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palavras-chave Extração líquido-líquido, sistemas aquosos bifásicos, líquidos 

iónicos, paracetamol, cafeína, resíduos farmacêuticos. 

resumo Este trabalho tem como objetivo estudar a aplicação de sistemas 

aquosos bifásicos (SAB) com líquidos iónicos (LIs) na extração de 

compostos ativos de resíduos farmacêuticos.  

Atualmente os medicamentos fora do mercado são recolhidos e 

incinerados, sendo por isso a totalidade dos compostos ativos de 

interesse perdidos por combustão completa. Apesar da valorização 

energética destes resíduos há grandes perdas ao nível dos vários 

compostos presentes. Deste modo o desenvolvimento de novos 

processos simples de extração com vista a’ valorização dos 

compostos ativos presentes nos mesmos é de grande importância, 

minimizando os impactos ambientais e permitindo a utilização 

destes resíduos como fonte de matérias primas. 

Foi possível desenvolver novos SAB com LIs e proceder ao estudo 

e otimização dos mesmos na extração de cafeína e paracetamol. 

Por fim o processo otimizado foi aplicado a um resíduo 

medicamentoso (ALGIK). O resultado obtido demonstra uma 

completa extração dos compostos ativos com os SAB utilizados. 

 



 

  



 

keywords Liquid-liquid extraction, aqueous biphasic systems, ionic liquids, 

paracetamol, caffeine, pharmaceutical wastes. 

abstract The main objective of the present work is the application of aqueous 

biphasic systems (ABS) with ionic liquids (ILs) in the extraction of 

pharmaceutical wastes. 

Nowadays, after their expiration date time recovered medicine waste 

are incinerated, destroying most of the valuable compounds present, 

with only a minor thermic valorisation. Therefore the development of 

new processes that allow this wastes valorization is crucial to create 

a more environmentally friendly process and the use of wastes as a 

source of raw materials. 

The development of new ABS with ILs and their study allowed the 

optimization of the extraction of paracetamol and caffeine. Finally the 

application of this simple and fast process to a medical waste 

(ALGIK) resulted in a complete extraction of both paracetamol and 

caffeine. 
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1.1. Pharmaceutical Industry 

The pharmaceutical industry in Europe has been growing and with it, the 

consumption of drugs and medicines. This increasing consumption is nowadays responsible 

for a big problem in the society due to the high level of waste produced, and its 

environmental impact [1]. This demand can only be solved by a better control and processing 

of the pharmaceutical wastes. In this context, some recent studies report the indexes of 

pharmaceutical waste collected, which vary from 0.19 tonnes/million capita in Croatia and 

237 tonnes/million capita in Switzerland, being estimated that, about 50% of these wastes 

produced were not properly collected [1]. Recent studies show that in Germany, in average, 

the medicines returned have 65% of the original content [2] while in England, 77.7% of the 

returned medicine have at least half of the original content [3]. It is also estimated that 10% 

of the prescribed medication in England is wasted [4] and 20% of the population have wasted 

medicine in their houses [3].  

There are many reasons for the disposal of the drugs. According to a recent 

Portuguese study it was determined that 21.7% of the defined daily dose (DDD) prescript 

was not used, 9.7% due to the inadequate package size (excessive dosage) and 10.2%, due 

to non-adhesion or necessity to change the therapeutic [2]. Since 2006, Portugal has its own 

pharmaceutical waste collection system maintained by Valormed company and designated 

by “Sistema Integrado de Gestão de Resíduos de Embalagens e Medicamentos”, abbreviated 

by SIGREM [5]. According to recent databases provided by the SIGREM project, in the year 

of 2012, 849 tonnes of pharmaceutical wastes were collected in Portugal (Figure 1) and 

882.367 tonnes were treated, from which around 500 tonnes were recycled through energetic 

valorisation [6]. This valorisation consists in the drugs and packages incineration at high 

temperatures (1500ºC-2000ºC) to promote the disintegration of organic molecules avoiding 

the environmental contamination [7, 8].  
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However, and despite the known advantages such as the complete waste destruction 

and the large amounts of waste being simultaneously processed (drugs, packages and 

blisters) there are some pronounced disadvantages which are essentially related with the high 

costs of the equipment and process of incineration, and from our point of view, the large 

amounts of active compounds and chemical products with high added-value that are being 

consistently incinerated and lost, and which can be re-used as for example, laboratory 

standards or raw materials for production of chemical specialities or other drugs. Most 

European countries have drug waste recovery systems (regulated by European Union 

Directive 2004/27/EC) and people have a crescent tendency to use these systems to dispose 

the medicine wastes [9, 10], as depicted in Figure 2.  

However and until now, these systems were only aiming at the complete destruction 

of the drugs, and were not considering the sustainability of the incineration process or even 

the recovery of some chemical compounds. This work is actually trying to implement a more 

sustainable treatment of some of these drugs by the recovery of some important active 

chemical compounds which are presently incinerated. As described by the authorities, a 

medicine is out of date when 10% of its principal active compound is no longer active [11]. 

This means that around 90% of the active chemical compound is still active and with enough 

stability to be recovered and reused in an industry of interest. Thus, several extraction 

techniques, like solid-liquid extraction and liquid-liquid extraction processes, among which 

aqueous biphasic systems (ABS), could be applied to the extraction, recovery and 

Figure 1 - Quantity of pharmaceutical wastes collected (tonnes) by year in Portugal. Adapted from 

Valormed [6]. 
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purification of chemical active compounds aiming to add commercial value to these residues 

(Table 1).  

 

 

Figure 2 - European Union map and the adopted systems used for the drug waste collection [10]. 

 

As we consider extraction processes we need to consider medicine composition, 

because they are composed of both the active substance and excipients [12–14]. This excipients 

are essential on the medicine composition, giving the medicine control of the active 

substance bioavailability, stability and protection from degradation, ensuring a robust and 

reproducible physical product, and facilitating the administration to the target group [12, 14]. 

Despite their essential nature in the pharmaceuticals [12] they cannot be considered merely as 

inert or inactive ingredients [13], as they play an important role in the medicine formulation. 
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Table 1 - Price of some active substances used in the preparation of some anti-depressant drugs [15]. 

Active Substance 
Price per g of active 

ingredient 
Drugs 

Fluoxetine 7320.00€ Prozac; Selectus; Psipax; Fluoxetina Tuneluz 

Citalopram 12020.00€ Zitolex; Citalopram Actavis 

Escitalopram oxalate 4420.00€ Cipralex 

Paroxetine 25300.00€ 

Zanoxina; Voltak; Paxetil; 

Paroxetina Cinfa 

Sertraline 45178.57€ Zoloft; Serlin; Serpax; Sertralina 

 

Taken this into account, it is important to optimise the ABS focusing the extraction 

and isolation of the active substances apart from all the excipients present on the medicine. 

However, in order to perform these experiments, it is necessary to optimize the practical 

details of the extraction and thus, the use of simple systems is required. Simple systems are 

here defined as medicines in which their active substances are cheaper, structurally less 

complex and present in high concentrations. Following the optimization step, it will be 

possible to extrapolate the results for more complex systems and pharmaceutical matrices, 

in which the active substances are in lower concentrations (meaning higher concentrations 

of excipients), but with higher commercial value, namely anti-depressant active compounds 

(Table 1). As our model we will use an anti-flu medication called ALGIK (Table 2) which 

is easily obtained.  

 

Table 2 – Quantity of active substance present in some medicines per pill [16]. 

Name Class Active substance Quantity (mg) 

Ben-U-Ron Anti-flu Paracetamol 1000 

Melhoral Anti-flu Acetyl salicylic acid 500 

Brufen Retard Anti-flu Ibuprofen 800 

ALGIK Anti-flu Paracetamol 500 

Prozac Anti-depressant Fluoxetine 20 

Cipralex Anti-depressant Escitalopram 20 

Zitolex Anti-depressant Citalopram 40 

 

 



7 

 

1.2. Aqueous Biphasic Systems (ABS) 

Aqueous biphasic systems (ABS) are formed by mixing two aqueous solutions of 

mutual incompatible solutes that formed two immiscible phases above a critical 

concentration. [17, 18] Due to their aqueous nature they are the ideal media for the extraction, 

recovery and purification of biomolecules [19]. The most commonly used systems are 

polymer-polymer, polymer-salt or salt-salt combinations [18, 20]. The systems based on 

polymers have been exploited because they have a set of significant advantages, such as their 

versatility (with a large range of applications reported), high extraction efficiencies and 

selectivity, and also, these systems are capable of to extract compounds with a high purity 

level [21, 22]. Furthermore, they are considered biocompatible due to their high water content 

[18], they present a simple scale-up [17, 23, 24] and they ally two important processes in just one 

step, recovery and purification, these systems can be used as a continuous separation process 

[22]. Their extractive capacity is normally dependent of several factors, mainly the 

biomolecule affinity for the two phases (described by parameters like its solubility in the 

phases, its molecular size and the competition of interactions between the biomolecule and 

the components of the system [25]), being a good separation process for enzymes [19, 25, 26], 

proteins [19, 25–27], alkaloids [25] and antibiotics [25, 26]. However, the common ABS have some 

disadvantages, such as the high viscosity of the polymer [18, 22], the slow separation of phases 

[18] and the turbidity often found in the phases when polymers are used [28]. Despite some 

studies addressing these problems through the choice of the polymer (type, concentration 

and molecular weight), and the possible change of the salt (type and concentration) [29], some 

new alternatives are required to avoid the problems of opacity of the phases and more 

important, their poor polarity difference [18, 30]. In this context, other liquid-liquid extraction 

systems are appearing, namely alcohol-salt systems [22] and, more recently, ionic liquids-salt 

ABS [19].  

Ionic Liquids (ILs) are salts with a melting temperature below 100 ºC [31, 32]. They 

are characterized by some interesting properties such as their non-flammability, negligible 

vapour pressure, high chemical and thermal stability and a large liquid temperature range [33, 

34]. Moreover, and because they have a highly tunable nature, the possibility of different 

anion/cation/alkyl chain combinations is huge [21, 25] (Figure 3), which is in part related with 

the fact that, in recent years, ILs have received a great attention as “designer solvents” [35]. 
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Figure 3 - Commonly used cations and anions on the ILs synthesis. 

 

Ionic Liquid-based ABS (IL-ABS) were reported for the first time in 2003, by Rogers 

and co-workers [36], the number of works using these systems increasing since then [18]. This 

crescent interest in the IL-ABS is related with an easier mass transfer between the two phases 

when compared with the polymer-polymer ABS, since they have lower viscosities [17–19, 21] 

and due to the high solvency power of ILs, these ABS can be applicable to the extraction of 

a large range of compounds, including hydrophobic molecules [25]. Despite the high 

versatility in the ILs design, most IL-ABS reported are based on the imidazolium family [28, 

33, 37–45], whereas the information concerning phosphonium [19, 41], quaternary ammonium [41, 
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46, 47], pyridinium [28, 33, 38, 41, 45], cholinium [47], piperidinium [28, 33, 38] and pyrrolidinium [28, 33, 

38] families in the ABS formation is still limited. The effects of the ionic liquid (IL) anion [28, 

38, 42, 44, 45, 48] and the influence of diverse organic and inorganic salts, specifically phosphates 

[19, 41, 49–52], hydrogenophosphates [37, 41, 42, 50, 51, 53], citrates [54–57] and carbonates [37, 41, 42, 49, 

51, 58] were analysed. These ABS were extensively studied in what concerns their potential 

for the separation of diverse biomolecules, such as amino-acids [19, 40, 59], antibiotics [60, 61], 

steroids [62], alkaloids [63], proteins [34], among others [19]. Moreover, there are also some 

studies regarding the biomolecules extraction from more complex matrices, namely the 

single-step extraction of Bisphenol A, using IL-based ABS prepared from biological samples 

[20], the extraction of enzymes from the fermentation broth [64], the selective recovery of dyes 

from the fermentation media [46] and the 100% extraction of paracetamol (an analgesic also 

known by acetaminophen) from a solid state pharmaceutical drug (Ben-U-Ron) [65]. Despite 

the differences between these and common ABS, some aspects are maintained in these 

systems such as the effect of pH and temperature being of great importance, especially when 

we are working with proteins or enzymes because of their denaturation or possible 

inactivation [34, 52, 66]. Regarding the temperature effect, in the extraction of vanillin with IL-

based ABS the temperature greatly influences their extraction efficiency [21] and it is also 

reported a significant influence in the efficiency extraction of proteins [34]. The pH can be 

also used to control the direction of the biomolecule partitioning, as reported by Cláudio et 

al. [17] and if we look for the specific case of proteins and their acidic points or the amino-

acids and their surface charges, the salt and pH choice is of utmost importance, due to the 

influence of this parameter in the ‘molecule-water’ and ‘molecule-ILs’ interactions [23]. 

From all these results, we believe that it will be possible to extract and purify the 

proposed active compounds from drug matrices with significant extraction yields and high 

purities (Table 3).  
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Table 3 - Pharmaceutical molecules recovered using polymeric ABS [29]. 

Pharmaceuticals Recovery (%) Purification factors 

Human insulin-like growth factor 

1 (IGF-1) 
70  

Human recombinant interferon 

α1 (rhIFN-α1) 
76 25 

Tumor necrosis factor (TNF) 75 6 

α1-Antitrypsin (AAT) 91  

Apolipoprotein A-1 80 4.5 

Milano variant of apolipoprotein 

A-1 
85 7.2 

Protein A 80 2.6 

IgG  5.9 

Penincillin 76  

  

This work is thus concentrated in the study of extraction of distinct active 

pharmaceutical ingredients from a drug matrix using ABS based in ILs.  

In this work, paracetamol [67] and caffeine were considered as model compounds, 

present in the anti-flu pharmaceutical named ALGIK, and available as a powder solution. 

The aim is the extraction of these two chemicals from the medicine and, consequently, from 

the excipients bulk, and selectively isolate them one from each other, using liquid-liquid 

extraction technologies.  
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1.3. Main objectives and Scopes 

 The main objective of this work is to explore alternative extraction processes and 

purification techniques to separate a set of active substances from the correspondent 

pharmaceutical wastes. The criteria for the choice of the active chemical compounds are 

related with their concentration in the anti-flu medicine, the availability of the medicine in 

the market, and the availability and chemical simplicity of the pure molecules. In this 

context, this work will be divided in tree major parts as described below: 

i) Design and characterization of new ABS composed of the McIlvaine buffer, different 

ILs and water. 

ii) Application of the different ABS based in ILs and previously characterized as 

separation methodologies for the extraction of paracetamol and caffeine, here used 

as model compounds. In the final of this step, the determination of the best extraction 

systems for recovering the target compounds from the pharmaceutical waste is 

expected.  

iii) Application of the extraction processes selected in Step ii, to perform the selective 

extraction of both paracetamol and caffeine (used as model molecules) from real 

pharmaceutical matrices. 

The scope of this work is to design a process for the extraction and purification of 

these active chemical compounds from an anti-flu medicine, ALGIK (here used as model) 

and then to isolate both molecules from the excipients presence, since our main idea in the 

future is to control the extraction process to recover and purify chemicals with high value. 
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2.  Optimization Study 

Design of ternary phase diagrams and their application to 

the extraction of paracetamol and caffeine 
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2.1. Experimental section 

2.1.1. Materials 

The ABS studied in this work were prepared by using the McIlvaine buffer and 

different aqueous solutions of ILs. The McIlvaine buffer was prepared using potassium 

phosphate dibasic, K2HPO4 (98 wt% from JMVP) and citric acid monohydrate, C6H8O7·H2O 

(100 wt% from Fisher Scientific). The ILs studied were: 1-ethyl-3-methylimidazolium 

chloride, [C2mim]Cl (98 wt%); 1-butyl-3-methylimidazolium chloride, [C4mim]Cl (99 

wt%); 1-hexyl-3-methylimidazolium chloride, [C6mim]Cl (98 wt%); 1-methyl-3-

octylimidazolium chloride, [C8mim]Cl (99 wt%); 1-butyl-1-methylpiperidinium chloride, 

[C4mpip]Cl (99 wt%); 1-butyl-3-methylpyridinium chloride, [C4mpy]Cl (98 wt%); 1-butyl-

1-methylpyrrolidinium chloride, [C4mpyr]Cl (99 wt%); tetrabutylammonium chloride, 

[N4444]Cl (97 wt%); tetrabutylphosphonium chloride, [P4444]Cl (98 wt%); benzyldimethyl(2-

hydroxyethyl)ammonium chloride, [BzChol]Cl (97 wt%); 1-butyl-3-methylimidazolium 

dicyanamide, [C4mim][N(CN)2] (98 wt%); 1-butyl-3-methylimidazolium methanesulfonate, 

[C4mim][CH3SO3] (99 wt%); 1-butyl-3-methylimidazolium triflate, [C4mim][CF3SO3] (99 

wt%); 1-butyl-3-methylimidazolium thiocyanate, [C4mim][SCN] (98 wt%). The ILs 

structures are shown in Figure 5. All ILs were purchased from Iolitec, with the exception of 

[P4444]Cl and [N4444]Cl that were acquired at Cytec and Sigma-Aldrich®, respectively. Before 

use, all ILs were dried under constant stirring at vacuum and moderate temperature (≈ 353K) 

for a minimum 24h. The water used was double distilled, passed by a reverse osmosis system 

and further treated with a Milli-plus 185 water purification apparatus. 

Paracetamol, N-(4-hydroxyphenyl)acetamide, or acetaminophen (≥99 wt%), was 

acquired at Sigma-Aldrich® and caffeine (≥99 wt%) was obtained from Fluka. The water 

used was double distilled, passed by a reverse osmosis system and further treated with a 

Milli-plus 185 water purification apparatus. 
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Figure 4 - Chemical structure of the ILs studied: (i) [C2mim]Cl; (ii) [C8mim]Cl; (iii) [C4mim]Cl; (iv) 

[C6mim]Cl; (v) [C4mim][CH3SO3]; (vi) [C4mim][N(CN)2]; (vii) [C4mim][CF3SO3]; (viii) [C4mim][SCN]; (ix) 

[C4mpy]Cl; (x) [BzChol]Cl; (xi) [C4mpip]Cl; (xii) [C4mpyr]Cl; (xiii) [N4444]Cl; (xiv) [P4444]Cl. 
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2.1.2. Methods 

2.1.2.1 Phase diagrams determination 

The binodal curves were determined using the cloud point titration method at 

atmospheric pressure and 298 (± 1) K [59]. Aqueous solutions of McIlvaine buffer at 50 wt%, 

pH 7 and aqueous solutions of different ILs at variable concentrations were prepared and 

used for the determination of the binodal curves. Repetitive drop-wise addition of the 

aqueous buffer solution to the IL aqueous solution was carried out up to the establishment 

of a cloudy solution, the biphasic region, followed by the drop-wise addition of ultrapure 

water up to the establishment of a limpid solution, the monophasic region. The procedure 

was carried out with under constant stirring. The ternary system compositions were 

determined by the weight quantification of all components added within an uncertainty of ± 

10-4 g. 

Tie-lines (TLs) were determined by a gravimetric method described by Merchuk et 

al. [68]. In order to determine the TLs, a mixture of the biphasic region was prepared, 

vigorously stirred and allowed to reach the equilibrium by the separation of both phases for 

12h at 298 (± 1) K. Both top and bottom phases were weighted after the separation. To 

conclude, each individual TL was determined by application of the lever-arm rule [68]. 

All experimental binodal curves were correlated using Equation 1 [68], 

𝑌 = 𝐴 exp[(BX0.5) − (𝐶𝑋3)] (1) 

where Y and X are the IL and salt weight percentages, respectively, and A, B, C are constants 

obtained by the regression. 

In order to determine the TLs the following system of four equations (Equations 2 to 

5) and four unknown values (YT, YB, XT and XB) was solved: 

{
 
 
 

 
 
 
𝑌𝑇 = 𝐴 𝑒𝑥𝑝 [(𝐵𝑋𝑇

0.5) − (𝐶𝑋𝑇
3)]

𝑌𝐵 = 𝐴 𝑒𝑥𝑝 [(𝐵𝑋𝐵
0.5) − (𝐶𝑋𝐵

3)]

𝑌𝑇 =
𝑌𝑀
∝ ′

− (
1−∝ ′

∝ ′
) 𝑌𝐵

𝑋𝑇 =
𝑋𝑀
∝ ′

− (
1−∝ ′

∝ ′
) 𝑋𝐵

 

(2) 

(3) 

(4) 

(5) 

The subscript letters T, B and M represent the top, bottom and mixture phases, 

respectively. The parameter α’ is the ratio between the top and total mass of the mixture.  

For the calculation of the tie-line lengths (TLLs) Equation 6 was applied: 
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𝑇𝐿𝐿 = √(𝑋𝑇 − 𝑋𝐵)2 + (𝑌𝑇 − 𝑌𝐵)2 (6) 

 

2.1.2.2 Partitioning of paracetamol and caffeine 

A mixture point was selected in the biphasic region to evaluate the paracetamol and 

caffeine partitions based on the phase diagrams previously determined. The mixtures 

compositions were: 25 wt% McIlvaine buffer at pH 7 + 25 wt% IL + H2O+ 10 wt% 

paracetamol or caffeine solutions with a concentration of 10 g.dm-3 and 2.5 g.dm-3, 

respectively. 

Each mixture was vigorously stirred and allowed to reach the equilibrium for 12h at 

298 (± 1) K to allow the phase separation and also the complete partition of both compounds 

to extract. The phases were carefully separated, and their weight and pH values were 

measured. The quantification of paracetamol and caffeine were done in triplicate and, at 

least, three different assays for each system were performed (average values accompanied 

by the respective standard deviations are reported).Their concentration was determined by 

UV-Vis spectrometry, using a SHIMADZU UV-1700, Pharma-Spec Spectrometer, at a 

wavelength of 243 nm for paracetamol and 273 nm for caffeine, using calibration curves 

previously established (Appendix E). The wavelength of the absorption peak of paracetamol 

and caffeine was confirmed to remain unaffected, within the range of conditions tested. 

Possible interferences of the ILs and salt components with the paracetamol and caffeine 

quantification method were eliminated by the regular application of blank controls, where 

the paracetamol/caffeine aqueous solution was substituted by distilled water.   

The extraction efficiencies of paracetamol and caffeine - EE (%) - are defined as the 

percentage ratio between the amount of chemical in the top phase (IL-rich phase) and in the 

total mixture, according to Equation 7, 

𝐸𝐸% =
𝑚𝑥
𝑇𝑜𝑝

𝑚𝑥
𝑀𝑖𝑥𝑡𝑢𝑟𝑒

 (7) 

where 𝑚𝑥
𝑇𝑜𝑝

 and 𝑚𝑥
𝑀𝑖𝑥𝑡𝑢𝑟𝑒 are the amount of paracetamol or caffeine (replacing x) in the top 

(IL-rich) phase and in the total mixture, respectively. The top phase was chosen because it 

evidences the preferential migration of both molecules. 

The pH values of the systems were measured using a METTER TOLEDO 

SevenMultiTM pH meter within an uncertainty of ± 0.02 and at 298 (± 1) K. 
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2.2. Results and discussion 

2.2.1. Phase diagrams and tie-lines 

Some new ternary phase diagrams were determined for several systems composed of 

ILs + water + McIlvaine buffer (pH 7) at 298 (± 1) K and atmospheric pressure. The binodal 

curves are illustrated in Figure 5 and the respective experimental data is given at Appendix 

A, from Table A.1 to Table A.9. All binodal curves illustrated in Figure 5 are presented in 

molality units to avoid differences resulting from the different molecular weights of the ABS 

constituents, allowing a better understanding of the IL structure impact on the phase 

diagrams. All systems are described by top phase representing the IL-rich phase and bottom 

phase representing the salt-rich phase. The results shown in Figure 5 show that the higher 

the IL’ capacity to form ABS, the larger the biphasic region area presented. To support an 

easier and more detailed evaluation of the influence of the IL structure on the phase 

diagrams, separated Figures are used being thus, the alkyl side chain effect (Figure 5a), 

cation (Figure 5b) and anion effect (Figure 5c) included.  

Considering the alkyl side chain effect (Figure 5a), the results obtained show that the 

IL capacity to form ABS follows the order [C6mim]Cl > [C8mim]Cl ≥ [C4mim]Cl > 

[C2mim]Cl. There is a trend from [C2mim]Cl to [C6mim]Cl, where the elongation of the 

alkyl side chain on the imidazolium cation facilitates de formation of ABS, due to the 

increase in the IL hydrophobic nature, reducing their affinity for water, consequently 

promoting the phase split. This effect is well documented for other salts [33, 69, 70]. On the 

other hand, [C8mim]Cl appears with an outsider, its behavior not following the trend of 

hydrophobicity. This behavior is not new [33, 44, 71] and it is justified by the presence of 

aggregates, formed by the self-aggregation of this specific IL. In ILs with longer alkyl chains 

than hexyl, their self-aggregation occurs promoted by the presence of a salting-out-inducing 

salt that lowers the critical micelle concentration (CMC), increasing the IL solubility in water 

and decreasing its ability to form ABS [33, 44, 71]. 

The effect of the cation core on the ABS formation shows that, at 1.0 mol·kg-1, the 

following decreasing order of aptitude to form ABS is (Figure 5b): [P4444]
+ > [N4444]

+ > 

[C4mpip]+ > [C4mpyr]+ ≥ [C4mpy]+ ≥ [BzChol]+ > [C4mim]+. Since the side alkyl chain and 

the anion are the same, Figure 5b intends to demonstrate the impact of distinct cations/family 

on the phase formation. The results from Figure 5b clearly suggest the presence of two 
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distinct groups, the first one constituted by cyclic nitrogen-based ILs (aromatic: pyridinium, 

imidazolium and benzylcholine; non-aromatic: pyrrolidinium and piperidinium) and another 

constituted by acyclic cation structures, namely phosphonium and quaternary ammonium. 

This behavior is justified essentially by the higher hydrophobic character of the acyclic ILs 

(representing their lower affinity for water), in particular phosphonium- and ammonium. On 

the other hand we observe that the cyclic nitrogen-based ILs have lower ability to form ABS 

when compared with pyrrolidinium- and piperidinium-based ILs. Moreover, and comparing 

all cyclic nitrogen-based ILs, it is possible to conclude that the 5-atom ring cations 

(imidazolium and pyrrolidinium) have lower capacity to form ABS when compared with the 

6-atom rings (pyridinium and piperidinium), being this behavior closely correlated with the 

molar volume of these ILs [33, 41]. The behavior of the series of IL + McIlvaine buffer (pH 7) 

+ water ABS here assessed is in good agreement with the results of previous studies where 

other “salting-out” agents, as potassium phosphate buffer [33], potassium citrate salt [70] and 

potassium citrate buffer [72, 73] were applied. The smaller and hydroxyl containing chains of 

the cholinium cation are enhancing its affinity/solvation for water, consequently reducing its 

ability to induce ABS formation, result also in agreement with literature [72]. 

The anion impact on the ABS design is shown in Figure 5c, being the ability of the 

different anions to form ABS following the decreasing order: [C4mim][CF3SO3] > 

[C4mim][SCN] > [C4mim][N(CN)2] > [C4mim][CH3SO3] ≥ [C4mim]Cl. The anion rank 

observed for the [C4mim]-based series studied here is in close agreement with the results 

previously obtained for [C2mim]- and [C4mim]-based ILs with K3PO4, Na2SO4, potassium 

phosphate buffer as the main salting-out species [38, 48, 58], among others [18]. As a general 

trend, it was already established that, for the same salting-out salt species, the 

hydrophobic/hydrophilic nature of the ILs is a crucial key in the ABS formation.  
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Figure 5 – Evaluation of the effects of the IL alkyl side chain length (a), cation (b) and anion (c) in the 

formation of ABS. 
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It is well-known that hydrophobic ILs are more easily salted-out due to their poorer 

affinity for water. In this sense, the ability of the IL anions to promote the phase split closely 

correlates with their decrease on the hydrogen bond basicity (β) [74] shown in Table 4. 

Therefore, IL anions that tend to preferentially interact with the protons of water (and thus, 

to create hydration complexes) require more quantities of inorganic salt to undergo 

liquid−liquid demixing. 

 

Table 4 - Hydrogen Bond Acidity (α) and Hydrogen Bond Basicity (β) of [C4mim]-based ILs with the 

solvatochromic probe [Fe(phen)2(CN)2]ClO4 [74]. 

IL anion α β 
ABS formation 

ability 

Cl 0.32 0.95  

[CH3SO3] 0.36 0.85 

[SCN] 0.43 0.71 

[N(CN)2] 0.44 0.64 

[CF3SO3] 0.50 0.57 

 

In general, all anions investigated in this work and whose results are depicted in 

Figure 5c follow the trend showed in Table 4, between β and the ABS formation ability.  

The correlation parameters obtained from the experimental data of the binodal curves 

(Appendix A) by application of Equation 1, firstly proposed by Merchuk and co-workers [68] 

are provided in Table 5. The TLs and TLLs obtained for each system are described in Table 

6 and Figures (Figure A 1 to Figure A 5 in Appendix A). As an example, the ABS composed 

of [BzChol]Cl + McIlvaine buffer at pH 7 and the respective TL is illustrated in Figure 6.
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Table 5 - Parameters obtained from Equation 1 and respective standard deviations (std) plus the correlation 

coefficients (R2) for the different ILs + McIlvaine buffer at pH 7 + H2O ternary systems studied. 

IL A ± std B ± std 105 C ± std R2 

[C2mim]Cl 74.15 ± 0.37 -0.2347 ± 0.0018 0.4585 ± 0.0250 0.9992 

[C4mim]Cl 79.77 ± 0.49 -0.2611 ± 0.0022 0.8117 ± 0.0278 0.9995 

[C6mim]Cl 86.80 ± 0.89 -0.2750 ± 0.0040 1.190 ± 0.1028 0.9983 

[C8mim]Cl 89.33 ± 1.05 -0.2392 ± 0.0048 1.419 ± 0.1189 0.9989 

[C4mpip]Cl 66.77 ± 0.66 -0.2453 ± 0.0038 1.365 ± 0.0978 0.9988 

[C4mpy]Cl 109.3 ± 0.81 -0.3627 ± 0.0040 0.1155 ± 0.1437 0.9996 

[C4mpyr]Cl 86.39 ± 1.65 -0.3273 ± 0.0079 3.251×10-10 ± 0.2777 0.9967 

[N4444]Cl 70.43 ± 0.26 -0.3114 ± 0.0013 2.712 ± 0.0195 0.9998 

[P4444]Cl 80.20 ± 0.36 -0.3823 ± 0.0017 4.526 ± 0.0443 0.9996 

[BzChol]Cl 91.08 ± 0.74 -0.2614 ± 0.0026 1.864 ± 0.0281 0.9998 

[C4mim][N(CN)2] 114.3 ± 0.88 -0.4386 ± 0.0028 4.325 ± 0.0707 0.9987 

[C4mim][CH3SO3] 107.4 ± 2.16 -0.3114 ± 0.0065 2.786 ± 0.0823 0.9960 

[C4mim][CF3SO3] 179.8 ± 2.53 -0.7579 ± 0.0067 1.796×10-8 ± 0.5189 0.9980 

[C4mim][SCN] 115.1 ± 3.91 -0.5050 ± 0.0142 0.2000 ± 0.9359 0.9984 

 

 

 

Figure 6 - Phase diagram of the system [BzChol]Cl + McIlvaine buffer at pH 7 + H2O at 298 (± 1) K: binodal 

curve data (    ); TL data (     ); fitting of the experimental data through Equation 1 (     ). 
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Table 6 – Mass fraction compositions (in percentage) and tie-line length (TLL) data for all ABS studied. 

IL 
 Weight fraction composition (wt%)  

TLL 
[IL]T [Salt]T [H2O]T [IL]M [Salt]M [IL]B [Salt]B [H2O]B 

[C2mim]Cl 32.39 12.20 55.41 24.92 24.91 4.649 59.39 35.96 54.74 

[C4mim]Cl 35.80 9.264 54.94 25.03 25.06 2.093 58.69 39.22 59.83 

[C6mim]Cl 38.56 8.546 52.89 25.03 24.80 2.168 52.28 45.55 56.90 

[C8mim]Cl 43.75 8.676 47.57 24.76 25.03 8.814 38.77 52.42 46.11 

[C4mpip]Cl 44.56 2.715 52.73 24.92 25.02 1.838 51.25 46.91 64.65 

[C4mpy]Cl 34.76 9.957 55.28 24.99 24.93 6.505 53.26 40.24 51.71 

[C4mpyr]Cl 34.49 7.870 57.64 25.02 25.07 7.246 57.34 35.41 56.48 

[N4444]Cl 56.23 0.5228 43.25 25.30 29.72 0.1135 53.50 46.39 77.17 

[P4444]Cl 62.51 0.4249 37.07 24.88 25.19 0.2772 41.39 58.33 74.50 

[BzChol]Cl 45.93 6.747 47.32 25.11 24.91 3.322 43.92 52.76 56.54 

[C4mim][N(CN)2] 58.57 2.323 39.11 25.28 29.81 1.82×10-2 50.67 49.31 75.93 

[C4mim][CH3SO3] 30.88 15.75 53.37 24.71 24.99 8.835 48.77 42.40 39.71 

[C4mim][CF3SO3] 74.16 1.377 24.46 25.10 29.74 0.9251 43.72 55.35 84.59 

[C4mim][SCN] 69.08 1.021 29.90 24.82 25.03 5.590×10-5 38.49 61.51 78.59 
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2.2.2. Optimization study of paracetamol and caffeine partitioning  

The applicability of the studied ABS (last chapter) to promote the partitioning of 

paracetamol and caffeine is investigated using model systems for the optimization of the 

various operating conditions, namely different alkyl chain lengths, cation cores and anion 

moieties, while maintaining constant the pH of the aqueous medium at 7. The system 

composed of [C4mpy]Cl + McIlvaine buffer at pH 7 + H2O was not applied in the 

partitioning of caffeine and paracetamol due to some practical limitations. All ABS were 

prepared with the composition 25 wt% of IL + 25 wt% of McIlvaine buffer solution at pH 7 

+ 40 wt% of H2O + 10 wt% of an aqueous solution with paracetamol (10 g·dm-3) or caffeine 

(2.5 g·dm-3). At pH 7, value adopted during all the partitioning experiments, both 

paracetamol and caffeine are listed as non-charged species (for more details see the 

speciation curves of both molecules in Appendix B). In order to confirm the constant pH 

value, this parameter was checked after the partitioning process (Table 7).  

 

Table 7 - Experimental pH values of both ABS phases. 

IL 
Paracetamol Caffeine 

pHIL ± sd pHSalt ± sd pHIL ± sd pHSalt ± sd 

[C2mim]Cl 7.499 ± 0.002 7.506 ± 0.011 7.651 ± 0.005 7.682 ± 0.029 

[C4mim]Cl 7.347 ± 0.007 7.115 ± 0.009 7.446 ± 0.061 7.429 ± 0.117 

[C6mim]Cl 7.180 ± 0.010 7.067 ± 0.004 7.500 ± 0.004 7.498 ± 0.005 

[C8mim]Cl 7.491 ± 0.057 7.333 ± 0.004 7.019 ± 0.019 7.012 ± 0.052 

[C4mpip]Cl 7.990 ± 0.033 7.653 ± 0.196 7.989 ± 0.028 7.499 ± 0.002 

[C4mpyr]Cl 7.820 ± 0.080 7.967 ± 0.067 7.333 ± 0.125 7.152 ± 0.040 

[N4444]Cl 7.665 ± 0.014 7.856 ± 0.012 7.227 ± 0.072 7.122 ± 0.099 

[P4444]Cl 7.903 ± 0.046 7.258 ± 0.002 8.112 ± 0.027 7.329 ± 0.011 

[BzChol]Cl 7.512 ± 0.023 7.470 ± 0.032 7.487 ± 0.054 7.500 ± 0.209 

[C4mim][N(CN)2] 7.425 ± 0.006 6.918 ± 0.001 7.368 ± 0.033 7.214 ± 0.186 

[C4mim][CH3SO3] 7.763 ± 0.008 7.440 ± 0.022 7.771 ± 0.007 7.453 ± 0.130 

[C4mim][CF3SO3] 7.163 ± 0.070 6.833 ± 0.005 7.240 ± 0.093 7.171 ± 0.108 

[C4mim][SCN] 7.856 ± 0.071 7.432 ± 0.172 7.993 ± 0.008 7.276 ± 0.008 

 

 

There are other reports of extraction of paracetamol and caffeine with ILs ABS.  

Partitioning of paracetamol was study by e Silva et al using ABS of quaternary ammonium 
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halides, among which [N4444]Cl, and different salts. In all systems paracetamol migrates 

preferentially to the ammonium-rich phase, accomplishing EE% between 80% and 100% 

[65]. Freire et al reported high-performance extraction of caffeine with ABS of ILs and K3PO4 

salt. The also caffeine migrate preferentially to the IL-rich phase and the EE% obtained were 

between 80% and 100% [75]. 

The general results considering all the ABS tested allow the identification of a 

preferential migration of both molecules for the top (IL-rich) phase, which translated in high 

extraction efficiencies for both molecules, meaning a high affinity for the IL (top)-rich phase. 

This behavior can be explained by the affinity of both molecules with the ILs. This behavior 

can be firstly identified in the results of the alkyl chain length effect (Figure 7), where the 

extraction efficiencies are superior to 80% for the [Cnmim]Cl series. Looking more carefully 

at the individual partitioning behavior of paracetamol and caffeine with the alkyl chain 

length, it is possible to identify the crescent tendency of the molecules re-concentration in 

the IL-rich phase:  

paracetamol = [C2mim]Cl < [C8mim]Cl ≈ [C6mim]Cl < [C4mim]Cl;  

caffeine =  [C8mim]Cl < [C2mim]Cl ≈ [C4mim]Cl ≈ [C6mim]Cl.  

Concerning the lower alkyl chain lengths it seems that, again, the hydrophobic nature 

of the IL is playing a key role in the migration of both molecules, being the results of 

[C8mim]Cl, one more time justified by the formation of IL’ aggregates, which are 

unfavorable to the extraction process [73]. Regarding alkyl chain length results obtain by 

Freire et al [75]with caffeine, a similar trend is observed with a decrease on EE% with long 

side chain ILs, only beginning in the [C10mim]Cl. This changes could be justified by the 

stronger salting-out salt used by Freire et al. 
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Figure 7 - Extraction efficiencies, EE (%) of paracetamol and caffeine by applying different ABS based in the 

series [Cnmim]Cl, n = 2, 4, 6 and 8. 

 

 

These results seems to indicate that, not only the hydrophobic/hydrophilic nature of 

the ILs is important, but also that there a higher capability of both molecules to establish 

interactions between the imidazolium cation and the aromatic rings of caffeine and 

paracetamol, the so called ππ interactions. When the octanol-water partition coefficients 

(Kow) of the active ingredients are considered, paracetamol has more affinity to organic 

bulks, namely IL-rich phases, Kow = 3.02 [76], and this behavior is somewhat different from 

the caffeine profile, Kow = 0.85 [76], value closer to the unit which means that caffeine has 

affinity for both aqueous and organic bulks). Having into consideration these data it seems 

that the partition of the molecules between the two phases is directly related with the ‘water-

molecules’ and ‘ILs-molecules’ interactions and the hydrophobic/hydrophilic balance 

between the aqueous phases.  

Figure 8 shows the extraction efficiency results described for different families of 

ILs, being the crescent order of the paracetamol and caffeine migration towards the top phase 
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From this tendency, it is possible to determine the lower extraction efficiency of 

paracetamol for the acyclic ILs, phosphonium and quaternary ammonium when compared 

with the cyclic species, which can be justified by the elimination of some important 

interactions between the IL and paracetamol, principally the ππ interactions occurring for 

the aromatic ILs, namely [C4mim]Cl. Considering the caffeine case, the extraction efficiency 

values are quite similar and higher than 90%, with a unclear tendency between the 

aromatic/non-aromatic and cyclic/non-cyclic nature. 

 

Figure 8 - Extraction efficiencies, EE (%) of paracetamol and caffeine by applying ABS with distinct 

[cation]Cl-based ILs. 

 

Figure 9 shows the extraction efficiency values of paracetamol and caffeine in 

different ABS in order to evaluate the influence of distinct anions conjugated with the 

imidazolium cation. As previously analyzed, again both compounds are preferentially 

migrating to the top phase, following the crescent order:  

paracetamol = [C4mim][N(CN)2] < [C4mim][CH3SO3] < [C4mim][CF3SO3] < [C4mim]Cl ≈ 

[C4mim][SCN];  

caffeine = [C4mim][CF3SO3] < [C4mim][N(CN)2] < [C4mim][CH3SO3] ≈ [C4mim]Cl < 

[C4mim][SCN].  
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In fact, and despite the higher extraction efficiencies for the IL-rich phase, mainly 

when we analyze the paracetamol case (92.12% < EE < 100 %), when the data of caffeine 

were evaluated [C4mim][CF3SO3] appears as the IL promoting the lower migration of 

caffeine for the top phase which can be probably justified by their higher salting-in nature 

and also by the lower water content present in the [CF3SO3]-rich phase, and that for some 

reason this behavior is only perceptible in the caffeine case. It should also be highlighted 

that, a similar behavior was already oberved for caffeine in presence of [C4mim][CF3SO3] 

and [C2mim][CF3SO3] plus the strong salting-out inorganic salt, tripotassium phosphate 

[75]. 

 

Figure 9 - Extraction efficiencies, EE( %) of paracetamol and caffeine by application of all ABS based in 

[C4mim]X ILs. 
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and the McIlvaine buffer are evaluated. With this large set of systems it was possible to 

identify the impact of different ILs structural features in terms of their impact in the two 

phase formation, namely the alkyl side chain length, the cation core and the anion moiety. 

In general, it was concluded the significant influence of all the structural features 
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investigated, being explicit the crucial role of the hydrophobic/hydrophilic nature of the ILs. 

It was concluded the higher aptitude of long alkyl chains to promote the ABS formation, 

namely ILs with hexyl side chains and acyclic cation cores, represented by phosphonium 

and ammonium-based ILs. The anion has also a significant impact in the phase split, which 

is related with its hydrophobic nature (represented by the hydrogen bond basicity parameter 

- β). 

These ABS were applied in the partition of paracetamol and caffeine (here used as 

model molecules present in medicines) and several conditions were optimized, namely 

different alkyl chain lengths, cation cores and anion moieties, while maintaining constant 

the pH of the aqueous medium at 7. In general, all ABS were preferentially concentrating 

both structures in the IL-rich phases, which is described by extraction efficiency values from 

80 to 100%.The main results have evidenced that some trends should be considered in the 

extraction of these compounds, like the possible formation of micelles by the application of 

ILs with longer alkyl chains, namely [C8mim]Cl, or the presence of acyclic cations or even, 

the application of ILs based in the anion [CF3SO3] which is decreasing the extraction 

efficiency, value.  
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3. Extraction of paracetamol and 

caffeine from ALGIK 
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3.1. Experimental section 

3.1.1. Materials 

The ILs studied in this part of the experimental work were the 1-butyl-3-

methylimidazolium chloride, [C4mim]Cl (99 wt%) and tetrabutylammonium chloride, 

[N4444]Cl (97 wt%). The ILs [C4mim]Cl and [N4444]Cl were acquired at Iolitec and Sigma-

Aldrich®, respectively. The paracetamol and caffeine compounds used in this section are the 

same used in the optimization study. The medicine ALGIK was purchased in a local 

pharmacy at Aveiro (more information on Appendix C).  

In the preparation of the mobile phase, it was used methanol (HPLC grade) and acetic 

acid (≥ 99.99 wt%), acquired from Fisher Scientific and Sigma-Aldrich®, respectively. 

Membrane filters (0.22 µm of pore size) were acquired on Sartorius Stedim Biotech and 

syringe filters (0.45 µm of pore size) were purchased at Specanalitica. The water used was 

double distilled, passed through a reverse osmosis system and further treated with a Milli-

plus 185 water purification apparatus. 

The Merck Hitachi HPLC equipment consisted of a L-6200A intelligent pump, a L-

4250 UV-Vis detector and a D2500 Chromato-integrator. The analytical column used was a 

Merck LiChrospher 100 RP-18 (5µm). 

 

3.1.2. Methods 

A mixture point and ILs were selected to evaluate the paracetamol and caffeine 

extraction from the medicine based on the partitioning studies previously analyzed. The 

mixture composition used was: 25 wt% of McIlvaine buffer at pH 7, 25 wt% of each IL 

([C4mim]Cl or [N4444]Cl) and 10 wt% of an ALGIK solution, with at circa 5.0 g·dm-3 of 

paracetamol and 0.5 g·dm-3 of caffeine (content of just one bag of ALGIK), previously 

filtered with a syringe filter of 0.45 µm of pore size. 

Each mixture was vigorously stirred and allowed to reach the equilibrium for 12h at 

298 (± 1) K to allow the separation of both phases and the complete partition of both 

molecules. The phases were carefully separated, and their weight and pH values measured. 

The paracetamol and caffeine concentrations were, in this part of the work, determined by 

high pressure liquid chromatography (HPLC), at 273 nm, using calibration curves previously 

established (Appendix E). 
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The HPLC mobile phase was composed of an aqueous phase (A) containing 1 M of 

acetic acid (filtered using a membrane filter with 0.22 µm of pore size) and an organic phase 

(B) containing methanol (degassed by ultrasonication). The elution was performed with 70% 

of A and 30% of B, using a flow rate of 0.8 mL·min-1, for about 12 minutes. The injection 

volume of each sample was fixed at 20 µL.  

The experimental procedure for the extraction experiments was the same described 

in section 2.1.2.2. The equation used for the calculation of the extraction efficiencies of 

paracetamol and caffeine EE (%) is the same exposed before, Equation 7. 

Again, the pH values of the phases were measured using a METTER TOLEDO 

SevenMulti pH meter within an uncertainty of ± 0.02 at 298 (± 1) K. 

3.2. Results and discussion 

The systems used for this work, [C4mim]Cl and [N4444]Cl, were choosen regarding 

the previous studies. Both systems have high EE% values for the two molecules, allowing 

to evaluate the behavior with a real matrix. It was also taken into account their reported low 

toxicity, promising biocompatibility[77] and for being cost effective ILs[47].  

The application of the previously optimized ABS with a real matrix using the 

medicine ALGIK was successful. The high complexity of the pharmaceutical system, due to 

the use of the medicine ALGIK (Appendix C), composed by paracetamol and caffeine (lower 

amount, not only when compared with the paracetamol content, but also when compared 

with the concentration previously used in the optimization study) and full of excipients, 

demanded the use of a more sensitive analytical technique for the proper quantification of 

the target molecule, namely HPLC (Appendix D).  The ALGIK powder was dissolved in 

excess water, and left under continuous stirring overnight, to guarantee the complete 

dissolution of paracetamol and caffeine, while some of the insoluble excipients remained in 

suspension. Having into account the experimental procedure normally required and also 

followed in this work, for the use of an HPLC methodology, for example in what concerns 

the necessity of a first filtration (with the syringe filter of 0.45 µm of pore size) after the 

ALGIK bag content solubilisation in water, it was possible to observe the first purification 

step, since the filtration allowed the exclusion of some insoluble excipients. At the end, of 

this task a clear aqueous solutions rich in paracetamol and cafeine was obtained, and then 
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used for the ABS preparation. Unlike what happens with the stock solutions used in the 

optimization step, where the amounts of caffeine and paracetamol where accurately known, 

the paracetamol and caffeine concentrations in the medicine solution were not known. In 

order to calculate the extraction efficiency parameter, the paracetamol and caffeine 

concentrations present in the aqueous solutions obtained from the filtration were measured 

by HPLC (caffeine around 44 mg and paracetamol around 481 mg per bag of ALGIK). 

Table 7 exhibits the extraction efficiencies for the two molecules when their 

extraction is carried directly from the pharmaceutical waste. From these results, it can be 

concluded that both molecules maintain their preference for the IL-rich phase (EE between 

90 and 100%).  

The application of the proposed ABS based in the McIlvaine buffer has revealed a 

great performance in the extraction of paracetamol, but principally caffeine (complete 

extraction) from the complex matrix of ALGIK as shown in Table 7. As observed in other 

study [65], the real systems present higher EEPC than the model systems. It seems that, despite 

the low concentrations of the six excipients, their presence affects positively the caffeine and 

paracetamol migration to the IL-rich phase, being [C4mim]Cl the only exception (the 

extraction efficiency from the real matrix is decreased in 10%, which can be explained by 

some specific interactions acting between IL-excipients’ or by the exclusion of paracetamol 

by the stronger presence of excipients in the too phase of the [C4mim]Cl system).  

Table 8 - Extraction efficiencies, EE (%) of paracetamol and caffeine obtained in the optimization study and 

determined for the extraction of paracetamol from ALGIK (real matrix) by applying both ABS selected. 

 Paracetamol (EE% ± sd)  Caffeine (EE% ± sd) 

Pure compound Real matrix Pure compound Real matrix 

[C4mim]Cl 99.49 ± 1.31 88.39 ± 1.47 94.36 ± 1.47 100.0  

[N4444]Cl 98.73 ± 9.19 99.28 ± 1.39 91.89 ± 0.75 100.0 

 

 Finally with the development of the extraction process of caffeine and paracetamol 

from the real matrix (ALGIK) it was possible to propose a process for the extraction of both 

the chemicals from anti-flu medication (Figure 10). 
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Figure 10 - Process line for the extraction of paracetamol and caffeine from anti-flu medicine. 
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3.3. Conclusions 

The complete recovery of the paracetamol and caffeine present in the pharmaceutical 

sample to the top phase was accomplished, with extraction efficiencies between 90 and 

100%, for both systems applied. It seems that, for most cases, the presence of excipients 

composing the medicine is positively influencing the extraction of both compounds for the 

IL-rich phase. The suitable ABS for this application is the [N4444]Cl + McIlvaine pH 7 + H2O 

regarding the high EE% values and is low-cost when compared with ABS containing other 

ILs. 
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4. Final remarks 

  



40 

 

  



41 

 

4.1. General conclusions 

In this thesis new phase diagrams for systems composed of a large range of ILs and 

the McIlvaine buffer were studied. It was possible to evidence the impact of different ILs 

structural features, namely the alkyl side chain length, the cation core and the anion moiety. 

The higher aptitude of ILs to promote the ABS formation is described for Ils with long alkyl 

chains, acyclic cations, and more hydrophobic anions. 

These ABS were applied in the partition of paracetamol and caffeine (here used as 

model molecules) and several conditions were optimized (alkyl chain length, IL family and 

the anion), while maintaining constant the pH at 7. In general, all ABS were preferentially 

concentrating both molecules in the IL-rich phase, being extraction efficiency values from 

80 to 100% achieved. Then, two different ILs structures were selected, namely one aromatic 

and one acyclic IL  to evaluate the extraction performance of these novel IL-based ABS 

based in the McIlvaine buffer extracting paracetamol and caffeine from ALGIK (anti-flu 

medicine), being the results also describing high extraction efficiencies (from 90 to 100%). 

Finally a process was proposed for extraction of this two chemicals from anti-flu medication.  

4.2. Future work 

In the future, it would be interesting to continue this study aiming the selective 

isolation of paracetamol from caffeine, by the manipulation of the pH of the media. In this 

context, the final step of the process diagram (Figure 10) involving the recovery of 

paracetamol and caffeine from the main components of the ABS, namely IL and salt will be 

conducted and optimized. 

The process efficacy has been proved and further tests should be conducted with 

other active compounds with higher economical interest, namely some antidepressants.   
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A. Experimental data of the binodal curves 

Table A.1 - Experimental mass fraction compositions for the system composed of [C2mim]Cl (1) + McIlvaine 

buffer at pH 7 (2) + H2O (3), at 298 (± 1) K and atmospheric pressure. 

[C2mim]Cl 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

58.711 1.1157 33.931 10.942 22.724 22.895 

50.450 2.5634 33.457 11.314 22.382 23.386 

46.913 3.8062 32.744 11.978 21.504 24.519 

43.366 4.9515 32.501 12.124 21.101 25.175 

41.651 6.0565 32.169 12.596 20.641 25.801 

40.231 6.4816 30.928 13.569 20.376 26.655 

39.333 7.1765 30.772 13.892 19.321 28.182 

38.898 7.3916 29.501 15.063 18.782 28.995 

38.657 7.5623 29.166 15.236 18.167 29.834 

37.649 8.2676 29.092 15.609 17.598 30.761 

36.780 8.7899 28.206 16.707 17.185 31.602 

36.690 8.8120 27.039 17.838 15.880 33.266 

36.008 9.3634 26.471 18.914 15.239 34.283 

35.401 9.7338 25.013 20.089 14.511 35.404 

35.092 9.9374 24.068 21.300 14.309 38.049 

34.590 10.480 23.491 21.901   
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Table A.2 - Experimental mass fraction composition for the systems composed of [C4mim]Cl or [C6mim]Cl 

(1) + McIlvaine buffer (2) + H2O (3) at 298 (± 1) K and atmospheric pressure. 

[C4mim]Cl [C6mim]Cl 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

54.227 2.2542 17.391 27.096 66.635 1.0747 

50.591 2.7842 16.457 28.578 55.727 2.2289 

45.165 4.7013 14.752 30.660 44.389 5.5894 

44.133 5.1212 14.309 31.862 41.940 7.0677 

42.087 6.0525 12.950 33.895 40.118 7.9764 

40.249 6.9499 11.260 36.388 38.933 8.5714 

38.530 7.7004 9.4031 39.094 37.758 9.0555 

37.377 8.4545 8.5376 41.290 36.619 9.5689 

36.349 9.1089 7.5301 43.731 35.522 10.089 

35.311 9.7847   33.628 11.582 

34.679 10.111   32.385 12.372 

33.807 10.699   31.220 13.146 

32.927 11.272   29.544 14.511 

32.101 11.794   28.017 15.650 

31.053 12.616   26.675 16.808 

29.797 13.683   25.607 17.598 

28.861 14.465   24.408 18.674 

27.773 15.474   23.240 19.760 

26.383 16.826   22.133 20.799 

24.914 18.319   20.474 22.527 

23.172 20.203   19.099 24.022 

22.656 20.135   17.642 25.680 

21.638 21.249   16.352 27.131 

20.877 22.263   14.853 28.905 

20.131 23.334   13.180 30.971 

19.036 24.600     

18.308 25.755     
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Table A 3 - Experimental mass fraction composition for the systems composed of [C8mim]Cl, [C4mpyr]Cl or 

[C4mpy]Cl (1) + McIlvaine buffer (2) + H2O (3) at 298 (± 1) K and atmospheric pressure. 

[C8mim]Cl [C4mpyr]Cl [C4mpy]Cl 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

66.461 1.5993 58.863 1.3978 76.820 0.9200 

56.944 3.4075 42.098 5.2002 63.785 2.2878 

51.031 5.0323 37.098 6.0998 29.951 12.280 

46.462 7.7701 35.155 7.5914 28.641 13.271 

43.912 8.7766 32.461 8.4364 26.994 14.825 

40.510 10.749 30.936 9.6319 25.599 16.030 

38.534 11.598 29.574 10.731 24.032 17.568 

35.017 14.130 28.395 11.621 22.604 18.968 

32.012 16.188 26.972 12.939 21.070 20.640 

29.344 18.160 24.325 15.434 19.152 22.895 

26.140 20.838 22.974 16.785 18.109 24.182 

23.381 23.302 21.056 19.031 15.661 27.363 

20.061 26.487 19.429 20.997   

16.302 30.377 15.872 25.921   
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Table A 4 - Experimental mass fraction composition for the systems composed of [BzChol]Cl or [C4mpip]Cl 

(1) + McIlvaine buffer (2) + H2O (3) at 298 (± 1) K and atmospheric pressure. 

[BzChol]Cl [C4mpip]Cl 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

50.971 5.0303 12.627 30.499 47.317 1.8293 

46.822 6.2063 11.882 31.345 42.028 3.4424 

44.494 7.1328 11.216 32.061 39.143 4.8445 

41.285 9.1521 10.610 32.738 37.892 5.5354 

39.253 9.9727 10.007 33.426 36.589 6.2483 

36.627 11.680 9.4254 34.119 34.459 7.2885 

35.110 12.275 8.9155 34.743 33.033 8.3215 

33.012 13.600 8.3489 35.463 32.139 8.7734 

31.137 14.827 7.8206 36.181 30.838 9.7475 

28.966 16.505 7.3517 36.814 29.624 10.721 

27.480 17.459 6.5266 37.948 28.968 11.004 

25.821 18.752 5.8726 39.005 27.731 11.995 

23.954 20.360   26.713 12.753 

22.668 21.359   25.340 14.106 

21.276 22.582   24.083 15.302 

19.981 23.705   22.940 16.462 

18.801 24.734   21.637 17.814 

17.772 25.673   20.278 19.391 

16.639 26.699   18.718 21.287 

14.955 28.245   17.229 23.189 

14.180 28.989   15.189 26.015 

13.218 29.946   12.311 30.238 
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Table A 5 - Experimental mass fraction composition for the systems composed of [N4444]Cl (1) + McIlvaine 

buffer (2) + H2O (3) at 298 (± 1) K and atmospheric pressure. 

[N4444]Cl 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

43.630 2.5213 13.564 20.699 7.3720 28.173 4.5037 32.660 

39.570 3.3980 13.325 20.977 7.2480 28.357 4.4451 32.766 

37.011 4.2896 13.081 21.179 7.1234 28.539 4.3888 32.894 

34.805 5.0086 12.848 21.430 6.9993 28.720 4.3390 32.979 

32.838 5.6637 12.620 21.681 6.8935 28.876 4.2896 33.030 

31.620 6.3698 12.323 22.054 6.7859 29.021 4.2356 33.136 

30.543 6.9910 12.082 22.319 6.6724 29.192 4.1851 33.237 

29.501 7.5906 11.893 22.489 6.5907 29.303 4.1261 33.350 

28.611 8.1419 11.580 22.911 6.4188 29.562 4.0701 33.473 

27.796 8.6320 11.390 23.093 6.3280 29.692   

26.984 9.0875 11.143 23.394 6.2144 29.879   

26.272 9.5558 10.929 23.628 6.1251 30.026   

25.598 9.9407 10.717 23.906 5.9895 30.224   

24.915 10.323 10.486 24.206 5.9063 30.347   

24.270 10.707 10.279 24.478 5.8413 30.446   

23.362 11.593 10.185 24.494 5.7582 30.595   

22.816 11.929 10.039 24.626 5.6968 30.690   

22.253 12.255 9.7841 24.998 5.5794 30.864   

21.452 13.070 9.5934 25.235 5.5089 30.964   

20.955 13.395 9.4711 25.370 5.4515 31.056   

20.236 14.117 9.3178 25.588 5.3947 31.146   

19.782 14.386 9.1438 25.816 5.3622 31.206   

19.123 15.077 8.9891 26.010 5.2998 31.311   

18.497 15.703 8.8314 26.209 5.2329 31.398   

17.948 16.237 8.6522 26.482 5.1523 31.551   

17.432 16.757 8.5549 26.569 5.0985 31.646   

17.000 17.145 8.4134 26.755 5.0326 31.750   

16.540 17.593 8.2429 26.992 4.9646 31.861   

15.792 18.281 8.1032 27.171 4.9183 31.927   

15.300 18.849 7.9673 27.341 4.8459 32.059   

14.891 19.267 7.8072 27.586 4.7856 32.176   

14.498 19.688 7.6796 27.780 4.7232 32.281   

14.224 19.937 7.5506 27.954 4.6650 32.398   

13.878 20.315 7.4664 28.059 4.5824 32.511   
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Table A 6 - Experimental mass fraction composition for the systems composed of [P4444]Cl (1) + McIlvaine 

buffer (2) + H2O (3) at 298 (± 1) K and atmospheric pressure. 

[P4444]Cl  

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

45.289 2.3280 14.996 15.644 9.7805 20.439 7.3458 23.011 

40.406 3.1979 14.694 15.786 9.6930 20.580 7.2752 23.029 

37.217 4.1369 14.488 16.028 9.5622 20.622 7.2200 23.079 

34.037 4.8323 14.272 16.252 9.4681 20.731 7.1635 23.145 

32.140 5.5897 14.010 16.379 9.3850 20.834 7.0672 23.315 

30.485 6.1553 13.820 16.578 9.3038 20.933 6.9995 23.347 

28.800 6.7857 13.645 16.797 9.2047 21.006 6.9532 23.438 

27.808 7.3182 13.458 16.994 9.1245 21.098 6.9024 23.500 

26.521 7.8617 13.213 17.135 9.0430 21.203 6.8377 23.512 

25.604 8.4529 13.049 17.317 8.9600 21.289 6.7941 23.599 

24.578 8.8699 12.892 17.497 8.8570 21.335 6.7463 23.650 

23.762 9.3511 12.719 17.682 8.7800 21.420 6.6987 23.723 

23.029 9.8144 12.503 17.788 8.7077 21.509 6.6406 23.757 

22.318 10.213 12.373 17.959 8.6297 21.597 6.5963 23.822 

21.671 10.597 12.170 18.096 8.5592 21.693 6.5443 23.868 

21.012 10.963 12.037 18.242 8.4707 21.738 6.5030 23.948 

20.581 11.435 11.897 18.387 8.4051 21.859 6.4600 24.009 

20.032 11.753 11.769 18.544 8.3342 21.966 6.4182 24.066 

19.511 12.129 11.600 18.662 8.2439 21.995 6.3683 24.095 

19.041 12.405 11.465 18.834 8.1795 22.104 6.3249 24.157 

18.674 12.728 11.193 19.098 8.1141 22.208 6.2482 24.278 

18.324 13.097 11.032 19.149 8.0293 22.247 6.1965 24.296 

17.942 13.330 10.927 19.295 7.9691 22.343 6.1566 24.354 

17.560 13.605 10.806 19.415 7.9019 22.424 6.1204 24.412 

17.214 13.793 10.659 19.485 7.8252 22.466 6.0840 24.481 

16.935 14.096 10.552 19.616 7.7664 22.523 6.0483 24.545 

16.588 14.306 10.437 19.756 7.7135 22.612 5.9707 24.663 

16.304 14.575 10.343 19.905 7.6512 22.695 5.8889 24.804 

15.983 14.768 10.235 20.018 7.5785 22.728 5.8451 24.833 

15.739 15.036 10.099 20.069 7.5256 22.824 5.8032 24.838 

15.417 15.227 10.002 20.225 7.4517 22.844 5.7722 24.897 

15.202 15.442 9.8728 20.283 7.3989 22.934 5.7377 24.959 
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 Table A 7 - Experimental mass fraction composition for the systems composed of [C4mim][N(CN)2] (1) + 

McIlvaine buffer (2) + H2O (3) at 298 (± 1) K and atmospheric pressure. 

[C4mim][N(CN)2] 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

66.562 1.4924 16.144 16.230 9.8459 21.090 6.4101 25.272 

38.813 5.8147 15.877 16.362 9.7368 21.102 6.3324 25.369 

36.594 6.4935 15.642 16.532 9.5930 21.315 6.2324 25.572 

34.582 7.0402 15.400 16.667 9.5006 21.350 6.1557 25.689 

33.478 7.6164 15.050 17.050 9.3679 21.516 6.0805 25.802 

32.342 8.2033 14.834 17.158 9.2404 21.679 6.0059 25.927 

30.782 8.5791 14.606 17.321 9.1162 21.822 5.9360 26.021 

29.881 9.0319 14.387 17.436 8.9996 21.951 5.8639 26.125 

29.002 9.4789 14.179 17.520 8.8845 22.071 5.7968 26.226 

28.220 9.8619 13.984 17.619 8.7723 22.195 5.7286 26.330 

27.476 10.234 13.691 17.930 8.6973 22.217 5.6731 26.397 

26.751 10.600 13.516 18.020 8.5738 22.391 5.5692 26.665 

26.076 10.988 13.261 18.291 8.4511 22.528 5.4915 26.835 

25.152 11.209 13.119 18.322 8.3391 22.674 5.4182 26.983 

24.519 11.519 12.956 18.388 8.2596 22.692 5.3593 27.072 

23.948 11.799 12.718 18.643 8.1387 22.865 5.3022 27.155 

23.402 12.065 12.554 18.708 8.0219 23.039 5.2464 27.238 

22.867 12.357 12.335 18.961 7.9507 23.064 5.1646 27.432 

22.359 12.626 12.192 19.029 7.8368 23.239 5.0954 27.587 

21.857 12.909 12.061 19.087 7.7330 23.385 5.0472 27.661 

21.385 13.148 11.847 19.345 7.6333 23.520 4.9799 27.817 

20.952 13.372 11.710 19.410 7.5379 23.651 4.9359 27.874 

20.529 13.599 11.584 19.449 7.4376 23.792 4.8920 27.952 

20.111 13.797 11.405 19.656 7.3340 23.959 4.8462 28.026 

19.724 13.960 11.237 19.816 7.2374 24.100 4.7826 28.151 

19.134 14.543 11.104 19.895 7.1512 24.215 4.7174 28.298 

18.764 14.723 10.909 20.129 7.0558 24.351 4.6587 28.413 

18.421 14.886 10.793 20.161 6.9759 24.463 4.5893 28.601 

18.064 15.070 10.622 20.389 6.8924 24.574 4.5353 28.732 

17.733 15.233 10.520 20.425 6.8107 24.696   

17.428 15.378 10.417 20.457 6.7331 24.804   

17.122 15.547 10.252 20.687 6.6450 24.946   

16.687 15.997 10.146 20.716 6.5596 25.070   

16.409 16.108 9.9980 20.893 6.4835 25.169   
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Table A 8 - Experimental mass fraction composition for the systems composed of [C4mim][CF3SO3] (1) + 

McIlvaine buffer (2) + H2O (3) at 298 (± 1) K and atmospheric pressure. 

[C4mim][CF3SO3] 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

63.863 1.8156 18.042 8.8928 9.9674 14.945 

53.755 2.5228 17.716 9.0649 9.7745 15.088 

47.626 3.1877 17.448 9.1347 9.5909 15.448 

42.976 3.7730 17.062 9.4127 9.3529 15.743 

39.406 3.9999 16.496 9.6719 9.0897 15.928 

37.319 4.3800 16.227 9.8437 8.7961 16.447 

35.407 4.5375 15.826 10.075 8.5501 16.831 

34.278 4.8825 15.506 10.415 8.3104 17.192 

32.675 5.0300 15.142 10.418 8.0831 17.590 

31.701 5.4168 14.855 10.667 7.7520 18.144 

30.273 5.6527 14.403 10.943 7.5014 18.478 

28.946 5.8123 14.203 11.010 7.3819 18.729 

28.158 6.1750 13.989 11.188 7.1868 19.097 

27.049 6.2989 13.753 11.406   

25.884 6.5083 13.500 11.693   

25.244 6.7641 13.158 11.802   

24.218 6.9459 12.887 12.144   

23.385 7.0075 12.556 12.324   

22.842 7.2839 12.203 12.574   

22.363 7.4425 12.020 12.808   

21.894 7.6744 11.816 13.037   

21.134 7.7793 11.624 13.274   

20.728 7.9425 11.274 13.628   

20.321 8.1028 10.935 13.832   

19.611 8.4291 10.714 14.172   

19.046 8.4595 10.574 14.312   

18.688 8.6382 10.350 14.496   

18.372 8.7678 10.109 14.798   
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Table A 9 - Experimental mass fraction composition for the systems composed of [C4mim][SCN] or 

[C4mim][CH3SO3] (1) + McIlvaine buffer (2) + H2O (3) at 298 (± 1) K and atmospheric pressure. 

[C4mim][SCN]  [C4mim][CH3SO3] 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

38.664 4.4414 15.140 11.757 67.781 2.3544 

35.752 5.1602 14.882 12.021 48.018 6.4771 

33.210 5.8149 14.180 12.312 38.402 10.076 

30.606 6.3556 13.755 12.367 36.502 11.311 

29.145 6.9362 13.436 12.560 35.973 11.789 

27.563 7.3855 11.479 13.620 33.552 13.397 

26.328 7.8693 11.091 13.974 33.507 13.502 

24.905 8.1933 10.830 13.989 32.399 14.462 

23.695 8.5199 10.509 14.474 31.099 15.600 

22.821 8.8807 10.210 14.690 29.837 16.730 

22.027 9.2207 9.9120 14.885 28.677 17.869 

21.267 9.5250 9.6342 15.071 28.393 18.068 

20.399 9.7080   27.734 18.974 

19.571 9.8752   26.381 20.426 

19.173 10.225   24.903 22.109 

18.575 10.504   23.620 23.795 

18.029 10.716   21.521 26.179 

17.405 10.854   19.711 28.529 

16.931 11.063   18.876 30.173 

16.467 11.267   15.913 33.719 

15.929 11.388   12.623 37.764 

15.525 11.589   11.045 40.780 
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Figure A 1 - Phase diagram of the systems [C2mim]Cl (a), [C4mim]Cl (b) and [C6mim]Cl (c) + McIlvaine 

buffer at pH 7 + H2O at 298 (± 1) K: binodal curve data (    ); TL data (    ); fitting of the experimental data 

through Equation 1 (    ).  
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Figure A 2 - Phase diagram of the systems [C8mim]Cl (a), [C4mpyr]Cl (b) and [C4mpy]Cl (c) + McIlvaine 

buffer at pH 7 + H2O at 298 (± 1) K: binodal curve data (    ); TL data (    ); fitting of the experimental data 

through Equation 1 (    ).  
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Figure A 3 - Phase diagram of the systems [C4mpip]Cl (a), [N4444]Cl (b) and [P4444]Cl (c) + McIlvaine buffer 

at pH 7 + H2O at 298 (± 1) K: binodal curve data (    ); TL data (    ); fitting of the experimental data through 

Equation 1 (    ).  
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Figure A 4 - Phase diagram of the systems [C4mim]N(CN)2 (a), [C4mim]CF3SO3 (b) and [C4mim]CH3SO3 (c) 

+ McIlvaine buffer at pH 7 + H2O at 298 (± 1) K: binodal curve data (    ); TL data (    ); fitting of the 

experimental data through Equation 1 (    ).  
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Figure A 5 - Phase diagram of the systems [C4mim]SCN + McIlvaine buffer at pH 7 + H2O at 298 (± 1) K: 

binodal curve data (    ); TL data (    ); fitting of the experimental data through Equation 1 (    ). 
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B. Experimental data - Partitioning of paracetamol and caffeine. 
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Figure B 2 - Speciation diagram of paracetamol. Adapted from [78]. Figure B 1 - Speciation diagram of paracetamol. Adapted from [78]. 
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C. ALGIK ID 

The medicine, ALGIK, is produced by Sofarimex – Indústria Química e Farmacêutica, 

Lda and it was acquired at a local pharmacy in Aveiro. The package contains 20 

Kraft/polyethylene bags with the composition presented in Table D 1. 

Table D 1 - ALGIK composition per bag. 

Chemical Quantity (mg) 

Paracetamol 500 

Caffeine 50 

Monohydrated lactose nd 

Sodium stearyl fumarate nd 

Aerosil 200 nd 

Aluminium oxide C    nd 

Orange tetrarome nd 

Aspartame (E951) nd 

nd – not described. 
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D. HPLC Chromatograms 

 

 

 

Figure B 3 – Chromatogram of standard solution. 

 

Figure B 4 - Chromatogram of the pharmaceutical drug ALGIK. 
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Figure B 5 - Chromatogram of the top phase of the ABS composed of [N4444]Cl + McIlvain buffer at pH 7 + 

H2O. 

 

 

Figure B 6 - Chromatogram of the ABS top phase with [C4mim]Cl + McIlvain buffer at pH 7 + H2O. 
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E. Calibration curves 

 

 

Figure C 1 - Calibration curve for caffeine at λ = 273 nm. 

 

 

Figure C 2 - Calibration curve for caffeine at λ = 273 nm. 
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Figure C 3 - Calibration curve for paracetamol at λ = 243 nm. 

 

 

Figure C 4 – HPLC calibration curve for paracetamol. 
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Figure C 5 – HPLC calibration curve for caffeine. 
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