples and cell 

characterization. More details of the equipment and experimental conditions used will be 

given in respective paper of each chapter. This chapter will have the following index: 

 

2.1 Laser Floating Zone method ............................................................................. 59 

2.2 Cells for studying pyroelectrolysis process....................................................... 61 

2.2.1 Fabrication and assembling of the electrochemical cells ........................... 61 

2.2.2 Operation regimes for performing pyroelectrolysis process ...................... 62 

2.2.3 Post-mortem analysis ................................................................................. 63 

2.3 Characterization techniques .............................................................................. 63 
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2.1 Laser Floating Zone method 

For electrolyte characterization was selected the Laser Floating Zone (LFZ) method. 

This technique allows growing materials with very high melting temperature, due to the 

narrow laser beam focus. Moreover, this method avoids the usual contaminations due to 

reactions of molten material with crucible walls. The as-grown material exhibits a fibre 

shape, as described in chapter 1.4. The LFZ equipment used in the present work includes 

a laser system; a growth chamber (with a controlled atmosphere); a homemade 

monitoring system (laser parameters, pulling rate and rotation speed) and an image 

capture system. Fig 2.1 shows photographs of this LFZ system, depicting the core 

elements of the system as well a zoom of the growth chamber, where the growing 

process occurs.  

  

Figure 2.1 – a) LFZ system, b) Growth chamber, c) Identification of the several regions during the 

LFZ growth process.  

The system comprises a continuous 200 W CO2 laser (Spectron SLC,  = 10.6 µm) with 

a beam spot size of 0.6 mm. A homemade program based in Labview® software (from 

National Instrument
®

), was used for monitoring and control of the LFZ growth system, 

including the following hardware: 

 Laser: on/off emission; power value (melting temperature), open/closed internal 

and external shutters; 

c) 
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 Motors: growth speed and direction, as well as the homogeneity of the fibres by 

rotation of feed and seed rods; 

 Image capture and its control parameters (zoom, contrast and brightness) allow 

us to get a better visualisation of the molten zone and mainly of the 

melt/solidification interfaces. 

The growth chamber (Fig. 2.1b), where the growth occurs due to incidence of the CO2 

laser beam on precursor rods, can work at different atmospheres and pressure (1 – 2 atm) 

in air or other gases and in lower pressure (10
-5

 – 1 atm). In this work the growth was 

conducted in air under environmental conditions. 

To melt uniformly the feed/seed rods precursor, the laser beam is transformed from a 

ring road into a circular crown-shape, using a reflexicone (4). Afterwards, it is reflected 

by a planar mirror (5) towards a parabolic mirror (6) that converges the beam to the top 

of the rod precursors, where all the beam laser power is located (7). Fig. 2.1c is a zoom 

of the molten zone and of the adjacent regions observed during the growth by the LFZ 

method.  

 
Figure 2.2 –Schematic procedure for preparation of fibres by the LFZ method. 

The material to be used as precursors in the LFZ process should present a cylindrical 

shape to favour the chemical and thermal homogenization during the growth process. To 

start the growth process, the feed rod precursor is placed on laser beam focus to be 

melted. Afterwards, the seed rod precursor is immersed into the melt. The seed is pulled 

out while the feed is merged, allowing the fibre to grow through the cooling of the 

pulled material from the molten zone. The temperature of the pulled material decreases, 

leading to the change of the free energy and allowing the crystallization process. 
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The rod precursors were produced by cold extrusion of a paste made by adding the PVA 

(PolyVinyl Alcohol) to the powder. The extruded material presents a cylindrical shape 

that is dried at room temperature in atmospheric conditions, to get mechanical strength 

and allow to be used it as feed and seed bars for the LFZ process, as described in Fig. 

2.2. The fibres with diameters of 1 to 3 mm and length up to 10 cm, were grown with a 

speed of 10 – 400 mm/h at 5 – 15 rpm. The as-grown fibres were characterized using the 

techniques described in chapter 2.3 

2.2 Cells for studying pyroelectrolysis process 

To simulate the electrolysis process in a laboratory scale, an electrochemical cell 

containing the electrolyte and electric electrodes was prepared (Fig. 2.3). This 

electrochemical cell was heated in a furnace from room temperature until the selected 

temperature to perform the pyroelectrolysis process. The cell was filled up with the 

electrolyte and electric contacts were made in order to study the iron electrolysis for 

different conditions: temperature, time, electrolyte composition, electrode configurations 

and applied voltage, as will presented in chapter 6. 

Magnesium aluminium silicate (MgO – Al2O3 – SiO2, MAS) glass-ceramic system was 

chosen to be used as electrolyte with different iron amount: (100 – x) (Mg0.203 Al0.374 

Si0.423 O1.61)  Fex Oy, with x = 0, 2, 4 and 8 (mol%). The properties and the iron effects 

of this electrolyte (MAS_Fe), will be discussed hereafter in chapter 3.  

2.2.1 Fabrication and assembling of the electrochemical cells 

The electrochemical cell used in the present study consists of a yttria stabilized zirconia 

(YSZ) ceramic end tube with ~ 1 cm of diameter and ~ 5 – 10 cm of height, as shown in 

Figs. 2.3. The electrodes represented in Fig. 2.3a, were made using platinum ink and/or 

wire, allowing the electrolysis process to be performed and also impedance spectroscopy 

measurements. A picture of the cell after electrodes is shown in Fig. 2.3b. 

The electrode position allows us to study the effect of conduction mechanisms: 

 Electron blocking cell: between electrode 1 and 3; 

 Direct electrolysis: between electrode 1 and 2. 
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The cathode position determinates the region where iron concentration occurs, the 

difference between these two processes will be shown in chapter 6. In all experiments of 

iron pyroelectrolysis, the electrolyte used was prepared by the LFZ process. The 

obtained fibres of the electrolyte (MAS_Fe) were crushed and ball-milled in ethanol to 

produce a fine glass powder to fill the inner of the cell (crucible) as electrolyte. 

 

Figure 2.3 – Set-up of the electrochemical cell used: a) scheme, b) photo of the Pt wire as anode. 

After filling with electrolyte, a platinum wire (~ 0.5 mm) is put in centre of the cell as an 

inner electrode (1). The cell is closed by an YSZ lid and this setup (alumina crucible, 

electrochemical cell, electrodes contact), was put on a conventional furnace in a vertical 

position and heated at 5 ºC/min, until reached the melting point of the electrolyte, which 

is near to the melting point of iron oxide (~ 1450 ºC). Several experiments of the 

electrolysis process were performed in various regimes and different configurations, in 

order to understand the iron deposition effect due to: iron concentration on the 

electrolyte, electrode configuration and the regime type, as will be present in respective 

chapter 6. Each experiment needs a new electrochemical cell preparation, since the cell 

must be destroyed for post-mortem analysis. 

2.2.2 Operation regimes for performing pyroelectrolysis process 

In order to understand the effects of temperature, electrolysis duration, iron 

concentration on electrolyte, applied voltage and polarization parameters under different 

experimental conditions were performed. The behaviour of the electrolyte on heating 

was monitored by electrochemical impedance spectroscopy.  

a) b

) 
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After the desired temperature is reached and the electrolyte is molten, the electrolysis 

process is started. The resistance of the molten electrolyte and the electrochemical cell is 

measured by impedance spectroscopy using an Autolab equipment. 

The electrolysis process was done in potentiostatic regime through a constant tension dc 

of 1.5 – 2 V, between cathode and anode during a defined time (15 – 120 min). After that 

period, the electrolysis process was stopped and the impedance of the molten in the 

electrochemical cell was measured to assess the iron deposition/concentration during the 

process. 

The duration of process was estimated based on the Faraday Law (Eq. 1.12 and 1.13), 

taking into account the iron amount on the electrolyte and the average current that 

passing during the electrolysis process. When is reached the predetermined time to 

obtain iron, the experiment was stopped and the furnace cooled down to room 

temperature at 5 K/min. After cooled the cell is prepared for a post-mortem analysis. 

2.2.3 Post-mortem analysis 

After the pyroelectrolysis experiment the system was disassembled to perform detailed 

characterization of the sample at room temperature. Cross-sections of electrochemical 

cell crucible were obtained by cutting with a diamond saw, polished and mounting on a 

sample holder for analysis by optical microscopy, scanning electron microscopy (SEM) 

and energy dispersive spectroscopy (EDS). 

2.3 Characterization techniques 

The structural, morphological, electrical and magnetic properties of the samples, 

prepared by LFZ and solid state route (SSR) methods, were studied using the techniques 

presented in table 2.1. 

Structural characterization was made mainly at room temperature. For fibres, obtained 

by the LFZ method, the cylindrical shape (bulk) was kept in order to allow the study of 

interfaces and morphology of different phases. An exception was made for X-ray 

diffraction (XRD) analysis, where the fibres were ground to exclude the influence of the 

preferential crystals orientation. 
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The samples of spinels based in magnetite, obtained by SSR were cut from bulk samples 

and ground for thermogravimetric (TG) and XRD analysis. For electric and magnetic 

characterization, the original shape of the sample was kept, to avoid defects that may 

appear due to the preparation techniques. 
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Table 2.1 – Characterization techniques used in the present work.  

Characterization Techniques Parameters assessed Sample shape 

Microstructural SEM/EDS 

Morphology, 

Phase composition, 

Phase and elemental 

distribution 

Bulk (SSR) Polished 

surface (LFZ and 

blocking cell) 

Structural 

XRD 

Phase identification, 

Crystal size, 

Phases percentage 

Powders 

Arquimedes Method 

Mass/volume ration 
Density  Bulk sample 

Raman Spectroscopy 
Vibration modes 

Phases identification 
Polished surface 

Mossbauer Spectroscopy Fe
n+ 

valence and coordination
 

Powder 

Thermal 

TG 
Weigh losses 

Phase transformations 
Powder 

Thermal expansion 
Thermal expansion 

coefficient 
Bars 3 3  15 mm

3
 

Electrochemical 

and 

Electrical 

 

dc conductivity: 

100 – 360 K 
Electrical conductivity 

Bars; cylinders from 

fibres 

ac conductivity: 

100 – 360 K,  

40 – 2 x 10
6
 Hz 

Electrical conductivity 

Pellets 3  3  15 

mm
3
, fibres  1.5 

mm and length 5 mm 

Spectroscopic impedances 

1000-1700 K (oxidant and 

reducing atmospheres) 

Electrical conductivity at 

high temperature 

Activation energy 

Bars 3x3x15 mm
3
; 

fibres  1.5 mm and 

length 15 mm 

Permittivity/ loss factor: 

100-360 K 
Dielectric capacity 

Bars 3x3x15 mm
3
, 

fibres  1.5 mm and 

length 15 mm 

Electrochemical cell 

300 – 1700 K 

Mechanism of conduction 

(ionic, electronic or mixed) 

Powder; 

fibres  1.5 mm and 

length 50 mm 

Magnetic 

EPR: 5 – 300 K Resonance of magnetic ions Bulk sample 

VSM: 5 – 300 K; 

- 10 to 10 Tesla 

Magnetic moment and 

magnetic behaviour 
Bulk sample 
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3.1 Introductory notes 

This chapter is based on recently published paper: 3.2 – Crystallization of iron-

containing Si-Al-Mg-O glasses under laser floating zone conditions, and aims on 

detailed studies of the effects of iron oxide additions on relevant properties of the 

prospective electrolyte composition, based on MgO-Al2O3-SiO2 (MAS) glass system. 

The proposed composition shows a reasonable melting point for using in high 

temperature pyroelectrolysis process, and includes the elements, which are abundant in 

iron ores (as described in chapter 1.1 and 1.2.3). The study focuses on the mechanisms 

of crystallization processes and related changes in structural and physico-chemical 

properties, with emphasis on conditions imposed by temperature gradients, as expected 

for freeze lining conditions in large scale industrial units. The work relies on the laser 

floating zone (LFZ) method as a tool to simulate the conditions occurring at extremely 

high temperatures and steep temperature gradients, at the same time avoiding 

uncertainties arising from the interactions with crucible material and other issues, 

characteristic of the conventional experimental approaches. 
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3.2 Crystallization of iron-containing Si-Al-Mg-O glasses under laser 

floating zone conditions  

N.M. Ferreira, A.V. Kovalevsky, J.C. Waerenborgh, M. Quevedo-Reyes, A.A. 

Timopheev, F.M. Costa and J.R. Frade 

(Journal of Alloys and Compounds 611 (2014) 57–64 

http://dx.doi.org/10.1016/j.jallcom.2014.05.118) 

3.2.1 Abstract 

The glass system MgO-Al2O3-SiO2-FeOy has been mentioned as possible electrolyte for 

pyroelectrolysis of iron. This work was focused on the study of crystallization behaviour 

of the iron-containing Al-Mg-Si-O glass system under laser floating zone (LFZ) to 

identify expected changes occurring under freeze lining or other high temperature 

gradients at large industrial scale. Lower iron content and faster fibre growth were found 

favourable for the formation of isolated iron cations in the glass after cooling. The 

crystallization process, accompanied with separation of mullite and cordierite-type 

phases, is strongly affected by the formation of nanosized iron-containing clusters, 

confirmed by Mössbauer and EPR spectroscopies. LFZ method shows good prospects 

for studying crystallization/vitrification mechanisms in silicate-based glasses with 

additions of redox-active cations, by providing flexibility in tuning their oxidation state 

and attaining frozen-in conditions.  

3.2.2 Introduction 

The magnesium aluminosilicate system MgO-Al2O3-SiO2 (MAS) is very relevant for 

potential applications as a refractory system [1]. It is also the basis of slag in high-

temperature iron extractive metallurgy [2]. In this case, redox conditions and 

temperature are likely to determine the contents of iron oxides and onset of crystalline 

phases in the quaternary system MgO-Al2O3-SiO2-FeOy. In addition, this system has 

also been proposed as a basis for potential pyroelectrolysis process, to obtain molten Fe 

from its oxides [3 – 7]. Numerous publications have also addressed the impact of 

thermochemical processing conditions on structural changes of Fe oxides and related 

materials, with major impact on properties (magnetic, optical, catalytic, etc.) and 

prospective technological applications [1, 3 – 7]. 
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Better understanding of the crystallization processes is, thus, important to establish the 

relationships between those microscopic and macroscopic changes and relevant 

physical-chemical and thermodynamic properties at very high temperatures [8,9], with 

emphasis on conditions imposed by temperature gradients, as expected for freeze lining 

conditions in large scale industrial units. Strong dependence of phase changes on 

thermochemical conditions thus require complicated and expensive experimental 

methodologies for harsh conditions imposed by very high temperatures, and inherent 

difficulties in adjusting other relevant conditions such as controlled temperature 

gradients, oxygen partial pressure, etc. Extreme conditions are also likely to cause 

interactions with crucibles or other supporting materials, with additional uncertainties 

about effects exerted by resulting composition changes. 

Prospects for development of pyroelectrolysis of iron oxides as a breakthrough 

technology are, thus, still very inconclusive [3 – 7]. Few works had related the properties 

with the kinetics of glass-ceramic transition for this glass system doped with iron [10], 

and corresponding changes on cooling or under high temperature gradients. The present 

work relies on the laser floating zone (LFZ) method to study phase changes and 

structural effects occurring on cooling from very high temperatures of MgO-Al2O3-SiO2 

glasses with different FeOy amounts, and corresponding changes in relevant properties. 

This method allows one to avoid uncertainties concerning high temperature interaction 

with crucibles or other materials, and offers unique conditions to obtain materials with 

specific features such as high quality single crystals of a variety of oxides [11 – 14], 

eutectic structures [15, 16] and highly oriented polycrystalline materials [17, 18]. 

Moreover, this method was already used to study phase transformation kinetics, 

diffusion phenomena and crystallization path [19, 20]. 

3.2.3 Experimental Procedure 

Powders of MgO (Merck), Al2O3 (Merck), SiO2 (Sigma-Aldrich) and Fe2O3 (Aldrich 

+99 %) were mixed in the required proportions to obtain samples with nominal 

compositions (Mg0.203 Al0.374 Si0.423O1.61), containing·0, 2, 4 and 8 mol% of iron cations. 

A binder (PVA - Polyvinyl alcohol) was then added to the powder mixture to allow 

extrusion of the precursor in the form of rods. 
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These rods were used as feed and seed in the LFZ setup [16], equipped with a 

continuous CO2 Spectron SLC laser ( = 10.6 µm; 200 W) to grow dense fibres.  

The growth rates corresponded to 10 and 50 mm/h, and the seed and feed rod precursors 

rotated in opposite directions to enhance homogeneity of the fibres [17]. 

The phase composition and crystallinity of the fibres grown by LFZ method were 

investigated at room temperature by X-ray diffraction (XRD) analysis, using a Philips 

Panalytical X’Pert MPD system, and the obtained spectra were analysed using the 

JCPDS database. Phase distribution in the samples was examined by Raman 

spectroscopy (Horiba, Jobin Yvon HR 800 UV) at room temperature in backscattering 

configuration, using the 532 nm exciting line, from 100 to 1600 cm
-1

. The relative 

intensity of a characteristic peak of a relevant crystalline phase was used to describe the 

impact of composition and processing condition in all samples. That relative intensity 

was determined by the followed equation: 

 
(1) 

The microstructure of polished cross-section and transversal regions of the fibres was 

characterized by scanning electron microscopy (Hitachi SU 70), and the obtained data 

were analysed by ImageJ open source software [21].  

Mössbauer spectra were collected at room temperature and 4 K in transmission mode 

using a conventional constant-acceleration spectrometer and a 25 mCi 
57

Co source in a 

Rh matrix. The velocity scale was calibrated using α-Fe foil. The absorbers were 

obtained by pressing the powdered samples (5 mg of natural Fe/cm
2
) into perspex 

holders. Spectra at 4 K were collected with the sample immersed in liquid He in a bath 

cryostat. Isomer shifts are given relative to metallic -Fe at room temperature. The 

spectra were fitted to Lorentzian lines using a non-linear least-squares method [22]. The 

relative areas and widths of both peaks in a quadrupole doublet were kept equal during 

refinement. Distributions of quadrupole splittings or magnetic splittings were fitted 

according to the histogram method [23]. 
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The electrical conductivity of the fibres was measured at room temperature using an 

Agilent 4292A Precision Impedance Analyser (at 100 kHz). To provide appropriate 

electrical connection, the Ag electrodes were applied on the both ends of the fibre. ERP 

spectra of bulk samples at room temperature were obtained using a Bruker model 

ESP300 E spectrometer working with X-band EPR spectra. 

3.2.4 Results and discussion 

XRD analysis (Fig. 1) of the samples with various iron concentrations reveals the 

presence of mullite (Al6Si2O13 – JCPDS 00-015-0776) and/or cordierite   

(Mg2[Al4Si5O18] – JCPDS 01-082-1884) phases in the glass matrix, the former 

corresponds to a broad hump at around 24 – 26 º. For the samples grown at 50 mm/h 

decreasing the iron content results in an increase of crystallites content, whilst low levels 

of crystallinity were observed for the sample with the highest iron concentration (x = 8 

mol%). The crystallization process under LFZ conditions is controlled by cation 

diffusion kinetics rather than by thermodynamics of MAS-FeOy system, mainly at the 

highest LFZ pulling rates (cooling rate), according with work of Magnien et al. [24] on 

crystallization of iron in a silicate glass. In addition, sluggish reoxidation may hinder 

changes in relative fractions of Fe
2+

 and Fe
3+

 cations, coexisting in silicate-based 

glasses. Note that structural positions of these cations may differ significantly in the 

aluminosilicate melts. Namely, Fe
2+

 generally is a network modifier, while Fe
3+

 can act 

both as a network former and as a network modifier ([25] and Refs. therein). 

Previously it was shown that, in SiO2–Al2O3–MgO–CaO–FeO system, obtained by 

quenching from 1723 K and subsequent annealing at 993 K, higher total iron content 

([Fetot]) and higher [Fe
2+

] : [Fetot] ratio promote faster and more intensive crystallization 

[26]. These trends are opposite to those observed in the present work, apparently due to 

slower cooling of the sample in the above cited work, allowing crystal nucleation. 

Possible explanation for the obtained results may rely on the changes in configurational 

entropy of the melt during faster cooling under LFZ conditions, as explained in [27]. 

Namely, a more complex chemical composition of the melt provides a larger number of 

embryos that could evolve to nuclei; hence, as a result of mutual competition, crystal 

nucleation and growth may be hindered on sufficiently rapid cooling. 
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Figure 1 – XRD patterns of the fibres grown at 50 mm/h (A) and 10 mm/h (B), containing different 

amounts of iron. 

The XRD patterns of the samples grown at 10 mm/h indicate even more complicated 

influence of the iron content on crystallization behaviour (Fig. 1): the maximum 

crystallinity was observed for 4 mol% iron-containing sample. Since the iron oxidation 

state and structural position are expected to affect crystallization process, Mössbauer 

spectroscopy was used to assist on the interpretation of the iron speciation impact on the 

crystallization mechanism. 

The main feature of the observed Mössbauer spectra (Fig. 2) is an asymmetric broadened 

doublet frequently observed in silicate glasses [28, 29]. This doublet is due to the 

presence of Fe
2+

 located in environments which differ little from each other and which 

give rise to a distribution of unresolved quadrupole doublets with slightly different 

isomer shifts, IS, and quadrupole splittings, QS. However the spectra further reveal an 

additional contribution typical of Fe
3+

 in silicate glasses. 

The analysis of the present spectra was therefore performed considering an Fe
2+

 

distribution of quadrupole splittings and an Fe
3+

 symmetric Lorentzian doublet, as 

usually performed for similar spectra of silicate glasses [29].  
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A linear dependence of IS on QS was also refined for the Fe
2+

 distribution showing that 

IS increased with QS as commonly observed. This IS dependence on QS explains why 

the high velocity Fe
2+

 absorption peak is broader and has lower intensity than the low 

velocity one. 

As explained in [30], the recoilless factor of Fe
2+

 decreases faster than the Fe
3+

 one with 

increasing temperature. As a consequence, the estimated relative areas of the Fe
3+

 

subspectra at 295 K (Table 1) are higher than the relative Fe
3+

 fractions [Fe
3+

] : [Fetot] in 

the samples. Measurements at 4 K were therefore performed in order to suppress the 

recoil-free fraction effect [28, 31].  

Except for the samples grown at 10 mm/h and containing 4 and 8 mol% of iron, the 

spectra obtained at 4 K (Fig. 3) were analysed in the same way as those obtained at room 

temperature.  

 

Figure 2 – Mössbauer spectra of glass samples 

taken at 295 K: (a) 2mol%. Fe, (b) 4mol%. Fe, 

(c) 8 mol% Fe, grown at 10 mm/h, and (d) 

2mol%. Fe, (e) 4mol%. Fe, (f) 8mol%. Fe, grown 

at 50 mm/h. 

 

Figure 3 – Mössbauer spectra of the glass 

samples taken at 4 K: (a) 2 mol% Fe, (b) 4 

mol% Fe, (c) 8 mol% Fe, grown at 10 mm/h 

(arrows indicate the sextets), and (d) 2 mol% Fe, 

(e) 4 mol% Fe, (f) 8 mol% Fe, grown at 50 

mm/h. 
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As expected, the estimated Fe
2+

 relative areas at 4 K (Table 1) are higher than at 295 K 

(room temperature) and may be considered a good estimate of the actual Fe
2+

 fractions 

in the glass matrixes. 

Table 1 - Estimated parameters from the Mössbauer spectra of the glass samples taken at different 

temperatures (T). 

Fibre growth 

rate, mm/h 

Iron content, 

mol% 
T, K 

Iron 

oxidation 

state 

IS, mm/s 
QS, 2ε, 

mm/s 

<Bhf> , 

tesla 
I (%) 

10 

2 

295 
Fe

2+
 1.10 1.96 - 69 

Fe
3+

 0.41 1.37 - 31 

4 
Fe

2+
 1.25 2.13 - 78 

Fe
3+

 0.56 1.47 - 22 

4 

295 
Fe

2+
 1.16 2.13 - 77 

Fe
3+

 0.32 1.09 - 23 

4 

Fe
2+

 1.34 2.41 - 46 

Fe
3+

 0.42 1.43 - 12 

(Fe
3+

 Fe
2+

)
*
 0.63* -0.21 36* 42 

8 

295 
Fe

2+
 1.15 2.05 - 77 

Fe
3+

 0.31 1.02 - 23 

4 

Fe
2+

 1.34 2.34 - 36 

Fe
3+

 0.41 1.42 - 9 

(Fe
3+

 Fe
2+

)
*
 0.56* 0.0 39* 55 

50 

2 

295 
Fe

2+
 1.10 1.94 - 77 

Fe
3+

 0.44 1.45 - 23 

4 
Fe

2+
 1.25 2.10 - 86 

Fe
3+

 0.56 1.51 - 14 

4 

295 
Fe

2+
 1.11 2.04 - 75 

Fe
3+

 0.35 1.52 - 25 

4 
Fe

2+
 1.30 2.27 - 84 

Fe
3+

 0.45 1.69 - 16 

8 

295 
Fe

2+
 1.11 2.07 - 76 

Fe
3+

 0.36 1.53 - 24 

4 
Fe

2+
 1.26 2.22 - 86 

Fe
3+

 0.43 1.84 - 14 

IS (mm/s) isomer shift relative to metallic -Fe at 295 K; QS (mm/s) quadrupole splitting. 2ε = (e
2
VzzQ/4) 

(3cos
2
 - 1) [mm/s] quadrupole shift estimated for the sextets. <Bhf> (tesla) average magnetic hyperfine 

field; I relative area. Estimated errors  0.02 mm/s for IS, QS, and <2 % for I. 

* distribution of magnetic hyperfine fields. Average IS and Bhf are indicated. 

The 4 K spectra of the samples grown at 10 mm/h and containing 4 and 8 mol% of iron, 

show sextets with broad peaks (two out of the six peaks of each sextet are indicated by 

arrows in Fig. 3). Sextets are commonly observed for diluted amorphous systems, such 

as silicate glasses containing trace amounts of Fe
3+

. They result from slow spin-spin 

relaxation in systems where Fe
3+

 cations are too far apart to interact appreciably [29].  
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However, these effects are usually reported for glasses with less than 2 wt% FeO, 

whereas, in the present work, the sextets are observed for 4 and 8 mol% iron-containing 

glasses, and are absent in the 2 mol% iron-containing sample. Furthermore, the relative 

areas of the sextets increase with Fe content (Table 1). Therefore, these sextets cannot 

arise from slow spin-spin relaxation effects. Instead they can be explained by the 

formation of nanosized Fe clusters or nanosized Fe oxides in the samples containing 4 

and 8 mol% of iron. Superparamagnetic relaxation of the magnetic moments of these 

clusters is fast at room temperature but, at least for most of them, becomes quenched at 4 

K. As the sextet peaks are asymmetrically broadened suggesting a range of relaxation 

rates, their analysis was approached by a distribution of magnetic hyperfine fields, Bhf. 

The average magnetic hyperfine fields, <Bhf > ~ 36 and ~ 39 T, estimated for the 

samples grown at 10 mm/h and containing 4 and 8 mol% of iron, respectively, are lower 

than expected if the sextets would be only due to Fe
3+

. 

Moreover, the IS was found to decrease strongly with increasing Bhf, suggesting the 

contribution from Fe
2+

. Most probably, both Fe
2+

 and Fe
3+

 are present in the 

nanoclusters, resembling magnetite-like clusters in nonstoichiometric wustite Fe1-xO 

[32].  

However, the relative contributions to the spectra from Fe
3+

 and Fe
2+

 are not resolved in 

the observed sextets, and an estimate of the Fe
3+

 : Fe
2+

 ratios is, therefore, very difficult. 

In addition to the sextets, two doublets similar to those in the remaining glass samples 

are observed, suggesting the presence of isolated Fe
2+

 and Fe
3+

 within the glass structure, 

which do not belong to the nanosized clusters. 

The assumption regarding possibility of iron nanoclustering in iron-containing 

magnesium silicate-based glasses, prepared by LFZ, is in agreement with the results for 

similar systems obtained in [33, 34]. In particular, Mössbauer data of CaO(MgO)-Al2O3-

SiO2-Fe-O samples quenched from melts with Ca/Al and Mg/Al ≥ 0.5, suggest that Fe
2+

 

and Fe
3+

 cations may be associated within the glass melt [33], in such a way to produce 

local clusters, which compositionally resemble to a spinel structure [32]. EPR and 

Mössbauer studies of cenospheres from energy ashes with 3 – 4 wt% of iron revealed the 

presence of an iron-containing superparamagnetic phase with a spinel structure, having 

sizes of 30 – 50 Å, dispersed in aluminosilicate glass [34].  
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Although the MAS composition, studied in the present work is quite different, one may 

expect the formation of similar or even larger clusters in the samples with iron content 

above a critical value.  

Note also that the condition Mg/Al>0.5 is observed in the actual compositions studied in 

the present work. These Fe-containing clusters, which are more likely to form at lower 

growth rates under LFZ conditions, may act as nucleation centers, providing separation 

of mullite and cordierite like phases and the highest crystallinity for the sample 

containing 4 mol% of iron and grown at 10 mm/h, in agreement with XRD results     

(Fig. 1B). The latter also explains the presence of crystalline phases in the sample 

containing 8 mol% of iron and grown at 10 mm/h, in contrast to the corresponding 

amorphous sample grown at 50 mm/h, while further decrease in the amount of 

crystalline phase on increasing iron content may originate from mutual competition 

between various nucleation pathways, as described above. The role of iron content on 

the crystallization of mullite in traditional ceramic compositions [35], and its 

dependence on firing conditions are also consistent with this prevailing effect for the 

highest concentrations of Fe. 

For all samples grown at 50 mm/h Mössbauer data suggest similar Fe
3+

 fractions    

(Table 1), which are, however, lower than in the 2 mol% Fe-containing sample grown at 

10 mm/h. Whatever the oxidation mechanism, a lower growth rate is expected to result 

in a higher oxidation level, considering that the average oxidation state tends to increase 

with decreasing temperature and corresponding effect on the fibres is more pronounced 

at a lower cooling rate. Higher Fe
3+

 content is also favourable for clustering, taking into 

account that, at least, part of the clusters may have Fe
2+ 

(Fe
3+

)2O4 structure [32, 34]. 

Indeed, it is difficult to estimate the global Fe
2+

 : Fe
3+

 ratio in the samples containing 4 

and 8 mol% of iron and grown at 10 mm/h, because of the strong overlap of the sextets 

due to Fe
2+

 and Fe
3+

 in the clusters, as discussed above. 

Further evidences for the distinct nature of the local environments of iron ions in MAS 

structure follow from the results of EPR spectroscopy. The EPR spectra (Fig. 4) of the 

samples, containing iron, exhibit two well-known resonances at g ≈ 2 (3400 Oe) and      

g ≈ 4.3 (1700 Oe), which can be considered as a signature of the presence of Fe
3+

 ions in 

doped silicate glasses [36,37].  
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The resonances at g ≈ 4.3 (1700 Oe) refer to the usual isolated ions in the glass forming 

network, characteristic of the lowest iron contents, whereas the broad EPR signal at       

g ≈ 2.0 (3400 Oe) was ascribed to Fe
3+

 - containing clusters in silicate glasses [36, 37]. 

The latter is observed clearly for samples containing 4 and 8 mol%, grown at 10 mm/h 

(Fig. 4b), thus confirming the results of Mössbauer spectroscopy. 

 
Figure 4 – EPR spectra for 50 mm/h (A) and 10 mm/h (B) –grown samples at 300 K for different 

iron content. 

The increase of IS observed for all contributions to the spectra upon temperature drop 

from 295 to 4 K (Table 1) is explained by the second order Doppler shift. The values of 

IS of the different samples may be correlated with the Fe
2+

 and Fe
3+

 coordination. The 

estimated average IS at 295 K for most samples, <IS> ~ 1.10 – 1.11 mm/s, confirms that 

Fe
2+

 is a network modifier with preferential sixfold coordination [29, 31, 38]. The higher 

<IS> ~ 1.15 – 1.16 mm/s observed for the samples containing 4 and 8 mol% of iron and 

grown at 10 mm/h, may be related to the above referred inhomogeneities.  

At 295 K, the values of 0.35 – 0.36 mm/s deduced for the IS of Fe
3+

 in the samples, 

containing 4 and 8 mol% of iron and grown at 50 mm/h, are at the upper limit of the 

tetrahedral Fe
3+

 IS range, according to [29] and already within the octahedral Fe
3+

 IS 

range according to [31, 38]. 

This may suggest that for these samples Fe
3+

 is present in both coordinations, which 

agrees well with the broader line widths observed for the doublets (Fig. 2). The             

IS ~ 0.41 – 0.44 mm/s estimated for fibres grown at 10 and 50 mm/h and containing       

2 mol% of iron, suggest predominant octahedral coordination for Fe
3+

. 
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Figure 5 – SEM micrographs of longitudinal section of the fibres grown at 50 and 10 mm/h with 0, 2 

and 4mol%. iron content. 

SEM studies of the transversal sections of representative samples (Fig. 5) are consistent 

with the XRD results. The samples, where no clustering was detected by Mössbauer 

spectroscopy demonstrate similar morphology and crystal orientation. This type of 

crystals alignment was also observed by [14] for mullite fibres grown by LFZ at a higher 

rate (100 mm/h). Samples containing 4 mol% of iron and grown at 10 mm/h, show quite 

distinct microstructure, provided by more intensive crystallization and presence of 

cordierite phase coexisting with mullite (Fig. 1). The results on relative crystal area and 

crystal width for mullite phase, obtained by analysis of corresponding SEM micrographs 

of the samples grown at 50 mm/h, qualitatively confirm the observed general tendency 

for decrease in crystallinity while increasing iron content (Fig. 6). 

Two distinct types of spectra are evidenced by Raman spectroscopy for the crystalline 

and amorphous regions of the samples grown at 50 mm/h. Fig. 7 gives an example of the 

Raman spectrum for the sample containing 2 mol% of iron. The results reveal the 

presence of vibration modes characteristic of mullite (Al6Si2O13) phase, in accordance 

with the literature [13, 39]. The bands at ~ 500 and ~ 1000 cm
-1

 in all glass regions can 

be attributed to Si – O bond bending and stretching, that occur for SiO4 tetrahedra in the 

glass state [39, 40].  
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Figure 6 – Relative crystalline area () and crystal widths (■) for mullite phase, calculated from 

SEM images of fibres grown at 50 mm/h. 

 

Figure 7 – Raman spectra for the sample, 

containing 2 mol% of iron and grown at 50 

mm/h. The inset shows relative intensity of the 

peak near 1000 cm
-1

 within the crystalline 

region. 

 

Figure 8 – Raman spectra for samples, 

containing 2 and 4 mol% of iron and grown at 

10 mm/h in different sample regions. 

The crystalline regions are characterized by sharper and stronger bands. The sample 

containing 2 mol% of iron, shows the maximum relative intensity of the mullite peak at 

~1000 cm
-1

, apparently indicating the highest crystallinity of this sample among those 

grown at 50 mm/h.  
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A similar trend was reported for the dependence of melt viscosity on Fe concentration in 

the CaO-SiO2-Fe-O system, with a maximum at a certain concentration of Fe2O3 [25], 

suggesting that the impact of iron cations on crystallization/vitrification mechanisms in 

silicate glasses may be somewhat complex. It was shown that ferrous iron is commonly 

considered a glass-modifier [33]. Apparently the iron oxide in lower concentration can 

decrease the crystallization temperature and expanding the temperature range where 

crystallization may occur due to its coordination with glass elements [33]. Furthermore, 

this influence is more pronounced for the melt stage and playing a prevailing effect at 

higher iron concentrations [25, 33]. Onset of cordierite as a second crystalline phase at 

intermediate iron contents (Fig. 1) is also consistent with the transition from prevailing 

mechanisms; this is also supported by Raman spectroscopy for samples with 4mol% of 

iron content grown at 10 mm/h (Fig. 8) which show the characteristic vibration modes of 

cordierite [40, 41, 42, 43]. 

The values of electrical conductivity at 100 kHz, shown in Fig. 9, correspond to the 

typical range of silicate glass systems [44, 45]. Conductivity is strongly affected by 

thermal history, suggesting dependence on the fraction of crystalline phase (Fig. 1). 

However, the range of electrical conductivity values in Fig. 9 is still well above the room 

temperature electrical conductivity dc expected for pure mullite (≈ 10
-11

 S/m) or iron-

doped mullite (≈ 10
-9

 S/m) [46]. Therefore, one should consider a prevailing 

conductivity contribution of the residual glass, and changes in conductivity may be a 

combination of increasing iron contents, its distribution between crystalline phases and 

residual glass [46]. A possible compositional change is expected by alumina depletion on 

the residual glass due its preferential crystallization in a rich mullite phase, with 

corresponding effects on conductivity [47]. One must also take into account changes in 

relative fractions of Fe
2+

 and Fe
3+

 cations and their structural environment, including 

prospective Fe
2+

:Fe
3+

 clustering, as demonstrated by Mössbauer and Raman 

spectroscopy (Table 1). Evidence that the prevailing oxidation state in drawn fibres is 

Fe
2+

 (Table 1) also indicates preferential segregation of iron in the residual glassy phase 

because incorporation in the mullite phase should occur as trivalent Fe
3+

, by substitution 

of Al
3+

 in octahedral or tetrahedral coordination [48]. Coexistence of both valence states 

thus suggests a polaron conduction mechanism in the glass, involving coexisting 

trivalent and divalent cations in the residual glass phase, or clusters (Table 1).  
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In fibres containing 4 and 8 mol% of iron and grown at 10 mm/h the conductivity 

increases significantly, probably due to precipitations of alumina-rich mullite, and 

corresponding decrease of its contents in the continuous residual amorphous phase, 

combined the redistribution of Fe
n+

 ions, which play a prevailing role on conductivity 

(e.g. [47]). 

 

Figure 9 – Conductivity ac measured at 300k and 100 KHz, for samples grown at 10 (♦) and 50 () 

mm/h with different iron content. 

3.2.5 Conclusions 

Magnesium aluminosilicate-based glasses, containing various amounts of iron, were 

prepared by the laser floating zone technique at 10 and 50 mm/h growth rates. The 

structural and microstructural features of the prepared fibres were studied by XRD, 

SEM, Raman, EPR and Mössbauer spectroscopy. Iron oxidation state and local 

environment were found to be affected by the fibre growth rate, as a result of kinetic 

limitations imposed by specific conditions of the LFZ method. Formation of nanosized 

iron-containing clusters in the samples containing 4 and 8 mol% of iron, is closely 

related to massive crystallization and phase separation of mullite and cordierite-type 

phases, with significant impact on electrical conductivity. The observed effects of iron 

concentration in MAS glass on the phase composition suggest a complex nature of 

crystallization/vitrification mechanisms in these glasses, likely determined by the 

changes in configurational entropy of the melt upon cooling under LFZ conditions and 

network-forming capabilities of the Fe
2+

 and Fe
3+

 iron cations. 
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4.1 Introductory notes 

This chapter presents the results on processing and characterization of magnetite-based 

spinels, with emphasis on the properties relevant for prospective consumable anode 

materials for molten oxide electrolysis process. Chapter 4 includes two published papers. 

The first paper: 4.2 – Redox stability and high-temperature electrical conductivity of 

magnesium- and aluminium- substituted magnetite, demonstrates a co-substitutional 

approach using Mg and Al, for improving redox and electrical properties of ferrospinels. 

The second paper: 4.3 – Effects of transition metal additives on redox stability and high-

temperature electrical conductivity of (Fe, Mg)3O4 spinels, aims at assessment of the 

relevant structural factors, which determine the electronic transport and tolerance against 

oxidative decomposition of magnetite, containing transition metals additives. The 

characterization include detailed structural and microstructural analysis, studies of 

thermochemical expansion, relative weight changes and electrical conductivity in 

relevant conditions, including high temperatures and wide range of oxygen partial 

pressures. The results suggest important guidelines for tuning the composition of 

magnetite-based spinels, if seeking prospective applications in harsh conditions. 
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4.2 Redox stability and high-temperature electrical conductivity of 

magnesium- and aluminium- substituted magnetite 

A.V. Kovalevsky, A.A. Yaremchenko, E.N. Naumovich, N.M. Ferreira, S.M. Mikhalev, 

F.M. Costa and J.R. Frade 

(Journal of the European Ceramic Society 33 (2013) 2751–2760 

http://dx.doi.org/10.1016/j.jeurceramsoc.2013.04.008) 

4.2.1 Abstract 

Spinel-type magnetite-based oxides, possessing relatively high electrical conductivity, 

are considered as promising consumable anode materials for high temperature 

pyroelectrolysis, a breakthrough low-CO2 steel technology to overcome environmental 

impact of classical extractive metallurgy. The present work focuses on the analysis of 

phase stability, thermal expansion and high-temperature electrical conductivity in       

(Fe, Mg, Al)3 O4 system under oxidizing and mildly reducing conditions. Metastable, 

nearly single-phase at room temperature (Fe, Mg ,Al)3O4 ceramics were obtained by 

sintering at 1753 – 1773 K for 10 h in argon atmosphere. Thermal expansion and redox 

induced dimensional changes were studied on heating, using TG, XRD and dilatometry. 

The results revealed that magnesium improves the tolerance against oxidative 

decomposition and minimizes unfavorable dimensional changes in ceramic samples 

upon thermal cycling. Co-substitution of iron with aluminium and magnesium was 

proved to be a promising strategy for improvement of refractoriness and phase stability 

of Fe3O4-based spinels at elevated temperatures, without significant reduction in the 

electrical conductivity. 

4.2.2 Introduction 

Steel production by molten oxide electrolysis promises environmental advantages over 

classic extractive metallurgy, by eliminating CO2 emissions and reducing energy 

consumption [1-3]. Though theoretical simulations and predictions for the process are 

very optimistic [1], this concept is still far from being convincingly demonstrated even at 

laboratory scale. The inherent difficulties are largely associated with highly corrosive 

nature of high-temperature molten electrolytes, and finding suitable anode materials.  

http://dx.doi.org/10.1016/j.jeurceramsoc.2013.04.008
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In particular, noble metals (e.g., Ir) were proposed for small scale demonstration [3], but 

they are still far from being truly inert in molten oxide electrodes, while their cost is not 

affordable for mass production. Similarly, although Mo showed good prospects for 

electric boosting in glass technology, one cannot consider anodic polarization of Mo 

electrodes in contact with molten oxide electrolytes. Thus, a major challenge is to seek 

alternative concepts of consumable electrodes, as currently used in aluminium 

production by electrolysis of melts. 

Pure magnetite, Fe3O4, is known to show relatively good refractoriness and high 

temperature electronic conductivity [4-8]. It has been considered as a prospective 

candidate for consumable anodes in high temperature pyroelectrolysis [1,9], due to its 

compatibility with relevant molten oxide systems (e.g. SiO2-MgO-FeOx) and affordable 

cost for mass production,. An important advantage of magnetite also includes chemical 

composition itself, which does not lead to contamination of the system and may even 

account for a fraction of iron oxide raw materials. However, magnetite is 

thermodynamically unstable in air below 1667 K and even in inert gas (p(O2) ≈ 10 Pa) 

below 1300 – 1373 K [10]. Anodic polarization during electrolysis may also promote 

oxidation of magnetite to hematite, requiring higher operation temperatures to retain 

electrochemical stability magnetite phase, and, thus, sufficient refractoriness. 

Redox stability of magnetite can be improved by substitution of iron with redox stable 

oxides, and, for that matter, magnesium and aluminium oxides look very attractive due 

to their low costs. Moreover, these oxides are also among the most important 

components of refractory materials for high temperature molten systems. As an example, 

substitution of iron with Al
3+

 or Mg
2+

 is known to shift the melting points from 1811 K 

for Fe3O4 to 2013 K for FeAl2O4 and 2023 K for MgFe2O4, i.e., well above the melting 

point of iron (1808 K) and the temperature range proposed for iron or steel production 

from iron ore by pyroelectrolysis. However, redox stability requirements are often in 

trade-off relation with electrical conductivity. In particular, although the phase diagrams 

[11, 12] predict substantially large compositional ranges for stable Fe3-xMgxO4 spinels 

even in contact with pure oxygen atmosphere, partial iron substitution with magnesium 

significantly decreases the electrical conductivity at 1250 – 1773 K [8].  
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On the contrary, partial substitution with aluminium in magnetite has weaker negative 

impact on the conductivity but leads to a decrease in the redox stability [13]. Thus, a 

promising strategy may comprise co-substitution of magnetite with Mg and Al in the 

concentration range where aluminium may provide just an improvement of 

refractoriness without significant deterioration of the electric properties, whilst 

magnesium is expected to enhance the tolerance against oxidative decomposition. 

Earlier works on this ternary system [14-17] were mostly based on high magnesia or 

alumina contents and failed to attain the level of electrical conductivity, required for 

feasible consumable anodes in pyroelectrolysis. In addition, to our best knowledge, no 

systematic studies of the high-temperature redox stability for these materials were yet 

performed. 

Thus, the present work focuses on studies of phase relationships, redox stability and high 

temperature electrical conductivity in the (Fe, Al, Mg)3O4 system under oxidizing and 

mildly reducing conditions. The selection of compositions was carried out assuming 

reasonably high electrical conductivity by extending the composition-property relations 

previously reported for binary systems Fe3-x-yMgxCryO4 [8] and Fe3-zAlzO4 [13]. 

Particular attention is also given to the relevant properties in the intermediate 

temperature range, aiming on guidelines for electrode integrity, which may depend 

largely on the operation regime of the electrolysis cell. 

4.2.3 Experimental 

The powders of Fe2.6Al0.2Mg0.2O4, Fe2.3Al0.2Mg0.5O4, Fe2.2Al0.1Mg0.7O4, 

Fe2.1Al0.2Mg0.7O4 (further referred as moderately substituted), Fe1.55Al0.5Mg0.95O4 and 

Fe1.55Al0.95Mg0.5O4 (highly substituted) were prepared by solid state route from 

stoichiometric amounts of FeC2O42H2O (99%, Sigma-Aldrich), Al2O3 (99.7%, Sigma-

Aldrich) and Mg(NO3)26H2O (99%, Avocado Research Chemicals). Solid state 

synthesis was performed in air at 1173 – 1473K for 15-20 hours, with multiple 

intermediate grindings. After subsequent ball-milling of thus prepared powders with 

ethanol, disk-shaped ceramic samples were compacted uniaxially at 300 – 400 MPa, 

sintered at 1753 – 1773 K for 10 h in argon atmosphere (p(O2) ~ 10
-5 

– 10
-4

 atm) and 

cooled down to room temperature at 3 K/min.  
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Hereafter, thus prepared ceramics are referred to as: as-prepared samples. Identical 

thermal cycle was used to prepare the ceramic samples in air atmosphere. For X-ray 

diffraction (XRD) and thermogravimetry (TG) studies, the ceramics were ground to 

powders in a mortar. For the measurements of total conductivity and thermal expansion, 

the obtained disk samples were cut into rectangular bars (~ 2 3 12 mm
3
). After 

polishing, experimental density of the ceramics was measured by Archimedes method. 

X-ray diffraction patterns were recorded using a Rigaku D/Max-B diffractometer 

(CuK, 2= 10 – 80 º, step 0.02 º, exposition 2 s). Unit cell parameters were calculated 

from the diffraction data using profile matching method in Fullprof software [18]. High-

temperature XRD analysis was made on Philips X´pert MPD equipment in vacuum      

(~ 10
-7

 atm). For SEM/EDS analysis (Hitachi SU-70 model equipped with Brucker 

silicon drift EDS detector), selected ceramic samples were polished and annealed at 

1673 K (0.5 h) in Ar. TG studies (Setaram SetSys 16/18 instrument, sensitivity 0.4 g, 

initial sample weight ~ 0.5 g) were performed in a flow of argon or dry air at 298 – 1373 

K with constant heating/cooling rate of 2 K/min. Each TG procedure was repeated under 

identical conditions (temperature program and atmosphere) using a reference alumina 

sample and the obtained baseline was subtracted from experimental data in order to 

correct for buoyancy effects. 

Thermal expansion of (Fe, Al, Mg)3O4 ceramics was measured on heating (3 K/min) up 

to 1350 K in argon and air atmospheres, using a vertical alumina dilatometer Linseis 

L75V/1250 with a gas system, including an yttria-stabilized zirconia (YSZ) oxygen 

sensor at the outlet. Total electrical conductivity () was measured by 4-probe dc 

technique at 750 – 1773 K in the oxygen partial pressure p(O2) range from 10
-5

 to 0.21 

atm in flowing air-Ar mixtures. The p(O2) in the gas flow was monitored using an YSZ 

oxygen sensor. 

Static lattice simulations were performed using GULP software [19, 20] in the way, 

similar to that previously described for (Fe, Al)3O4 spinels [13]. Simulations were based 

on 1004 supercells (222) with random distribution of cations in tetragonal and 

octahedral sublattices, including previously reported results for pure magnetite and    

(Fe, Al)3O4, [13]. The interatomic potentials, used for simulation, are given in Table 1.  
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The collected data of the lattice energy (in GULP formalism) Ecell were firstly fitted vs. 

total magnesium content [Mg
2+

] and amounts of Mg
2+

 and Fe
2+

 in octahedral sites, 

[Mg0
2+

] and [Fe0
2+

], correspondingly, using formal linear regression model: 

2+ 2+ 2+

o oMg Mg Fecell o Mg Mg FeE E a b b               
(1) 

where E0 corresponds to the lattice energy for undoped and not inverted magnetite, aMg - 

impact of the substitution with Mg, bMg - impact of magnesium in octahedral positions, 

and bFe - impact of the spinel inversion (i.e. Fe
2+

 in octahedrally-coordinated sites).  

Table 1 – Phenomenological potentials, used in simulation. 

Atom 

Core-shell Interatomic (Buckingham) 

References Y, e 

(shell 

charge) 

k, 

eV/Å
2
 

Pair A, eV , Å 
C, 

eV/Å
2
 

O
2-

 -2.513 20.53 O
2-

 22.41 0.6937 32.32 [21,22] 

3+

tFe
 

1.029 10082.5 O
2-

 1240.232 0.3069 0 [21,22] 

3+

oFe
 

1.029 10082.5 O
2-

 1342.754 0.3069 0 [21,22] 

Fe
2+

 2 n/a O
2-

 2763.945 0.2641 0 [21,23] 

Al
3+

 2.957 403.98 O
2-

 2409.505 0.2649 0 [21,24] 

Mg
2+

 0.4200 349.95 O
2-

 2457.243 0.261 0 [21,24] 

Similar modelling was then performed for the ternary (Fe, Al, Mg)3O4 system, with 

introduction of the additional term c to achieve desirable quality of the model: 

2+ 2+ 3+ 3+ 2+

o o o

3+ 2+ 2+

o o o

Mg Mg Al Al Fe

Al Fe Mg

cell o Mg Mg Al Al FeE E a b a b b

c

                        

             

(2) 

Factors aAl and bAl denote the same impacts for substitution with aluminium, as 

described above for magnesium. Fitting was performed in Wolfram Research 

Mathematica 6 software [25].  

4.2.4 Results and Discussion 

XRD analysis of as-prepared Fe2.6Al0.2Mg0.2O4 and Fe2.3Al0.2Mg0.5O4 samples obtained 

by sintering in Ar (Fig. 1) showed formation of single-phase spinel structure (space 

group Fd 3m).  
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Higher substitution leads to appearance of second periclase-based phase, containing 

aluminium, as confirmed by EDS analysis (Fig. 2). Noteworthy that, in the case of 

simultaneous presence of Mg and Al, formation of (Mg, Al)O is more favourable, than 

separation of wüstite, previously reported for (Fe, M)3O4 (M = Mg, Al) materials at high 

substitution levels [8,13].  

Corresponding lattice parameters are given in Table 2, together with the identification of 

secondary phases. For the single-phase samples, the unit cell parameters decrease upon 

substitution, due to smaller ionic radii of Al
3+

 compared to Fe
3+

, and Mg
2+

 compared to 

Fe
2+

 (assuming the same coordination numbers of considered cations [26]). 

 

Figure 1 – Room-temperature XRD patterns of as-prepared and air-sintered (Fe, Al, Mg)3O4 

samples. 
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Figure 2 – Example of SEM/EDS mapping results for Fe2.1Al0.2Mg0.7O4 spinel sample. 

 

Table 2 – Properties of as-prepared (Fe, Al, Mg)3O4 ceramic samples. 

Chemical 

composition 

Phase 

composition 

Unit cell parameter of 

spinel-type phase, nm 

Density, 

g/cm
3
 

Relative 

density, 

% 

Fe2.6Al0.2Mg0.2O4 Spinel 0.83684(3) 4.67 93.9 

Fe2.3Al0.2Mg0.5O4 Spinel 0.83615(3) 4.68 98.1 

Fe2.2Al0.1Mg0.7O4 
Spinel (major) + 

periclase (minor) 
0.83767(3) 4.56 97.7

*
 

Fe2.1Al0.2Mg0.7O4 
Spinel (major) + 

periclase (minor) 
0.83657(3) 4.48 96.9* 

Fe1.55Al0.5Mg0.95O4 
Spinel (major) + 

periclase (minor) 
0.83136(3) 3.59 82.9* 

Fe1.55Al0.95Mg0.5O4 spinel 0.82687(2) 4.06 91.8 

* - was calculated assuming phase-pure spinel 

According to the XRD results, the tolerance against oxidative decomposition for (Fe, Al, 

Mg)3O4 spinels appears to be largely determined by [Al
3+

]:[Mg
2+

] concentration ratio in 

substituted magnetite and total iron concentration. For the samples sintered in air, the 

relative intensities of hematite-type phase peaks decrease from Fe2.6Al0.2Mg0.2O4 to 

Fe2.3Al0.2Mg0.5O4 (Fig.1). 

Al    Fe            Mg 
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Higher magnesium content, apparently, lowers the Fe
2+

:Fe
3+

 ratio in spinel lattice, while 

the total amount of cations, susceptible to oxidation, decreases. A possibility to obtain 

single-phase Fe1.55Al0.5Mg0.95O4 ceramics by sintering in air (Fig. 1) is another good 

illustration for the redox-stabilizing effect of magnesium. Indeed, Fe3-xAlxO4 materials 

(0.1 x 1.0) undergo full oxidation under similar conditions [13], whilst single phase 

Fe2.05Mg0.95O4 ceramics can be prepared in air [8]. Minor amounts of phase impurities, 

in fact, may not be crucial for application as consumable electrodes, implying that these 

materials can sustain the conditions of pyroelectrolysis in melts and provide sufficient 

power density. 

The information, provided by XRD analysis, is in a good agreement with the results of 

static lattice simulation and fitting, which are given in Fig. 3 and Table 3. The linearity 

of the proposed models, described above, and proximity of the corresponding coefficient 

values for different compositions indicate that considered solid solutions are close to 

ideal. Comparison of the impacts of substitution with magnesium (aMg) (Eq.1, Table 3) 

and aluminium (aAl) [13] confirms an increase in lattice stability in the case of Mg 

addition, while Al shows an opposite tendency. The values of the lattice energies for all 

simulated (Fe, Mg)3O4 compositions are fairly more negative that for pure magnetite 

(Fig. 3).  

 

Figure 3 – Results of static lattice simulation: energy of the cell formation vs. concentration of Fe
3+

 

in octahedral environment. 
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Table 3 – Parameters of the regression models (Eq.1 and 2) (95 % confidence). 

Parameter 

Value 

(Fe,Mg)3O4, 

Eq.1 

(Fe,Al,Mg)3O4, 

Eq.2 

oE
 

-190.99 ± 0.01 -190.99 ± 0.01 

Mga
 

-0.84 ± 0.02 -0.97 ± 0.02 

Mgb
 

-1.27 ± 0.05 -1.14 ± 0.04 

Ala
 

 3.53 ± 0.03 

Alb
 

 -1.06 ± 0.04 

Feb
 

-0.40 ± 0.02 -0.40 ± 0.02 

c  -35 ± 1.5 

R
2
 0.990 0.996 

Npoints 293 1005 

 

Cosubstitution appears to result in partial stabilization of the lattice compared to (Fe, 

Al)3O4, although the calculated energies predict slightly lower or similar stabilities for 

(Fe, Al, Mg)3O4, compared to Fe3O4. The latter, in particular, may indicate that the effect 

of magnesium is not enough to substantially improve the stability of aluminium 

substituted magnetite. However, confirmation of lattice stability should be addressed 

with the respect to actual decomposition process mechanism. 

The analysis of fitting results (Eq. 2, Table 3) shows that substituting cations Mg
2+

 and 

Al
3+

 tend to reside in octahedral sites of spinel lattice, and their affinity to octahedral 

position is almost two times higher compared with Fe
2+

. This prediction, in general, is in 

agreement with the results for cation distribution in Fe3O4 – MgAl2O4 system [14], 

obtained from thermopower and conductivity measurements, where substitution was 

found to lead to partial enrichment of the tetrahedral sites with both Fe
2+

 and Fe
3+

. 

At the same time, similar negative values of bMg and bAl coefficients for (Fe, Al, Mg)3O4 

system (Table 3) indicate, that these cations may have similar inherent affinity to occupy 

octahedral sites, which are responsible for the electronic conduction in ferrospinels 

(Refs. [8, 13] and references therein). 
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The results of thermogravimetric analysis of the powdered (Fe, Al, Mg)3O4 samples in 

Ar (p(O2) ~ 10
-5

 atm) (Fig. 4A), again, confirm an increase in redox stability upon 

substitution with magnesium. However, as for the case of Fe3-xAlxO4 (0.1 x  0.7) [13], 

these results also demonstrated, that as-prepared (Fe, Al, Mg)3O4 ceramics are 

metastable at lower temperatures. One may notice that, even in air, the powdered 

samples of Fe3-yMgyO4 (0.7  y 0.95) ceramics show only an increase in weigh upon 

heating [8]. (Fe, Al, Mg)3O4 samples demonstrate lower oxygen uptake and X-ray peak 

intensities of secondary phases also decrease (Fig. 5), relative to (Fe,Al)3O4 spinels for 

the same iron content.  

The same tendencies for the moderately substituted samples were observed in air (Fig. 

4B), where oxidation proceeds to greater extent and results in almost complete spinel 

phase decomposition with the formation of hematite-based phase (Fig. 5). Although 

Fe2.1Al0.2Mg0.7O4 spinel, having only minor hematite impurities, can be sintered in air, 

the powder of this composition also oxidizes readily even in Ar (Fig. 4C). 

On the contrary, heavily-substituted Fe1.55Al0.5Mg0.95O4 spinel, sintered in air, 

demonstrates oxygen release from the lattice on heating (Fig. 4C) and the same single-

phase composition before and after TG (Fig. 5). High magnesium additions can 

significantly increase the redox stability of aluminium-substituted magnetite. However, a 

considerable decrease in electronic conductivity of (Fe, Al, Mg)3O4 spinels at this 

substitution level may be expected. 

Concerning the target application, one may anticipate that spinel-based consumable 

anodes will be based on bulk ceramics. Thus, for discussed materials, the oxidation 

presumably will take place mainly at the surface, with less pronounced effect on the 

bulk, depending on composition. 

For example, single phase metastable (Fe, Al, Mg)3O4 spinel ceramics can be prepared 

by sintering as described above, whereas powders of identical composition, in 

accordance with TG results, undergo oxidation when heated above 500 K. Depending on 

the rate, oxidation may cause excessive dimensional changes in spinel ceramics on 

heating, and, thus, limited tolerance to thermal cycling. 
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Figure 4 – Relative weight change of the powdered (Fe, Al, Mg)3O4 on heating and cooling: as-

prepared samples in Ar (A), as-prepared samples in air (B) and air-sintered samples in Ar and air 

(C). 

The results of dilatometric studies, performed on (Fe,Al,Mg)3O4 ceramic samples, are 

presented in Fig. 6. The dilatometric curves of moderately substituted materials exhibit 

non-linear behaviour above ~ 650 K, similar to that observed for Fe3O4 in the 

atmospheres with low oxygen content [8, 27, 28]. The phenomenon may be attributed to 

a chemical contribution to thermal expansion [8], or rearranging point defects in the 

cationic sublattice [27]. 
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Figure 5 – XRD patterns of the samples after TG studies. 

 

Although substitution with Mg and Al generally decreases the thermal expansion of 

magnetite, the variations in thermal expansion coefficient (TEC) of (Fe, Al, Mg)3O4 with 

composition are very small. At 300650 K all studied materials show very similar 

expansion behaviour both in Ar and air, with thermal expansion coefficients in the range 

(11.0 – 11.6) 10
-6

 K (Table 4). 

For moderately substituted samples, at higher temperatures the thermal expansion 

coefficients increase and correspond to (13.0 – 13.1) 10
-6

 K at 750 – 1370 K in Ar. 

Heavily substituted Fe1.55Al0.5Mg0.95O4 and Fe1.55Al0.95Mg0.5O4 demonstrate almost 

linear thermal expansion in Ar in the whole studied temperature range, with similar TEC 

values.  
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Figure 6 – Dilatometric curves for (Fe, Al, Mg)3O4 materials. 

 

One may notice that, although powdered Fe2.6Al0.2Mg0.2O4, Fe2.3Al0.2Mg0.5O4 and 

Fe2.3Al0.7O4 [13] samples oxidize in Ar at T > 500 K, the latter has no distinguishable 

effect on the thermal expansion of corresponding ceramic samples in similar conditions. 

However, in air, at temperatures above 1050 – 1100 K the behaviour becomes different 

and provides additional evidences for redox-stabilizing effect of Mg. Even contraction 

can occur, due to oxidation of Fe
2+

 to Fe
3+

, as one may observe for Fe2.6Al0.2Mg0.2O4 and 

Fe2.3Al0.7O4 (Fig. 6). The contraction is much more pronounced for aluminium 

substituted magnetite. Magnesium addition, on the contrary, reduces or eliminates 

unfavourable dimensional changes, caused by oxidation. Thus, for ceramic ferrospinel 

products, magnesium effectively improves the tolerance against oxidative decomposition 

even at relatively low substitution levels.  
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Table 4 – Thermal expansion coefficients and activation energies for the total conductivity. 

Composition 

Average thermal expansion 

coefficients 

Activation energy for the total 

conductivity 

p(O2), 

atm 

T, 

K 

(�̅�  10
6
) 

 0.1, K
-1

 

p(O2), 

atm 

T, 

K 

Ea, 

kJ/mol 

Fe2.6Al0.2Mg0.2O4 
10

-5
 

300650 

8001370 

11.4 

13.1 3.810
-5

 11971772 15.2  0.7 

0.21 300600 11.4 

Fe2.3Al0.2Mg0.5O4 

10
-5

 
300650 

8001370 

11.4 

13.0 
6.610

-5
 13691773 19  1 

0.21 
300650 

8001200 

11.6 

13.3 

Fe2.2Al0.1Mg0.7O4 

10
-5

 
300650 

7501370 

11.3 

13.1 
2.410

-4
 13721714 23  1 

0.21 
300650 

7501000 

11.0 

12.6 

Fe2.1Al0.2Mg0.7O4    1.610
-4

 13731764 23.2  0.9 

Fe1.55Al0.5Mg0.95O4 10
-5

 3001370 11.2 1.510
-4

 14821772 129  18 

Fe1.55Al0.95Mg0.5O4 10
-5

 
300900 

9001260 

11.4 

11.2 
   

 

 

Figure 7 - Temperature dependence of the total conductivity of Mg- and Al- substituted magnetite. 
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Fig. 7 shows temperature dependence of the total conductivity for (Fe, Al, Mg)3O4 spinel 

materials; the data on Fe3-xAlxO4 [13] system was added for comparison. Magnetite-

based spinels are predominantly electronic conductors; as an example, the ion 

transference numbers in Fe2.11Mn0.54Zn0.35O4 were found to vary in the range 10
-7

 – 10
-4

 

at 1370 – 1570 K [29]. The electronic transport occurs via smallpolaron mechanism by 

hopping between Fe
2+

  Fe
3+

+ e
-
, and is restricted mainly to octahedral sites [7, 8, 14, 

30].  

Both magnesium and aluminium possess stable oxidation state and are, therefore, 

excluded from the electron hopping process. Effects exerted by additions of Mg and/or 

Al are, thus, mainly related to changes in the fraction of Fe
2+

, and preference of Mg
2+

 

and Al
3+

 to occupy octahedral positions (Table 3). Both contributions may affect the 

probability of hopping (i.e. the [Fe
2+

] [Fe
3+

] product in octahedral positions). 

Correspondingly, substitution of iron in spinel with Mg and Al results in systematic 

decrease of the electrical conductivity. For the same substitution level, the negative 

effect on conductivity is more pronounced for magnesium, while (Fe, Al)3O4 spinels 

show noticeably higher conductivity. Note that the [Fe
2+

][Fe
3+

] product vanishes for 

MgFe2O4 to maintain charge neutrality. Thus, generation of extra amount of Fe
2+

 is 

beneficial for n-type electronic conduction in ferrospinels, in opposite to Fe
3+

. This 

tendency is well-illustrated by the total conductivity dependence on the [Fe
2+

]oct [Fe
3+

]oct 

product (Fig. 8). 

 

Figure 8 – Total conductivity vs. average iron oxidation state in (Fe, Al, Mg)3O4 spinels. 

 

2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00

Average iron oxidation state

0

20

40

60

80

100


 

S


cm
-1

in Ar

Fe2.6Al0.2Mg0.2O4

Fe2.1Al0.2Mg0.7O4

Fe1.55Al0.95Mg0.5O4 Fe1.55Al0.5Mg0.95O4

Fe2.3Al0.2Mg0.5O4

Fe2.2Al0.1Mg0.7O4

1773 K



110 

However, some uncertainties may still originate from calculations without accounting 

for other heating induced point defects in ferrospinels, such as cation vacancies or 

interstitials (Ref. [8] and references therein) and assumption, that all substituent cations 

and Fe
2+

 reside in octahedral sites. For all studied compositions the dependence shows 

almost linear behaviour, indicating that probability of hopping is the main factor, 

responsible for conductivity changes upon substitution in (Fe, Al, Mg)3O4 system. High 

additions of trivalent Al
3+

 with preferential octahedral occupancy may affect the 

probability of hopping by lowering [Fe
3+

] while maintaining [Fe
2+

]; this is demonstrated 

by the behaviour of Fe1.55Al0.95Mg0.5O4 spinel, which shows a distinct conductivity 

variation with temperature in the high temperature range (Fig. 7). Apparently, at 

sufficiently high temperatures oxygen losses on heating may even result in further 

decrease of [Fe
2+

]oct[Fe
3+

]oct. In addition, one cannot exclude the possibility of changes 

in mobility, mainly for spinels with highest compositions changes, due to combined 

effects of structural changes and thermal collisions, leading to the conductivity drop. 

Additional explanation for the observed compositional dependence of the total 

conductivity of (Fe, Al, Mg)3O4, can rely on the different conditions for electron hopping 

in these materials, depending on Al and Mg content. In particular, the unit cell volume is 

smaller for aluminium-containing magnetite, if compared to (Fe, Mg)3O4 [8,13]; co-

substitution is shown to demonstrate additive effect (Table 2). Thus, aluminium 

promotes smaller average Fe
2+

 – Fe
3+

 distance, facilitating electron hopping. 

Noteworthy, that small average Fe
2+

 –
 
Fe

3+
 in spinels, in some cases, may even lead to 

appearance of band-like conductivity, as described in [15] and references therein. This 

mechanism may also, to a certain extent, contribute to the different conductivity 

behaviour of Fe1.55Al0.95Mg0.5O4 spinel, which has the smallest unit cell parameter 

among the studied materials. 

The variations of the total conductivity of (Fe, Al, Mg)3O4 spinels with temperature are 

quite complex and, most likely, are determined by the changes in defect-chemistry from 

interstitial cation formation above 1300 K to generation of cation vacancies at lower 

temperatures (Ref. [8] and references therein), and partial decomposition of the spinel 

phase. Thus, the maghemite structure can be regarded as the extreme case of cation 

deficient Fe3-O4 spinels.  
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Below 1200 K all studied samples demonstrated slow equilibration kinetics on cooling, 

resulting in gradual conductivity drift with time. Therefore, the values of activation 

energies (Ea) (Table 4) were calculated only for high temperature range, using the case 

of adiabatic hopping for small-polaron conductivity mechanism [7]: 

)/exp( RTE
T

A
a

 
(3) 

The activation energies of moderately substituted samples increases upon substitution 

and vary in the range from 15 to 23 kJ/mol at 1200 – 1773 K in Ar, being consistent with 

literature data [7, 13]. Compared to the (Fe, Al)3O4 binary system, addition of 

magnesium decreases the activation energy of the total conductivity in high temperature 

range; e.g., from 23 kJ/mol for Fe2.3Al0.7O4 at 14511773 K [13] down to 19 kJ/mol for 

Fe2.3Al0.2Mg0.5O4 at 1369 – 1773 K (Table 4).  

At 1773 K and p(O2) from 10
-5

 to 0.21 atm, moderately substituted (Fe, Al, Mg)3O4 

spinels show high and stable electrical performance, indicating their phase stability in 

these conditions (Fig. 9). An example of XRD pattern of Fe2.1Al0.2Mg0.7O4 at 1673 K in 

vacuum is given in Fig.10. In opposite to the as-prepared sample at room temperature, 

periclase impurity was not present in these conditions. Within the phase stability domain, 

the electrical conductivity of moderately substituted samples is essentially p(O2)-

independent at 1573 – 1773 K. A minor increase in total conductivity with reducing 

oxygen partial pressure is, probably, associated with increasing concentration of n-type 

charge carriers. The conductivity behaviour with p(O2) for Fe2.6Al0.2Mg0.2O4 and 

Fe2.3Al0.2Mg0.5O4 materials is quite similar to that of (Fe, Al)3O4 analogues [13]. 

Redox induced phase decompositions and/or onset of secondary phases may also affect 

conductivity, in addition to effects on carrier concentration and mobility. For example, 

highly substituted Fe1.55Al0.5Mg0.95O4 demonstrates a substantial increase in conductivity 

on reducing oxygen partial pressure below a certain limit. The onset of this increase 

shifts to lower p(O2) when decreasing the temperature. Such behaviour can be ascribed 

to phase decomposition and segregation of more conductive wüstite-based phase, as 

previously confirmed for Fe1.55Cr0.5Mg0.95O4 and Fe2.1Mg0.9O4 spinels [8]. 
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Figure 9 – Oxygen partial pressure 

dependencies of the total conductivity of   

(Fe, Al, Mg)3O4 ceramic samples. The points, 

which correspond to the phase 

decomposition at 1373 K, are marked with 

arrows. 
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The conductivity drop on increasing oxygen partial pressure above certain value at 

temperatures ≤ 1573 K (Fig. 9), in most cases, is also associated with phase 

decomposition, induced by oxidation. The inflection point, which corresponds to the 

onset of the decomposition, is quite obvious for Fe2.6Al0.4O4, Fe2.6Al0.2Mg0.2O4 and 

Fe2.3Al0.7O4 at 1573 K. Note that the values of conductivity after decomposition onset 

are not related to the equilibrium conditions, since this process is very slow in spinel 

ceramics. The arrows shown in Fig. 9 (at 1373 K) mark the sharp decrease of 

conductivity at onset of oxidative decomposition, to emphasize differences relative to 

more gradual changes in conductivity observed for Fe2.1Al0.2Mg0.7O4, when Fe
2+

 

oxidation to Fe
3+

 causes decrease in [Fe
2+

][Fe
3+

] in spinel lattice. 

Although precise determination of p(O2)-stability limits for the studied materials was not 

performed in present work, since it requires long-time equilibration, the effect of 

substitution on stability is quite obvious and confirms previous observations. 
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Figure 10 – Examples of XRD patterns for as-prepared Fe2.1Al0.2Mg0.7O4 at room temperature and 

at 1673 K in vacuum. 

As an example, at 1573 K the onset of phase decomposition and conductivity drop for 

Fe2.3Al0.7O3 corresponds to p(O2) ~ 0.05 atm, whereas Fe2.3Al0.2Mg0.5O4 (Fig. 9) is stable 

even in air. Thus, for moderate substitution level, magnesium addition increases the 

p(O2) range, where (Fe, Al, Mg)3O4 show stable electrical performance and single-phase 

composition at 1373 – 1573 K. 

Reasonably high performance is characteristic for Fe2.6Al0.2Mg0.2O4 and 

Fe2.3Al0.2Mg0.5O4 spinels; for the former the total conductivity in Ar is less than two 

times lower than for undoped magnetite at 1773 K. 

4.2.5 Conclusions 

Addition of magnesium was found to increase the tolerance of aluminium-containing 

magnetite against oxidative decomposition. The phase stability of (Fe, Al, Mg)3O4 

spinels is mainly determined by [Al
3+

]:[Mg
2+

] concentration ratio and iron content. XRD 

analysis and static lattice simulation studies revealed that the effect of moderate 

substitution with magnesium may be not sufficient to substantially improve the redox 

stability of (Fe, Al)3O4. However, due to relatively slow rate of exchange and diffusion 

controlled processes in ferrospinels, magnesium, even at relatively low substitution 

levels, effectively improves the dimensional stability of bulk ceramics.  
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For single-phase ceramics, thermal expansion coefficients of (Fe, Al, Mg)3O4 are weakly 

dependent on the composition and vary in the range (11.0 – 11.6) 10
-6

 K at 300 650 

K, and (13.0 – 13.1) 10
-6

 K at 750 – 1370 K. Substitution with magnesium led to lower 

total conductivity, if compared to aluminium-substituted analogue. Weak p(O2)-

dependence of the conductivity and phase stability at 1673-1773 K suggest a broad 

range of conditions where (Fe,Al,Mg)3O4 –based anodes can be successfully used in the 

pyroelectrolysis. 
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4.3 Effects of transition metal additives on redox stability and high-

temperature electrical conductivity of (Fe, Mg)3O4 spinels 

N.M. Ferreira, A.V. Kovalevsky, E.N. Naumovich, A.A. Yaremchenko, K.V. 

Zakharchuk, F.M. Costa and J.R. Frade 

(Journal of the European Ceramic Society 34 (2014) 2339–2350 

http://dx.doi.org/10.1016/j.jeurceramsoc.2014.02.016 ) 

 

4.3.1 Abstract  

Magnetite-based spinels are considered as promising oxide materials to meet the 

requirements for ceramic consumable anodes in molten oxide pyroelectrolysis process, a 

breakthrough low-CO2 steel technology aimed to overcome the environmental impact of 

classical extractive metallurgy. The present work focuses on the assessment of phase 

relationships, redox stability and electrical conductivity of Fe2.6Me0.2Mg0.2O4 (M = Ni, 

Cr, Al, Mn, Ti) spinel-type materials at 300 – 1773 K and p(O2) from 10
-5

 to 0.21 atm. 

The oxidation state of substituting transition metal cation, affecting the fraction of Fe
2+

 

in spinel lattice, was found to be a key factor, which determines the electronic transport 

and tolerance against oxidative decomposition, while the impact of preferred 

coordination of additives on these properties was less pronounced. At T > 650 K thermal 

expansion of Fe2.6Me0.2Mg0.2O4 ceramics exhibited complex behaviour, and, in highly 

oxidizing conditions, resulted in significant volume changes, unfavourable for high-

temperature electrochemical applications. 

4.3.2 Introduction 

Though molten oxide electrolysis was proposed for carbon-lean steelmaking [1,2], 

feasibility of this technology is far from being demonstrated, largely due to the highly 

corrosive nature of molten electrolytes. The concept itself is also far from being 

convincingly demonstrated even at laboratory scale. Highly corrosive nature of high-

temperature molten electrolytes raises major questions about prospects to develop stable 

anode materials, able to withstand extreme operation conditions.  

 

http://dx.doi.org/10.1016/j.jeurceramsoc.2014.02.016
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Noble metal oxygen electrodes (e.g., Ir) were proposed for small scale demonstration 

[2], but these are far from being truly inert in molten oxide electrodes, and their cost is 

not affordable for mass production. Similarly, although molybdenum shows good 

prospects for electric boosting in glass technology due to high corrosion resistance in 

glass melts under ac operation, one cannot consider dc anodic polarization of Mo 

electrodes in contact with molten oxide electrolytes, due to poor refractoriness of Mo 

oxide scales. Thus, one of the major challenges in steelmaking by molten oxide 

electrolysis is to seek alternative concepts of consumable oxygen electrodes, as currently 

used in aluminium production by electrolysis in melts. 

Magnetite-based spinels have been considered as slowly consumable oxide electrodes to 

tackle this challenge. Pure magnetite combines low cost and occurrence as major 

components of natural raw materials with relatively good refractoriness, compatibility 

with molten silicates and high electronic conductivity [3-8]. Its chemical composition 

nicely fits the concept of consumable anode, since the dissolution of Fe3O4 does not lead 

to contamination of the system and may even account for a fraction of iron oxide raw 

materials. However, insufficient redox stability in air below 1667 K and even in inert gas 

(p(O2)  ≈ 10 Pa) below 1300 – 1373 K [9] represents a serious drawback. In addition, the 

melting point of pure magnetite (1811 K) is only slightly above that for metallic iron 

(1808 K). Along with thermodynamic stability, further improvement of refractoriness is 

also desirable. 

Our previous studies have demonstrated that redox stability of magnetite at high 

temperatures can be substantially enhanced by substitution with magnesium [6, 10, 11], 

which is also attractive due to the low cost, natural abundance and compatibility with 

molten silicate systems. At the same time, substitution of iron with Mg
2+

 shifts the 

melting point up to 2023 K for MgFe2O4, simultaneously improving the refractoriness. 

Phase diagrams [12, 13] also predict substantially large compositional ranges for stable 

Fe3-xMgxO4 spinels even in contact with pure oxygen atmosphere. However, partial iron 

substitution with magnesium significantly reduces the electrical conductivity at        

1250 – 1773 K [6, 11] due to decrease in the concentration of n-type electronic charge 

carriers.  
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Substitution with redox stable cations of higher valency (e.g., Al
3+

) was proved to have 

less negative effect on the electronic transport within the phase stability limits, whilst the 

impact on the stability is opposite to that from magnesium [11, 14]. 

Thus, the present work focuses on guidelines for further composition changes, seeking a 

reasonable compromise between redox stability and high-temperature electrical 

conductivity in magnetite-based spinel materials, considering the targets set by 

requirements for high-temperature electrolytic steelmaking. Taking into account the 

contribution of magnesia to redox stability, the selected compositions were 

Fe2.6Me0.2Mg0.2O4 spinels, with additions of transition metal cations differing in redox 

stability (i.e. Me = Ni, Mn, Cr, Ti). As an additional benefit for the pyroelectrolysis 

process, one should consider a possibility for co-reduction of those metals at the cathode 

and further alloying with iron. The obtained data on the electrical conductivity and 

stability is compared to that obtained previously for Fe2.6Al0.2Mg0.2O4 spinel [11]. The 

level of iron substitution is selected to retain reasonably high electrical conductivity, 

essential for ceramic anodes in high temperature electrolysis. As for previously studied 

(Fe, Al, Mg)3O4 system [6, 11, 14], particular attention is given to the relevant properties 

in the intermediate temperature range, aiming on guidelines for electrode integrity, 

which may depend largely on the operation regime of the electrolysis cell. 

4.3.3 Methods 

4.3.3.1 Experimental methods 

The precursor powders of Fe2.6Me0.2Mg0.2O4 (M = Ni, Cr, Mn, Ti) spinels were prepared 

by solid state route from stoichiometric amounts of FeC2O42H2O (99%, Sigma-

Aldrich), Ni(NO3)26H2O ( 98.5%, Sigma-Aldrich), Cr(NO3)39H2O (99%, Sigma-

Aldrich), Mn(CH3COO)24H2O ( 99%, Aldrich) and TiO2 (99.8%, Sigma-Aldrich). The 

conditions of powder processing and sintering were similar to those used for preparation 

of (Fe, Al)3O4 and (Fe, Al, Mg)3O4 spinels [11, 14]. The ceramic samples were sintered 

at 1753 – 1773 K for 10 h in argon atmosphere (p(O2) ~ 10
-5 

– 10
-4

 atm) ) and cooled 

down to room temperature at 3 K/min; another set of the samples was prepared in air in 

similar conditions. X-ray diffraction (XRD) and thermogravimetry (TG) studies were 

performed on powders, after grinding corresponding ceramics in a mortar.  
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For the electrical conductivity and thermal expansion measurements, the obtained disk 

samples were cut into rectangular bars (~ 2  3  12 mm
3
). The experimental density of 

the ceramics was determined via Archimedes´ method, using distilled water as a liquid 

medium and measuring the weights of dry, soaked and suspended sample. Thus obtained 

density was ~ 2 – 3 % higher than that calculated for the sake of comparison from dry 

weight and geometrical dimensions of the sample.  

X-ray diffraction patterns were recorded using a Rigaku D/Max-B diffractometer (CuK, 

2=10-80, step 0.02, exposition 2 s). Unit cell parameters were calculated from the 

diffraction data using profile matching method in Fullprof software [18]. SEM analysis 

(Hitachi SU-70 model) was performed on fractured surface of the ceramic samples, 

sintered in Ar. Redox behaviour of the samples in the intermediate temperature range 

was studied by thermogravimetry (TG) (Setaram SetSys 16/18 instrument, sensitivity 0.4 

g, initial sample weight ~ 0.5 g), in a flow of argon or dry air at 298 – 1373 K with 

constant heating/cooling rate of 2 K/min. Thermal expansion studies were performed on 

heating (3 K/min) up to 1350 K in argon and air atmospheres, using a vertical alumina 

dilatometer Linseis L70/2001. Total electrical conductivity () was measured by 4-probe 

dc technique at 750 – 1773 K in the oxygen partial pressure p(O2) range from 10
-5

 to 

0.21 atm in flowing air-Ar mixtures. The p(O2) in the gas flow was monitored using an 

YSZ oxygen sensor. 

 

4.3.3.2 Lattice simulations 

Static lattice simulations were performed using GULP software [16,17], the procedure 

was similar to that previously described for (Fe, Al)3O4 [14] and (Fe, Al, Mg)3O4 spinels 

[11]. For simulation of the magnetite-based spinels, Bush/Woodley potentials sets (Table 

1) were selected. A 2 x 2 x 2 supercell (64 formula units) with 18 Å cut-offs for 

Buckingham interatomic potentials was used to simulate a solid solution. A special 

technique of the random cells generation was elaborated to resolve possible issues with 

implicit cation ordering in hand-crafted supercells. For each composition a set of          

70 – 100 supercells with random distribution of cations in tetragonal and octahedral 

sublattices was generated.  

 



121 

Each set had a fixed infill of the considered cation (Fe
2+

, Al
3+

, Ti
4+

 Cr
3+

, Ni
2+

, Mn
2+

 or 

Mn
3+

) for the octahedral sublattice, while distribution of other cations between 

sublattices was random. Use of the fixed infill allows to decrease substantially the 

amount of trial lattices, necessary to cover desired region of the solid solutions. The 

generated supercells were analyzed in GULP to determine the influence of cation 

distribution in the lattice on the energy of the supercell.  

 
Table 1 – Phenomenological potentials, used for static lattice simulation. 

Atom 

Core-shell Interatomic (Buckingham) 

References 
Y, e 

(shell 

charge) 

k, eV/Å
2
 Pair A, eV , Å 

C,  

eV/Å
2
 

O
2-

 -2.513 20.53 O
2-

 22.41 0.6937 32.32 [18,19] 

3+

tFe
 

1.029 10082.5 O
2-

 1240.232 0.3069 0 [18,19] 

3+

oFe
 

1.029 10082.5 O
2-

 1342.754 0.3069 0 [18,19] 

Fe
2+

 2 n/a O
2-

 2763.945 0.2641 0 [18,20] 

Al
3+

 2.957 403.98 O
2-

 2409.505 0.2649 0 [18,21] 

Mg
2+

 0.420 349.95 O
2-

 2457.243 0.261 0 [18,21] 

Ni
2+

 n/a n/a O
2-

 2057.230 0.267000 2.1980 [18,22] 

Ti
4+

 1.668 253.6 O
2-

 2088.107 0.2888 0 [18,21] 

Mn
3+

 1.029 148.0 O
2-

 1686.125 0.2962 0 [18,19] 

Mn
2+

 n/a n/a O
2-

 426.8332 0.380836 0 present work 

Cr
3+

 2.541 261.9 O
2-

 1760.1505 0.282958 0 present work 

 

Since phenomenological potentials for Mn
2+

 and Cr
3+

 against Bush “oxygen-oxygen” 

potential could not be found in published literature, these were obtained by fitting 

experimental results in GULP software (Mn
2+

) or simulated by DFT (Cr
3+

) data sets. To 

fit the potential for Mn
2+

, the experimental data on MnO compressibility in the range up 

to 8.09 GPa was used [23, 24], with 13 data points in a set. The sum of squares, obtained 

by simultaneous simplex fit, was 0.001783, indicating that the potentials almost 

precisely describe the rock-salt structure of the MnO. Attempts to reproduce similar 

technique for Cr2O3 using experimental compressibility data [25, 26] resulted in 

acceptable pair of the potentials for corundum-like structures, with error in lattice 

parameter below 3%.  
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However, verification of these potentials for the MgCr2O4 spinel structure failed, giving 

an error of around 25% in the cell volume, compared to the experimental data [24, 27]. 

Hence, the energy surface fit for MgCr2O3 structure was used. MgCr2O4 cell was 

simulated in ABINIT DFT software [28-32], using GTH pseudopotencials with PBE 

exchange-correlation functionals [33, 34]. These pseudopotentials resulted in up to 1.3% 

of the error in lattice parameters, when energy cutoff 90 Hartree and tolvrs 10
-15 

were 

used. For fitting procedure eight datasets with lattice parameters varying from 7.8 to     

8.4 Å were simulated.  

Obtained data set, comprising values of the lattice parameter, energy and pressure for 

each simulated cell, was used to fit the Buckhingham and core-shell potentials in GULP. 

As a result, Cr
3+

-O
2-

 pair potential and core-shell parameters for Cr
3+

 were calculated. 

These interatomic potentials were tested with MgCr2O4 and Cr2O3 lattices, and 

simulation results demonstrated errors -1.7 % and -1.8 % (a, b)/-3.4% (c), relative to the 

experimental cell parameters of spinel (MgCr2O4) and corundum (Cr2O3) structures, 

correspondingly.  

The obtained results were analysed in terms of energy of the structure formation (
strE ) 

from simple oxides, expressed as: 

= - cell

str cell i iE E E   
(1) 

where cell

iE - energy of formation of the individual oxide, calculated in GULP, i - 

stoichiometric coefficient. To assess the stability of the considered solid solutions 

against oxidative decomposition with the formation of Fe2O3 and simple oxides, 

corresponding energy 
oxE was calculated:  

 2+= Fecell ox

ox i i Fe cellE E E E      
(2) 

where  2+ Fe  is stoichiometric coefficient for Fe
2+

, ox

FeE =-1.45 eV- energy of the 

oxidation of Fe
2+

 to Fe
3+

 according to the reaction 2FeO +1/2 O2 Fe2O3, with 

corresponding formation enthalpies f H
0

298(FeO)= 272.0 kJ/mol and                           

f H
0
298(Fe2O3)= 824.2 kJ/mol [35]. 
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The collected data on the lattice energy (in GULP formalism) Ecell were also fitted using 

simple linear models, to reveal the coordination preference of the substituting cations by 

corresponding impact on the lattice stability. The fitting procedure was performed in 

Wolfram Research Mathematica 9 software [36]. The dataset on (Fe, Al, Mg)3O4 system 

was supplemented with our results [11], published earlier, to provide adequate 

comparison with similar transition-metal containing spinels. The sets for (Fe, Me, 

Mg)3O4 were extended by earlier collected data for Fe3O4 and Fe2.5Mg0.5O4 [11,14]. The 

data for (Fe, Me, Mg)3O4 (Me=Al, Ni, Cr, Ti) was fitted using a regression model: 

2+ 2+ z+ z+ 2+

Mg o Me Me o oMg Mg Me Me Fecell o Mg FeE E a b a b b                         
(3) 

where E0 corresponds to the lattice energy for undoped and not inverted magnetite, 

[Mg
2+

] and [Me
z+

] are the total concentrations of Mg
2+

 and Me
z+

 cations, and z+

o[Me ]  and 

2+

o[Fe ] represent concentration of respective cations in octahedral sites, while coefficients 

a and b with corresponding subscript symbols describe their impact on the lattice energy. 

For the reasons, described below in “Results and discussion” section, in the case of 

substitution with manganese, one considered coexistence of divalent Mn
2+

 and trivalent 

Mn
3+

 and the corresponding regression model was used: 

2+ 2+ 2+ 2+

Mg o 2 2 o

3+ 3+ 2+

3 3 o o

Mg Mg Mn Mn

Mn Mn Fe

cell o Mg

Fe

E E a b a b

a b b

                   

              

(4) 

where, similarly, a2 and a3 are the impacts of total concentration of Mn
2+

 and Mn
3+

 

cations on the lattice energy, and b2 and b3 – corresponding impacts of their 

concentrations in octahedral sites.  

4.3.4 Results and Discussion 

Fig. 1 shows XRD patterns of Fe2.6Me0.2Mg0.2O4 samples, sintered in Ar and air 

atmospheres. Sintering in Ar results in single-phase spinel materials (space group Fd 3

m), the data for Fe2.6Al0.2Mg0.2O4 [11] are shown for comparison. The experimental 

densities of spinel ceramics, containing transition metals, are quite similar and amount to 

88-90% from theoretical density, calculated from XRD data; Fe2.6Al0.2Mg0.2O4 shows 

slightly better sinterability than other compositions under the same conditions (Table 1).  
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Figure 1 – XRD results for Ar- and air-sintered Fe2.6Me0.2Mg0.2O4 samples. Triangle symbols and 

diamonds indicate the individual peaks of hematite-type or Fe9TiO15 phase, which are not present in 

pure spinel pattern. 

Typical ceramics microstructure with grain size in the range 10-50 m is shown in Fig.2 

for Fe2.6Ni0.2Mg0.2O4 and Fe2.6Cr0.2Mg0.2O4 materials. Differences in unit cell parameters 

are determined not only by cation size, by also by preferred coordination of the 

transition metal cations, which can reside in octahedral and/or tetrahedral sites of the 

spinel structure, with corresponding impact on the bond length [37]. Due to significantly 

smaller ionic radius of Al
3+

 cation [38], Fe2.6Al0.2Mg0.2O4 has the lowest unit cell volume 

compared to other compositions.  
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As expected, sintering in air leads to oxidation and onset of hematite-type phases, 

containing transitional metal or aluminium; similar decomposition processes were 

observed for (Fe, Al)3O4 and (Fe, Al, Mg)3O4 spinel ceramics [11, 14]. Oxidative 

decomposition of Fe2.6Ti0.2Mg0.2O4 may include formation of hematite-type Fe9TiO15 

phase [39], as shown in Fig. 1.  

   

Figure 2 – SEM micrographs of the surface of fractured Fe2.6Ni0.2Mg0.2O4 (A) and Fe2.6Cr0.2Mg0.2O4 

(B) samples. 

The results of thermogravimetry studies suggest metastable phase composition of Ar-

sintered Fe2.6Me0.2Mg0.2O4 (M=Cr, Mn, Ni, Ti) ceramic samples at low temperatures. 

Although phase-pure ceramics of the above compositions can be obtained in Ar, grinding 

to powders promotes faster oxygen exchange and perceptible weight increase upon 

heating even in argon atmosphere (p(O2) ~ 10
-5

 atm), due to oxygen uptake (Fig. 3A).  

The oxidation is more pronounced for Mn and Ti -containing spinels. On the contrary, 

Fe2.6Ni0.2Mg0.2O4 shows almost negligible weight changes on heating in Ar, suggesting 

higher tolerance against oxidative decomposition for this material. Generally, one may 

anticipate that, for the same substitution level, cations with lower oxidation state (e.g, 

2+) should improve the redox stability of magnetite by decreasing the Fe
2+ 

:Fe
3+

 ratio in 

spinel lattice and reducing the total amount of cations, susceptible to oxidation. 

Substitution with cations possessing higher oxidation states (e.g, 4+), hence, can be 

expected to have an opposite effect on redox stability. The latter is in agreement with TG 

results upon heating in air (Fig. 3B). The maximum oxygen uptake increases in the 

sequence Me = Ni
2+ 

< Mn
2+/3+ 

< Cr
3+ 
 Al 

3+
 < Ti

4+
, following the trends in changing the 

oxidation state of the substituting cation. The decomposition in air results in formation 

of hematite-type phases, as illustrated by Fig.4. 

A)        B) 
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Figure 3 - Relative weight change of the powdered Ar-sintered Fe2.6Me0.2Mg0.2O4 spinel samples on 

heating and cooling (indicated with arrows) in Ar (A) and air (B). 

Noteworthy, that oxygen content in the atmosphere may have a noticeable impact on the 

redox behaviour of the studied materials, as a result of different oxidation mechanisms. 

In nearly inert atmospheres (Ar) additional structural factors may be responsible for the 

observed difference in oxygen uptake, compared to the results obtained in air. In 

particular, distribution of Fe
2+

 cations between tetrahedral and octahedral sites 

determines their availability for oxidation, and, thus, may contribute to redox tolerance 

at least in low temperature range (450 – 750 K) [40]. Secondly, in atmospheres with low 

p(O2) the extent of oxidation may be also significantly affected by the thermodynamic 

stability of the spinel lattice itself, and its dependence on relevant parameters of 

substituting cations such as oxidation state and ionic radius.  
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Figure 4 – XRD patterns of the samples, sintered in Ar, after TG studies. Triangle symbols and 

diamonds indicate the individual peaks of hematite-type or Fe9TiO15 phase, which are not present in 

pure spinel pattern. 

The mechanism has been ascribed to ionization of absorbed oxygen atoms by acquiring 

electrons from Fe
2+

, followed by formation of Fe
3+

 cations and cation vacancies, which 

diffuse into the grain interior, whereas Fe
2+

 and Me
z+

 migrate in opposite direction [41]. 

Thus, for mild oxidizing conditions, the interdiffusion of cations is expected to partially 

accommodate the stress in the crystal lattice, exerted by incorporation of the oxygen 

ions, while at relatively high p(O2) massive formation of Fe
3+

 cations facilitates onset of 

hematite-type phase instead. As an example, in Ar Fe2.6Mn0.2Mg0.2O4 shows higher 

oxygen uptake than even Fe2.6Ti0.2Mg0.2O4 (Fig.3), at the same time having lower 

decomposition level (Fig.4).  

Note that the prevailing ionic defects in magnetite and related spinels at moderately high 

temperatures, are cation vacancies in relatively oxidising conditions and cation 

interstitials for reduced p(O2), while the concentration of oxygen vacancies and 

interstitials is negligible [6,42,43].  
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Thus, the composition of studied materials can be expressed as (Fe2.6/3Me0.2/3Mg0.2/3)3- 

O4, where  is cation nonstoichiometry. In spinel-type phases  can be varied up to a 

maximum of  = 0.333 in magnetite based materials, where Fe2.667O4 corresponds to the 

maghemite structure.  

The estimated change in cation nonstoichiometry  due to oxidation of 

Fe2.6Mn0.2Mg0.2O4 in Ar, calculated from TG data (Fig. 3B), does not exceed ~ 0.07 even 

without accounting for the partial phase decomposition (Fig. 4). This value is fairly in 

the range of acceptable changes in cation nonstoichiometry within spinel phase stability 

domain, reported for (Fe1-zMnz)3-O4 and (Fe1-x-yCoxMny)3-O4 systems [44,45]. Apparent 

discrepancy between oxygen uptake and phase composition upon heating in Ar, found 

for Fe2.6Mn0.2Mg0.2O4 and Fe2.6Ti0.2Mg0.2O4 may be, therefore, related to different 

stability of the spinel lattice regarding the Fe
2+ 

:Fe
3+

 ratio. The same lattice stability 

issues might be responsible for the difference in oxygen uptake observed for 

Fe2.6Mn0.2Mg0.2O4, Fe2.6Cr0.2Mg0.2O4 and Fe2.6Al0.2Mg0.2O4 spinels upon heating in Ar, 

while in highly-oxidizing air atmosphere these materials show similar redox behaviour, 

interrelated with the oxidation state of substituting cation.  

Table 2 – Properties of Fe2.6Me0.2Mg0.2O4 samples, sintered in Ar: lattice parameters, densities and 

activation energy for the high-temperature total conductivity. 

Chemical 

composition 

ao 

nm 

exp, 

g/cm
3
 

Relative 

density, % 

Activation energy for the total 

conductivity (p(O2)=10
-5

 – 10
-4

 atm) 

T, K Ea, kJ/mol 

Fe2.6Ni0.2Mg0.2O4 0.83812(3) 4.47 88 13851774 18.0  0.2 

Fe2.6Mn0.2Mg0.2O4 0.84186(4) 4.50 90 13471773 19.9  0.9 

Fe2.6Al0.2Mg0.2O4 0.83684(3) 4.67 94 11971772 15.2  0.7 

Fe2.6Cr0.2Mg0.2O4 0.83849(3) 4.49 89   

Fe2.6Ti0.2Mg0.2O4 0.84160(3) 4.46 90 15271771 18.7  0.8 

The results of static lattice simulation further confirm the above assumptions regarding 

stability of spinel lattice in the case of various substituting cations. The obtained data on 

energy of the structure formation (
strE , Eq. 1) for Fe2.6Me0.2Mg0.2O4, presented in      

Fig. 5, predict highest stability, comparable with that for pure magnetite, for Ni-

containing spinel, while less negative values for Fe2.6Ti0.2Mg0.2O4 suggest that its 

stability is lowest among the studied compositions.  
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Figure 5 - Energy of the structure formation vs. 

concentration of Fe
3+

 in octahedral sites, 

calculated using static lattice simulation. 

 

Figure 6 - Energy of the oxidative 

decomposition, calculated using static lattice 

simulation for the case of total Fe
2+

 to Fe
3+

 

oxidation. (see text). 

Furthermore, the latter is clearly emphasized by the obtained results on the energy of 

oxidative decomposition (
oxE , Eq. 2), shown in Fig. 6. Fe2.6Ni0.2Mg0.2O4 and 

Fe2.6Ti0.2Mg0.2O4 spinels represent two extreme cases, while Mn-, Cr- and Al- containing 

spinels show comparable 
oxE  values, in excellent agreement with the results of TG 

studies upon heating in air (Fig. 3B). Noteworthy, that the energies of the structure 

formation for Fe2.6Mn0.2Mg0.2O4, calculated assuming 2+, 3+ and mixed oxidation states 

for Mn, are close to each other. This suggests that, besides oxidations state, other factors 

may influence lattice stability of ferrospinels, even for quite similar substituting cations.  

The redox behaviour of Fe2.6Me0.2Mg0.2O4 ceramics in various atmospheres may be even 

more complex, compared to the powder samples. Concerning conditions expected for 

pyroelectrolysis application, one may anticipate that spinel-based consumable anodes 

will be based on bulk ceramics, and oxidation presumably will take place mainly at the 

surface, with less pronounced effect on the bulk. However, if any, significant changes in 

redox state of iron cations and phase separation may cause excessive dimensional 

changes in spinel ceramics on heating, resulting in limited tolerance to thermal cycling. 

The results of dilatometric studies in argon and air atmospheres, performed on 

Fe2.6Me0.2Mg0.2O4 ceramic samples, sintered in Ar, are presented in Fig. 7 (A and B). At 

relatively low temperatures (300  650 K) the studied materials show quite linear and 

similar expansion behaviour both in Ar and air, with thermal expansion coefficients in 

the range (11.0 – 13.7)10
-6

 K (Table 3).  
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At temperatures above ~ 650 K in Ar the expansion curves show deviation from 

linearity, similar to that observed for Fe3O4 and Fe3-xAlxO4 in the atmospheres with low 

oxygen content [6, 14, 46]. This may be attributed to changes in concentration of point 

defects, or their rearrangement in the tetrahedral and octahedral sublattices [46], possibly 

combined with onset of oxidative decomposition, as shown below.  

Table 3 – Thermal expansion coefficients of Fe2.6Me0.2Mg0.2O4 spinels. 

Composition 
Average thermal expansion coefficients 

p(O2), atm T, K 16 ,1.0)10(  K  

Fe2.6Ni0.2Mg0.2O4 
10

-5
 

300650 11.6 

8001100 16.0 

11001369 21.5 

0.21 300650 11.8 

Fe2.6Mn0.2Mg0.2O4 
10

-5
 

300650 13.3 

8001050 13.3 

11801369 13.2 

0.21 300650 12.7 

Fe2.6Al0.2Mg0.2O4 

10
-5

 
300650 11.4 

8001370 13.1 

0.21 300600 11.4 

Fe2.6Cr0.2Mg0.2O4 
10

-5
 

300650 12.2 

8001100 15.4 

11001369 17.9 

0.21 300650 11.0 

Fe2.6Ti0.2Mg0.2O4 
10

-5
 

300650 13.4 

8001100 16.4 

11001369 21.6 

0.21 300650 13.7 

 

High temperature thermal expansion results in Ar atmosphere (≈ 10
-5

 atm) are highest 

for Fe2.6Ni0.2Mg0.2O4 and Fe2.6Ti0.2Mg0.2O4 (Table 3). These materials represent two 

extreme cases regarding oxidation energy, as predicted by static lattice simulation 

method (Fig. 6). Along with the highest stability, Fe2.6Ni0.2Mg0.2O4 is expected to have 

the lowest concentration of Fe
2+

 and, thus, smaller contraction due to oxidation of iron 

cations.  
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In opposite to other studied materials, the oxidative decomposition of Fe2.6Ti0.2Mg0.2O4 

in Ar occurs via progressive separation of significant amount of the Fe9TiO15 phase (Fig. 

4), which may be responsible for the noticeable volume changes in ceramic samples. 

Thus, the reasons for variations in thermal expansion behaviour of Fe2.6Me0.2Mg0.2O4 at 

high temperatures may include distinct oxidation mechanisms.  

 

Figure 7 - Dilatometric curves for Ar-sintered Fe2.6Me0.2Mg0.2O4 materials in Ar (A) and air (B). 

Whatever the microscopic mechanisms, the results demonstrate that some spinel 

materials may have relatively high thermochemical expansion, complicating their use in 

high-temperature electrochemical systems, except possibly for conditions when a 

suitable current collector is used to bridge the temperature gap from room temperature to 

very high temperatures, i.e., when the spinel anode is operating at very high 

temperatures, without significant temperature gradients.  
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On heating in air, massive transformation into hematite-type phases may result even in 

more severe volume changes, e.g., contraction due to oxidation of Fe
2+

 cation to smaller 

Fe
3+

 (Fig. 7B). This may cause large mechanical stresses and eventually provoke 

cracking of the ceramic anode. Again, for massive ceramics the oxidation is expected to 

affect mostly the surface, especially, under relatively fast heating/cooling rates during 

thermal cycling, thus preventing the problems with the whole electrode integrity. In 

particular, relatively fast heating/cooling may be essential in the intermediate 

temperature ranges, where contraction due to the partial oxidation occurs. Anyway, for 

ceramic anodes in pyroelectrolysis application, the tolerance against oxidative 

decomposition should be further improved by increasing Mg content, possibly combined 

with microstructural engineering to alter the interdiffusion paths of cations and, 

consequently, oxidation mechanisms in ferrospinel ceramics.  

 

Figure 8 - Temperature dependence of the total conductivity of Ar-sintered samples in Ar. 

The temperature dependence of the total conductivity of Fe2.6Me0.2Mg0.2O4 materials in 

Ar is shown in Fig. 8. The n-type electronic transport in magnetite-based materials 

occurs via small polaron mechanism, by hopping between Fe
2+

 and Fe
3+

 cations, and is 

restricted mainly to octahedral sites [4 – 8]. Substitution by the cations having stable 

oxidation states decreases the conductivity of magnetite; this can be ascribed to changes 

in concentrations of Fe
2+

 and Fe
3+

 cations. Note that the inverse spinel structure of 

magnetite corresponds to maximum [Fe
2+

][Fe
3+

] concentration product in octahedral 

sublattice, yielding highest hopping probability.  
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For the modified compositions, one found highest total conductivity for 

Fe2.6Ti0.2Mg0.2O4 and Fe2.6Al0.2Mg0.2O4 spinel ceramics, while minimum corresponds to 

Fe2.6Ni0.2Mg0.2O4. The effects exerted by different additives are determined by the 

changes in fraction of Fe
2+

 cations, affecting the probability of hopping (i.e. the 

[Fe
2+

][Fe
3+

] product in octahedral positions).  

The mechanism considers the expected charge compensation in spinel lattice upon 

substitution. Charge compensation for co-additions of redox stable Ti
4+

 and Mg
2+

 cations 

should compensate each other, contributing to maintain the [Fe
2+

][Fe
3+

] product close to 

its maximum. Thus, highest hopping probability is consistent with the highest 

conductivity observed for Fe2.6Ti0.2Mg0.2O4, among the studied materials, except 

Fe2.6Al0.2Mg0.2O4. Similarly to the redox behaviour in oxidizing atmosphere, the 

conductivity increases in the sequence Ni
2+

 < Mn
2+/3+

  Cr
3+

 < Ti
4+

, in line with the trend 

for oxidation state of transition metal cations. 

For similar substitution level and same oxidation states, the preferred coordination of the 

substituting cations in spinel lattice may also have a noticeable impact on the 

conductivity. In present work, the affinity of those cations to reside in octahedral 

sublattice, where electronic charge transfer process takes place, was assessed by static 

lattice simulation; corresponding results on lattice energy fitting, based on Eqs. 3 and 4, 

are given in Tables 4 and 5. Additional terms in Eq. 4 compared to Eq. 3 account for 

Mn
2+

 + Fe
3+

  Mn
3+

 + Fe
3+

 equilibrium, which may contribute by enhanced probability 

of hopping at high temperatures [47]. However, the quality of the model (Eq. 4) for (Mg, 

Mn, Fe)3O4 was still poorer, compared to other systems.  

As an example, Fig. 9 shows the correlation between predicted response of the models 

Eqs. 3 and 4, ( fit

cellE ) and lattice energy, calculated in GULP, for (Mg, Mn, Fe)3O4 and 

(Mg,Ti,Fe)3O4 solid solutions ( cellE ). Although direct comparison between impacts of 

manganese (b2 and b3, Eq. 4) and Al
3+

, Cr
3+

, Ni
2+

 and Ti
4+

 cations (bMe, Eq.3) on the 

lattice energy may not be correct in this case, the results still indicate that Mn
3+

 has a 

strong preference to reside in octahedral sites, while Mn
2+

 is prone to substitute iron 

mostly in tetrahedral sites. Al
3+

 shows lower affinity to octahedral sublattice than Cr
3+

 

(Table 4) and, correspondingly, higher total conductivity.  
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Table 4 – Parameters of the regression models (Eq.3) (95% confidence). 

Parameter 
Value for (Fe, Me, Mg)3O4 

Me=Al
3+

 Me=Cr
3+

 Me=Ni
3+

 Me=Ti
4+

 

oE
 

-190.96 ± 0.02 -190.99 ± 0.01 -190.98 ± 0.01 -190.97 ± 0.01 

Mga
 

-0.98 ± 0.03 -0.66 ± 0.04 -0.63 ± 0.04 -0.66 ± 0.05 

Mgb
 

-1.06 ± 0.05 -0.78 ± 0.05 -0.82 ± 0.05 -0.81 ± 0.06 

Mea
 

3.40 ± 0.03 -1.82 ± 0.05 -0.81 ± 0.05 -11.8 ± 0.1 

Meb
 

-0.92 ± 0.05 -1.31 ± 0.07 -0.77 ± 0.07 -1.8 ± 0.1 

Feb
 

-0.35 ± 0.03 -0.38 ± 0.01 -0.39 ± 0.01 -0.43 ± 0.02 

R
2
 0.996 0.995 0.99 0.9998 

Npoints 1084 396 460 380 

 

Table 5 – Parameters of the regression models for Fe2.6Mg0.2Mn0.2O4 (Eq.4) (95% confidence). 

Parameter Value 

oE
 

-190.91 ± 0.03 

Mga
 

-0.9 ± 0.1 

Mgb
 

-0.51 ± 0.2 

2a
 

1.4 ± 0.2 

2b
 

2.7 ± 0.3 

3a
 

2.8 ± 0.1 

3b
 

-3.6 ± 0.2 

Feb
 

-0.56 ± 0.04 

R
2
 0.95 

Npoints 837 

 

However, for Fe2.6Al0.2Mg0.2O4, smaller unit cell volume may also contribute, by 

promoting lower average Fe
2+
Fe

3+
 distance, thus facilitating electron hopping. 

Whatever the exact mechanism in this case, the results generally indicate, that the effect 

of substitution with transition metal cations on electrical conductivity of (Fe, Mg)3O4 is 

mostly determined by their oxidation states, rather than preferred coordination.  
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A quite good illustration of this fact is given by the observed difference in conductivity 

for Fe2.6Ti0.2Mg0.2O4 and Fe2.6Ni0.2Mg0.2O4 spinels (Fig. 8): although nickel is expected 

to have the lowest octahedral preference among the studied materials (Table 4), highest 

fraction of Fe
2+

 cations provides maximum conductivity for Ti-containing material. 

 

 
Figure 9 – Correlation of the predicted response of the models Eq.(3) and Eq.(4) and Ecell values, 

calculated in GULP, for (Mg,Mn,Fe)3O4 and (Mg,Ti,Fe)3O4 solid solutions.
 

 

Similar to that observed for (Fe, Mg, Al)3O4 spinels [6, 11, 14], the variations of the total 

conductivity of Fe2.6Me0.2Mg0.2O4 spinels with temperature exhibit a complex behaviour, 

determined by changes in defect-chemistry from interstitial cation formation to 

generation of cation vacancies at lower temperatures and partial decomposition of the 

spinel phase. The latter, in particular, is responsible for the conductivity drop observed 

for Fe2.6Ti0.2Mg0.2O4, which corresponds to higher temperatures compared to other 

materials.  

The onset of this decomposition is in a good agreement with the above conclusions on 

the relative redox stability of Fe2.6Me0.2Mg0.2O4 spinel materials, drawn from the results 

of thermogravimetry, XRD and static lattice simulation studies. Below 1200 K all 

samples demonstrated slow equilibration kinetics on cooling and, correspondingly, a 

gradual conductivity drift with time.  
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The values of activation energies (Ea) (Table 2) were, therefore, calculated only for high 

temperature range, using the case of adiabatic hopping for small-polaron conductivity 

mechanism [5]: 

)/exp( RTE
T

A
a

 
(5) 

The activation energies of Fe2.6Me0.2Mg0.2O4 (Me = Ni, Mn, Ti) spinels are quite similar 

and vary in the range 18.0 – 19.9 kJ/mol at 1347 – 1774 K. Previously observed Ea value 

for the total conductivity of Fe2.6Al0.2Mg0.2O4 in Ar at 1197 – 1772 K was noticeably 

lower, again suggesting more favourable conditions for electron hopping due to smaller 

unit cell volume and relatively low affinity of Al
3+

 to reside in octahedral sites. 

Noteworthy, that, among Ni-, Mn- and Ti- containing spinels, Fe2.6Ni0.2Mg0.2O4 also 

shows lowest Ea along with the lowest preference for six-fold coordination. High 

temperature variations of the total conductivity of Fe2.6Cr0.2Mg0.2O4 represent a specific 

case of charge transfer mechanism in ferrospinels. Similar behaviour was also observed 

for heavily-substituted Fe1.55Al0.95Mg0.5O4 spinel [11], and attributed to the condition, 

when no additional charge carriers are generated upon heating, while the probability of 

hopping [Fe
2+

]
oct

[Fe
3+

]
oct

 may even decrease.  

Within the phase stability domain all studied materials demonstrate a minor increase in 

total conductivity with reducing oxygen partial pressure, possibly due to increasing 

concentration of n-type charge carriers (Fig. 10). The changes are more pronounced for 

Fe2.6Ti0.2Mg0.2O4 spinel, which should attain the highest concentration of Fe
2+

. The 

conductivity drop on increasing oxygen partial pressure above certain value, marked by 

dashed line, is ascribed to phase decomposition, induced by oxidation. One should 

notice that the values of conductivity after onset of decomposition may deviate 

significantly from equilibrium conditions, since redox induced decomposition is slow in 

spinel ceramics (e.g., [14]).  
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Figure 10 - Oxygen partial pressure dependencies of the total conductivity of Fe2.6Me0.2Mg0.2O4 

ceramic samples. Dashed lines correspond to the p(O2) range with onset of oxidative decomposition. 

Thus, precise determination of the p(O2)-stability limits for the studied materials was not 

performed in present work, as it requires long-time equilibration. However, the obtained 

data on conductivity vs p(O2) dependence are in good agreement with experimental 

results obtained by TG/XRD (Figs. 3 and 4) and theoretical predictions (Fig. 6). The 

onset of oxidative decomposition for Fe2.6Ti0.2Mg0.2O4 corresponds to p(O2) ~ 0.10 atm 

at 1773 K and ~ 0.03 atm at 1573 K, while Fe2.6Ni0.2Mg0.2O4 at these temperatures is 

stable within the whole measured p(O2) range. Al-, Mn- and Cr- containing spinels, in 

turn, demonstrate comparable redox stability at 1373 – 1773 K. Thus, trade-off relation 

between electrical conductivity and stability is the case for the studied materials. 

Regarding high-temperature electrochemical applications, Fe2.6Al0.2Mg0.2O4 represents a 

reasonable compromise between those two important properties.  
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Nevertheless, Fe2.6Ti0.2Mg0.2O4 ceramics do not collapse upon heating in air (Fig. 7B), at 

the same time possessing high level of electrical conductivity (Figs. 9 and 10). The latter 

also suggests this material as a possible candidate for consumable anodes in 

pyroelectrolysis, despite its lower redox stability and higher thermal expansion 

coefficient. 

Considering the obtained trends for changing redox stability of Fe2.6Me0.2Mg0.2O4 with 

the oxidation state of transitional metal, one may anticipate the necessity for further 

adjusting the ratio between higher- and lower-valence substituting cations, as an 

important guideline for developing stable magnetite-based consumable anodes. In 

general, the obtained results showed that simultaneous substitution of iron with 2+ and 

3+/4+ cations allows achieving high conductivity level with still acceptable redox 

stability, since the oxidation will proceed mostly at the surface of anode ceramics. From 

this perspective one promising approach may include substitution with silicon and 

zirconium in (Fe, Mg)3O4 spinel materials. Noteworthy that under the conditions of 

pyroelectrolysis process one should already expect the formation of Si-containing 

spinels at the anode surface, immersed into molten silicate electrolyte. The latter, along 

with the anticipated conductivity increase, may result in gradual deterioration of the 

redox stability, requiring certain optimization of the anode configuration (e.g., creating 

transversal gradient of magnesium concentration from the bulk to anode surface, etc.). 

4.3.5 Conclusions 

Single-phase spinel-type ceramic samples of Fe2.6Me0.2Mg0.2O4 (Me = Ni, Mn, Al, Cr, 

Ti) were prepared by conventional solid state route, followed by sintering at 1773 K for 

10 h in Ar or air atmosphere. Combined TG/XRD studies showed metastable phase 

composition of Ar-prepared ceramic samples at low temperatures. Comparative analysis 

of the oxygen uptake in air and Ar (p(O2) ~ 10
-4 

– 10
-5

 atm) demonstrated that the extent 

of oxidative decomposition is determined by Fe
2+

 content in spinel, and the oxidation 

mechanism depends on the oxygen partial pressure. Static lattice simulation predicted 

highest tolerance against oxidative decomposition for Fe2.6Ni0.2Mg0.2O4 spinel, whilst the 

lowest stability was foreseen for Fe2.6Ti0.2Mg0.2O4, in agreement with TG/XRD results.  
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The high-temperature electrical conductivity was found to increase in the sequence   

Ni
2+

 < Mn
2+/3+

  Cr
3+

 < Ti
4+

, following the trend for oxidation state of transition metal 

cations and corresponding changes in Fe
2+ 

: Fe
3+

 ratio, whereas additional contribution 

can be also expected from preferred coordination of transition metals cations, in 

accordance with the predictions from static lattice simulation. Although studied 

materials demonstrate a trade-off relation between electronic transport and redox 

stability, the results on thermal expansion and electrical conductivity still suggest good 

prospects for the application of Fe2.6Al0.2Mg0.2O4 and Fe2.6Ti0.2Mg0.2O4 spinels as 

potential materials for consumable ceramic anodes in high-temperature pyroelectrolysis. 
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5.1 Introductory notes 

 

Chapter 5 focuses on assessment of the relevant physical and redox properties of model 

magnetite-based samples, prepared by LFZ processing. The preparation route simulates 

the conditions, which would be present during pyroelectrolysis process, both in terms of 

extremely high temperatures and steep temperature gradients. The results are described 

in one published paper: 5.2 – Magnetite/Hematite core/shell fibres grown by laser 

floating zone method. This study establishes a link between the results on redox stability 

of spinel-type materials, obtained by conventional techniques, and related properties of 

the LFZ-processed samples, grown at various pulling rates to reproduce highly-non 

equilibrium conditions imposed by MOE. 
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5.2 Magnetite/Hematite core/shell fibres grown by laser floating zone 
method 

N.M. Ferreira, A. Kovalevsky, M.A. Valente, F.M. Costa, J. Frade 

(Applied Surface Science 278 (2013) 203–206 

 http://dx.doi.org/10.1016/j.apsusc.2013.01.108) 

 

5.2.1 Abstract 

Magnetite (Fe3O4) is a very important material due to its unique physical and chemical 

properties. However, the low redox stability and tendency towards oxidation impose 

certain limitations on the conditions, where Fe3O4 can be successfully used. A possibility 

to control and prevent oxidation of Fe3O4 thus represents an important challenge for 

materials engineering. In the present work, the laser floating zone (LFZ) method was 

employed to produce Fe3O4 fibres using hematite (Fe2O3) as a precursor material. 

Different growth conditions, namely pulling rate in the range 10 to 400 mm/h, were 

studied. The prepared fibres showed a core/shell structure, where the core is isolated by 

a shell of Fe2O3. The pulling rate was found to be a crucial growth parameter to control 

the crystalline nature of the fibres, particularly, the thickness of the shell. Increasing the 

pulling rate favours the formation Fe2O3 phase and, thus, decreases the width of shell 

isolating phase. X-ray diffraction (XRD) analysis was performed to identify the presence 

of Fe3O4 and Fe2O3 phases. The morphology and phase distribution of the grown fibres 

was analysed by optical microscopy. Electrical properties of the fibres were measured at 

various temperatures, to understand the influence of pulling rate on the fibres shell. 

Vibrating Sample Magnetometer (VSM) measurements were used to study the dc 

magnetic susceptibility and hysteresis curves behaviour of Fe3O4 phase in the 

temperature range 5 K – 300 K. 

5.2.2 Introduction 

Iron oxides are important in many industrial applications, including pigments, magnetic 

materials, electrical materials, catalysts and sensors [1-3]. Potential applications of the 

most stable phase in air (Fe2O3) are mainly related to its semiconducting behaviour 

and/or its band gap in the visible range (e.g. [4]), and differ markedly from those of 

magnetite (Fe3O4), with superior magnetic properties and significant electronic 

conductivity.  

http://dx.doi.org/10.1016/j.apsusc.2013.01.108
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However, magnetite/hematite composites might also raise opportunities to seek novel 

applications or different combinations of relevant properties (e.g. [5]). The phase 

transformation from hematite (Fe2O3) to magnetite (Fe3O4) and oxidation states of iron 

was, thus, widely studied by different methods and techniques [1 – 3, 6, 7].  

The present work relies on the laser floating zone (LFZ) method to obtain core-shell 

magnetite-hematite fibres, and to adjust their characteristics and properties, based on the 

flexibility of the method to obtain materials with unique features such as high quality 

single crystals of a variety of oxides [8 – 9], eutectic structures [10], highly oriented 

polycrystalline materials [11], etc. Different approaches for the floating zone technique 

have been used to grow crystals of intermetallic systems, where heating and melting are 

achieved using conducting properties of the metal, e.g., an induction furnace or an 

electron-beam system [8, 12, 13]. Following the series of discoveries of interesting 

correlated electron phenomena in complex ceramic oxides such as cuprates, manganites, 

ruthenates, titanates and ferrites, there has been an increased interest among materials 

scientists within the condensed matter community in studying single crystals of these 

systems [8]. 

In this paper, we report the successful growth of magnetite/hematite - core/shell by the 

floating zone method, using Fe2O3 as a precursor. Fibres were grown using different 

pulling rates, examined by X-ray diffraction, optical microscopy, VSM and electrical 

measurements, to observe the effect of growth conditions on physical properties. 

5.2.3 Experimental procedure 

Fe2O3 powder (Aldrich +99%) with addition of a binder (PVA - Polyvinyl alcohol) was 

extruded as precursor rods [8], which were used as feed in the LFZ method, equipped 

with a continuous CO2 Spectron SLC laser ( = 10.6 µm; 200 W) to grow dense fibres. 

The growth rate was varied between 10 and 400 mm/h, and the seed and feed rod 

precursors rotated in opposite directions to provide better homogeneity of the target 

fibres. 
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The phase composition and crystalline structure were investigated at room temperature 

by X-ray diffraction (XRD) analysis, using a PANalytical X’Pert PRO system; the 

obtained spectra were analysed using the JCPDS database. Phase distribution in the 

samples was examined by Raman spectra (SPEX, Jobin Yvon T64000) at room 

temperature in backscattering configuration, using the 532 nm exciting line, from 100 to 

2100 cm
-1

. 

The samples morphology at polished cross-section and transversal regions was 

characterized by optical microscopy (Olympus BH-2). The results were used for the 

determination of Fe2O3 shell thickness. Scanning electron microscopy (Hitachi SU 70) 

was unable to reveal relevant microstructural features of the magnetite-based core or its 

orientation. 

The electrical response of core-shell fibres was monitored by dc and ac measurements in 

a suitable home-made cryogenic system, comprising a Keithley 617 Programmable 

Electrometer for dc measurements, an Agilent 4292A Precision Impedance Analyser   

(40 Hz - 2 MHz) for ac resistivity and capacity studies, and an Oxford ITC4-Inteligent 

Temperature Controller for variation of temperature from 80 to 360 K. 

One of the electrodes was applied with Ag paste onto one top of the fibre, to provide 

electrical contact to the magnetite-based core, and the second electrode was applied to 

the external cylindrical surface of the hematite shell. One attempted to confirm the core-

shell microstructure by the prevailing effect of the conductivity hematite shell; this 

should be accounted by X/(RDL), where the geometric factor thickness/area ratio was 

based on the diameter of the fibre (D), the length of the external electrode (L), and 

thickness of the hematite shell (X). 

The dc magnetic measurements were performed on fibre samples (50 – 100 mg) using a 

vibrating sample magnetometer-VSM, (Cryogenic – Cryofree). The dc magnetization 

was recorded on field-cooled (FC) under 0.1 T, between 5 and 300 K. Typical hysteresis 

curves were obtained at several temperatures (5 – 300 K), for all samples in magnetic 

field up to 10 T. The magnetic parameters such as saturation magnetization (Ms), 

coercivity (Hc) and magnetic moment are obtained from the VSM results. 
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5.2.4 Results and discussion 

XRD patterns of crushed fibres showed the presence of magnetite (Fe3O4) and hematite 

(Fe2O3) phases for all powder samples (Fig. 1). However, the intensity of hematite peaks 

is rather residual for fibres grown at the highest pulling rates, and are most obvious for 

<100 mm/h. 

 

Figure 1 – XRD pattern of powdered samples for different pulling rate. 

Optical observations (Fig. 2a) revealed the presence of two different contrast regions in 

samples, and Raman spectra confirm the presence of two distinct phases, as indicated by 

the shell signed to Fe2O3 phase (612 cm
-1

), whilst the middle/bulk component can be 

signed to Fe3O4 phase (668cm
-1

), in accordance with literature data [14, 15]. 

    

Figure 2 – a) Optical microscopy of longitudinal section for sample grown at 50 mm/h, b) evolution 

of Fe2O3 thickness layer with pulling rate. 
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The presence of a core/shell structure can be due to thermal gradients in the radial and 

longitudinal directions, and possibly also by transient redox changes [9]. Note that 

hematite may be transformed into magnetite: 3 Fe2O3  2Fe3O4 + ½ O2 at sufficiently 

high temperatures, probably before melting. Thus, one expects transformation to 

magnetite before melting, at the front of the hot zone, and magnetite should also be the 

primary solidified phase at the rear of the molten zone. 

 

Onset of the outer hematite shell may, thus, be due to reoxidation of previously solidified 

magnetite, or delayed solidification occurring under significant undercooling. The 

melting temperatures of magnetite (≈ 1597 ºC) and hematite (≈ 1565 ºC) are similar. 

Note also that microcracks were observed for the lowest pulling rates (< 100 mm/h), 

possibly due to thermal stresses and slightly expansive transformation of magnetite to 

hematite.  

 

The thickness of shell layer (Fig. 2b) shows a decrease with an increase in growth rate 

up to ~ 100 mm/h. High pulling rates (> 100 mm/h) may yield porosity instead, possibly 

because heat transfer limitations in the radial direction may delay solidification of the 

inner core at the rear of the molten zone. The impervious outer shell may still hinder 

oxidation of the inner magnetite-based core. 

 

The high conductivity of the magnetite-based core should imply a prevailing effect of 

the hematite shell on resistance; this is confirmed by the order of magnitude of results in 

Fig. 3, which is much lower than expected for magnetite ( 2x10
4 

S/m at room 

temperature [2, 16]. Still, the results at 100 K may include a contribution of the 

magnetite core due to the Verwey transition, implying decrease in conductivity by about 

2 orders of magnitude [16]. The order of magnitude of capacitance values is also within 

the expected range for the hematite shell [17]. 
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Figure 3 – Electrical characterization (X/RA and CX/A) as a function of pulling rate where R is 

the measured resistance, C the capacity measured, X is thickness of the hematite shell and A is the 

area of the external electrode, and  is the permittivity of vacuum. 

From the field cooled (FC) measurements for B = 0.1 T (Fig. 4a) a transition behaviour 

on values of magnetic moment was observed near 90 K for all samples, in accordance 

with the results for system with similar composition [2]. The behaviour of samples in FC 

condition is in agreement with that observed previously [18]. The effect of Fe3O4 phase 

amount on the magnetic moment and transition temperature follows the same trend as it 

was found for structural and electrical properties, with highest value of magnetic 

moment observed for the growth rate of 100 mm/h (Fig. 4b). 

 

Figure 4 – a) Magnetic moment as function of temperature (5 to 300 K) of FC measurement for       

B = 0.1 Tesla, b) magnetic moment at the transition temperature as a function of pulling rate. 

Figure 5a) shows the isothermal magnetic moment vs. applied field and Fig. 5b the 

maximum magnetization, measured at 300 K for the samples grown with different 

pulling rate. The values obtained in hysteresis cycle (Fig. 5a) are in agreement with 

those measured for Fe3O4 bulk material ~ 88,65 emu/g at 300 K, and 98.18 emu/g at 5 K 

[19].  
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The fibres exhibit higher magnetic moment than that for magnetite and hematite 

precursor’s powders. This may be a result of densification of the fibres, if compared with 

the precursors, and the effect of boundaries, as reported when comparing films and 

single crystal values [14]. 

  

Figure 5 – a) Hysteresis loop vs. B at 300K and b) Magnetization saturation maximum for T = 300K 

as a function of pulling rate. 

An increase of maximum magnetization saturation at room temperature was observed 

with growth rate, which reaches the maximum for a growth rate of 100 mm/h (Fig. 5b). 

For the sample grown at 10 mm/h we obtain the minimum value of the magnetization at 

300K for the studied samples. This behaviour correlates the amount of magnetite phase, 

detected by XRD analysis. 

From the results it was observed that the coercive magnetic field was near 0 Tesla for all 

measured samples. From the results is possible to observe that the moment magnetic 

increase with the growth rate until 100 mm/h, suggesting that the Fe3O4 phase increase. 

5.2.5 Conclusions 

LFZ was found a suitable method to obtain Fe3O4/Fe2O3 core/shell fibres with an 

isolating shell, from hematite precursor. The growth rate was found to be a crucial 

parameter for adjusting the phase proportions in fibres and shell thickness. Increasing 

pulling rate favours retention of high contents of Fe3O4. The thickness of Fe2O3 shell 

decreases with the growth rate. For high pulling rates one observed appearance of 

porosity in the magnetite-based core. The electrical measurements revealed the influence 

of pulling rate on the fibres shell (Fe2O3 layer). Magnetic measurements show the 

influence of the pulling rate on the magnetic moment, with impact on the values of 

maximum magnetization saturation, magnetic moment and transition temperature of 

samples. 
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6.1 Introductory notes 

 

The content of this chapter is based on a manuscript submitted for publication (6.2) and 

shows the results of studies aimed at assessment of the relevant mechanisms and 

limitations of iron pyroelectrolysis, performed using laboratory-scale electrochemical 

cells. The results demonstrate the feasibility of the pyroelectrolysis process, in particular 

in electron-blocking cell concept, and underline future challenges to be overcome. 

Regarding the inherent experimental difficulties and interpretation of the obtained 

results, the work described in this chapter can be considered as a most complicated part 

of the thesis. The main conclusions refer to the electron blocking conditions and are 

based on post-mortem analysis and in-situ monitoring of current-time dependencies and 

capacitive effects. Transient responses on re-establishing anodic or cathodic polarization 

allowed one to evaluate the dependence of conductivity on redox changes. Moreover, 

experiments performed under direct electrolysis regime allowed to estimate the residual 

electronic current and to predict the impact on faradaic efficiency. 
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6.2 Prospects and challenges of iron pyroelectrolysis in 

aluminosilicate melts 

N.M. Ferreira, A.V. Kovalevsky, F.M. Costa
 
and J.R. Frade 

(submitted to Energy & Environmental Science journal 

November 2014) 

6.2.1 Abstract 

Although steel production by molten oxide electrolysis offers potential economic and 

environmental advantages over classic extractive metallurgy, its feasibility is far from 

being convincingly demonstrated, mainly due to inherent experimental difficulties 

exerted by harsh process conditions. The present work was intended to demonstrate the 

concept of pyroelectrolysis at very high temperature, conducted under electron-blocking 

conditions using yttria-stabilized zirconia cells. The results of electrochemical 

measurements and post-mortem SEM/EDS analyses indicate that significant current 

yields are possible for pyroelectrolysis performed in electron-blocking mode using solid 

electrolyte membrane to separate the anode and molten electrolyte. However, metallic Fe 

readily alloys with the platinum cathode, and leads to disintegration of the Pt cathode, 

probably by onset of low melting liquid phase in the ternary system Pt-Fe-Si. Parasitic 

electrochemical processes rise gradually as the concentration of iron oxide dissolved in 

the molten electrolytes is depleted, impairing faradaic efficiency. Reduction of silica to 

metallic silicon was identified as a significant contribution to those parasitic currents, 

among other plausible processes. Direct pyroelectrolysis without electron blocking was 

found much less plausible, due to major limitations on faradaic efficiency. This was 

ascribed to a combination of electronic leakage and insufficient ionic conductivity of the 

aluminosilicate melt. Ohmic losses may consume an excessive fraction of the applied 

voltage, thus failing to sustain the Nernst potential required for reduction to metallic Fe. 

6.2.2 Introduction 

Steel is essential in huge quantities in the modern world, and its extractive metallurgy is 

one of the largest industrial contributors to greenhouse emissions, due to extensive use 

of coal as reducing agent and other fossil fuels to operate at very high temperatures. 

Thus, the development of alternative CO2-lean and highly efficient technologies is 

critical for sustainable steelmaking [1, 2].  
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Although classical extractive metallurgy is well-established, and energy consumption 

per tonne of produced steel has been reduced by 50 % in recent years, this sector is now 

facing stronger pressure to lower greenhouse gas emissions, and to comply with stricter 

international regulations. A carbon-free alternative for steelmaking based on the use of 

hydrogen for reduction of iron oxide ore also raises concerns about safety and poor 

volume/time yield (Ref. [3] and references therein). Thus, from a broad environmental 

prospective, one seeks new strategies for carbon-lean iron extraction, with emphasis on 

electrolysis. 

Pyroelectrolysis has been proposed for direct extraction of liquid iron from the oxide 

feedstock in molten oxides [3 – 7]. Operation at very high temperatures is expected to 

yield potential decrease in energy consumption compared to classical extractive 

metallurgy [3, 7], based on expectations of enhanced electrode kinetics, and mainly if 

one seeks nearly auto-thermal conditions. In this case, direct use of waste heat generated 

by electrode overpotentials and ohmic losses may account for endothermic reduction of 

hematite to magnetite. It has even been claimed that pyroelectrolysis opens perspectives 

for extraterrestrial production of oxygen, iron and silicon [8]. Although the idea itself is 

established, technical feasibility is far from demonstrated, mainly due to the very 

corrosive nature of molten electrolytes, critical issues concerning development of 

suitable anode materials, and inherent difficulties in monitoring electrochemical 

processes at very high temperatures. Faradaic efficiency reported for iron reduction from 

silicate melts by direct electrolysis using Cr90Fe10 anode did not exceed 35 % [7], 

showing a strong need for deeper understanding of mechanisms and further optimization 

of the concept to attain acceptable current yields. 

Other recent approaches for less common metal electrolysis are based on solid oxide 

membranes (SOM) to achieve electrochemical oxygen pumping from melts [9 – 13]. 

This process was demonstrated for electrochemical extraction of calcium and 

magnesium from oxide/chloride or fluoride melts at intermediate temperatures. These 

metals are important as reducing agents for metallothermic production of titanium and 

other metals from their oxides. SOM technology is based on a solid electrolyte 

membrane with high ionic conductivity between the anode and liquid electrolyte, 

allowing selective transport of the oxygen ions, and blocking the oxidation of 

electrochemically active species in the anode compartment.  
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Benefits of electrochemical pumping with SOM are expected to be reached at the 

highest feasible temperatures to ensure high current densities [11], provided that this 

does not cause reducibility of the solid electrolyte membrane and electrochemical 

leakage. The most common electrolyte material is yttria-stabilized zirconia (YSZ), 

which possesses high ionic conductivity and appropriate stability under the harsh 

conditions imposed by molten electrolytes. Zirconia-based solid electrolytes also 

maintain reasonably wide electrolytic domains up to very high temperature. Using 

literature sources for temperatures in the range 1673 – 1873 K [14, 15] one estimated 

values of average electronic transport below 0.01 S/cm for up to about 1827 K, under a 

typical oxygen partial pressure range ~ 10
-13 

– 0.21 atm. This corresponds to a Nernst 

potential of about 1.11 V, which is within the expected range required to reduce iron 

oxide to metallic Fe, as shown below. Actually, reduction to metallic iron was reported 

on the basis of oxygen permeation across the YSZ membrane [16], i.e., with the YSZ 

membrane separating the anolyte and catholyte compartments without direct contact 

with electrodes. The high applied cell voltage used in that work (4 V) was much wider 

than the electrochemical stability of the YSZ, causing its reducibility, onset of mixed 

conduction and electrochemical permeation.  

In the present work, the electron-blocking ability of the solid electrolyte membrane was 

retained by keeping the applied voltage in the range 1.5 – 2 V, to demonstrate the 

concept of Fe electrolysis under oxygen pumping conditions, using the type of cell 

represented in Figs. 1. This study is intended to attain better understanding of relevant 

mechanisms and limitations of high temperature electrochemical iron extraction. Results 

obtained in electron-blocking operation mode are also compared with corresponding 

results under direct electrolysis mode, without employing the solid electrolyte 

membrane. 

Pyroelectrolysis of iron at very high temperatures is poorly understood in what concerns 

electrode kinetics in molten oxides, their ionic and electronic transport properties, and 

dependence on composition and temperature. This includes uncertainties concerning 

valence states of Fe
nx

 ions dissolved in the molten oxide electrolyte, and cell voltage 

required for electrochemical reduction to metallic Fe without exceeding the 

electrochemical stability of the solid electrolyte.  
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One of the main issues is related to coexistence of divalent: Fe
2+

 and trivalent: Fe
3+

 in 

the molten silicate used as electrolyte [17], and its expected impact on the ionic and 

electronic transport numbers. The Fe
2+

:Fe
3+

 ratio is likely to depend on glass 

composition [18], with emphasis on basicity [19].  

One also expects strong correlation between redox kinetics and basicity, based on the 

contributions of alkaline and alkaline earth components to transport properties with 

obvious impact on reoxidation [20]. Humidity may also play relevant effects on the 

activities of divalent and trivalent Fe
n+

 species [21], oxygen migration [22, 23] and 

conductivity [24].  

Compilation of literature data relative to the dependence of (Fe
2+

:Fe
3+

) ratio on optical 

basicity of silicate melts at temperatures of about 1400 ºC and in air has been described 

by a typical dependence [18, 25]: 
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where x accounts for summation of oxide optical basicities. For composition 

Al0.374Mg0.203Si0.423O1.61 with 2 mol% FeOx one expects x ~ 0.56 and (Fe
2+

:Fe
3+

) ~ 0.52, 

suggesting that trivalent Fe
3+

 may still prevail under oxidising conditions, mainly 

because the basicity of the actual composition is low. Other relevant information can be 

extracted from literature data for the solubility of divalent 
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 in natural silicate melts ([26-28] and quoted references). Indeed, 

redox changes may occur on cooling, and one found evidence that divalent Fe
2+

 may still 

prevail in the actual composition, at least for samples cooled in air at least for high 

pulling rates [29]. Still, one considered the dependence on temperature (T), oxygen 

fugacity (fO2) and contents of basic components (Xi) proposed elsewhere [26]: 
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with chemical potential contributions i=49.04 kJ for Al2O3, - 48.87 kJ for CaO and - 

106.05 kJ for Na2O. 
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The dependence on redox conditions in Eq. 2 is close to the expected dependence for 

nearly ideal or regular behaviour in dilute conditions: 

 ..5.12.).( 25.0 msms FeOOFeO   (3) 

Thus, one also expects depletion of oxygen fugacity for representative conditions of 

SOM operation, i.e., when the inner electrode (1) in the YSZ-based cell (Fig. 1) is 

polarized cathodically, and the outer electrode (3) is polarized anodically. The highest 

oxygen fugacity in the silicate melt is expected at the melt/YSZ interfaces and, on 

assuming that the YSZ membrane is a pure oxygen ion conductor, with the external 

electrode in air, this may be given by the Nernst equation: 
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Note that total losses relative to the external reference (0.21 atm) combine ohmic losses 

in the YSZ electrolyte (RYSZI), overpotential of the outer electrode (
3 ) and probably 

also interfacial losses at the melt/YSZ interface (
i ). 

a) 

 

 b) 

 

Figure 1 – a) Schemmatic representation and b) phtotograph of the electronic blocking cell used for 

iron pyroelectrolysis. 

The activity of divalent iron in the silicate melt ..msil

FeOa  and its dependence on basicity may 

also affect redox conditions required for the onset of metallic Fe, at the inner cathode.  
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Equilibrium conditions for co-existence of metallic Fe with the melt can be described 

by: 

 
(5) 

and 

 
(6) 

where G
o
=-488.24-(0.01695 x ln(T) – 0.2311), Gº is the free energy of reaction: 

.2 22 liqFeOOFe  , and the activity coefficient of FeO in the silicate melt may be 

described by the empirical dependence [30]: 

 
(7) 

For the actual composition Al0.374Mg0.203Si0.423O1.61 with 2 mol% FeO one obtain 

20.1
..


msil

FeO  at ≈ 1400 ºC, and on inserting this in Eq. 6 one predicts atmfO
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 . This 

also yields the corresponding Nernst potential relative to air (1.02 V). Further additions 

of iron oxide yield atmxfO

13
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  for 4 mol% FeO, atmxfO
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  for 8 mol% 

FeO, etc. 

The contents of iron oxide and (Fe
2+ 

: Fe
3+

) ratio may determine the ionic and electronic 

transport properties. However, the relative contributions also depend on mobility of 

these cationic species in silicate glasses, which is determined by their prevailing 

structural incorporation as network formers or modifiers. Migration of glass former 

cations form structural tetrahedral units ([SiO4]
4-

, [AlO4]
5-

,…..) with very low mobility. 

This also applies partially to Fe
3+

, with mixed character between network former  

[FeO4]
5-

 and modifier [31, 32]. Thus Fe
2+

 should have a prevailing contribution to ionic 

conductivity, due to its network modifier character, probably combined with the 

additional contribution of Mg
2+

, at least if one considers ac electrical response. 

Otherwise, dc electrical behavior should be mainly dependence on migration of Fe
2+

 if 

the applied voltage exceeds the Nernst potential for reduction to metallic Fe, possibly 

combined with an additional electronic contribution by small polaron hopping between 

ferric and ferrous ions [33]. Redox stable mobile cations (e.g. Mg
2+

) are likely to give 

rise to space charge effects. 
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6.2.3 Experimental 

Powders of MgO (Merck, 99+ %), Al2O3 (Merck, 99.5 %), SiO2 (Sigma Aldrich,        

99.6 %) were mixed in required proportion to obtain the nominal composition 

Mg0.203Al0.374Si0.423O1.61 (MAS – Magnesium Aluminosilicate) with minimum liquidus 

temperature. The required amounts of Fe3O4 (Aldrich, 99 %) was added to prepare the 

corresponding composition with 2 mol% of Fe (MAS-2Fe). After addition of a binder 

(PVA) the prepared mixtures were extruded as feed and seed precursor rods to prepare 

the intended glasses by laser floating zone (LFZ) method. Amorphous samples were 

grown at 100 mm/h using a continuous CO2 Spectron SLC laser ( = 10.6 µm; 200 W). 

During the process the seed and feed rod precursors were rotated in opposite directions 

to enhance the homogeneity of the target samples. Obtained samples were then crashed 

and ball-milled in ethanol to produce a fine glass powder, which was further used as the 

molten electrolyte in pyroelectrolysis. Preliminary experiments showed that the obtained 

glass composition can be melted at temperatures above 1700 K. 

Pyroelectrolysis was studied using an electrochemical cell made of yttria-stabilized 

zirconia (YSZ) shown schematically in Fig. 1. The cell comprised an YSZ closed-end 

tube and three Pt electrodes (1 to 3) to perform electrolysis studies in various regimes 

and to evaluate the resistance of molten electrolyte by impedance spectroscopy. The cells 

were loaded with 3.6 to 4.8 g of the glass electrolyte powder, prepared as described 

above. After filling the internal compartment with electrolyte and centering the electrode 

(1) wire ( 0.5 mm), the cell was closed by an YSZ lid and vertically aligned in an 

external alumina crucible and held vertically with alumina powder. The distance 

between electrode (1) and bottom of the cell was circa 5 to 7 mm. Thus assembled cell 

was heated up to 1728 K at a rate of 5 K/min. Onset of melting was monitored by rapid 

drop in resistance between electrodes 1 and 2, measured under open-circuit condition by 

electrochemical impedance spectroscopy (Autolab PGSTAT302 instrument, frequency 

range 0.01 to 10
6
 Hz and 0.5 V of amplitude AC signal). Fig. 2 shows corresponding 

Nyquist plots during electrolysis process. Above 1700 K the shape of the impedance 

spectra significantly changes, while the resistance of the cell dramatically decreases. 



170 

 
Figure 2 – Complex resistivity spectra:      ZrrL ie /ln2  (see Eq.12) for cell b2cFe, obtained 

after different relative charging, i.e., Q/QFe = 0.16, 0.36, 0.56, 0.70, 1.59, 1.91 and 3.37, where QFe 

denotes the charge required to reduce the actual content of iron oxide to metallic Fe, assuming that 

Fe
2+

 prevails, based in eqs 1.12 and 1.13. 

Table 1 shows the relevant experimental conditions of pyroelectrolysis experiments. 

These studies were preceded by preliminary experiments which were required to screen 

appropriate procedures for the preparation of cells, conditions for high-temperature 

electrochemical measurements, risks of short-circuiting in the cell, caused by 

displacement of the central electrode wire (1), etc. In electron-blocking cell experiments, 

a constant dc voltage was applied between the Pt wire cathode (1) and the external 

counter electrode (3). Other experiments were performed in direct electrolysis mode 

between cathode (2) and anode (1), i.e., without electron blocking. The changes in 

electrochemical properties of the cell components were also monitored by impedance 

spectroscopy, between electrodes (1) and (2). These spectra (see Fig. 2) were acquired 

without dc bias, by temporarily disconnecting the applied dc voltage, for 2 to 3 min, to 

ensure sufficient signal to noise ratio.  

Table 1 – Operating regimes and other relevant experimental conditions of electrochemical cells. 

Notation Regime Cathode Anode 
Vappl 

(V) 

FeOx 

additions 

b2cFe Electron-blocking (1) (3) 2.0 2 mol% 

b1.5cFe Electron-blocking (1) (3) 1.5 2 mol% 

b1.5c Electron-blocking (1) (3) 1.5 Fe-free 

d1.5aFe Direct-electrolysis (2) (1) -1.5 2 mol% 
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After the pyroelectrolysis experiments the cells were cooled down to room temperature 

at 5 K/min, for subsequent post-mortem analysis. The bottom part of the cell, containing 

solidified electrolyte, was cut transversely by a diamond wafering blade into 3 to 5 

pieces, to analyse the cation distribution in the cathodic compartment and to assess the 

approximate liquid electrolyte level during the pyroelectrolysis process. The cut pieces 

were polished and examined by combined SEM/EDS studies (Hitachi SU-70 model 

equipped with Brucker silicon drift EDS detector). 

The element distribution in the samples polished were examined also by Raman spectra 

(SPEX, Jobin Yvon T64000) at room temperature in backscattering configuration, using 

the 532 nm exciting line, from 100 to 1000 cm
-1

. 

6.2.4 Results and Discussion 

6.2.4.1 Proposed equivalent circuit 

Under electron-blocking operation mode, the YSZ membrane separates the cathodic and 

anodic compartments, and is expected to block electronic transport. This allows selective 

transport of oxygen ions and should prevent iron reoxidation at the anode. Iron cations 

migrate in the molten silicate under the applied electric field and are expected to be 

reduced to metallic Fe at the cathode, when the applied voltage exceeds the minimum 

Nernst cell voltage, while oxygen ions are likely to be transferred across the molten 

silicate/YSZ interface, migrate through the YSZ solid electrolyte by a vacancy 

mechanism, and feed the oxygen evolution reaction at the outer electrode. Thus, the 

actual concept of pyroelectrolysis with electron blocking provided by YSZ can be 

approximately described on assuming the following half-cell cathodic (electrode 1) and 

anodic (electrode 3) reactions, coupled with partial conversion of non-bridging to 

bridging oxygens in the molten silicate and ion transfer across the silicate melt/YSZ 

interface: 

)(2 02 PtFeeFe    (8) 

)()()()......(2 22 YSZOMSiOSiYSZVSiOMOSi OmeltmeltOmelt

   (9) 

)()(2/12)( 2 YSZVgOeYSZO OO

   (10) 
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Note that divalent Fe
2+

 is expected to prevail in the molten silicate glass electrolyte 

under conditions of electrochemical oxygen pumping, which depresses O2 fugacity, at 

least near the Pt cathode. Thus, one can assume that pyroelectrolysis with electronic 

blocking involves partial transfer of non-bridging oxygen ions from the melt to the solid 

electrolyte, according to reaction of Eq. 9, with simultaneous migration of the modifier 

cations in opposite direction, towards the inner cathode. 

A schematic representation of a proposed equivalent circuit for the overall behaviour is 

presented in Fig. 3. Equivalent circuits have been proposed to analyse mixed conduction 

in solids [34]. Though this is arguable in the present case, due to scarce information and 

excessive experimental scattering, one may still assume association of a prevailing 

contribution of ionic transport and a parallel contribution of electronic transport, with 

series associations of components in the molten electrolyte and in the YSZ solid 

electrolyte, i.e., RI,m+ RI,s, respectively. 

The equivalent circuit in Fig. 3 also includes expected electrode overpotential 

contributions, and an interfacial contribution, based on the intermediate frequency arc 

revealed by impedance spectra (Fig. 2). This may be nearly accounted for by the RintCint 

component in the equivalent circuit, or a corresponding constant phase element (CPE) 

taking into account that interfacial arcs are usually depressed (e.g. Fig. 2). In addition, 

the YSZ solid electrolyte allows selective oxygen ion transport and should be nearly 

blocking to the electronic conductivity and to contributions of redox stable cations (e.g. 

Mg
2+

), this was accounted for by inserting a capacitor in the equivalent circuit (Ctr).  

 

Figure 3 – Proposed equivalent circuits for electron-blocking cells. 

Re,m Re,s

Vo

Vappl

RI,s

a
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The cell voltage must exceed a lower limit corresponding to the Nernst potential 

generated by oxygen fugacity ratio between the surrounding atmosphere (0.21 atm), and 

the silicate melt in the presence of metallic Fe. For a typical temperature of about 1728 

K and based on Eq. 6, with a typical activity coefficient 20.1
..


msil

FeO  (for 2 mol% iron 

oxide), one estimated atmxf
O

13

2
107.2  , and the corresponding value of Nernst potential:  

V
xF

RT
Eo  02.1

107.2

21.0
ln

4 13












 (11) 

Ohmic losses are likely to be one of the main limitations in energy efficiency due to 

insufficiency ionic conductivity. One expects major dependence on the inner electrode 

under the actual nearly cylindrical geometry, due to major differences between the inner 

(ri) and outer electrode (re) radii, with corresponding impact on electric field, current 

density differences, and gradient of ohmic losses. This gradient is much steeper near the 

central electrode, as derived on assuming a steady state regime with nearly cylindrical 

geometry and without radial changes in conductivity, i.e.,   )2/(/ rLIdrdV   , where I is 

current, L is length and r is radial distance. On integrating one obtains the relevant 

solutions for ohmic resistance and electric field: 

1

ln2
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V
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and 

 ie

ohmic

rrr

V

dr

dV

/ln


  (13) 

where ohmicV  is the overall ohmic drop. Thus, the actual geometry is suitable to identify 

differences between specific electrode limitations under cathodic and anodic 

polarization, even for conditions when the use of a reference electrode is impaired by 

very harsh operating conditions.  

Faradaic efficiency may also be affected by onset of electronic conductivity, as shown in 

the proposed equivalent circuit in Fig. 3, except possibly for conditions when the 

electronic conductivity of YSZ is negligible and provides almost perfect blocking for 

electronic leakage.  
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This condition may be assessed by combining the dependence of n-type and p-type 

contributions in YSZ [35], including high temperature results [14]: 

    S/cmpO σpO 
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The corresponding average value can be computed for the relevant boundary conditions 
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(16) 

yielding a typical value for electronic conductivity of YSZ (e,av ~2.8  10
-3

 S/cm) under 

the actual working conditions, i.e., at 1728 K, and on assuming limiting conditions for 

air (pO2 = 0.21 atm), and equilibrium between metallic Fe and molten electrolyte          

(≈ 2.7x  10
-13

 atm).  

The ionic resistance in the YSZ solid electrolyte may also be estimated by considering 

literature data for ionic conductivity of YSZ at very high temperatures [15]. 

S/cm 
kT

0.74eV
expT1.95x10σ 15

I 







 

 (17) 

with a typical value of 0.79 S/cm at 1728 K. This is more than 2 order of magnitude 

higher than the electronic conductivity, which confirms that YSZ should provide 

electronic blocking. 

In addition, the ionic conductivity of YSZ is close to 2 orders of magnitude higher than 

the actual order of magnitude of conductivity of the molten electrolyte, extracted from 

impedance spectra (e.g. Fig. 2). These impedance spectra are shown as complex 

resistivity plots for cylindrical symmetry (Eq. 12), i.e.: 

 oi

mI,

mI,
/ddln 

R L  2
   (18) 

where di is the inner diameter and do the outer diameter of the YSZ cell. 
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Results in Fig. 2 are in the order of 10
2
 cm, which is a significant limitation for 

pyroelectrolysis with the actual molten electrolyte. Note that basaltic melts attain similar 

conductivity values at significantly lower temperatures (≈ 1573 K) [36]. This can be 

understood by taking into account that the mobility of prevailing carriers in the actual 

aluminosilicate melts (Fe
2+

 and Mg
2+

) may be much smaller than the mobility of alkali 

carriers in basaltic melts, as revealed by corresponding diffusivity ranges [20]. The 

structure of molten silicates can be described as three-dimensional interconnected 

network of [SiO4]
4-

 tetrahedra, where the silicon atoms are mostly joined by bridging 

oxygen atoms 
melt

SiOSi )(   [37], whereas alkaline (Na
+
, ...), alkaline earth (Mg

2+
,...) 

and other cations (Fe
2+

,...) provide charge compensation for non-bridging oxygens and 

may act as ionic charge carriers.  

6.2.4.2 Post-morten analyses 

Although one attempted to estimate Faradaic efficiency by direct weighing the cathode 

after iron extraction and quantifying the volume of gaseous species, evolved at the 

anode, such measurements have particular difficulties under the extremely harsh 

experimental conditions of pyroelectrolysis, with emphasis on disintegration of the Pt 

cathode and changes in morphology (Fig. 4). In addition, estimates of Faradaic 

efficiency are affected by uncertainties concerning the initial distribution Fe
2+

 and Fe
3+

 

in the aluminosilicate melt and their changes on lowering the oxygen fugacity by 

electrochemical pumping. Therefore, in the present work one relied mostly on post-

mortem analysis of the cell by combining SEM (Fig. 4) and EDS analyses (Fig. 5), and 

results of electrochemical measurements, to confirm electroreduction to metallic Fe. 

Somewhat surprisingly Fig. 4 shows drastic degradation of the Pt cathode, in contrast 

with the reference Pt electrode. The Pt cathode disintegrated in isolated segment in the 

cross section, including small spots organized in ring-like distribution. Smaller dispersed 

fragments are also found in the surrounding area, as shown in the expanded SEM image.  

Still, the total cross section of the remaining Pt fragments is significantly smaller than 

the initial cross section of the Pt wire.  
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The circular area traced by Pt fragments is also surrounded by the Al-rich and Si-

deficient ring. In addition, high Fe-concentrations are found both inside this ring, mostly 

overlapping with the Pt elemental map, and in the surrounding area. One may speculate 

that dispersed Fe-rich fragments correspond to metallic Fe, based on their spatial 

distribution.  

 

Figure 4 – Post-mortem SEM microstructures and elemental maps of the pyroelectrolysis cell b2cFe 

tested with applied cell voltage 2 V.  
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Figure 5 – EDS analysis by post-mortem analysis of Cell b2cFe. 

Note that the expected cross section of metallic Fe deposit should be in the order of 0.3 

mm
2
, if one considers complete reduction of the iron oxide content in the melt. Though 

one could not confirm the nature of these Fe-rich spots the surrounding area, they 

resemble onset of metallic Fe inclusions reported for aluminosilicate melts exposed to 

reducing atmospheres [38, 39]. Dispersed metallic inclusions are also found in basaltic 

rocks [40]. 

 

 

Figure 6 – SEM and elemental maps obtained by post-mortem analysis of a Pt cathode after testing 

cell b1.5cFe, with applied cell voltage 1.5 V.  
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Less drastic degradation of the Pt cathode, and clearer evidence of Pt-Fe alloying is 

demonstrated by postmorten analysis of cell b1.5cFe, after pyroelectrolysis with applied 

voltage 1.5 V (Fig. 6). The Al-rich boundary is also shown in this case, and EDS spectra 

(Fig. 6) confirm alloying of Pt with Fe. Alloying of Pt with Fe extended to the bulk of 

the original Pt wire, with atomic Pt : Fe ratio of about 6.3:1, preserving the metallic 

appearance (color, luster, etc.), as expected for metallic alloys. Formation of Pt-Fe alloys 

was also reported for electrodeposition of Fe
2+

 on Pt electrodes in chloride melts at 973 

– 1023 K [17]. In addition Pt-Fe alloys have been proposed as containers for silicate 

melts, to avoid losses of iron [41, 42]. 

 

Figure 7 – Post-mortem EDS analysis at representative locations in the Pt wire, after contacting with 

molten MAS-2Fe glass at 1728 K for 5 h without electrical polarization. 

Indeed, allowing with Fe and disintegration of Pt electrodes requires cathodic 

polarization to induce reduction to metallic Fe, being hindered without application of 

electric field (Fig 7), and also under anodic polarization. Thus, the physical or 

electrochemical nature of actual disintegration of Pt electrodes cannot be ascribed to 

oxidation of Pt, and is more consistent with incorporation of Pt on metallic inclusions in 

silicate melts under reducing conditions [40]. Post-mortem analyses are also more 

consistent with formation of low melting liquid phase in the ternary system Pt-Fe-Si. 

Note also that the actual temperature (1728 K) is lower than required for liquid phase 

formation in the binary Pt-Fe system. 
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Though reduction of silica to metallic Si and diffusion into the metallic phase might 

seem somewhat surprising, under a relatively low applied cell voltage (1.5 V), one finds 

evidence in the literature for alloying of metallic Fe with Si on exposing aluminosilicate 

melts to reducing atmospheres such as CO-CO2 [39] or H2-Ar [43].  

Partitioning of Si between the Fe-based earth´s core and silicate melts on earth´s mantle 

is also known [44]. In addition, SiO2 can be reduced to metallic silicon by 

pyroelectrolysis in chloride halide melts [45]. However, the solubility of Si in solid Pt is 

only about 1 atm% [46] thus explaining why the EDS signal of Si remains very weak in 

Pt-rich spots (Fig. 7). On the contrary, one may expect a wide range of compositions for 

liquid phase formation in the Pt-Si system at the actual temperatures (≈ 14 – 100 mol% 

Si) [46].  

Thus, onset of liquid phase is expected on increasing the contents of reduced Si, and this 

may explain disintegration of the Pt cathode and its dispersion as small droplets in the 

surrounding aluminosilicate melt. This may also explain onset of dispersed metallic 

particles shown in Fig. 4, at sufficiently high magnification. The relevant literature also 

showed evidence for the dynamic behaviour of Pt-Si liquid phases [47, 48]. 

Simultaneous reduction of Si and Fe may also explain the Al-rich ring in Figs. 4 and 6, 

possibly yielding liquid phase at the actual high temperatures, as predicted by the binary 

Fe-Si phase diagram [49, 50], and also contributing to dispersion of metallic inclusions 

in the area surrounding the Pt cathode. Thus, disintegration of the Pt cathode may be 

ascribed to liquid phase formation in the ternary system Fe-Si-Pt, and its dispersion in 

the surrounding area, mainly for cell b2cFe, when the applied voltage is highest and 

most likely to reach conditions for reduction to metallic Si. The enhanced wetting of 

metallic surfaces (Fe, Pt,...) by aluminosilicate melts [43] may also contribute to ready 

dispersion of liquid metallic drops. 

Thermodynamic and electrochemical conditions for reduction of silicon dioxide to 

metallic silicon or silicon monoxide can also be estimated based on relevant 

thermodynamic data [51]. This has been summarized in Table 2 which shows the Gibbs 

free energy GR of plausible reactions at 1728 K, and corresponding Nernst GR/(nF) 

potential relative to standard conditions, i.e, for pO2 ≈ 1 atm and considering unit activity 

ratio SiSiO aa :2 , aSiO2 for silicon dioxide and aSi for silicon.  
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Thus, reduction of silica to SiO or Si is likely to occur when the pyroelectrolysis cell is 

operated atVappl = 2 V. Indeed, this is unlikely for redox stable trivalent aluminium Al
3+

, 

with prevailing glass former character, and also for redox stable Mg
2+

, with prevailing 

modifier-character. The mobility of modifier cations may contribute to minimize the 

concentration gradient of magnesium. Reduction of silicon dioxide to metallic Si may 

still occur on lowering the applied voltage to Vappl = 1.5 V, mainly if one considers a 

relatively low activity ratio 1/aa SiO2Si  , aSi being the activity of Si in the metallic liquid 

phase, and aSiO2, the activity of silica in the MAS melt, i.e.: 

     
MASlmMAS
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EDS spectra in Fig. 6 even suggest the presence of Al in the postmortem analysis of the 

Pt-cathode, possibly as an artifact resulting from polishing. In fact, the redox stability of 

alumina should prevent reduction to metallic Al, except possibly for relatively high 

applied cell voltage, as emphasized by the Gibbs free energy of the relevant reaction and 

corresponding Nernst potential (Table 2). Still, one cannot rule out the possibility of 

reduction of alumina for cell b2cFe, operated under applied of 2 V. Note that the 

presence of Al in ternary Pt-Si-Fe would also contribute to suppress the liquidus 

temperatures of metallic inclusions [50]. Prospects for reduction of aluminium oxide to 

metallic Al were demonstrated for redox conditions corresponding to very dry hydrogen 

(H2 : H2O > 10
5
), possibly assisted by volatile intermediate species (AlH or Al2O) [52].  

Table 2 – Gibbs free energies of reduction of silica to silicon oxide or silicon. 

Reaction 
G 

(kJ) 

Vo=G/(nF) 

(V) 

2SiO2 (l) = O2 (g) + 2SiO (l) 540 1.34 

2SiO2 (l) = O2 (g) + 2SiO (g) 709 1.78 

SiO2 (l) = O2 (g) + Si (l) 586 1.46 

SiO2 (s) = O2 (g) + Si (l) 601 1.50 

2/3Al2O3 (s) = O2 (g) + 4/3Al (l) 750 1.88 
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Evidence that disintegration of the Pt cathode may be induced by reduction to elemental 

Si and formation of Si-Pt liquid phase may also be inferred from micro-Raman spectra 

(Fig. 8). Spectra localised on residual fragments of the Pt cathode show a main peak at   

≈ 480 cm
-1

, which is close to the characteristic transverse optical band of amorphous 

silicon [53], and is absent in the Raman spectrum of the MAS matrix. Though one 

cannot exclude the presence of this peak in the Raman spectrum obtained for original Pt 

wire, this is close to the background noise.  

 

 

b) 

 

Figure 8 – a)Raman spectra and b) SEM microstructure of cell b2cFe, located at the MAS matrix, 

reference Pt wire (Pt,ref), major spot of the Pt cathode (Pt,c), smaller Pt spots (Pt,cA and Pt,cB), and 

a nearby location (near PT,c). 

Thus, this does not contradict the evidence that disintegration of the Pt cathode may be 

induced by alloying and formation of liquid phases, probably in the ternary Pt-Fe-Si 

system. Note also that the active Raman bands of the MAS matrix (≈ 253 cm
-1

, 567 cm
-1

 

and 673 cm
-1

) vanish in the proximity of the remaining spots of the Pt cathode. 

Cell (b1.5c) was operated in blocking-electron configuration with Fe-free MAS glass 

electrolyte, while keeping the remaining conditions similar to cell b1.5cFe (Table 1). In 

this case, the Pt cathode remains relatively immune to disintegration, as shown in Fig. 9. 

 

  

 matrix 

  
  

 near Pt, c 

Pt, cB 

Pt, c 

Pt, cA 



182 

   

 

Figure 9 – Pt and Al elemental maps of cell b1.5c. 

Note that traces of Pt towards the bottom-right of this map are an artefact due to cutting 

of the sample. Thus, the presence of Fe in Pt-based alloys play a key role in the 

disintegration of the Pt cathode observed for the previous cells (b2cFe and b1.5cFe). In 

addition, enhanced wetting of cathode by the aluminosilicate melt is expected upon 

incorporation of Fe in the metallic phase [43], possibly contributing to assist 

incorporation of Si and formation of liquid phase in the ternary system Pt-Fe-Si, 

responsible for the disintegration of the cathode in cells b2cFe and b1.5cFe. 

 Additional evidence that disintegration of the Pt electrode is specific of cathodic 

polarization was provided by reversing the polarization of the central Pt electrode to 

anodic in cell d1.5aFe (Table 1). In this case, anodic polarization also prevents 

disintegration, as shown in Fig. 10.  

 

 

Figure 10 – Post-mortem elemental maps of cell d1.5aFe. 

   

 
 

Anode 
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Note also that the surrounding aluminosilicate melt still becomes Al-rich, probably by 

migration of Fe
2+

 ions towards the cathode (i.e., the outer electrode (2)), yielding a Fe-

enriched layer next to the YSZ container. Note that electrode (2) had been applied by 

painting with Pt past on the internal surface of the YSZ container. Still, the Fe-rich layer 

lacks metallic luster and its thickness is excessive to assume reduction to metallic Fe. 

Thus, one may assume enhanced concentration of Fe
2+

 and/or Fe
3+

 ions instead. 

6.2.4.3 Transient electrochemical response 

The time dependence of current under constant applied cell voltage may reveal changes 

related to exhaustion of iron oxide in the aluminosilicate melts, and the corresponding 

accumulated charge may be a guideline to estimate the Faradaic efficiency,  this is 

shown in Fig. 11. Except for current spikes due to periodic switching off of the applied 

voltage for impedance studies, one may identify a minimal in average current, and this is 

close to conditions when the accumulated charge should correspond to full reduction of 

iron, considering predominant Fe
2+

 oxidation state in the melt and ~ 100 % faradaic 

efficiency. This transition is also revealed by the decrease in the slope of cumulative 

charge. The latter is more evident for cell b1.5cFe, operated at lower applied voltage  

(1.5 V), possibly because this cell was less affected by side electrochemical reactions 

and parasitic effects, such as reduction of silicon dioxide, as shown above. Though a 

significant fraction of Fe
3+

 would require greater cumulative charge, this may only 

account for up to 1/3 of the total charge required to reduce Fe
n+

 ions.  

 

Figure 11 – Time dependence of current (solid lines) under applied voltage of -2V (cell b2cFe in 

Table 1) and -1.5 V (cell b1.5cFe). Cumulative charge was computed by integration, and its relative 

range refers to complete reduction of divalent iron oxide QrefFe
2+

 (dashed lines).  
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Thus, cumulative charge shows that the final stage is determined by parasitic effects, 

after depletion of the initial contents of iron oxide in the molten silicate, with 

corresponding decrease in overall Faradaic efficiency. 

Cell b1.5c was also tested with blocking-electron configuration but in Fe-free MAS 

electrolyte. Thus, the time dependence of current (Fig. 12) should be ascribed 

exclusively to parasitic electrochemical reactions. This parasitic current increases 

gradually, approaching the last stage of cell b1.5cFe with 2 mol% iron oxide This 

confirms that parasitic contributions predominate as the contents of iron oxide in the 

molten electrolyte is depleted. Still, the cathode in cell b1.5c retains its morphologic 

stability. Thus parasitic current should not be exclusively related to disintegration of Pt 

cathode. 

 
Figure 12 – Comparison of time dependence of current for cells operating with applied cell voltage -

1.5V, for the MAS melts with 2 mol% Fe (cell b1.5cFe in Table 1) and the Fe-free melt (cell b1.5c).  

 

Figure 13 – Comparison of time dependence of current for cells d1.5aFe and b1.5cFe. 
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Cell d1.5aFe was operated without electron blocking, i.e., using the central Pt electrode 

(1) as anode and electrode (2) as cathode (Fig. 13). This cell was also modified to 

include a stopper at the bottom of the inner Pt electrode to maintain its vertical 

alignment, thus preventing its drift. Note that long term drift of the central Pt cathode, 

towards the inner surface of the YSZ container, may cause decrease in resistance due to 

changes in effective geometry. This may account, at least partly, to long term increase in 

current recorded for cells b2cFe, b1.5cFe and b1.5c, whereas cell d1.5aFe shows long 

term stability.  

Another significant difference between cells d1.5aFe and b1.5cFe is the reversed 

transient response after temporary interruptions to monitor electrical properties by 

impedance spectroscopy, i.e., decrease in current on re-establishing anodic polarization 

of the central Pt electrode, after the initial peak (cell d1.5aFe), and increase in current on 

re-establishing cathodic polarization, after an initial minimum (cell b1.5cFe). This can 

be ascribed to redox changes induced by cathodic or anodic polarization and 

corresponding changes in conductivity, as expected on changing the fugacity of O2 [36]. 

In addition, the concentration of positively charged carriers may drop close to the 

positive electrode, as revealed by EDS maps (Fig. 10).  

6.2.4.4 Transient changes in conductivity 

Impedance spectra recorded on disconnecting the applied voltage during operation of 

different cells (Figs. 2, 14, 15) were used to extract corresponding changes in 

conductivity (Fig. 16).  

The spectra reveal mainly the intermediate frequency arc, ascribed to an interfacial 

contribution (Fig. 17), whereas the upper limit of frequency range (10
6
 Hz) is 

insufficient to resolve the contribution at higher frequencies, this was ascribed to the 

ohmic resistance of the molten MAS (Fig. 16). In addition, the spectra obtained for cell 

d1.5aFe shows onset of a low frequency contribution and its nearly linear Z” vs Z’ 

dependence resemble the Warburg impedance of diffusion controlled limitations. 

However, its slope is significantly lower than expected, and suggests anomalous 

diffusion [54], possibly because the concentration of charged species is time dependent, 

as emphasized also by the transient response on re-establishing the applied potential 

(Fig. 13).  
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This is more likely to occur when the central Pt electrode is under anodic polarization 

(cell d1.5aFe), thus causing local depletion of positively charged carriers (Fe2+). Indeed, 

the transient response time shown in Fig. 13 (in the order of 1 min) is several orders of 

magnitude longer than the reciprocal frequency range of the equipment (≤ 0.05 s), thus 

preventing a clear impedance analysis of the diffusion controlled processes. The 

impedance spectra for cell b1.5cFe (Fig. 14) are not conclusive about diffusion 

limitations at lower frequencies.  

 
Figure 14 – Complex resistivity spectra      ZrrL ie /ln2  for b1.5cFe cell, obtained after relative 

charging Q/QFe=0.72, 0.99, 1.09, 1.19 and 1.72, where QFe denotes the charge required to reduce the 

actual content of iron oxide to metallic Fe, assuming that Fe
2+

 prevails. 

 

 
Figure 15 – Complex resistivity spectra      ZrrL ie /ln2  for cell d1.5aFe, obtained at relative 

charging Q/QFe=0.40 and 1.62, where QFe denotes the charge required to reduce the actual content 

of iron oxide to metallic Fe, assuming that Fe
2+

 prevails. 

Fig. 16 confirms sharp increase in ohmic resistance for cells b2cFe and b1.5cFe, on 

approaching the cumulative charge expected for reduction of Fe
2+

 to metallic Fe, and 

corresponding depletion of charge carriers. This trend is reverted for greater charging, 

which is also indicative that parasitic currents increase gradually as the actual 

concentration of Fe
n+

 vanishes. On the contrary, the direct electrolysis cell d1.5aFe, with 

central anode, only shows slight increase in ohmic resistance, without any evidence that 

this will go through a maximum.  
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This confirms that depletion of charge carriers is less effective in this case, consistent 

with the EDS maps showing accumulation of Fe
2+

 next to the cathode (Fig. 10), and 

indicating that reduction to metallic Fe is marginal. Thus, Faradaic efficiency is very low 

in this case. 

 

Figure 16 – Dependence of ohmic resistance on relative charging Q/QFe, where QFe denotes the 

charge required to reduce the actual content of iron oxide to metallic Fe, assuming that Fe
2+

 

prevails. 

 

Figure 17 – Dependence of interfacial resistance on relative charging Q/QFe, where QFe denotes the 

charge required to reduce the actual content of iron oxide to metallic Fe, assuming that Fe
2+

 

prevails. 

The dependence of interfacial resistance on relative charging also confirms major 

differences between direct electron blocking cells (b2cFe and b1.5cFe) and the 

electrolysis cell d1.5aFe. Depletion of Fe
2+

, upon reduction to metallic Fe, also causes 

drastic increase in interfacial resistance and clearly different trends on exceeding the 

nominal charge required for reduction.  
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On the contrary, the interfacial resistance remains low in the case of cell d1.5aFe, 

possibly due to a significant contribution of electronic transport, and without significant 

decay. This behavior also confirms that faradaic efficiency is marginal in this case. 

 

Figure 18 – Dependence of interfacial capacitance of cell b1.5cFe on relative charging Q/QFe, where 

QFe denotes the charge required to reduce the actual content of iron oxide to metallic Fe, assuming 

that Fe
2+

 prevails. 

Changes in interfacial capacitance for cell b1.5cFe (Fig. 18) also reveal the main 

differences between the electrochemical behaviour at relatively low charging, and after 

exceeding the nominal charging required for reduction of Fe
2+

 to Fe. The initial stages 

may comprise increase in effective interfacial area by deposition of metallic Fe, the 

opposite trend at the onset of disintegration of the Pt cathode, and then a major drop in 

capacitance as the overall behavior becomes controlled by parasitic currents. This is also 

consistent with evidence that disintegration of the Pt cathode involves alloying with Fe, 

as shown above. 

 

6.2.4.5 Concluding remarks on long term parasitic current 

Post-morten analysis of cell d1.5aFe does no show evidence of reduction to metallic Fe 

and in situ monitoring by impedance spectroscopy also failed to show evidence of 

significant changes upon exceeding the cumulative charge required for complete 

reduction to metallic Fe.  
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Thus, the behaviour of this cell should be mainly due to a combination of parasitic 

effects or electronic leakage, combined with accumulation of carriers next to the outer 

electrode (cathode) and depletion next to the central electrode (anode), as revealed in 

Fig. 10. The most likely hypothesis is electron hopping between Fe
2+

 and Fe
3+

, 

combined with corresponding charge transfer reactions at cathode (   23 Fe'Fe e ) and 

at the anode ( 'FeFe 32 e  ). Dependence of conductivity on redox conditions or 

anodic polarization may also cause excessive increase in ohmic losses, near the central 

electrode (anode), lowering the actual difference between applied voltage (1.5 V) and 

ohmic losses (Vappl – I RO).  

Thus, reduction to metallic Fe will be halted if this drops below the required Nernst 

potential (≈ 1.02V). In fact, ohmic resistance extracted from impedance spectra under 

open circuit conditions (Fig. 16) are clearly underestimated in the case of cell d1.5aFe, 

due to dependence of resistivity on O2 fugacity or anodic polarization. The transient 

response in Fig. 13 suggests that resistance under anodic polarization increases by a 

factor greater than 2, implying that the ohmic resistance in Fig. 15 may increase to 

values above 30  when current attains a nearly steady value of about 25 mA. This 

yields ohmic losses exceeding 0.75 V, and Vappl-IRO < 0.75 V, except possibly at short 

times or during the transient responses (Fig. 13). In this case, faradaic efficiency should 

be very low and the long term current may be ascribed to electronic leakage. 

The impact of ohmic losses should be much lower for cells b2cFe and b1.5cFe, due to 

the positive effect of cathodic polarization on conductivity, near the central electrode, as 

revealed by the transient spikes in Fig. 13. Thus, one still expects conditions required for 

reduction to metallic Fe (Vappl – IRO > 1.02 V), and high faradaic efficiency is expected 

by hindering electronic leakage via the electron blocking YSZ membranes. Still this 

cannot explain the long term current when the cumulative charge exceeds largely the 

nominal charge required for complete reduction to metallic Fe. A plausible explanation 

was proposed above, based on reduction of silica to metallic Si, mainly for cell b2cFe, 

yielding low melting liquid phases in the ternary system Fe-Si-Pt. Disintegration of the 

Pt cathode may also be taken as a footprint of this parasitic effect. Still, this cannot 

explain parasitic effects observed also for cells operating in Fe-free molten MAS       

(cell b1.5c).  
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Thus, one should also consider other parasitic contributions for the long term current in 

electron-blocking cells, mainly as the aluminosilicate melt approaches Fe-lean 

conditions. Plausible additional parasitic effects may be related to contributions of 

atmospheric gases such as O2 and humidity, which are known to dissolve in basaltic 

melts, depending on temperature (T), total pressure (P), water vapour partial pressure 

(pH2O) and non-bridging oxygen per unit oxygen (NBO/O) [55]: 

       TPONBOOpHnOHwt /02.095.2/24.1l 0.54%ln 22   (21) 

where 
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322

2
NBO/Oln  (22) 

If one assumes this dependence for the actual MAS compositions and for typical 

conditions T = 1728 K, P = 1 atm and pH2O ≈ 0.03 atm one predicts ≈ 0.0083 wt% H2O. 

This is, indeed, a very low concentration. Still, the corresponding OH groups represent a 

significant fraction of non-bridging oxygen (0.086). Dissolved water is also known for 

its impact on the electrical conductivity of aluminosilicate melts [24] and on diffusivity 

of oxygen, as emphasized by major differences in O
18

 diffusivity for hydrous and 

anhydrous conditions [22].  

Water dissolution in silicate melts may occur in a variety of forms, including molecular 

H2O, hydroxyl groups and even molecular H2 under reducing conditions [22, 23, 56]. 

Still, hydroxyl groups ( OHSi  ) are likely to prevail for relatively low water contents 

and for high alumina contents [57], thus contributing to break bonding oxygens: 

OHSiOHSiOSi  2
2

 (23) 

There is also evidence that H2 can evolve from aluminosilicate melts, and the fugacity of 

H2 is expected to increase under reducing conditions [56, 58], mainly in the presence of 

Pt, this may account also for a plausible alternative cathodic reaction: 

   OSigHeOHSi 2)(22
2

 (24) 

Thus, humidity uptake may sustain alternative cathodic reactions while providing also 

non-bridging oxygens to sustain oxygen ion transfer at the melt/YSZ interface. 
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6.2.5 Conclusions 

High-temperature iron extraction from the molten magnesium aluminosilicate-based 

electrolyte was studied in solid electrolyte cells by electrochemical methods, combined 

with post-mortem SEM/EDS techniques.  

The cell comprised an YSZ closed-end tube and three platinum electrodes for 

conducting pyroelectrolysis experiments, and impedance spectroscopy allows in-situ 

monitoring of changes in ohmic resistance and relevant interfacial process. Various 

experiments under potentiostatic conditions were performed at 1728 K in electron-

blocking cell regime and using direct electrolysis mode. The results of post-mortem 

microstructural analysis and EDS mapping for the transverse sections of the cell 

confirmed iron deposition at the cathode, followed by alloying with platinum. The 

observed trends for changing of the electrolysis current and electrolyte resistance with 

time suggest high faradaic efficiency under electron-blocking conditions until depletion 

of the Fe-contents in the aluminosilicate melts. 

Still, a conclusive proof of concept for pyroelectrolysis with electron blocking requires 

alternative electrode materials, to overcome the observed disintegration of the Pt 

cathode, Pt-Fe alloying, and to sustain high faradaic efficiency as the contents of iron 

oxide decreases. Efficiency is likely to depend on the actual contents of iron oxide in the 

aluminosilicate melt, applied voltage and relative cumulative charging. A significant 

limitation on faradaic efficiency was ascribed to onset of reduction of silica to metallic 

Si. Its inclusion in low melting Fe-Si-Pt liquid phase is also a plausible explanation for 

disintegration of the Pt cathode. Other plausible parasitic limitations on faradaic 

efficiency may be related to uptake of atmospheric gases such as humidity or oxygen. 

These may also sustain alternative cathodic reaction and transfer of oxygen ions across 

the melt/YSZ interface. 

The efficiency of the iron separation from the melt by direct electrolysis process was 

found very poor, probably due to onset of electronic leakage, and also because the 

applied voltage is insufficient to account for the combined contributions of ohmic losses 

and Nernst potential required for reduction to metallic Fe. 
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7 Conclusions and remarks 

 

This thesis contributed to clarify some of the most critical and debatable issues 

concerning demonstration of pyroelectrolysis as a prospective breakthrough technology 

for steelmaking, and challenges ahead. One confirmed the relevance of important 

parameters concerning the molten oxide electrolyte, and promising electrode concepts, 

to overcome overwhelming stability limitations. Inert electrodes are unlikely concepts, 

even if one considers noble metals such as platinum, because cost is unaffordable and 

also because their claimed inertness is not maintained in the actual prospective operating 

conditions. Thus, one must consider alternative concepts such as: 

i) Fe-based cathodes, probably in the form of a liquid/solid concept, with 

suitable thermal gradients to adjust freeze lining and to ensure compatibility with 

refractory materials; 

ii) Consumable oxide anodes, with sufficient properties to meet the 

requirements of anode materials, and possessing compositions with minimum 

long term impact on the molten electrolyte composition and intended product (Fe 

or its alloys), for long term operation. 

The thermochemical and electrochemical processes in molten silicates are still far from 

being properly understood, due to the inherent harsh conditions of pyroelectrolysis, and 

also by difficulties in tracing relevant literature from quite disperse technical and 

scientific fields (glass technology, extractive metallurgy, volcanic and earth mantle 

studies, geology,...). 

One established important guidelines for relevant conditions such as temperature 

gradients and their impact on de-vitrification, crystallization of iron oxides on lowering 

the temperature of silicate melts, and their redox changes on varying the thermochemical 

conditions. One also obtained convincing evidence that divalent Fe
2+

 is the prevailing 

dissolved cation in the selected melt, even in air.  
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This information on the thermochemistry of silicate melts also provides guidelines to 

predict interactions between the intended consumable anodes with magnetite-based 

spinel compositions, and silicate melts. Yet, the anode/melt compatibility could not be 

assessed within this PhD project, due to time limitations and also for other insufficient 

conditions (equipment, funding and related resources). 

Due to experimental difficulties and limitations one restricted the pyroelectrolysis tests 

to temperatures below melting of metallic Fe. Under these conditions, one found that the 

relevant transport properties of studied melt composition are clearly insufficient for an 

efficient concept of pyroelectrolysis. The ionic conductivity is much below the range 

required to suppress ohmic losses to an acceptable range, and onset of electronic leakage 

raises strong doubts about direct electrolysis with both cathode and anode in contact 

with the molten electrolyte. Thus, much additional work and effort is needed to design 

alternative silicate melt compositions with greatly increased ionic conductivity and 

suppressed electronic conductivity. This must include detained studies of their 

dependence on the contents of iron oxide dissolved in the molten silicate, as well as 

temperature dependence, mainly if one seeks direct electroreduction to liquid metal. 

Still one found sufficient evidence that pyroelectrolysis can be achieved by an 

alternative concept of pyroelectrolysis with electron blocking membrane. Indeed, it is 

also debatable whether this approach may ever reach a stage of technological 

development for mass production. Pyroelectrolysis with electron-blocking membrane 

also emphasized unexpected side electrochemical reactions and parasitic effects, 

imposing additional challenges and (possibly) also raising doubts on prospects for 

successful development of pyroelectrolysis as a viable technology. One of the most 

striking findings is the possibility of electrochemical reduction of silica to metallic Si, 

and possibly even reduction of alumina to Al, under relatively low applied voltages. 

Thus, one may consider quite contradicting conclusions, from a pessimistic view that 

pyroelecrolysis is invalid by fundamental restrictions, to alternative optimistic prospects 

for production of alloys by simultaneous electroreduction of different metallic 

components. One must also consider risks of other parasitic effects, with emphasis on 

side electrochemical reactions involving dissolved gases (humidity, carbon dioxide, 

etc.).  
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The study of prospective compositions for consumable anodes indicates that one must 

seek a compromise between redox stability and electrical conductivity at high 

temperature. Additions of magnesia enhance the tolerance of alumina-containing 

magnetite against oxidative decomposition, where the phase stability of (Fe, Al, Mg)3O4 

spinels is determined mainly by the [Al
3+

]/[Mg
2+

] ratio. However, substitution of iron 

oxide with magnesia lowered the conductivity, if compared to the alumina-substituted 

analogue. Nevertheless, the impacts on conductivity and phase stability at required 

temperatures suggest a broad range of compositions for (Fe,Al,Mg)3O4 –based anodes 

and conditions for their successful testing in pyroelectrolysis. 

Additions of other metallic cations (e.g. Me = Ni, Mn, Cr, Ti in Fe2.6Me0.2Mg0.2O4 based 

spinels) yield changes in high-temperature electrical conductivity in the sequence Ni
2+

 < 

Mn
2+/3+

 ~ Cr
3+

 < Ti
4+

; this follows the corresponding trend for oxidation state of 

transition metal cations and can be ascribed to effects on Fe
2+

:Fe
3+

 ratio. Reasonable 

trade-off between electronic transport, redox stability and tolerance to thermal cycling 

may also be claimed. These results suggest good prospects for spinels with compositions 

Fe2.6Al0.2Mg0.2O4 and Fe2.6Ti0.2Mg0.2O4 as potential materials for consumable ceramic 

anodes in high-temperature pyroelectrolysis. One may also consider additions of other 

redox stable oxides (SiO2, ZrO2,...) to seek enhanced trade-off between electrical 

conductivity and other requirements of redox and thermomechanical stability, etc. 

Guidelines for the design of consumable anodes also included propects for direct in-situ 

conversion of poorly conducting hematite or derived phases to conducting magnetite or 

derived spinel compositions, at sufficiently high temperatures. In addition, one 

considered prospects for two-phase materials with ability to retain sufficient 

conductivity, by extending their redox stability or retaining metastable conditions. A 

core-shell concept was proposed based on laser floating zone (LFZ) experiments with 

hematite percursors. Dependence on pulling rate allowed one to emphasize the time 

dependence of redox changes. 

The results here obtained had shown the necessity to perform several assessments to 

understand the process. However, to reach an industial application still many studies are 

necessary, as it has been reported. 
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