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     resumo 

 

 

O cancro da próstata representa, nos dias de hoje, a terceira causa de 
morte mais comum entre os homens, sendo que, atualmente, não existe 
nenhum tratamento eficaz quando o tumor é diagnosticado já num estado 
avançado. Face a esta incapacidade, um diagnóstico precoce é essencial no 
sentido de aumentar a taxa de sucesso do tratamento. A quantificação do 
biomarcador Antigénio Prostático Específico (PSA) em soro continua a ser o 
tipo de rastreio mais utilizado uma vez que se trata de um método simples. No 
entanto, a maioria dos métodos de quantificação de PSA disponíveis no 
mercado apresentam diversas desvantagens, entre elas, o processamento 
extensivo da amostra, a necessidade de identificação e caracterização de 
anticorpos específicos e pessoal técnico altamente especializado. Neste 
sentido, com o objetivo de desenvolver um método eficiente para a extração e 
concentração de PSA a partir de fluidos humanos, e que permita ultrapassar 
os limites de deteção de equipamentos analíticos tradicionais, estudaram-se 
sistemas aquosos bifásicos (SAB) constituídos por líquidos iónicos (LIs) como 
uma técnica de extração e concentração do tipo líquido-líquido. Uma vez que 
os biomarcadores associados a tumores comercialmente disponíveis são 
produtos de elevado custo, foi selecionada uma proteína modelo (albumina do 
soro bovino, BSA) para o estudo de otimização de SAB e posterior aplicação 
na extração/concentração de PSA. Neste trabalho, foram estudados dois tipos 
de SAB: LIs + sais orgânicos e LIs + polímeros. Primeiramente foram avaliados 
SAB constituídos por um sal orgânico e biodegradável (K3C6H5O7) e uma nova 
classe de LIs com aniões com capacidade tampão (Good’s buffers) 
combinados com os catiões tetrabutilamónio ([N4444

+
]) e tetrabutilfosfónio 

([P4444]
+
). De seguida, foram avaliados SAB formados pelo polímero 

polipropileno glicol com massa molecular de 400 g∙mol
-1

 (PPG 400) e líquidos 
iónicos constituídos pelo catião colínio ([Ch]

+
) e uma vasta panóplia de aniões, 

incluindo os Good’s buffers. Os LIs selecionados permitiram estudar o efeito do 
anião e do catião sobre os diagramas de fase, ou seja a sua capacidade para 
formar um sistema de duas fases aquosas, assim como avaliar a sua 
potencialidade para extração e concentração de BSA (e posteriormente PSA) a 
partir de soluções aquosas. De acordo com os resultados obtidos foi possível, 
num único passo, alcançar a extração completa da BSA. Entre os vários SAB 
avaliados, os constituídos por K3C6H5O7 + [N4444][Tricina] e PPG 400 + 
[Ch][Tricina] foram considerados os sistemas mais eficazes para a etapa de 
extração (atingindo extrações completas). No entanto, os SAB compostos por 
polímeros não permitem atingir os níveis de concentração esperados, pelo que 
os sistemas constituídos por LIs e K3C6H5O7 são os SAB de eleição e 
provaram ser uma técnica promissora de extração e concentração que poderá 
no futuro ser implementada previamente às análises clínicas de PSA. Por fim, 
com o intuito de suportar esta afirmação, utilizou-se um SAB constituído por 
K3C6H5O7 e [N4444][Tricine] para extrair PSA onde foi possível confirmar a 
extração completa para a fase rica em LI. 
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Abstract 

 

Prostate cancer (CaP) is the third most common cancer-related cause of 
death in men. Currently, there are no effective therapeutic options for the 
treatment of advanced prostate cancer and its early detection is pivotal and can 
increase the curative successful rate. The quantification of prostate specific 
antigen (PSA) levels in serum remains the most commonly used screening 
approach. Nevertheless, most of the PSA assays currently applied present 
several drawbacks, namely a time-consuming sample processing, the 
identification and characterization of specific antibodies and the need of highly 
trained technical operators. Therefore, in order to develop an efficient method 
to extract and concentrate PSA from human fluids and also to overcome the 
limitations of traditional analytical equipment, in this work, aqueous biphasic 
systems (ABS) composed of ionic liquids (ILs) were employed as an extraction 
and concentration liquid-liquid technique. Since the commercially available 
cancer biomarkers are highly cost products, bovine serum albumin (BSA) was 
selected as a model protein to infer on the best ABS and their further 
application on the extraction/concentration of PSA. In this work, two types of 
ABS were studied: ILs + organic salts and ILs + polymers. First, ABS 
constituted by a biodegradable organic salt (K3C6H5O7) and a new type of ILs 
composed of anions with buffer capacity (Good’s buffers) combined with the 
tetrabutylammonium ([N4444]

+
) and tetrabutylphosphonium ([P4444]

+
) cations 

were studied. ABS formed by polypropylene glycol with a molecular weight of 
400 g·mol

-1
 (PPG4 00) and several cholinium-based ILs, including the Good’s 

buffers anions, were also evaluated The selected ILs allowed the study of the 
effect of the anion and cation nature on the phase diagrams behaviour, and 
thus on their ability to form two-phase systems, as well as the investigation on 
their potential to extract and concentrate BSA (and thus PSA) from aqueous 
solutions. According to the obtained results, the complete extraction of BSA 
was achieved in a single step in various systems. Amongst the several ABS 
evaluated, those composed of K3C6H5O7 + [N4444][Tricine] and PPG 400 + 
[Ch][Tricine] were considered the most effective for the extraction (allowing 
complete extractions). However, ABS composed of polymers did not allow to 
achieve the concentrations factors initially expected and, therefore, ABS 
constituted by ILs and K3C6H5O7 are the best alternative and proved to be a 
promising concentration and extraction technique that may, in the near future, 
be implemented previously to the clinical analysis of PSA. Finally, in order to 
support this statement, the ABS formed by K3C6H5O7 and [N4444][Tricine] was 
used in the extraction of PSA and where it was confirmed the complete 
extraction of the cancer biomarker for the IL-rich phase. 
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       – concentration of salt (wt% or mol·kg
-1

); 

      – concentration of PPG (wt% or mol·kg
-1

); 

        – concentration of PPG in the ionic-liquid-rich phase (wt%); 

          – concentration of salt in the PPG-rich phase (wt%); 

       – concentration of PPG in the initial mixture (wt%); 

EEBSA% – percentage extraction efficiency of BSA (%); 

EEPSA% – percentage extraction efficiency of PSA (%); 

FCBSA – BSA concentration factor; 

wIL – weight of the IL-rich phase; 

wsalt – weight of the salt-rich phase; 
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ACT – alpha-1-antichymotrypsin; 

A2M – alpha-2-macroglobulin; 

API – alpha-1-protease inhibitor 

ABS – aqueous biphasic systems; 

B – bottom phase; 

BPH – benign prostate hyperplasia;  

BPSA – benign PSA; 

BSA – bovine serum albumin 

C – critical point; 

CaP – prostate cancer; 

ELISA – enzyme-linked immunosorbent assay; 

DRE – digital rectal examination; 

ER – endoplasmic reticulum; 

ERSPC – european randomized study of screening for prostate cancer; 

FDA – Food and Drug Administration;  

fPSA – free PSA; 

GB – Good’s buffers; 

HEPES – N-cyclohexyl-2-aminoethanesulfonic acid;  

HPLC – High-performance liquid chromatography; 

iPSA – intact PSA; 

K2CO3 – potassium carbonate; 

K3C6H5O7 – potassium citrate; 

K3PO4 – potassium phosphate; 

LLE – liquid-liquid extraction; 

MALDI-TOF MS – matrix-assisted laser desorption/ionization - time of flight mass 

spectrometry;  

NNS – number needed to screen; 

NNT – number needed to treat; 

PEG – polyethylene glycol; 

PI –prediction interval; 

pI– isoelectric point;  
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PPG – polypropylene glycol; 

PPG 400 – polypropylene glycol with a molecular weight of 400 g·mol
-1

; 

PSA – prostate specific antigen; 

proPSA – precursor isoforms of PSA; 

ROS – reactive oxygen species; 

T – top phase; 

tPSA – total PSA; 

TL – tie-line; 

TRIFA – immunochemiluminescent; 

TRUS – transrectal ultrasound;  

RNA – ribonucleic acid; 

SDS-PAGE – sodium dodecyl sulfate-polyacrylamide gel electrophoresis;  

SPE – solid-phase extraction; 

SPR – surface plasmon resonance technology;  

[Ch][Ac] – (2-hydroxyethyl)trimethylammonium (cholinium) acetate;  

[Ch][But] – (2-hydroxyethyl)trimethylammonium (cholinium) butanoate;  

[Ch]Cl – (2-hydroxyethyl)trimethylammonium (cholinium) chloride; 

[Ch][DHPhs] – (2-hydroxyethyl)trimethylammonium (cholinium) dihydrogen phosphate 

[Ch] [DHCit] – (2-hydroxyethyl)trimethylammonium (cholinium) dihydrogen citrate 

[Ch][Gly] – (2-hydroxyethyl)trimethylammonium (cholinium) glycolate;  

[Ch][HEPES] – (2-hydroxyethyl)trimethylammonium (cholinium) 2-[4-(2-

hydroxyethyl)piperazin-1-yl]ethanesulfonate;  

[Ch][Lac] – (2-hydroxyethyl)trimethylammonium (cholinium) lactate; 

[Ch][MES] – (2-hydroxyethyl)trimethylammonium (cholinium) 2-(N-

morpholino)ethanesulfanate; 

[Ch][Prop] – (2-hydroxyethyl)trimethylammonium (cholinium) propionate; 

[Ch][Tricine] – (2-hydroxyethyl)trimethylammonium (cholinium) N-2(2-hydroxy-1,1-

bis(hydroxymethyl)ethyl)glycinate;  

[C8mim]Br –1-octyl-3-methylimidazolium bromide; 

[C6mim]Cl – 1-hexyl-3-methylimidazolium chloride; 

[P4444]Cl – tetrabutylphosphonium chloride; 

[N4444]Cl – tetrabutylammonium chloride; 
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[N4444][CHES] – tetrabutylammonium 2-(cyxlohexylamino)ethanesulfonate; 

[P4444][CHES] – tetrabutylphosphonium 2-( cyxlohexylamino)ethanesulfonate; 

 [N4444][MES] – tetrabutylammonium 2-(N-morpholino)ethanesulfonate; 

[P4444][MES] – tetrabutylphosphonium 2-(N-morpholino)ethanesulfonate; 
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[P4444][Tricine] – tetrabutylphosphonium N-2(2-Hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine; 
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1.1 Scope and Objectives 

Prostate cancer is a prevalent, worldwide concern among male adults [1]. At present, 

there is no curative therapy available for locally advanced or metastatic prostate disease, 

which makes its early detection a powerful way to increase the curative success rate [2]. A 

desired goal in the development and identification of prostate cancer is based on finding 

biomarkers by noninvasive assays to replace the currently used diagnostic techniques, like 

biopsy that it is still known as the diagnostic “gold standard”. However, this procedure has 

a high risk of adverse events, such as bleeding and sepsis, and it is associated with 15% to 

20% of false-negative results [3]. On the other hand, the identification and quantification 

of biomarkers in human serum and urine can be seen as an alternative approach to the 

standard tissue biopsy procedure. For instance, prostate specific antigen (PSA) has been 

identified as the most reliable tumor marker for an early diagnostics of prostate cancer [4]. 

 Commercial kits for the PSA quantification are now offered by several companies, but 

some of them require the identification and characterization of immunoassay-qualified 

antibodies and highly qualified technical operators [5]. Also, the investment on time and 

resources required to generate such immunoassays are considerable, what often obstruct 

it’s development on clinically specific chemistry laboratories [6]. Therefore, the main 

objective of this work consists on the development of an alternative platform for the 

extraction and concentration of PSA from human urine samples using a liquid-liquid 

extraction procedure. To this end, aqueous biphasic systems (ABS) formed by ionic liquids 

(ILs), an inorganic salt and water, as well as the combination of ILs and polymers will be 

investigated. Since commercially available cancer biomarkers are highly cost products and 

are distributed in small concentrations, it is necessary to carry out previous optimizations 

tests with cheaper and model compounds in order to achieve an improved ABS. Thus, 

bovine serum albumin (BSA), the most abundant protein in blood plasma of many species, 

was chosen as a model protein.  

As a first approach, several experimental studies were attempted aiming at developing 

an optimized size-exclusion high-performance liquid chromatography (HPLC) 

quantification method for the model protein that can be applied further, only with small 

adjustments, on the PSA quantification. After defining the conditions for the quantification 

method, a large array of novel systems were investigated by combining potassium citrate 

(K3C6HPO4) with Good’s buffers ionic liquids (GB-ILs), i.e., ILs that can maintain the pH 



General introduction 

 

4 

 

of the aqueous solution, being this an important property when dealing with proteins.  All 

the new ABS were characterized by their ternary phase diagrams, tie-lines (TLs) and tie-

line lengths (TLLs) at 25 ºC, followed by studies on their application in the 

extraction/concentration of BSA. All the GB-ILs were synthesized in this work and their 

synthesis and characterization are also described.  

 In a second stage, ABS formed by polypropylene glycol 400 (PPG 400) and 

cholinium-based ILs were further explored. In addition to the ternary phase diagrams, TLs 

and tie-line lengths (TLLs) initially ascertained, their extraction and concentration abilities 

were also evaluated. The stability of BSA in the ILs solutions was also evaluated.  

 Finally, it was addressed the real and prospective application of IL-based ABS for the 

possible concentration of cancer biomarkers from biological fluids, maintaining BSA as 

the model protein. In this context, two of the best systems, namely K3C6H5O7 + 

[N4444][Tricine] and PPG 400 + [Ch][Tricine] were selected. The results revealed that the 

system formed by K3C6H5O7 + [N4444][Tricine]  is promising for the extraction process 

(100% of extraction achieved in a single-step procedure) and further concentration that 

could be used in PSA clinical analysis in the near future. Aiming at supporting this 

statement the ABS formed by K3C6H5O7 and [N4444][Tricine] was used in an isolated 

experiment with PSA and where it is confirmed the complete extraction of the cancer 

biomarker for the IL-rich phase by UV-spectroscopy. 

  



General introduction 

 

5 

 

1.2 Prostate Cancer Overview 

1.2.1 Epidemiology and Risk Factors  

Prostate cancer (CaP) is the third most common cancer-related cause of death in men, 

and resulted in more than 29,720 estimated deaths by the end of 2013 [1], a value that 

exceeds the expected number (28,170) of the year before [7]. In Europe, CaP is one of the 

most frequent solid neoplasms, with a predicted death rate of 10.52 cases per 100 000 men 

for 2013 (Figure 1.1) [8]. The vast majority (approximately 95%) of prostatic tumors are 

adenocarcinomas, whereas “adeno” refers to the glandular structure while carcinoma 

relates to the origin of cancer from the prostatic epithelium [9]. 

 

Figure 1.1. Bar-plots of standardized death rates per 100,000 individuals (men) for the year of 2009 (dark 

grey) and the predicted rates for 2013 with a 95% prediction interval (light grey) for in men in the EU [11]. 

 

 With the increasing interest from the medical community, several risk factors for 

prostate cancer have been identified, of which the most common include old age, race, 

inherent susceptibility and environmental factors [10]. More specifically, those at higher 

risk for developing prostate cancer include men over the age of 65, African-American 

individuals, and those who first-line relatives have/had CaP (the risk is at least doubled). In 

addition, factors such diet, sexual behaviour, alcohol consumption, exposure to ultraviolet 

radiation and occupational exposure have all been discussed as being of etiological 

importance [10].  

Despite prostate cancer is a multifactorial disease, a lot of scientists affirm that the 

most significant risk factor is advanced age [11]. About 60% of all prostate cancer cases 
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are diagnosed in men with 65 years old or older, and 97% occur in men with 50 years old 

or older [12]. In addition, the incidence of prostate cancer increases more with age than 

any other type of cancer [10]. The relationship between CaP and advanced age likely 

reflects the interplay of environmental, physiological, and molecular influences with 

normal consequences of aging that presumably exacerbate the related effects. During 

aging, the progressive accumulation of DNA adducts and an increase in the DNA strand-

break frequency in most tissues tend to occur [10]. It is believed that these age-related 

changes are caused by oxidative stress, which arises as a result of an imbalance in cellular 

prooxidant-antioxidant status [11]. Cellular oxidants, such as free radicals and reactive 

oxygen species (ROS), are produced during natural metabolic processes. ROS are highly 

reactive and potentially damaging to cells, because they directly damage macromolecules 

and organelle functions [10]. Damage to DNA by ROS results in single-strand and double-

strand breaks, apurinic and apyrimidinic sites, ring-saturation of thymine derivatives, and 

adduct formation. Moreover, ROS can catalyze the oxidative modification of proteins, 

including enzymes involved in DNA repair. Together, these direct and indirect influences 

of ROS on DNA create an ideal environment for mutagenesis and tumor initiation 

[10].While the precise molecular consequences of aging involved in the development of 

prostate cancer have not been totally elucidated, several studies described gene expression 

changes associated with aging, particularly in prostatic stroma, and including genes 

involved in inflammation, cellular senescence and oxidative stress as the most possible 

causes [11]. 

At present, there is no curative therapy available once the disease spreads the limits of 

the organ. Since there are no effective therapeutic options for advanced prostate cancer, 

early detection of the tumor is pivotal and can increase the curative successful rate [2]. 

 

1.2.2 Diagnosis  

Most cancer patients have a low-risk, clinically localized disease at diagnosis and can 

be treated effectively with surgery and radiation. Like most types of cancer, if cancer 

prostate is diagnosed in its early stages, there is a higher probability of an efficient 

treatment (Table 1.1). However, CaP survival is related to many factors, especially the 

extent of the tumor at the time of diagnosis. Approximately 10% to 20% of patients are 

diagnosed with locally advanced (affecting nearby tissues, such as the bladder or rectum) 
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or metastatic disease (affecting other areas in the body, usually the lymph nodes or bone). 

In general, the outcomes for such cases are less likely to be improved by therapy than those 

with lower volume or grade tumors [13]. The most common clinical symptoms are 

haematuria (presence of erythrocytes in the urine) and urinary obstruction, although they 

usually do not appear until the tumor has already invaded the nearby tissue or the lymph 

nodes. Cancer that spreads outside the gland may also result in lower extremity oedema 

from regional lymphatic obstruction or pain from bone metastasis [14]. Nevertheless, for 

most men, prostate cancer is of slow growing and does not result in clinical signs or 

symptoms during their lifetime. Consequently, the screening for CaP if of outmost 

importance, and requires that diagnostic tests must be performed in the absence of any 

symptoms or indications of disease, and which is often a major challenge [15]. 

 

Table 11. Year relative survival rate corresponding to the stage that prostate cancer was diagnosed [16]. 

 

 

 Currently, prostate cancer diagnostic tests include digital rectal examination (DRE), 

prostate-specific antigen (PSA) blood test and transrectal ultrasound (TRUS) guided 

biopsy [15]. PSA test and DRE are used as primary screening tools in early detection of 

prostate cancer and TRUS-guided needle biopsies are techniques more directed to confirm 

diagnosis already proposed by PSA or DRE testing, or both [2]. Histopathological 

interpretation by Gleason score, a score based on the histological pattern of the tumor, is 

also applied in the diagnosis of CaP, being very useful, especially in stratifying patients 

into different risk groups [17]. This score represents a strong measure of how aggressive 

the prostate cancer is and can be used to determine the prognosis and type of therapy [17]. 

Although DRE and TRUS guided biopsies are widely employed by diagnosticians, 

they present some disadvantages. DRE has poor reliability, particularly in small tumors 

that have not reached the prostatic capsule [18]. TRUS guided biopsy is known for being a 

very invasive technique that carries out significant risks, such as subsequent infections. 

Two recent large cohort studies [3, 19] demonstrated that there is a significant 

Stage 5-year relative survival rate 

Local 100% 

Regional 100% 

Distant 28% 
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hospitalization rate due to infections following biopsy, with a 3–4 fold increase above 

normal levels. In addition, these techniques exhibit limits on the ability to diagnose CaP 

because they do not permit the clinic to distinguish between benign prostate hyperplasia 

(BPH) and CaP [2]. Histopathological studies of prostate tissue can identify CaP in most 

cases, however, these methods also present some limitations. First of all, it is an invasive 

technique since it is necessary to perform a biopsy. Secondly, the Gleason’s grading scale 

used by pathologists is at least semi-quantitative since it may be difficult to search every 

cell of every tissue slice. At last, there is a lack of concordance between the threshold of 

scoring between different pathologists [20]. In contrast, the quantification of PSA levels in 

biological fluids, especially in serum from a simple blood sample, is a less invasive 

screening tool, is easily performed, acceptable by the general population, accurate, and 

significantly affects the outcome of the disease. Consequently, PSA tests remain the most 

commonly used screening approach for prostate cancer [21]. 

 

1.3. Tumour Biomarkers 

The introduction of biomarkers for disease diagnosis and management has 

revolutionized the practice of oncology. The National Cancer Institute defines a biomarker 

as “a biological molecule found in blood, other body fluids, or tissues that is a sign of a 

normal or abnormal process or of a condition or disease” [22]. Biomarkers are molecules 

whose detection or evaluation provides information about a disease beyond the standard 

clinical parameters that are gathered by the clinician. These can be proteins, metabolites, 

RNA transcripts, DNA, or epigenetic modifications of DNA, among other alterations. 

They can be detected in patient tissue samples, obtained either by biopsy or surgical 

resection, or noninvasively through the isolation of cells and/or molecules from bodily 

fluids, such as blood or urine. It’s now established that biomarkers can be valuable in the 

identification of the disease and its progression, identify high-risk individuals, and allow to 

monitor the individuals’ response to treatments. Furthermore, the identification of 

biomarkers can be carried out by non-invasive techniques and low-cost techniques [23] 

Therefore, the detection of tumour markers plays an important role in screening, diagnosis 

and to evaluate the prognosis of the diseases. Unlike most cancers, prostate cancer 

management has long used biomarkers. PSA has been identified as the most reliable tumor 

marker for the early diagnostics of prostate cancer [24]. 
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1.4. Prostate Specific Antigen as a Cancer Prostate Biomarker 

Prior to the 30s, there were no biochemical markers for the screening of prostate 

adenocarcinoma, and the diagnosis was only achieved by clinical history and physical 

examination. In 1938, Gutman observed, for the first time, that serum acid phosphatase 

(PAP), one of the major proteins secreted by prostate columnar epithelium secretory cells, 

appeared in high levels in patients with metastatic adenocarcinoma of the prostate [25]. 

However, since PAP is present in many normal blood components and organs and is highly 

concentrated in several non-prostatic malignancies, it exhibits lack in specificity for 

prostatic tissue and which makes it useless as a tumor marker [26]. In 1979, Wang et al. 

[27] reported on the purification of the PSA from prostate tissue. The authors showed that 

the antigen was present in normal and benign hyperplastic, as well as in malignant 

prostatic tissue and that it could not be detected in any other human tissue [27]. Since this 

discovery, PSA emerged as a potential prostate cancer biomarker. The first utility of PSA 

as a biomarker was in the monitoring of the disease status in patients with prostate cancer. 

After these findings, and because the PSA test is an inexpensive blood test that can be 

easily obtained, its application led to its increasing role as a screening modality. In 1994, 

the FDA approved PSA as a screening tool based on the seminal work of Catalona and 

colleagues [28]  where they reported that the combination of the serum PSA measurement 

with levels ≥ 4.0 ng/mL, combined with other clinical findings, such as the results of DRE, 

improved the detection of prostate cancer.  

 

1.4.1. Prostatic Cancer Screening 

 Prostate cancer diagnosis can be achieved by studying the prostate specific antigen 

levels in blood, where a high level could indicate the presence of cancer. In general, a PSA 

value of > 4.0 µg/L (and more recently > 2.5 µg/L) has been defined in the literature [29] 

as abnormal and it is frequently used as a cut-off, although for younger men a cut-off level 

of < 2.5 ng/mL is often used. For values between 4.0 and 10.0 µg/L, the grey zone, there 

exists a 22% to 27% likelihood of cancer, whereas values above 10 µg/L yield up to a 67% 

chance of prostate cancer [30]. Nevertheless, the PSA levels increase steadily with aging, 

and some urologists advocate the use of age-related “normal” PSA cut-points [31], rather 

than using the limit of > 4 µg/L as universal. Oesterling et al. [32] and Anderson et al. [33] 

noted that the upper limit of the PSA cutoff, achieving 95% of specificity, would increase 
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with age. Therefore, to maintain the equitable 95% specificity or an equivalent 5% false-

positive rate across different ages, the PSA cutoff for recommending biopsy must 

necessarily increase with age. Based on cohorts of 537 patients with cancer-free status and 

benign prostatic hyperplasia, and 1,716 cancer-free, symptom-free, healthy volunteers who 

were between 40 and 79 years old, more general reference ranges were proposed as 

described in Table 1.2 [31]. 

 

Table 12. Values of reference range of PSA levels in serum for men with 40-79 years old [32, 33]. 

References 

Age Group PSA Cutoff (ng/ml) 

40–49 50–59 60–69 70–79 

Oesterling et 

al. [32] 
2.5 3.5 4.5 6.5 

Anderson et 

al. [33] 
1.5 2.5 4.5 7.5 

 

In addition, it is already known that PSA levels in black men are higher compared to 

those in white men regardless of age, which also implies a careful interpretation of PSA 

levels [31]. Another fact that is important to have in mind is that the PSA level is a 

continuous parameter, so the higher the value, the more likely is the existence of CaP 

(Table 1.3) [29].  

 

Table 13. Risk of prostate cancer in relation to PSA values in serum [29]. 

 

 

 

 

 

 

 

 

 

1.4.2. Prostate Cancer Stage and Grade 

PSA levels strongly discriminate different cancer stages: they are higher in men with 

localized disease, and even higher in patients with metastatic [30]. Numerous subsequent 

studies have confirmed the original data from Stamey et al. [34], where they affirmed that 

a higher PSA level is associated with a large tumor volume [35], higher clinical stage  [34], 

PSA level (ng/mL)      Risk of CaP (%) 

0–0.5 6.6 

0.6–1 10.1 

1.1–2 17.0 

2.1–3 23.9 

3.1–4 26.9 
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pathological stage [20] and Gleason grade  [20, 35]. Usually, the PSA levels in biological 

fluids are combined with the Gleason sum score. This score ranges from 2 to 10 and 

consists of 2 summed grade patterns that can vary from 1 (well differentiated) to 5 (poorly  

differentiated) [20]. The combination of these two techniques allows the risk stratification 

and clinical stage of men with localized CaP, and which include low risk men (PSA < 10 

ng/mL and Gleason grade ≤ 6), intermediate risk men (PSA 10-20 ng/mL or Gleason grade 

= 7) and high risk men (PSA > 20ng/mL or Gleason grade 8-10). These risk stratifications 

then guide the treatment decisions and enable to predict disease characteristics and 

treatment outcomes.  

 

1.4.3. Monitoring Therapy and Disease Recurrence 

After the diagnosis of prostate cancer, the question regarding the best treatment for 

each patient arises. If there is an indication that the cancer is localized within the prostate 

and that the patient has a life expectancy larger than ten years, radical prostatectomy is the 

treatment of choice [36]. Many patients are cured of prostate cancer by this treatment and 

the frequency of performing this procedure has increased significantly to ∼40% of all 

prostate cancers, partially owing it to the PSA screening. PSA testing in post-

prostatectomy patients is of most importance in deciding who has residual disease, who has 

relapsed (and when) and who can be considered cured. This has been the most widely 

accepted application of PSA testing in clinical practice [36]. After radical prostatectomy, 

PSA should decrease to undetectable concentrations because all the source tissue has been 

removed. The serum half-life of PSA has been estimated as 2.2-3.2 days [37]. PSA reaches 

a new steady state after a given number of half-lives subsequent to surgery, depending on 

the amount of prostatic tissue that was present. Non-negligible PSA and increasing PSA 

concentrations indicate either that the entire prostate was not excised or that PSA is being 

produced by metastases of the original tumor. Lange et al. [38] reported that patients with a 

PSA level < 0.4 µg/L, 3-6 months after radical prostatectomy, lead to recurrence 6 to 49 

months after surgery (P < 0.0001). 

The widespread use of the PSA test led to the prostate cancer being diagnosed at 

earlier stages [4]. The patients proportion diagnosed at local stages increased significantly 

and diagnoses of disseminated disease were drastically reduced [4]. Consequently, a 

decline in mortality rate has been observed which is also attributed to the possibility of 
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making a prompt treatment of the localized disease [4]. The European Randomized Study 

of Screening for Prostate Cancer (ERSPC) detected an improvement in cancer mortality 

rate in a PSA screened group [21]. More recent data from the Gottenberg arm of the 

ERSPC trial have emerged [39]. With a longer term 14-year follow-up period, in 

comparison with the 9-year follow-up data of the ERSPC trial, this study demonstrated a 

reduction in the number needed to screen (NNS) and the number needed to treat (NNT) to 

prevent 1 death by 5- and 4-fold, respectively [39]. Of note, the Gottenberg arm study had 

a shorter screening interval and lower PSA threshold required for initiation of further 

investigations [39]. When the data from the ERSPC trial are extrapolated in a longer period 

of follow-up, a similar reduction in NNS and NNT is also seen in comparison with the 

original 9-year follow-up data [40]. This indicates that significant benefits from treating 

PSA screened diseases are likely to occur over a decade after treatment. Support for PSA 

screening may arise as the longer-term follow-up data of these trials. Moreover, additional 

studies [41, 42] proved that PSA levels indicate the risk of prostate cancer, years or even 

decades, before diagnosis. All these studies [41, 42] show that men who will eventually 

develop prostate cancer have increased PSA levels years or decades before the cancer is 

diagnosed.  

 Despite the great utility of PSA for CaP detection, as a single test, it also has several 

limitations. While essentially organ-specific, PSA is not cancer-specific since raised levels 

may also indicate benign prostatic hyperplasia, prostatitis (inflammation of the prostate), or 

small tumors that do not prove to be fatal. Another issue with the PSA test is that false 

positives are common, and many men with elevated PSA levels do not have prostate 

cancer at all [23]. Furthermore, treatment of these slow-growing tumors is costly and often 

involves life changing surgeries that may not be necessary. These facts put in cause the 

viability of the routine PSA screening for prostate cancer [23]. Despite these drawbacks, 

routine PSA screening has been advocated as a mean to reduce disease-specific mortality 

by detecting early CaP, amenable to radical treatment with curative intent. Influential 

groups, such as the American Urological Association, the National Comprehensive Cancer 

Network, and the European Association of Urology support the importance of PSA 

screening in CaP [43].  

In the last years, several studies were conducted with the finality of refining the PSA 

test, increasing its diagnostic accuracy by improving the specificity of PSA in the early 
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detection of CaP. They include the measurement of the PSA density of the transition zone 

and the quantification of free to total PSA ratio and PSA molecular forms such as free PSA 

(fpsa), precursor isoforms of PSA (proPSA)  and benign PSA (BPSA) [18]. However, the 

determination of the PSA density implies a biopsy. On the other hand, the measurement of 

molecular forms of PSA seems to be the most promising diagnostic tools so far [44].  

 

1.5. PSA Molecular Characteristics  

PSA is a serine protease that belongs to the family of glandular kallikrein related 

peptidases, clustered in a locus that spans approximately 280 kb of chromosome 19q133–4 

[45]. This protein is encoded by the prostate-specific gene kallikrein 3 (KLK3). PSA gene 

expression in the prostate is regulated by androgens; two functional androgen-response 

elements are present in the proximal promoter of the PSA gene [45]. PSA in blood exists in 

multiple forms: free or in complexes with  various protease inhibitors; as proprotein or 

mature protein; and as intact or nicked [45]. These forms, and their implications for 

prostate cancer, will be discussed further below. 

 

1.5.1 Biosynthesis 

Transcription and expression of PSA are basically restricted to prostate epithelial cells 

and periurethral glands, and are dependent upon androgen mediation. PSA is translated as 

a proenzyme, pre-pro-PSA (261 amino acids), with 24 additional residues in the pre-region 

(17 residues), and which are the signal peptide and the propeptide (seven residues). The 

signal peptide directs the protein to the membrane of the endoplasmic reticulum (ER) [46]. 

In the ER, the prepeptide is removed and the resulting pro-PSA is transported within 

vesicles to the plasma membrane, where it is secreted into the lumina of prostate ducts 

(Figure 1.2). The protease or proteases responsible for the clipping of PSA remained 

unidentified for a long time [46]. It was suggested that PSA can be autocatalytic, but the 

cleavage sites observed are highly suggestive of a trypsin like enzyme. Moreover, it was 

demonstrated that this enzymatic activity belongs to hK2, the protein most closely related 

to PSA (~80% amino acid sequence identity), being responsible for the cleavage of 

propeptide to form the extracellular mature PSA (237 amino acids) [47]. The cleavage of 

the N-terminal seven amino acids from proPSA generates the active enzyme, which has 

five intrachain disulfide bonds, a single asparagine-linked oligosaccharide, and a weight of 
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33 kDa. This proPSA cleavage normally occurs between the arginine at position 7 and 

isoleucine at position 8, with the isoleucine becoming the N-terminus of the mature active 

protein [45].  The sugar-chain structure of PSA is determined by a series of processing 

reactions catalyzed by Golgi glycosidases and glycosyl transferases. In its final form, PSA 

is secreted into semen, at concentrations of 0.5–5 mg/mL, becoming one of the major 

proteins in seminal plasma. In comparison, it is found at lower concentrations in the serum 

[47].  

 

  

Figure 12. Schematic representation of PSA processing in epithelial cells of the prostate. ER, endoplasmic 

reticulum. Adapted from Reference [46]. 

 

Active PSA generated by hK2 can diffuse into the circulation, where it is rapidly 

bounded by protease inhibitors. This active PSA also undergoes proteolysis in the ER to 

generate inactive PSA which can enter the bloodstream (much smaller proportion than in 

semen) and circulates in an unbounded state (free PSA). In CaP, the loss of basal cells, the 

basement membrane and also the normal lumen architecture, results in a decrease in the 

ER processing of pro PSA to active PSA, and active PSA to inactive PSA, and with 

relative increases in bound PSA and proPSA in serum (Figure 1.3) [45]. While PSA is 

primarily produced by prostatic epithelial cells, PSA has also been detected in trace 

amounts in the paraurethral and perianal glands, endometrium, normal breast tissue, breast 

Seminal fluid 

Golgi complex 

Vesicule 
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tumors, breast milk, female serum, adrenal neoplasms and renal cell carcinomas [48] 

However, these sites do not normally contribute to measurable levels of PSA in the 

circulation [48, 49]. 

 

 

 

Figure 13. Model of PSA biosynthesis in normal prostate epithelium versus cancer. Adapted from Reference 

[48]. 

 

1.5.2. Structure 

PSA is a glycoprotein with 28 kDa consisting of a single polypeptide chain of 237 

amino acids and a single N-linked sugar-moiety [50]. This N-linked moiety comprises 

about 8% of the total mass of this protein. With regard to this moiety, a biantennary 

complex type with fucose linkages to the inner most N-acetylglucosamine (GlcNAc) was 

proposed, by NMR spectroscopy, as the major sugar-chain structure of PSA purified from 

seminal plasma [46]. It was also demonstrated that PSA is composed of 92% of peptides 

and 8% of carbohydrates, whereas the carbohydrate fraction is constituted by 4.84% of 

hexoses, 2.87% of hexosamines, and 0.25% of sialic acid [51]. The backbone contains a 

single carbohydrate unit attached at asparagine45 that increases the molecular weight by 

another 2-3 kDa and, in its mature form, exhibits five disulphide bonds [50]. 

 In Figure 1.4, the 3D structure of PSA is displayed. The protein consists of two 6-

strand antiparallel β-barrels and three α-helices. The catalytic site (Ser 195, His 57, and 

Asp 102) is conserved and localized in a cleft between two β-barrels [50]. The presence of 
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this characteristic His-Asp-Ser triad and a catalytic domain similar to those of other 

kallikrein-related peptidases is the reason for the categorization of PSA as a serine 

protease. The sequence also contains the GWG motif, which is a typical pattern present in 

many proteins with proteolytic activity. This motif contains Trp located in the β-barrel 

nearby the disulphide bond Cys 157-Cys [50]. Like for all serine proteases, the substrate 

and inhibitor recognition is mainly governed by the binding of the P1 residue to the S1 

pocket of the enzyme [52].   

 

 

 

Figure 14. Cartoon representation of the crystal structure of the Prostate Specific Antigen (PDB ID: 1PFA). 

Catalytic Ser195, His57, Asp102 are highlighted in big ball and stick. Trp is highlighted in small ball and 

stick. Tyr is highlighted as sticks. Cys is highlighted as sticks [48]. 

 

1.5.3. Physiological Role  

There is a great deal of interest and in determining the biochemical and physiological 

role of PSA. While most of the other kallikreins have trypsin-like proteolytic activity [52], 

PSA is considered a chymotrypsin-like protease. It shows similarities with chymotrypsin in 

the S1 specificity pocket of the catalytic site (presence of a serine at the bottom) and also 

preference for cleavage after the hydrophobic residues in the P1 position  [52]. Despite 

these chymotrypsin similarities, PSA also displays enzymatic properties that differentiate it 

from chymotrypsin and other serine proteases. These differences suggest that there may be 

highly specific protein substrates for PSA that are not yet identified [53, 54]. Lilja et al. 

[55] revealed, in 1988, that the physiological function of PSA is the liquefying of seminal 

fluids, and this remains the most commonly accepted hypothesis until today. PSA liquefy 
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the seminal clot formed after ejaculation, in order to facilitate the transport of spermatozoa 

along the female reproductive tract. Gel structure dissolution occurs due to the PSA 

restricted chymotrypsinlike endoproteolytic activity, which allows the cleavage of 

semenogelin 1 and 2 (SEMG1, SEMG2), fibronectin, laminin and gelatin [55, 56]. Its 

activity is strongly inhibited by Zn
2+

, that is 100 times more abundant in semen than in 

serum [57].  

Outside its physiological role, PSA may participate in the process of neoplastic growth 

and metastasis. PSA may influence, in particular, the tumoral growth of prostate cells 

through the degradation of the insulin like growth factor [58]. Other authors suggest that 

PSA performs the proteolysis of extracellular matrix proteins, such as fibronectin and 

laminin, and could also mediate invasion and the metastasis of CaP cells [49]. Further, 

PSA has been shown to stimulate the mitogenic activity of osteoblasts, possibly due to the 

activation of latent transforming growth factor-β and proteolytic modification of cell 

adhesion receptors [49].  

 

1.5.4. Physicochemical Properties 

PSA is a glycoprotein that has several isoenzymes, two intact and nicked forms of 

PSA, in the isoelectric point (pI) range of 6.5–8 [59]. The intact isoenzymes display high 

enzyme activity and, on the other hand, nicked forms display very low or no enzymatic 

activity [60]. It seems that the differences in the sialic acid content are the origin on the 

existence of these multiple isoforms. Each PSA molecular form contains six 

immunoreactive, antibody binding sites (epitopes) [61]. Serum levels of substances are 

dependent on their production and distribution, but also on their rate of elimination. Free 

PSA is quickly eliminated from blood, with a terminal half-life of ~14 hours [49]. For total 

PSA (tPSA) measured in the conventional PSA tests, the terminal half-life is about 2.2-3.2 

days [51]. In Table 1.4 some important biochemical characteristics of PSA are 

summarized. 
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Table 14. Biochemical characteristics of PSA [59, 60] [49, 51, 61]. 

Biochemical characteristics of PSA 

Molecular Mass (kDa) 28–33 

Number of epitopes 6 

Class Glycoprotein 

Subunit Monomer 

pI 6.5–8 

Half-life 
fPSA ~ 14 hours 

tPSA  2.2-3.2 days 

 

1.5.5. Molecular Derivatives  

It was initially assumed that the PSA measured in serum was the natural 28 kDa form 

of the protein containing 237 amino acids [51]. Only later it was discovered that PSA in 

serum appears in two different forms, either as complexed to other proteins (inhibitors) or 

as a free unbound form, “complexed PSA” and “free PSA”, respectively [47]. Both 

complexed PSA and free PSA are combined to give a measure of tPSA conventionally 

used in the diagnostic of prostate cancer. While PSA isolated from seminal plasma is 

composed mainly of the catalytically active free form, in serum, the majority of PSA is 

complexed with endogenous inhibitors [45]. The most recognized inhibitors are alpha-1-

antichymotrypsin (ACT), alpha-2-macroglobulin (A2M) and alpha-1-protease inhibitor 

(API). These protease inhibitors prevent the potential damage of the protease activity of 

PSA [62]. ACT covalently bound to PSA is the most common form and has a molecular 

weight of 80-90 kDa. The formation of this complex was described by the esterification of 

Ser-189 of PSA with Leu-358 of ACT. This leads to the cleavage of ACT between Leu-

358 and Ser-359, as indicated by Sodium Dodecyl Sulfate -polyacrylamide gel 

electrophoresis (SDS-PAGE) and N-terminal sequence analysis [63]. Matrix-assisted laser 

desorption/ionization - time of flight mass spectrometry (MALDI-TOF MS) revealed 

molecular weights of 80.8 kDa for PSA-ACT, 28.3 kDa for PSA, and 56.9 kDa for ACT 

[64].  

Several researchers have found that as the percentage of fPSA decreases, the 

probability of having cancer increases, suggesting that this form could possibly make an 

improved diagnostic [44]. The most convincing results came from a careful meta-analysis 

of 66 studies, which clearly verified a better diagnostic performance (that is, a higher 
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prostate cancer detection rate) for fPSA than for tPSA [65]. It was also established that the 

calculation of the percentage of free PSA in relation to tPSA (the free PSA ratio), allows a 

modest but significant improvement, in the discrimination of prostate cancer from benign 

disease such as benign prostatic hyperplasia. This combination seems to increase in 

patients with borderline or intermediate PSA values (4-10 ng/mL) and negative DREs [49].  

 

1.5.5.1. Free PSA  

Of the various modifications of serum PSA used to improve its specificity in detecting 

CaP, the concept of free to total PSA ratio (f/t PSA) is the most widely used approach [35]. 

It has been shown that the analysis of free PSA reduces the number of negative biopsies by 

25% [66]. Free PSA is generally lower in prostate cancer, and ranges from 1% to 10%, 

when compared to the benign prostate enlargement [66]. This patterns is mostly due to the 

reduced exposure of PSA to abundant proteolytic enzymes in seminal fluid [66]. Since 

fPSA provides better cancer discrimination, several investigations have focused on further 

discriminating fPSA into different molecular forms  [66, 67]. fPSA in serum is now known 

to be composed of at least three distinct forms of inactive PSA, and as shown in Figure 5. 

The first PSA form may contain a number of minor variants, but appears to be largely 

composed of intact PSA that is similar to native, active PSA, except for structural or 

conformational changes that have rendered it to be enzymatically inactive. A second form 

of PSA, called BPSA, is an internally cleaved or degraded form of PSA that is more highly 

associated with Benign prostatic hyperplasia (BPH) [68]. BPSA is identical to native 

mature PSA, and also contains 237 amino acids, but has 2 internal peptide bond cleavages 

at Lys182 and Lys145. The last has been identified as the proenzyme or precursor forms of 

PSA (proPSA), and is the form mostly associated to cancer[69]. ProPSA in serum and 

tissues was found to be comprised of several truncated proPSA forms (Figure 1.5), 

containing from 1 to 5 amino acids in the pro leader peptide instead of the native 7 amino 

acids. The native proPSA (otherwise known as [-7]proPSA) exists in a truncated form 

containing a seven amino acid N-terminal pro-leader peptide (APLILSR). Partial cleavage 

of [-7]proPSA results in the shortening of the seven amino acid pro-leader peptide to form 

[-5]proPSA (LILSR), [-4]proPSA (ILSR) and [-2]proPSA (SR) [62]. 

Immunohistochemical studies have shown that BPSA is expressed preferentially in the 

transitional zone of the prostate and is associated with pathological BPH, while proPSAs 
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are expressed almost exclusively in the peripheral zone of the prostate where most prostate 

cancers are known to emerge [62]. The truncated proPSA form contains pro leader 

peptides of 2 amino acids, and where [-2]proPSA is of particular interest [45]. One 

potential explanation for the enrichment of truncated proPSA forms is that these truncated 

forms are more resistant to activation than the intact proPSA. The truncated proPSA forms 

are therefore more stable. Subsequent studies on prostate tissues already proved that these 

PSA forms are highly enriched in prostate tumors and are a more specific prostate cancer 

marker [69]. Furthermore, amino acid sequencing showed that the proPSA is mainly 

comprised of a truncated form of [-2]proPSA rather than the usual seven amino acids ([-

7]proPSA) [62]. 

  

 

Figure 15. Schematic representation of the partitioning of free prostate-specific antigen (fPSA) into various 

precursor isoforms of PSA (proPSA), benign PSA and inactive PSA (iPSA) in serum, with the respective 

amino acid number. cPSA = complexed prostate-specific antigen [62]. 

  

The proPSA forms are especially useful in the 2.5–4 ng/mL PSA range, while the 

other PSA forms show little diagnostic utility [70]. A current systematic review and meta-

analysis demonstrated that the percentage of [-2]proPSA in relation to fPSA ([-

2]proPSA/fPSA × 100) has greater accuracy than tPSA or fPSA in detecting CaP, and also 

that [-2]proPSA might be helpful in preferentially identifying those patients who might 

harbor a more aggressive form of the disease [71]. Based on this, Beckman Coulter 

(Coulter ACCESS
® 

immunoassay system) introduced a measure of prostate health index 
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(phi) (64). This value is calculated from a combination of tPSA, free PSA and a measure of 

a truncated PSA isoform, [-2]proPSA [62].  

In healthy adult males aged ≤ 50 years-old, the concentrations are 10
6
-fold higher in 

seminal fluid than in blood, in which the median PSA level is ~0.6 ng/mL [49]. In seminal 

fluid, PSA predominantly occurs in a free and active single-chain form, and only a minor 

proportion (≤5%) exists as inactive (due to internal cleavages) [56, 72]. The occurrence of 

this inactive form is due to a formation of covalent complexes with SERPINA5 (protein C 

inhibitor), which is abundantly released from the seminal vesicles [73]. In contrast, the 

majority of PSA that enters in blood is intact, non-catalytic and the predominant proportion 

is covalently linked to ACT [45]. PSA levels in blood span a ~10
5
-fold range, from <0.1 to 

10
4 

ng/mL, with levels above 10
2 

ng/mL found almost exclusively in men with advanced 

prostate cancer [49]. The increased blood levels of PSA in men with cancer cannot be 

explained by increased PSA expression; during the development and progression of 

prostate cancer, PSA expression may actually decrease slightly. The increased blood PSA 

levels must instead be caused by increased release of PSA into blood, consequently to the 

already mention rupture of prostate gland architecture, characteristic of CaP [49]. 

 

1.5.6. Stability of Sample Storage of Total and Free PSA 

Clinical results for quantifying serum PSA are not usually urgently requested, and 

hence, samples are commonly stored and assayed in bundles or in batches for cost-

efficiency [74]. PSA species are both pH- and temperature-labile, which implies a special 

care in sample handling and storage, since it might influence PSA stability in serum. 

Changes in immunoreactivity or alterations in the binding affinity with the specific 

antibody during the sample store are the major drawbacks [75].  Several investigators have 

reported the stability of tPSA in serum samples [65, 75]. It was already confirmed that 

tPSA is sufficiently stable at room temperature for 24h, after serum separation and storage 

in a refrigerator at 4°C for up to 1 week, or in a domestic freezer at -20°C for 1 month (76). 

In 2008,  Reed et al. [75] have gone further when demonstrating that tPSA measured in 

serum exhibits a high correlation with the ones measured in the same serum after 7 years of 

storage at -80 ºC. However, this is not valid for fPSA since it is the most thermolabile 

isoform. In general, it is recommended to prepare samples for analysis within 8 h after 

venipuncture, with the storage of samples at 4 ºC when analyzed on the day of collection, 
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or to storage at temperatures of -70 ºC with additional adjustment of pH to 5.5 when not 

analyzed within 8 h after collection [76]. These procedures guarantee a sufficient stability 

of all PSA forms and eliminates pre-analytical factors as interfering variables [65, 76]. 
 

1.6. PSA Separation/Concentration Methods 

Since the launch of the first test to measure serum tPSA by the Hybritech Corporation 

in 1986 [77], numerous others assays for fPSA, PSA-ACT and tPSA have become 

commercially available [5, 6]. In general, PSA is purified from either prostatic tissue or 

seminal plasma [46]. A typical purification scheme starts with ammonium sulfate 

fractionation, which is followed by separation methods including gel-filtration 

chromatography, isoelectric focusing, lectin-affinity chromatography, polyacrylamide gel 

electrophoresis and high-performance liquid chromatography [46]. These methods have 

mostly contributed to the discovery and identification of different molecular forms and 

biochemical properties of PSA. For a clinical application, immunoassays are the most 

common type of assays commercially available and that have the FDA approval [46]. 

Amongst the various kinds of identification and quantification for PSA, the fluorescence 

microscopy [78], surface plasmon resonance technology (SPR) [79], 

immunochromatography [80], lateral flow immunoassay [81], enzyme-linked 

immunosorbent assay (ELISA) [5], and immunochemiluminescency (TRIFA) [82] are 

widely employed. Usually, all commercial immunoassays consist on adding PSA 

monoclonal antibodies to serum (or plasma) and to incubate the biological fluid using 

standard methods and  conditions [76]. Anti-PSA monoclonal antibodies bounded to PSA 

are detected and the probability that a carcinoma is present increases with increasing the 

PSA binding to antibodies [76]. For example, the Hybritech immunoassay, is a 2-site 

immunoenzymatic sandwich assay that utilizes alkaline phosphatase monoclonal antibody 

to capture the PSA and sandwich it with paramagnetic particles coated with another 

monoclonal antibody [6].  

Even some of the tests and techniques mentioned above exhibit a high detection limit, 

most have significant drawbacks. Table 1.5 presents a summary of the techniques and 

methods commonly applied in the measurement of PSA levels and respective 

identification.  
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For instance, enzyme-linked immunosorbent assay (ELISA) is a powerful technique 

for antigen quantification; although, considerations such as laborious treatment steps, high 

cost of antibodies, low reproducibility, and the requirement of signal amplification using 

biochemical reaction have to be taken into account [6]. 

Fluorescence and electrochemistry-based methods require the labelling of the target 

analyte with dyes and conductors for signal generation and amplification. Sample loss 

during the modification steps may also affect the quantification results. Besides, prolonged 

exposure of fluorescence dye to excitation light source causes the photobleaching and 

quenching of signals that may lead to false negative and underestimated results [83].  

Although SPR can provide a rapid, label-free and real time monitoring of the analyte 

by measuring the change in refractive indices, its high dependency on the physical 

refractive properties limits the types and size of analyte that can be detected by SPR and so 

restricts the choices of materials for biosensing [83]. 
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Table 15. Comparison of literature methods for purification/concentration of PSA molecular forms from 

different human matrices. 

Purification/Concentration 

Method 

PSA 

molecular 

form 

Matrix 
PSA recovery 

(%) 
Ref. 

ELISA tPSA Serum 99.5 [5] 

Sensitive rapid tandem bioluminescent 

enzyme immunoassay (BLIA) 
PSA/ACT Serum 85.6 [84] 

Imunofluorometric assays (TRIFA) fPSA Serum 47.5 [82] 

Indirect Immunosorption 
fPSA 

PSA/ACT 
Serum 60 [85]  

Cibacron blue affinity-based depletion 
fPSA; 

PSA/ACT 
Serum 5 [86] 

Mixed polyclonal antibody and protein G 

column 

fPSA 

PSA/ACT 
Serum 70 [86] 

Column of immobilized monoclonal 

antibodies(commercial antibody fragment 

Vivapure anti-HSA kit) 

free PSA 

PSA/ACT 
Serum 95 [86] 

Thiophilic gel fPSA seminal plasma 96 [87] 

Thiophilic gel TPSA prostate tissue 87 [57] 

Ultrogel ACA44 column fPSA Serum 96 [88] 

Affinity chromatography size-exclusion 

and ion exchange chromatography, anion-

exchange chromatography 

isoforms of 

PSA 
seminal plasma 55 [59] 

Ammonium sulfate precipitation, 

hydrophobic interaction chromatography, 

gel filtration and anion-exchange 

chromatography 

isoforms of 

PSA 
seminal plasma 30 [60] 

Chip EIA tpsa Serum 88.9 [6] 
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1.7. Concentration and Extraction of PSA Using Aqueous Biphasic Systems 

(ABS)  

In 1896, Beijerinck [89] first reported the occurrence of aqueous biphasic systems 

(ABS), when discovering that agar and gelatin, dissolved at certain concentrations in 

aqueous media, formed two liquid aqueous-phases. However, only in 195, Albertson [90] 

introduced ABS as an extractive/separation technique for biomolecules by their 

partitioning between the coexisting phases. These two-phase systems are formed 

spontaneously upon mixing two aqueous solutions of structurally different components, 

such as two polymers, two salts or one polymer and one salt [91]. One of the aqueous 

phases will be enriched in one of the solutes while in the other phase there is prevalence 

for the second polymer or salt.  

For the design of ABS as extraction and concentration processes, their phase diagrams 

and respective tie-lines are required. All ABS have a unique phase diagram under a 

particular set of conditions, such as pH and temperature [91]. These diagrams are useful to 

known in which conditions it is possible to form a biphasic mixture and at which ternary 

compositions the extraction can be performed. They reflect the concentration of the phase-

forming components required to form a two-phase system, the concentration of the phase 

components in the top and bottom phases, and the ratio of phase volume or weight. Figure 

1.6 depicts the common representation of an ABS composed of polypropylene glycol 

(PPG), a salt and water in an orthogonal representation where the amount of water is 

omitted. The binodal curve represents the border between the miscible and immiscible 

regions. In all phase diagrams, the biphasic region is localized above the solubility curve, 

and below it is the single phase region. The larger the biphasic region, the higher the ability 

of the phase-forming components to undergo liquid-liquid demixing [91, 92]. The critical 

point of the ternary system is Point C, where the two binodal nodes meet. In Figure 1.6 the 

binodal curve is represented by the black line, and three mixture compositions at the 

biphasic region and the critical point are identified as X, Y, Z and C, respectively. The 

mixtures X, Y and Z are along the same tie-line (TL) meaning that all the initial mixtures 

will present the same top ([PPG]PPG, [PPG]Salt) and bottom phase compositions ([Salt]PPG, 

[Salt]Salt) [92].  
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Figure 16. Representation of the phase diagram of an ABS. Binodal curve: (-); Critical point: C; tie-line 

(TL); Mixture compositions at the biphasic region (X, Y and Z). Adapted from Reference [92]. 

 

The tie-line length (TLL) is a numerical indicator of the composition difference 

between the two phases and is generally used to correlate trends in the partitioning of 

solutes between the phases. The length of each tie-line is related with the weight of the 

phases and defines the difference in compositions among the coexisting phases [92]. 

ABS have been thoroughly explored in the past years, and are currently seen as a 

powerful technique for the purification and extraction of biomolecules [93, 94]. ABS have 

already been successfully applied in the separation and purification of different biological 

materials, such as cells, virus, organelles, nucleic acids, lipids, amino acids, proteins, 

antibodies and enzymes, without significant denaturing effects [91]. Their biocompatible 

character is derived from a high water content in both phases, up to 70-90 wt%, which 

provides a mild environment to extract biomolecules/bioparticles [95]. 

In general, the partitioning of a molecule between the two phases in an ABS is a 

complex phenomenon, driven by several competing interactions and properties of the 

partitioned solute and phase components. Properties, such as the isoelectric point, surface 

hydrophobicity, molecular weight, ionic strength, electrochemical and conformational 

characteristics of the target biomolecule influence the partitioning behaviour between the 

coexisting phases [91]. Some of these characteristics can even be indirectly influenced by 
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other conditions, such as pH, and type and concentration of the phase-forming 

components. By controlling these factors, it is possible to foreseen a selective partitioning 

and to recover a target product [91]. The interactions involved in the partitioning of 

proteins in ABS are usually short-range (van der Waals) and long-range electrostatic 

molecular interactions between the biomolecule and the surrounding phases [96]. Other 

driving force in ABS partitioning is the excluded volume effect [91]. The complexity of 

chemical and physical interactions involved in the partitioning process in ABS are also 

responsible for making these systems very powerful in contrast to other established 

separation techniques [92].  

ABS may represent an appealing alternative to the current request for fast, economic, 

and easy-to-implement processes. Integrating, clarification, concentration and purification 

in a single operation unit is possible, and, since it is a liquid system, it can be easily scaled-

up only by increasing the components volume [97]. Other advantages include a 

comparatively low energy and time consumption, and low material cost. These methods 

have been replacing other extraction techniques which use volatile and hazardous organic 

solvents, two-step precipitation and ion exchange chromatography [98, 99]. For instance, 

Aguilar et al. [98] compared the performance of ion exchange chromatography and an 

ABS composed of PEG/phosphate-salt for the partial purification of penicillin acylase, and 

verified that not only the number of unit operation steps is decreased from 7 to 4, but it is 

also more cost effective with a high enzyme recovery (97%). A comparison between a 

purification process using ion-exchange chromatography, with a previous acetone 

fractionation, and an ABS extraction demonstrated superior overall recovery of the enzyme 

α-galactosidase in ABS (11.5 vs. 87.6%, respectively) [99].  

 Other widely used technique for the extraction/purification of proteins/enzymes 

consists on the precipitation of the target molecule. Usually, this technique is applied with 

the same purpose of the ABS, as a primary recovery step aiming at capturing the 

biomolecule and sometimes achieving a concentration and partial purification, and thus 

increasing the efficiency of the subsequent steps. A comparison between the two methods 

was already performed and ABS exceeded the precipitation method, leading to a greater 

recovery yield (88 % vs. 49 %) and purity (100 % vs. 89 %) of the target biomolecule 

[100]. From the described investigations, it is clear that ABS can serve as an alternative to 

other conventional separation processes, in particular for proteins and enzymes.  
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For long, the studied ABS were based in the coexistence of two immiscible aqueous-

rich phases formed by polymer–polymer, polymer–salt and salt–salt  mixtures [91]. 

Although, since the demonstration by Rogers and co-workers [101] on the possibility of 

creating ABS by mixing ionic liquids (ILs) and inorganic salts in aqueous solutions, novel 

ABS composed of ILs + water + organic/inorganic salts, amino acids, polymers or 

carbohydrates have become the focus of many other studies [94]. The main advantages of 

these new ABS, when compared to polymer–polymer systems, relay on their lower 

viscosities and on the possibility of tailoring the polarities of the coexisting phases [102]. 

Moreover, they usually display a quick phase separation [103], higher extraction 

efficiencies and allow their design [104]. IL-based ABS are also a potential alternative to 

polymer + salt ABS, since the latter presents a hydrophobic phase mostly composed of the 

polymer and a highly charged and hydrophilic aqueous phase  [91].  

 

1.7.1. Ionic-liquid-based (IL- based) ABS 

Ionic liquids (ILs) were first reported at the beginning of the 20
th

 century by Paul 

Walden [105], when testing new explosive compounds, for the substitution of 

nitroglycerin, while synthesizing ethylammonium nitrate. At the time, the discovery of a 

liquid salt at room temperature did not receive an extensive attention; only in 1934, 

Charles Graenacher [106] filled the first patent for an industrial application regarding ILs 

for the preparation of cellulose solutions. During the 2
nd

 World War, new patents involving 

the use of ILs in mixtures of aluminium chloride (III) and 1-ethylpyridinium bromide for 

the electrodeposition of aluminium were filled [107, 108]. Nevertheless, only in the past 

few years, with the appearance of air and water stable ILs, the research and development of 

novel ILs and their possible applications increased significantly [93, 101, 104, 109-112].  

ILs are salts formed entirely of ions, and consist of large asymmetric organic cations 

and usually an organic or inorganic anion. Due to the large size of their ions, their charges 

are frequently diffuse. As a result, they present reduced electrostatic forces which makes 

difficult to them to form a regular crystalline structure, and therefore, they can be liquid at 

or near room temperature. The most commonly studied ILs are nitrogen-based and their 

general cation chemical structures are presented in Figure 7.  
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Figure 17. Chemical structures of the cations of nitrogen-based ILs. 

 

The most interesting features of ILs can be attributed to their ionic character, such as a 

negligible vapor pressure, low flammability, high thermal and chemical stabilities and an 

enhanced solvation ability for organic, inorganic and organometallic compounds [91]. The 

ILs negligible volatility and non-flammability have contributed to their common 

designation of “green solvents” [113]. In addition, one of the main advantages of ILs is the 

fact that their physical and chemical properties can be tuned by changing the cation and the 

anion for a given application - “designer solvents”. This feature promotes the possibility of 

tailoring their properties, such as hydrophobicity and solution behaviour, thermophysical 

properties, and variable biodegradation ability or toxicological characteristics [91].  

The extraction of proteins using IL-based ABS was first achieved by Du et al. [111] on 

the extraction of proteins from human body fluids by employing a 1-butyl-3-

methylimidazolium chloride ([C4mim]Cl) + K2HPO4 system. After this proof of principle, 

other authors studied the extraction of proteins and enzymes, such as bovine serum 

albumin, lysozyme, trypsin, myoglobin, horseradish peroxidase, cytochrome c, γ-globulins, 

haemoglobin, peroxidase and ovalbumin using IL-based ABS, and revealed that their 

enzymatic activity or stability was not compromised [91]. The possibility of ILs to be 

tailored to exhibit specific properties combined with the optimization of the experimental 

conditions, makes possible that IL-based ABS could be used as a moderate environment 

for proteins without change on their chemical structure while preventing their denaturation 

[91].  
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1.7.2. Bovine Serum Albumin (BSA) as a Model Protein in 

Extraction/Concentration Procedures 

Since the commercially available cancer biomarkers are highly cost products and are 

mostly offered in very small concentrations it is necessary to initiate the experimental 

investigations on extraction/purification/concentration procedures using model compounds 

aiming at defining the improved ABS. In this work, bovine serum albumin (BSA), the 

most abundant protein in blood plasma of many species (up to 40 mg/mL) [114], was 

chosen as a model protein before the experimental studies with PSA. Currently, several 

studies already reported on the ability of IL-based ABS for the extraction and purification 

of BSA [115-117]. 

BSA is a single-chain protein that belongs to the class of serum albumins and is constituted 

by the twenty essential amino acids within a structure that contains 583 units. The 

molecular weight for BSA, calculated from different techniques, ranges from 66411 to 

66700 Da and "the best value" in solution is 66500 Da  [114]. The structure of BSA at the 

physiological pH is predominantly α-helical (67%) with the remaining polypeptide chain 

occurring in turns and extended or flexible regions between subdomains with no β-sheets. 

The BSA molecule is made up of three homologous domains (I, II and III) which are 

divided into nine loops by 17 disulfide bounds [118, 119].  

The charged groups are evenly distributed in BSA; the net negative charge is highest 

in the N-terminal domain and the lowest in the C-terminal domain. Furthermore, several 

isomers of BSA exist at various pH values [120]. Its main 

physicochemical properties are presented in Table 1.6.  

 

Table 16. Physicochemical properties of BSA [114, 121]. 

Molecular weight (g·mol
-1

) 66.50 

Solubility in water at 25 ºC highly soluble in water 

Number of amino acids 585 

pI in water at 25 ºC 4.7 

 

Figure 1.8. BSA structure [122] 
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2.1. Introduction 

Proteins exhibit admirable biological properties, being considered very important 

biomolecules [123]. The production and applications of proteins have rapidly grown up in 

different fields, such as biochemical research, and in the chemical, food and 

pharmaceutical industries [123]. Due to their wide application, it is necessary to maintain 

the three-dimensional structure of proteins through some weak interactions including 

hydrogen bonds, dispersive and ionic interactions [123]. Consequently, many efforts have 

been made in order to acquire knowledge on extraction procedures for proteins and 

pharmaceutical products. However, due to their poor stability, a change in the micro-

environment of proteins disrupts these interactions, causing denaturation of proteins which 

leads to protein unfolding and inactivation [123]. Therefore, the demand to develop not 

only biocompatible but also cheaper and sustainable extraction and purification processes 

for proteins has led to an intense effort to develop clean manufacturing methods and easily 

scaled-up industrial techniques [124]. 

The traditional protein purification methods include ammonium sulphate precipitation, 

electrophoresis, ion-exchange chromatography, and affinity chromatography [98, 99]. 

These methods are not only time and cost consuming, but also are responsible for their loss 

of stability. In addition, some of these methods employ organic compounds, presenting 

therefore some drawbacks since they are volatile and hazardous to human health and to the 

environment [125].The use of aqueous biphasic systems (ABS) based on the application of 

ionic liquids (ILs) emerged in recent years [101] and are a clean alternative for traditional 

organic-water extraction systems. 

Proteins’ stability is strongly affected by the proton activity of the supporting solution 

and has an optimum pH that can be adjusted by the addition of a proper biological buffer. 

It is generally accepted that, at appropriate concentrations, hydrophilic ILs tend to 

dissociate in aqueous solutions, fully or partly, and into ions which form neutral or very 

weakly basic solutions [116]. Certainly, this pattern is not always true because there are 

some functionalized ILs that work as Lewis acidic or basic catalysts [126]. Adding a buffer 

into aqueous IL solutions, when dealing with protein stability, will not provide an adequate 

pH control since the ILs acidity or basicity could swamp the buffer effect [116]. Therefore, 

it is crucial to look for alternative pH control methods, and in particular in the design of 

ILs with buffering characteristics. Good and his research team [127] have designed 
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biological buffers (Good’s buffers, GB) that fit these criteria and that can be used as ILs 

precursors.  

Good’s buffers are zwitterionic amino acid derivatives, and they are the most widely 

used biological buffers. It was suggested that these Good’s buffers act as kosmotropic 

substances (strongly hydrated molecules) and protein structure stabilizers [127]. Since 

Good’s buffers are zwitterionic compounds they can be used as anion or cation radicals of 

ILs [127]. This possibility creates new protein stabilizing ILs with self-buffering 

characteristics.  

Novel GB-ILs were synthesized in this work while showing that they control the pH 

of the aqueous environment, and can thus stabilize proteins. The GB-ILs adopted in this 

work are based on N-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine (Tricine), 2-[1,3-

dihydroxy-2-(hydroxymethyl)propanyl]amino]ethanesulfonic acid (TES), N-cyclohexyl-2-

aminoethanesulfonic acid (CHES), N-cyclohexyl-2-aminoethanesulfonic acid (HEPES), 

and 2-(N-morpholino)ethanesulfonic acid (MES). These buffers were converted into 

anions and coupled to the tetrabutylammonium ([N4444]
+
) and tetrabutylphosphonium 

([P4444]
+
) as cations.

 
These GB-ILs were then used as constituents of aqueous biphasic 

systems (ABS), combined with potassium citrate in aqueous media, as alternative 

extraction media for proteins. Initially, the ternary phase diagrams, tie-lines (TLs) and tie-

line lengths (TLLs) were determined at 25 ºC. Then, these systems were investigated as 

liquid-liquid extraction systems for BSA, used here as a model protein. 

Size-exclusion HPLC is a highly precise and sensitive tool for quality control of 

proteins and which allows to infer on the protein stability, as well as on other contaminant 

proteins in solution, and was employed here as a quantification technique. 

 

2.2. Experimental Section 

2.2.1. Chemicals 

The salt potassium citrate tribasic monohydrate (K3C6H5O7·H2O, purity ≥ 99 wt%) 

was obtained from Sigma–Aldrich Chemical Co. (USA). BSA/fraction V, pH = 7.0, was 

obtained from Acros Organics. Methanol (HPLC grade, purity > 99.9%) was obtained 

from Fisher Scientific. Acetonitrile (purity > 99.7%) was supplied from Lab-Scan. The 

buffers required for the ILs synthesis, namely CHES (purity > 99 wt%), HEPES (purity > 

99.5 wt%), MES (purity > 99 wt%), Tricine (purity > 99 wt%), and TES (purity > 99 wt%) 
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were purchased from Sigma–Aldrich Chemical Co. The hydroxide-based compounds, as 

cation precursors, [N4444][OH] (40 wt% in H2O) and [P4444][OH] (40 wt% in H2O) , were 

also supplied by Sigma–Aldrich Chemical Co. Sodium hydroxide pellets were acquired 

from Eka Chemicals-. Dimethyl sulfoxide (DMSO, purity > 99.9 wt%) and deuterium 

oxide (D2O purity > 99.9 wt%) were obtained from Sigma–Aldrich Chemical Co.. 

 Purified water passed through a reverse osmosis and a Milli-Q plus 185 water 

purifying system was used in all experiments. 

 

2.2.2. Experimental Procedure 

2.2.2.1 Synthesis and Characterization of Good’s buffer ionic liquids  

The GB-ILs were synthesized via neutralization of the base with the appropriate acid. 

A slightly excess of an equimolar aqueous solution (1:1.1) of buffer was added drop-wised 

to a tetrabutylphosphonium or tetrabutylammonium hydroxide solution. By way of 

example, tricine buffer was added dropwise into an aqueous solution of 

tetrabutylphosphonium hydroxide. The mixture was stirred continuously for at least 12 h at 

room temperature (≈ 25 ºC). The anion source (1.1 equivalents of acid) was added to an 

aqueous solution of [P4444][OH] (1 equivalent, 40 wt.% in water) and the mixture was 

stirred at room temperature for at least 12 h to produce the ionic liquid and water as by-

product. 

The mixture was then evaporated at 50-60 °C under reduced pressure and which gives 

rise to a viscous liquid. A mixture of acetonitrile and methanol (1:1, v:v) was added to the 

viscous liquid and then vigorously stirred at room temperature for 1 h. The solution was 

then filtered to remove any excess buffer. The solvent mixture was evaporated and the GB-

IL product was dried in vacuum (10 Pa) for 3 days at room temperature. The water content 

in each GB-IL was measured by Karl–Fischer (KF) titration, using a KF coulometer 

(Metrohm Ltd., model 831). The chemical structures of the GB-ILs were confirmed by 
1
H 

and 
13

C NMR spectroscopy (Bruker AMX 300) operating at 300.13 and 75.47 MHz, 

respectively. Chemical shifts are expressed in δ (ppm) using tetramethylsilane (TMS) as 

internal reference and D2O as deuterated solvent. The synthesized ILs synthetized in this 

work showed high purity level without signs of decomposition. 
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2.2.2.2. Phase Diagrams and Tie-lines (TLs) 

The binodal curve of each ABS was determined through the cloud point titration 

method at 25 (± 1) ºC and atmospheric pressure. The experimental procedure has been 

validated in previous reports [128, 129]. Repetitive drop-wise addition of the aqueous salt 

solution to the IL solution was carried out until the detection of a cloudy biphasic solution, 

followed by the drop wise addition of water until the finding of a monophasic region. This 

procedure was carried under constant stirring. Each mixture composition was determined 

by the weight quantification of all components added within an uncertainty of ± 10
-4

 g 

(using an analytical balance, Mettler Toledo Excellence XS205 DualRange).  

The tie-lines (TLs) of each phase diagram, and at the mixtures compositions for which 

the extraction of BSA was carried out, were determined by a gravimetric method originally 

described by Merchuk et al. [130]. The selected mixture, at the biphasic regime, was 

prepared by weighting the appropriate amounts of IL + salt + water and further vigorously 

stirred. Then, the mixture was submitted to centrifugation for 10 min and at controlled 

temperature (25 ± 1) °C. After centrifugation, the sample was left in equilibrium for more 

10 min at (25 ± 1) °C to guarantee the equilibration of the coexisting phases. After this 

period, each phase was carefully separated and weighted. Each individual TL was 

determined by the application of the lever-arm rule to the relationship between the weight 

of the top and bottom phases and the overall system composition. The experimental 

binodal curves were fitted using Eq. 1 [130], 

          (          )  (        )      (1) 

where      and        are the IL and salt weight fractions percentages, respectively, and  , 

  and   are fitted constants obtained by least-squares regression. Each individual TL was 

determined by a weight balance approach through the relationship between the top weight 

phase composition and the overall system composition. For the determination of TLs the 

following system of four equations (Eqs. 2 to 5) was used to estimate the concentration of 

IL and salt at each phase (      ,         ,            and         ) [130]: 
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where the subscripts             designate the salt- and IL-rich phases, respectively, and   

is the initial mixture composition. The parameter α is the ratio between the top weight and 

the total weight of the mixture. The solution of this system provides the concentration (wt 

%) of the IL and salt in the top and bottom phases, and thus the, TLs can be easily 

represented. For the calculation of the tie-line length (TLL) Eq. 6 was applied.  

    √(                   )    (               )     (6) 

For this approach, each experimental binodal curve was previously fitted by Eq. 1.
  

All the calculations considering the mass fraction or molality of the citrate-based salt 

were carried out discounting the complexed water. 

In all systems, the IL-rich phase corresponds to the top phase while the bottom phase 

is mostly enriched in the organic salt. 

 

2.2.2.3. pH measurements  

The pH values of both the IL-rich and organic-salt-rich aqueous phases were measured 

at (25 ± 1) ºC using a METTLER TOLEDO SevenMulti pH meter within an uncertainty of 

± 0.02. 

 

2.2.2.4 Extraction Efficiencies of Bovine Serum Albumin 

The ternary mixtures compositions used in the partitioning experiments of BSA were 

gravimetrically prepared at a fixed and common mixture composition: (22.4  1.3) wt % of 

[N4444][GB] + (25.6  2.6) wt% of salt and (39.4  0.7) wt % of [P4444][GB] + (15.1  0.9) 

wt % of salt. The aqueous solution added contained BSA at a concentration of circa 0.5 

g·dm
-3

. Each mixture was vigorously stirred, centrifuged for 10 min, and left to equilibrate 

for at least 10 min at 25 (± 1) °C to achieve the complete BSA partitioning between the 

two phases. After, a careful separation of the phases was performed, and the amount of 

BSA in each phase was quantified by SE-HPLC (Size Exclusion High-Performance Liquid 

Chromatography) using a calibration curve specifically determined for this purpose 

(Appendix A). Each aqueous phase was diluted at a 1:10 (v:v) ratio in a phosphate buffer 

saline solution before injection. For the preparation of the phosphate buffer saline solution 

it was used: sodium phosphate monobasic (NaH2PO4) and sodium phosphate dibasic 

heptahydrated (Na2HPO4·7H2O). A Chromaster HPLC (VWR, Hitachi) coupled with an 

UV detector was used. RP-HPLC was performed on an analytical column (25 cm  2 mm 
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i.d., 25 m), Lichrospher 100 RP-18 from Merck. A 100 mM phosphate buffer in MiliQ 

water (mobile phase) was run isocratically with a flow rate of 1 mL·min
-1

. The column 

oven temperature was kept constant at 25 °C as well as the auto-sampler temperature. The 

injection volume was of 25 µL. The wavelength was set at 280 nm whereas the retention 

time of BSA was found to be 9.31 min within an analysis time of 24 min. The 

quantification of BSA was carried out by an external standard calibration method in the 

range of 0.001 to 1 g·dm
-3

 of protein. At least three independent biphasic mixtures for each 

GB-IL-based system were prepared and 3 samples of each phase were quantified. The 

interference of the salts and ILs with the quantification method was also ascertained and 

blank control samples were initially analyzed. 

 The percentage extraction efficiency of BSA,       , is the percentage ratio 

between the amount of protein in the IL-rich aqueous phase to that in the total mixture, and 

is defined according to Eq. 7, 

       
           

                            
                            (7) 

where [BSA] is the concentration of protein, w is the weight of each phase, and the 

subscripts IL and Salt represent the IL- and salt-rich phases, respectively. 

 

2.3 Results and Discussion 

2.3.1. Characterization of synthetized Ionic Liquids 

The macroscopical appearance and NMR characterization data for each GB-IL are 

described below. 

[P4444][Tricine]: From Tricine buffer (50.3 mmol), this compound was obtained as 

white solid. Water content < 0.05 wt%. 
1
H NMR (300 MHz, D2O/TSP): 3.37 (s, 6H), 3.12 

(s, 2H), 2.00 (m, 8H), 1.27-1.44 (m, 16H), 0.77 (t. 12H). 
13

C NMR (75.47 MHz, 

D2O/TSP): 182.71, 63.12, 62.97, 47.68, 26.28, 20.79, 20.15, 15.42. 

[P4444][TES]: From TES buffer (45.1 mmol), this compound was obtained as a light 

viscous liquid. Water content < 0.05 wt%. 
1
H NMR (300 MHz, D2O/TSP): 3.31 (s, 6H),  

2.82 (s, 2H), 2.57 (t, 2H), 2.10 (m, 8H), 1.29-1.49 (m,16H), 0.79 (t, 12H). 
13

C NMR (75.47 

MHz, D2O/TSP): 60.65, 57.63, 51.58, 37.69, 26.28, 20.83, 20.17, 15.46. 

[P4444][MES]: From MES buffer (48.5 mmol), this compound was obtained as a white 

solid. Water content < 0.05 wt%. 
1
H NMR (300 MHz, D2O/TSP): 3.63 (t, 4H), 2.99 (t, 
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2H), , 2.72 (t, 2H),  2.50 (t, 4H), 2.02 (m, 8H), 1.27-1.42 (m, 16H), 0.78 (t,12H,). 
13

C NMR 

(75.47 MHz, D2O/TSP): 68.80, 55.44, 55.11, 50.02, 26.28, 20.80, 20.16, 15.44. 

 [P4444][HEPES]: From HEPES buffer (44.3 mmol), this compound was obtained as as 

a light viscous liquid. Water content < 0.05 wt%. 
1
H NMR (300 MHz, D2O/TSP): 3.59 

(t,4H), 2.97 (t, 2H), 2.94 (t, 2H), 2.67 (t, 2H), 2.46 (t, 8H), 2.03 (m, 8H), 1.28-1.45 (m, 

16H), 0.79 (t, 12H). 
13

C NMR (75.47 MHz, D2O/TSP): 61.59, 60.87, 55.02, 54.78, 54.19, 

50.39, 26.29, 20.80, 20.16, 15.44. 

[P4444][CHES]: From CHES buffer (47.2 mmol), this compound was obtained as a 

white solid. Water content < 0.05 wt%.  
1
H NMR (300 MHz, D2O/TSP); 

1
H NMR (300 

MHz, D2O/TSP); 2.95 (m, 2H), 2.38-2.47 (m, 1H), 2.02 (m, 8H), 1.28-1.45 (m, 16H,), 0.94 

(m, 10H), 0.78 (t, 12H). 
13

C NMR (75.47 MHz, D2O/TSP): 63.37, 63.09, 53.42, 39.56, 

26.28, 26.08 , 25.60, 20.30, 20.15, 15.43. 

[N4444][Tricine]: From Tricine buffer (52.3 mmol), this compound was obtained as a 

white solid. Water content < 0.05 wt%. 
1
H NMR (300 MHz, D2O/TSP): 3.53 (s, 6H) 3.27 

(s, 2H), 3.21 (t, 8H), 1.65 (quin, 8H), 1.37 (sext, 8H), 0.93 (t,12H). 
13

C NMR (75.47 MHz, 

D2O/TSP): 182.83, 63.15, 62.93, 60.97, 47.70, 26.00, 22.03, 15.71. 

[N4444][TES]: From TES buffer (49.0 mmol), this compound was obtained as a white 

solid. Water content < 0.05 wt%. 
1
H NMR (300 MHz, D2O/TSP): 3.32 (s,6H), 3.17 (t, 8H), 

2.86 (t, 2H), 2.60 (2H, t), 1.55 (quin, 8H ), 1.30 (sext,8 H) 0.91 (t,12 H).
 13

C NMR (75.47 

MHz, D2O/TSP): 60.55, 60.49, 57.59, 51.50, 37.65, 23.20, 19.25, 13.52. 

[N4444][MES]: From MES buffer (48.5 mmol), this compound was obtained as a white 

solid. Water content < 0.05 wt%. 
1
H NMR (300 MHz, D2O/TSP): 3.53 (t, 4H), 3.17 (t, 

8H); 2.51 (t, 2H,), 2.49 (t,2H,), 2.32 (t, 4H), 1.55 (quin 8H), 1.30 (sext, 8H), 0.93 (t,12H).
 

13
C NMR (75.47 MHz, D2O/TSP): 68.94, 61.00, 55.53, 55.18, 50.19, 26.03, 22.07, 15.78. 

[N4444][HEPES]: From HEPES buffer (45.9 mmol), this compound was obtained as a 

white solid. Water content < 0.05 wt%. 
1
H NMR (300 MHz, D2O/TSP): 3.46 (t, 4H), 3.17 

(t, 8H);  2.61 (t, 2H), 2.54 (t, 2H), 2.50 (t, 2H), 2.34 (t, 8H), 1.55 (quin, 8H), 1.33 (sext, 

8H), 0.93 (t, 12H). 
13

C NMR (75.47 MHz, D2O/TSP): 61.66, 60.97, 60.97, 55.06, 54.83, 

54.26, 50.45, 26.03, 22.06, 15.76.  

[N4444][CHES]: From CHES buffer (49.0 mmol), this compound was obtained as a 

white viscous liquid. Water content < 0.05 wt%. 
1
H NMR (300 MHz, D2O/TSP): 3.23 (t, 

8H); 2.81 (t, 2H).
1 

2.58 (t, 2H), 2.39-2.44 (m, H), 1.34 (sext, 8H), 1.57 (quint, 8H), 0.99-
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1.78 (m, 10H), 0.91 (t, 12H). 
3
C NMR (75.47 MHz, D2O/TSP): 57.41, 55.65, 50.43, 42.47, 

32.22, 25.73, 24.23, 23.73, 19.12, 13.30.
 

The chemical structures of the synthesized ILs are presented in Figure 2.1. 
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Figure 2.1. Chemical structures of the studied good buffers ionic liquids: (i) [Tricine]
-
; (ii) [TES]

-
, (iii) 

[CHES]
-
; (iv) [HEPES]

-
, (v) [MES]

-
; (vi) Cl

-
; (vii) [P4444]

+
; (viii) [N4444]

+
. 

 

2.3.2 Phase Diagrams and Tie-lines 

The new phase diagrams, at 25 ºC and at atmospheric pressure, for the systems 

composed of water, K3C6H5O7 and the ILs [P4444][GB] ([P4444][Tricine], [P4444][CHES], 

[P4444][MES], [P4444][HEPES] and [P4444][TES]) and [N4444][GB] ([N4444][Tricine], 

[N4444][CHES], [N4444][MES], [N4444][HEPES] and [N4444][TES]) are illustrated in Figures 

2.2 and 2.3, respectively. The  ternary phase diagrams previously reported for [P4444]Cl and 

[N4444]Cl [131] are also shown for comparison purposes. The experimental data are shown 

both in weight fraction and molality units. The molality units allows a better understanding 

of the impact of the ILs structure on the phase diagrams behaviour, avoiding differences 

that could result from different molecular weights. The detailed experimental data 

corresponding to the ternary phase diagrams determined in this work are presented in 

Appendix B.  

P+
S

O

O

-O

NH
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For all studied ABS, the top phase corresponds to the IL-rich aqueous phase while the 

bottom phase is mainly composed of salt and water. 

Considering the representations in Figures 2.2 and 2.3, the closer to the axis is located 

to the binodal curve, the easier it is to separate the IL from aqueous solution. Given the 

trends presented, the formation of ABS must be the result of the salting-out effect of the 

citrate-based salt, a strong salting-out salt composed of a trivalent charged anion, over the 

IL in aqueous media. For phosphonium-based ILs, and in molality units, the IL anions 

ability to form an ABS, for instance at 1.0 mol·kg
-1

 of K3C6H5O7, follows the order: 

[P4444][CHES] > [P4444][MES] > [P4444][HEPES] > [P4444][TES] >
 
[P4444][Tricine]

 
 . As 

expected, for ammonium IL-based (taking into account the anions), the order keeps the 

same: [N4444][CHES] > [N4444][MES] > [N4444][HEPES]
 
> [N4444][TES]

 
> [N4444][Tricine]. 

The formation of an aqueous biphasic system depends on the type of IL and its 

concentration, type of salt and its concentration, temperature and other features such as pH 

of the aqueous medium. The intensity of the phase-forming ability in each IL-based system 

relays on the basis of the complex and competing nature of the interactions occurring 

between the solutes (i.e., ions from the inorganic salt and IL) and water or between the 

phase-forming components [2]. Since potassium citrate is a strong salting-out salt, 

according to the Hofmeister series [132], it has a higher affinity for water and thus there is 

a preferential exclusion of the IL from the aqueous solution, while promoting the two 

phases formation. Comparing to cations, anions have a higher aptitude for hydration since 

they are more polarizable and present a more diffuse valence electronic configuration 

[133], and thus the influence of the IL anion is more relevant to the phase diagrams 

behaviour than the influence derived from the IL cation as presented and discussed below.  

It was already demonstrated that the ability of an ionic liquid anion to produce ABS 

closely follows the decrease on their hydrogen-bond accepting strength or electron pair 

donation ability [134]. Anions with lower hydrogen bond basicity values present lower 

ability to create hydration complexes, and therefore are more easily salted-out by salts. 

Although no hydrogen-bond basicity values have been reported for these new ILs, some 

major conclusions can be drawn at this point using use of the water-octanol partition 

coefficients (Kow) of each good buffer.  

The phase diagrams for the ILs composed of the anions with more -OH groups 

([Tricine]
-
 and [TES]

-
) are those that are more distant from origin, meaning that these 
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systems require more salt for phase separation. Then, [HEPES]
-
,
 
with one –OH group 

appears followed by [MES]
- 

and [CHES]
- 

with no –OH groups. The presence of –OH 

groups enhances the hydrogen-bonding with water and turns more difficult the salting-out 

process by the citrate-based salt.  These affinities for water are reflected in the respective 

Kow values of each buffer. Values for log(Kow) are as follow: CHES: -0.59; MES: -2.48; 

HEPES: -3.11; TES: -4.48; Tricine: -5.25. The higher the value of log(Kow) the higher the 

affinity of the anion for the octanol-rich phase and the lower its polarity. Therefore, higher 

log(Kow) values correspond to anions that are more easily separated into two aqueous 

phases (with a phase diagram situated near the binodal origin). 

 

  

Figure 2.2. Ternary phase diagrams for the systems composed of IL + K3C6H5O7 + water at 25 °C and 

atmospheric pressure in wt% (left) and in mol.kg-1 (right): () [P4444][Tricine], () [P4444][MES], () 

[P4444][HEPES], () [P4444][TES], () [P4444][CHES], and () [P4444]Cl [131]. 

 



Extraction of BSA using IL + Salt ABS 

 

43 

 

 

Figure 2.3. Phase Ternary phase diagrams for systems composed of IL + K3C6H5O7 + water at 25 °C and 

atmospheric pressure in wt% (left) and in mol.kg-1 (right): (▲) [P4444][Tricine], (▲) [N4444][MES], (▲) 

[N4444][HEPES], (▲) [N4444][TES],  (▲) [N4444][CHES] and (▲) [N4444]Cl [131]. 

  

The effect of the IL cation core is displayed in Figure 2.4. The [P4444]
+
 ability to form 

ABS with potassium citrate, for instance at 1.0 mol·kg
-1

 of K3C6H5O7, is higher than 

[N4444]
+
 for all cation-anion combinations. Although both types of compounds are 

composed of 4 alkyl chains of similar size, there are also some contributions derived from 

the central atom at the cation core. Similar results were obtained in ABS constituted by 

more conventional ILs and potassium phosphate [135], sodium carbonate [136] and  

potassium citrate [131] as the salting-out agents. In these investigations phosphonium-

based ILs are also more effective in promoting ABS when compared to ammonium-based 

compounds. In addition, Neves et al. [137] reported that independently of the salt 

employed and of the pH of the aqueous media, the phosphonium-based ILs are always 

more effective in forming ABS [137, 138]. This is an expectable trend since none of the 

cations can suffer speciation at different pH values. Nevertheless, both cations are known 

for their high ability for ABS formation: they have highly shielded charges, located mostly 

on the heteroatom that is surrounded by four alkyl chains and no aromatic character, and 

hence possess a low affinity for water. The smaller the affinity for water and/or the more 

extensive hydrophobic nature of the IL, the more prone it is to be salted-out [136]. 
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Figure 2.4. Evaluation of the cation nature in the ternary phase diagrams composed of IL + K3C6H5O7 + 

water  at 25 °C and atmospheric pressure in wt% (left) and in mol.kg-1 (right): () [P4444][Tricine], () 

[P4444][MES], () [P4444][HEPES], () [P4444][TES],  () [P4444][CHES], (▲) [N4444][Tricine], (▲) 

[N4444][MES], (▲) [N4444][HEPES], (▲) [N4444][TES], (▲) [N4444][CHES]. 

 

For the studied systems, the experimental binodal data were further fitted by the 

empirical relationship described by Eq.1. The regression parameters A, B and C, were 

estimated by the least-squares regression method, and their values and corresponding 

standard deviations (σ) are provided in Table 2.1. In general, good correlation coefficients 

were obtained for all systems, indicating that these fittings can be used to predict data in a 

given region of the phase diagram where no experimental results are available, as it is 

possible to confirm in Figure 2.5.  

The experimental TLs, along with their respective length (TLL), are reported in Table 

2.2. An example of the TLs obtained is depicted in Figure 2.6. In general, the TLs are 

closely parallel to each other. 
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Table 2.1. Correlation parameters used to describe the experimental binodal data by Eq. 1 and respective 

standard deviations (σ) and correlation coefficients. 

 

 

 

 
Figure 2.5. Phase diagram for the ternary systems composed of GB-IL + K3C6H5O7 + water, with the 

corresponding binodal fitting of data using Eq. 1 (-). 

 

IL A ± σ B ± σ 10
5 
(C ± σ) R

2
 

[N4444][TES] 96.0 ± 2.0 -0.256 ± 0.008 1.5 ± 0.2 0.9986 

[N4444][Tricine] 83.3 ± 1.1 -0.185 ± 0.004 2.4 ± 0.0 0.9926 

[N4444][MES] 116.5 ± 1.6 -0.382 ± 0.005 0.2 ± 0.1 0.9983 

[N4444][HEPES] 87.7 ± 0.7 -0.250 ± 0.003 2.9 ± 0.1 0.9996 

[N4444][CHES] 118.2 ± 4.1 -0.358 ± 0.010 9.3 ± 0.4 0.9974 

[P4444][TES] 113.0 ± 1.2 -0.287 ± 0.003 3.1 ± 0.0 0.9997 

[P4444][Tricine] 110.1 ± 8.5 -0.373 ± 0.002 2.4 ± 0.2 0.9963 

[P4444][MES] 98.3 ± 0.5 -0.328 ± 0.002 4.0 ± 0.1 0.9996 

[P4444][HEPES] 89.9 ± 1.65 -0.280 ± 0.008 3.05 ± 0.3 0.9987 

[P4444][CHES] 93.2 ±  1.0 -0.355 ± 0.005 15.4 ± 0.3 0.9991 
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Table 2.2. Data for the tie-lines (TLs) and tie-line lengths (TLLs). Initial mixture compositions are 

represented as [Salt]M and [IL]M whereas [Salt]Salt and [IL]Salt are the composition of IL and salt at the IL-rich 

phase, respectively, and vice-versa.  

IL 

Weight fraction composition / wt % 

[IL]IL [Salt]IL [IL]M [Salt]M [IL]Salt [Salt]Salt TLL 

[N4444][TES] 
51.7296 5.7859 20.8895 28.1389 11.0112 35.2987 50.2892 

61.0784 3.1155 20.7819 29.0911 10.8459 35.4960 59.7645 

[N4444][Tricine] 

65.2216 1.7079 28.6541 29.8436 0.8649 51.2251 81.2018 

32.7911 18.0888 21.4407 26.4080 10.4568 34.4595 27.6916 

38.1894 14.4785 22.4482 25.9560 9.4489 35.4343 35.5691 

[N4444][MES] 
43.9481 6.5012 23.8439 23.3054 11.7814 33.3054 41.9237 

43.3294 6.6911 22.3808 24.2833 11.9457 33.0466 40.9822 

[N4444][HEPES] 
54.1907 3.6776 23.8439 23.3054 5.6360 35.0821 57.8255 

51.9180 4.3472 23.5406 23.0112 6.0666 34.5039 54.8796 

[P4444][TES] 
79.5109 1.511 39.4578 19.7654 5.0904 35.4285 78.3983 

55.664 5.9871 39.5184 14.4206 10.6396 29.5049 50.7967 

[P4444][Tricine] 
81.4673 1.2599 39.7357 18.7737 13.2004 29.9100 89.8518 

55.8111 6.1947 38.9070 15.4753 14.3100 28.9804 67.5233 

[P4444][HEPES] 
79.6613 0.1869 40.3970 18.2171 5.0206 34.4388 82.1245 

71.0696 0.7061 40.5886 14.9978 8.4631 30.082 69.1558 

[P4444][CHES] 
81.2968 0.1491 39.8681 19.1759 0.0003 37.4859 89.4603 

77.4011 0.2751 42.9426 16.1162 0.0011 35.8500 41.4097 

[P4444][MES] 
3.6038 33.0105 40.2318 17.7693 82.2216 0.2970 85.1524 

30.0802 5.5498 38.9783 16.3011 77.2079 0.5430 77.5070 

[P4444]Cl 

76.7622 2.7018 38.3083 22.6123 2.4265 41.1911 83.7091 

56.5028 5.1675 38.9051 13.9931 8.1176 29.4337 54.1293 

57.7081 4.9733 39.2215 14.8860 7.3160 30.6090 56.5381 
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Figure 2.6. Phase diagram for the quaternary system composed of K3C6H5O7 + [P4444][TES] + Water at 25ºC 

and atmospheric pressure: binodal curve data (); TL data (+); adjusted binodal data using Eq. 1 (-). 

 

2.3.3 Extraction Efficiencies of BSA 

Table 2.3 presents the extraction efficiencies of BSA in ABS composed of [N4444][GB] 

+ K3C6H5O7 and [P4444][GB] + K3C6H5O7. The mixture compositions of each ABS are also 

provided in Table 2.3. This organic salt was chosen to perform the extraction experiments 

of BSA due to its biodegradable and non-toxic nature [131]. The macroscopic appearance 

of the studied ABS is shown in Figure 2.7.  

During partitioning, the exposed groups of proteins come into contact with the phase 

components which determine the partitioning behaviour. This surface-dependent 

phenomenon is very complex since a protein can interact with the surrounding molecules 

within a given phase via hydrogen bonding, electrostatic interactions, π⋅⋅⋅π interactions 

between the aromatic groups and dispersive-type interactions between the aliphatic groups. 

The net effect of these interactions is likely to be different in the two phases and the 

protein will partition preferentially into one phase [139]. 
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Table 2.3. Percentage extraction efficiencies of BSA, EEBSA%, and respective standard deviations (σ) in the 

ABS composed of [N4444][GB] + K3C6H5O7 at 25 ºC and [P4444][GB] + K3C6H5O7 at 25 ºC and atmospheric 

pressure. Initial mixture compositions and respective standard deviations (σ) are represented as [IL]M and 

[Salt]M. 

IL 

Weight fraction composition / 

(wt%) EEBSA% 

[IL]M [Salt]M 

[N4444][Tricine] 21.4 ± 1.2 26.4 ±  2.5 100 

[N4444][HEPES] 22.8 ± 0.3 23.3 ± 0.2 100 

[N4444][MES] 22.4 ± 0.8 23.3 ± 0.6 100 

[N4444][TES] 20.9 ± 0.9 26.4 ± 2.0 100 

[P4444]Tricine] 38.8 ± 0.9 14.0 ± 0.5 100 

[P4444][HEPES] 39.6 ± 0.5 13.9 ± 0.2 100 

[P4444][CHES] 39.3 ± 0.8  13.7 ± 0.3 100 

[P4444][MES] 38.9 ± 0.6 16.3 ± 1.5 100 

[P4444][TES] 39.5 ± 0.3 15.3 ± 0.1 100 

[P4444]Cl 40.6 ± 0.6 14.4 ± 0.7 100 

 

In all the studied examples it was observed that the IL-rich phase is able to completely 

extract the protein with extraction efficiencies of 100%. In fact, no protein was detected at 

the salt-rich phase. The high extraction efficiencies can be a direct result of the strong 

salting-out ability of K3C6H5O7 (high-charge density anion with an improved ability to 

create hydration complexes) which leads to the “exclusion” of BSA from the inorganic-

salt-rich phase to the more “organic” IL-rich phase. Overall, BSA has a higher affinity for 

the IL-aqueous phases when compared with the salt-rich phase although this is a more 

hydrated phase. 

Figure 2.7. Visual appearance of the BSA extraction with an ABS formed by IL+ salt + water. 
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The pH values of both phases in each ABS, and for the compositions for which the 

TLs were determined, and some examples are displayed in Table 2.4. In all situations, BSA 

is in a negative charged form (pH > pI) due to the buffered alkaline medium used in the 

extractions (Table 2.4). Nevertheless and even charged, the protein has more affinity for 

the IL-rich phase, and it seems that the electrostatic interactions between the salt cation 

(K
+
) and the BSA negative form are not relevant, since the protein migrates preferentially 

to the IL-rich phase.  

 

Table 2.4. pH values of the coexisting  phases ABS formed by ILs + K3C6H5O7. 

IL pH (IL-rich phase) pH (Salt-rich phase) 

[P4444][MES] 9.64 9.47 

[P4444][HEPES] 9.65 9.60 

[P4444][Tricine] 11.89 10.77 

[N4444][Tricine] 10.75 10.90 

 

From weight balances to the protein (in all experiments), it was possible to infer that 

there are no major “losses” of protein by precipitation. The GB-IL–based systems studied, 

allowed to maintain the pH of each ABS while allowing a proper extraction free of protein 

denaturation or precipitation. The stability of the protein in presence of ILs aqueous 

solutions was also evaluated in this work and it will be presented latter. These results are 

even more relevant when compared with some literature works. Lin et al. [140], reported a 

study based on the extraction of different proteins, including BSA, resorting to the use of 

ABS formed by eight ILs combined with K3PO4, where 1-octyl-3-methylimidazolium 

bromide ([C8mim]Br) was selected as the suitable IL. In this work, even with the 

application of the best IL, they were only able to achieve a 90.5% extraction efficiency 

[140]. In addition, another recent work evaluated the partitioning behaviour of BSA in an 

ABS composed by 1-hexyl-3-methylimidazolium chloride ([C6mim]Cl) +  K2CO3 [141] 

Still, despite the evaluation of the influence of several process parameters like the ionic 

liquid and salt concentrations, system temperature, tie-line length, phase volume ratio and 

neutral salts addition, they only achieved a maximum extraction of BSA of about 94% 

[141]. 
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Overall, the systems proposed here are more efficient for the extraction of BSA while 

using a biodegradable salt and ILs with buffer characteristics. 

 

2.4. Conclusions 

It was possible to evaluate the novel GB-IL-based ABS combined with a 

biodegradable organic salt, ranging from their phase diagrams to their application in the 

extraction of proteins. In this section it was described the synthesis of a new class of ionic 

liquids, novel phase diagrams for ABS, and the respective TLs and TLLs. The large array 

of ILs investigated and the distinct phase behaviours observed, allowed not only to study 

the influence of the cation on the formation of ABS but also the anion influence. In 

general, an increase in either the cation or the anion hydrophobicity facilitates the 

formation of ABS, following the same trend of conventional ILs. 

The obtained results confirm that GB-ILs–based ABS are a powerful technique for the 

separation and extraction of biomolecules sensitive to the pH of the medium. 

Consequently, these new systems are a promising extraction technique and worthy of 

further investigation when dealing with valued-added proteins or of high interest, such as 

cancer biomarkers. 

.



 

 

 

 

3. Extraction of BSA using 

IL + polymer ABS 
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3.1. Introduction 

The growing demand for biotechnological fine chemicals and biological molecules, in 

particular proteins which have been increasingly used in therapeutic and diagnostic 

applications, has led to the development of specific separation and purification methods. 

Conventional methods for purifying and separating proteins, as already discussed, present 

several disadvantages such as high complexity, time and cost-consuming and are not easily 

scaled-up. Since proteins are easily denatured and lose their biological activity when in 

contact with most organic solvents, the use of biocompatible ILs and polymers in ABS 

appear to be a viable alternative for concentrating the target high-value cancer biomarkers 

from biological fluids foreseen in this work. ABS based on the application of ionic liquids 

(ILs) emerged in recent years as an efficient extraction alternative compared to traditional 

organic-solvent-water systems. The most studied IL-based ABS are formed by ILs, water 

and inorganic salts [134, 135, 142, 143]. However, there are some environmental concerns 

associated with the use of inorganic salts which tend to be toxic and non-biodegradable. 

For this purpose, inorganic salts are being replaced by organic as previously shown in this 

work.  

Aiming at overcoming the toxicity of some ILs, several studies [104, 144] have been 

conducted on the evaluation of their toxicity. All these works [104, 144] revealed that the 

ILs toxicity is primordially determined by the cation nature and it is directly correlated 

with the length of the alkyl side chains as well as with the number of alkyl groups. It is 

already well accepted that the toxicity of ILs increases with their hydrophobicity; so, toxic 

ILs are poorly water soluble at room temperature minimizing thus their environmental 

impact in aquatic streams [144]. It should be remarked that ILs used in ABS formulations 

are usually of lower toxicity since to be water-soluble they should be constituted by cations 

with short alkyl side chains. Nevertheless, this toxicity can be non-negligible and in order 

to overcome this major drawback, the use of non-toxic and more environmentally benign 

ILs from renewable materials is strongly recommended. Among these, cholinium-based 

salts are derived from natural resources and have emerged, in recent years, as completely 

bio-derived ILs [145]. These ILs usually contain cholinium cations combined with 

inorganic, amino-acid-based or carboxylic-acid-based anions [94].  

Cholinium-based ILs are less expensive as a consequence of the lower cost of the 

cation starting material, and are more biocompatible and more biodegradable compared 
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with more common ILs, such as imidazolium- or pyridinium-based [145]. Cholinium-

based ILs are usually derived from choline chloride, also known as 2-

hydroxyethyltrimethyl ammonium chloride or vitamin B4. Choline chloride can be found 

in food obtained from vegetable or animal sources, and supports several essential 

biological functions [94]. Cholinium-based ILs have been studied in the isolation of 

suberin from cork, electrodeposition of zinc, tin, and zinc–tin alloys, catalytic reactions, 

and in extraction of antibiotics and proteins using ABS [94, 145]. In fact, cholinium-based 

ILs were already investigated as two-phase promoters in ABS either combined with salts 

or polymers [109, 115, 146] . The polymers investigated were polypropylene glycol and 

polyethylene glycol and chosen based on their biodegradability and biocompatibility [115]. 

However, it should be remarked that cholinium-based ILs are more hydrophilic than their 

imidazolium-, pyridinium or piperidinium-based counterparts, and thus ABS composed of 

cholinium-based ILs and salts were only achieved with strong salting-out species such as 

K3PO4 [135].  Regarding the systems formed by polymers, the authors [115] were able to 

show that not only these ABS constitute promising clean systems due to the substitution of 

the high-charge density salts and more toxic ILs, but are also efficient in the extraction and 

purification of proteins (89-100% of recovery efficiency in a single step), while being an 

excellent long-term storage media for proteins like trypsin. In addition, the activity of 

trypsin was found to increase in these aqueous IL solutions within 13 months, whereas in 

water only 30% of the activity of trypsin could be maintained [115]. 

The separation of biological molecules and particles in polymer-based ABS was 

initiated more than half a century ago by Albertsson [147], and later proved to be a highly 

useful tool for the extraction and purification of biomolecules, such as proteins, enzymes, 

blood cells and antibiotics [92, 102]. Polyethylene glycol (PEG) and dextran, both with 

high molecular weights, are two polymers frequently used to form ABS, mostly due to 

their stable nature and non-toxic characteristic for biological materials [148]. However, the 

dextran-rich phase in a PEG/dextran ABS usually displays a high viscosity which brings 

difficulties to the phase separation of polymer-polymer systems and raises the energetic 

consumption [148]. Dextran is also too expensive as a phase-forming component to scale-

up the extraction process [148]. On the other hand, polypropylene glycol (PPG) or PEG are 

of lower cost and are often considered within the framework of green technologies [109]. 

Most studies addressed the use of PPG due to its higher propensity for liquid–liquid 
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demixing in presence of ‘‘salting-out’’ inducing ILs [109, 149]. PPGs are polymers usually 

more hydrophobic than PEGs due to the additional methyl group at the side chain and are 

hence more easily separated in ABS [91]. On the other hand, and being more hydrophilic, 

PEGs are less able to form ABS with ILs [149, 150]. PPGs are biodegradable and non-

toxic and can be conveniently recovered by heating [109]. Further advantages can be 

associated with the use of these ABS, such as avoiding salt crystallization and corrosion 

problems [91]. Polymers also offer an additional degree of design, for instance, by varying 

the length of the polymeric chains or the structure of the monomer unit.  

In this work, a series of environmentally-friendly ABS composed of cholinium-based 

ILs and propylene glycol with a molecular weight of 400 g∙mol
-1

 (PPG 400) have been 

investigated. Either cholinium-based ILs composed of anions derived from carboxylic 

acids, inorganic or other organic anions, or from Good’s buffers were investigated. The 

respective ternary phase diagrams, as well as the tie-lines and tie-line lengths, were 

determined at 25 ºC. Finally, these systems were evaluated though their extractive 

performance for a model protein (BSA). The effects of the ILs chemical structure and 

phase-forming components concentration were deeply investigated aiming at reaching high 

extraction yields while not leading to protein denaturation. 
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3.2. Experimental Section 

3.2.1. Chemicals 

The ABS studied in this work were established by using the polymer polypropylene 

glycol of average molecular weight 400 g.mol-1, PPG 400, supplied by Aldrich and used 

as received. The choline hydroxide solution (40 wt%) and glycolic (99 wt % pure) were 

from Sigma-Aldrich, propanoic (≥ 99.5 wt % pure) acquired from Merck, butanoic  (99 wt 

% pure) and lactate (88-92 wt % pure) acids (to perform as the IL anions) were acquired 

from  Riedel-de-Haën. Cholinium ((2-hydroxyethyl)trimethylammonium) chloride, [Ch]Cl 

(99 wt% pure), cholinium acetate, [Ch][Ac] (98 wt% pure), cholinium dihydrogen 

phosphate, [Ch][DHPhs] (99 wt% pure), cholinium dihydrogen citrate, [Ch][DHCit] (98 wt 

% pure), and [Ch][Bit] (98 wt % pure) were commercially acquired. [Ch][DHPhs] and 

[Ch][Ac] were purchased from Iolitec. The remaining were acquired from Sigma-Aldrich. 

The following ILs were also studied and were synthetized in our laboratory according to 

standard protocols [151, 152], namely cholinium propionate, [Ch][Prop], cholinium 

glycolate, [Ch][Gly], cholinium butanoate, [Ch][But], and cholinium lactate, [Ch][Lac]. 

Cholinium-based ILs composed of Good’s buffers anions were also synthesized in this 

work and include cholinium N-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl, [Ch][Tricine], 

cholinium 2-(N-morpholino)ethanesulfonic acid, [Ch][MES], and cholinium N-cyclohexyl-

2-aminoethanesulfonic acid, [Ch][HEPES]. It should be remarked that [Ch]Cl does not fall 

within the IL category due to its high melting point. However, it is included in the 

cholinium-based ILs group in all the results and discussions presented thereinafter for 

comparison purposes. Before use, all the ILs were purified and dried for a minimum of 24 

h at constant agitation, at moderate temperature (≈ 60 °C) and under vacuum (to reduce 

their volatile impurities to negligible values). After this step, the purity of each IL was 

confirmed by 
1
H and 

13
C NMR spectra and found to be > 98 wt %. The water employed 

was ultra-pure water, double distilled, passed by a reverse osmosis system and further 

treated with a Milli-Q plus 185 water purification equipment.  

 

3.2.2. Experimental Procedure 

3.2.2.1. Synthesis and characterization of cholinum based ionic liquids  

The choline hydroxide solution (40 wt%) and propanoic, butanoic, glycolic, and 

lactate acids, as well as tricine, MES and HEPES buffers were used without further 
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purification. All solutions were made up with Millipore-grade water. The GB-ILs were 

synthesized via neutralization of the base with the appropriate acid as explained in the 

previous chapter. The water was then removed under vacuum at 50 °C. Moreover, the 

unreacted acid in the prepared IL was further eliminated by precipitation with the solvents 

acetone or methanol. The solvents were evaporated under vacuum and the obtained IL was 

dried under vacuum at 70 °C for at least 24 h. All the above procedure was done under an 

inert atmosphere, thereby preventing the choline hydroxide degradation induced by oxygen 

(Figure 3.1). The ILs synthetized in this work showed high purity with no sign of 

decomposition.  After this step, the purity of each IL was confirmed by 
1
H and 

13
C NMR 

spectra. The water content of the synthesized ILs was determined by coulometric Karl 

Fischer titration (Mettler Toledo DL 39) with the Hydranal Coulomat AG reagent (Riedel-

de Haën). 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2.2. Phase diagrams and TLs 

The ternary phase diagrams (PPG 400 + IL + water) were determined with the 

following ILs: [Ch]Cl, [Ch][Ac], [Ch][Pro], [Ch][Gly], [Ch][But], [Ch][Lac], [Ch][Cit], 

[Ch][MES], [Ch][HEPES], and [Ch][Tricine]. The experimental procedure adopted was 

similar to the one described in Section 2.2.2. Aqueous solutions of PPG 400 at ≈ 90 wt % 

and aqueous solutions of the different hydrophilic ILs at variable concentrations (from 60 

 

Figure 3.1. Synthesis of ionic liquids in an inert atmosphere. 
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to 80 wt %) were prepared gravimetrically and used for the determination of the binodal 

curves. Drop-wise addition of each aqueous IL solution to a PPG 400 aqueous solution was 

carried out until the detection of a cloudy solution (biphasic region), followed by the drop-

wise addition of ultra-pure water until the detection of a clear and limpid solution 

(monophasic region). In some cases, the addition of the PPG solution to the IL was also 

carried out to complete the phase diagrams. The ternary system compositions were 

determined by weight quantification within ± 10
−4

 g. 

The TLs and respective TLLs were determined by the gravimetric method described 

by Merchuk et al.[130] and presented in Section 2.2.2.  

 

3.2.2.3. pH measurement  

The pH values of both the IL-rich and PEG-rich aqueous phases were measured at (25 

± 1) ºC using a METTLER TOLEDO SevenMulti pH meter within an uncertainty of ± 

0.02. 

3.2.2.4. Extraction efficiencies of the BSA 

The ternary mixtures compositions used in the partitioning experiments were chosen 

based on the phase diagrams determined here for each PPG-400-IL-water system. A 

ternary mixture with a common composition, and within the biphasic region, was prepared 

with 30 wt % of PPG 400, 30 wt % of IL and 40 wt % of water. Each mixture was 

vigorously stirred, centrifuged for 10 min,  and left to equilibrate for at least 10 min at 25 

ºC. 

After a careful separation of both phases, the quantification of BSA in the two phases 

was carried by HPLC, using the same procedure presented in section 2.2.3. 

 The percentage extraction efficiency of BSA,       , is the percentage ratio 

between the amount of protein in the IL-rich aqueous phase to that in the total mixture, and 

is defined according to Eq. 7. 

In the studied ABS, the top phase corresponds to the PPG-rich aqueous phase while 

the bottom phase is mainly composed of IL and water – a reverse phase density on the IL-

rich phase when compared to the IL-salt ABS presented before.  
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 3.3 Results and Discussion 

3.3.1. Characterization of synthetized choline based ILs 

The macroscopical appearance, NMR characterization and water content data for each 

Choline based-IL is described below. 

[Ch][But]: From butyric acid (92.6 mmol); this compound was obtained as a light 

yellow viscous liquid. Water content: 0.364 wt%. 
1
H NMR (300 MHz, DMSO): 3.85 (m, 

2H), 3.42 (m, 2H), 3.13 (s, 9H), 1.85 ppm (t, 2H), 1.42, 0.81( t, 3H). 
13

C NMR (75.47 

MHz, DMSO): 176.7, 67.6, 55.4, 40.6, 20.0, 14.8 ppm. 

[Ch][Prop] From propionic acid (96.5 mmol); this compound was obtained as a white 

to pale yellow viscous liquid. Water content: 0.064 wt%. 
1
H NMR (300  MHz, DMSO): 

3.84 (m, 2H), 3.42 (m, 2H), 3.13 (s, 9H), 3.12 (s, 9H), 1.89 ppm (q, 2H). 
13

C NMR (75.47 

MHz, DMSO): 176.8, 67.2, 54.9, 53.0, 30.5, 11.4 ppm. 

[Ch][Lac]: From lactic acid (118.0 mmol); this compound was obtained as a yellow 

dark viscous liquid. Water content: 0.073 wt%. 
1
H NMR (300 MHz, DMSO): 3.84 (m, 

2H), 3.53 (q, 1H), 3.42 (m, 2H), 3.12 (s, 9H), 1.08 ppm (t, 3H). 
13

C NMR (75.47 MHz, 

DMSO): 178.2, 67.3, 67.2, 55.1, 53.1, 21.6 ppm. 

[Ch][Gly]: From glycolic acid (90.8 mmol); this compound was obtained as a pale 

yellow viscous liquid. Water content: 0.10 wt% 
1
H NMR (300 MHz, DMSO): 5.17 (m, 

2H), 3.86 (m, 2H), 3.44 (m, 2H), 3.15 (s, 9H). 
13

C NMR (75.47  MHz, DMSO): 175.3, 

67.5, 55.4, 53.4, 40.13 ppm. 

[Ch][Tricine]: From tricine buffer (77.0 mmol); this compound was obtained as a 

white solid. Water content: <0.05%. 
1
H NMR (300 MHz, D2O/TSP): 3.93 (m, 2H), 3.42 (s, 

6H), 3.38 (m, 2H), 3.17 (s, 2H), 3.08 (s, 9H). 
13

C NMR (75.47 MHz, D2O/TSP): 182.19, 

70.28, 63.30, 63.03, 58.47, 56.73, 47.62 ppm. 

[Ch][Mes]: From MES buffer (60.1 mmol); this compound was obtained as a white 

spleen viscous liquid. Water content: <0.05 wt%. 
1
H NMR (300 MHz, D2O/TSP): 3.94 (m, 

2H), 3.64 (t, 4H), 3.40(m, 2H), 3.08( s, 9H), 3.01 (t, 2H), 2.70 (t, 2H),  2.48(s, 1H).  

13
C NMR (75.47 MHz, D20/TSP): 70.29, 68.86, 58.50, 56.76, 55.49, 55.17, 50.23 ppm. 

[Ch][HEPES]: From HEPES buffer (50.8 mmol); this compound was obtained as a 

yellow viscous liquid. Water content: <0.05% wt%. 
1
H NMR (300 MHz, D2O/TSP): 3.93 

(m, 2H), 3.62 (t, 4H), 3.39 (m, 2H),  3.07 (s, 9H),  3.07 (s, 9H), 2.99 (t, 2H), 2.70(m, 2H), 
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2.53(t, 8H)  ppm (t, 3H). 
13

C NMR (75.47 MHz, D2O/TSP): 70.28, 61.57, 60.69, 58.48, 

56.74, 55.00, 54.74, 54.06, 50.40 ppm. 

3.3.2 Phase diagrams and tie-lines 

Ternary phase diagrams were determined for several ILs ([Ch][DHPhs], [Ch][DHCit], 

[Ch][Ac], [Ch]Cl, [Ch][Bit], [Ch][Prop], [Ch][Lac], [Ch][But], [Ch][Gly], [Ch][Tricine], 

[Ch][MES], and [Ch][HEPES]) + water + PPG 400 at (25 ± 1) °C and at atmospheric 

pressure. The chemical structures of the ILs used as phase-forming components of ABS 

with PPG 400 are shown in Figure 3.2. 

 

Figure 3.2. Chemical structure of the studied ILs and PPG: i) [Ch][MES]; (ii) [Ch][HEPES]; (iii) 

[Ch][Tricine]; (iv) [Ch][Bit]; (v) [Ch][DHCit]; (vi) [Ch][Gly]; (vii) [Ch]Cl (viii) [Ch][DHPhs], (ix) [Ch][Ac], 

(x) [Ch][Lac], (xi) [Ch][But], (xii) [Ch][Prop], (xiii) PPG. 
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Since it has been established in the previous chapter that the combination of buffers 

with common IL cations can be a good alternative to create biocompatible and efficient 

ABS, here they were also implemented, yet combined with the cholinium cation. These ILs 

were also investigated as phase-forming promoters with polymers of different molecular 

weight as well as with the biodegradable organic salt, K3C6H5O7, studied before. The 

combinations tested are presented in Table 3.1. However, cholinium-based ILs are more 

hydrophilic than the tetrabutylphosphonium and tetrabutylammonium-based ILs studied 

before, and are thus not able to form ABS with conventional salts. Up to date, ABS 

composed of cholinium-based ILs and salts were only achieved with the strong salting-out 

K3PO4 [91].  

The ternary phase diagrams obtained in this work are illustrated in Figure 3.4, 3.5 and 

3.6. The experimental weight fraction data of each phase diagram are reported in appendix 

B. In addition to weight fraction, the solubility curves are also presented in molality units 

for a better understanding of the anion impact on the phase diagrams behaviour. The 

biphasic or two-phase region is localized above the solubility curve, and the larger this 

regime, the higher is the ability of the IL to undergo liquid-liquid demixing in presence of 

PPG 400 in aqueous environments. 

  



Extraction of BSA using IL + Polymer ABS 

 

62 

 

 

Table 3.1. Identification of the systems able (), not able () or not tried (    ⃝) to form two-phase systems 

with PPG with different molecular weights (400, 600, 1200) and the organic salt K3C6H5O7. 

 
PPG 

400 

PPG 

600 

PPG 

1200 
K3C6H5O7 

[Ch]Cl     

[Ch][Ac]     

[Ch][Gly]     

[Ch][DHPhs]     

[Ch][DHCit]     

[Ch][But]     

[Ch][Prop]  ⃝ ⃝  

[Ch][Lac]  ⃝ ⃝  

[Ch][Bit]  ⃝ ⃝  

[Ch][Tricine]  ⃝ ⃝  

[Ch][MES]  ⃝ ⃝  

[Ch][HEPES]  ⃝ ⃝  

[Ch][CHES]  ⃝ ⃝  

 

In general, the ability of the IL to form ABS in presence of a fixed PPG concentration, 

for instance at 8 mol.kg
-1

 of PPG 400, decreases in the following order: [Ch][DHPhs] > 

[Ch][Ac] > [Ch][Gly] > [Ch][Lac] ≈ [Ch][Prop] > [Ch][But] > [Ch][Bit] > [Ch][DHCit] > 

[Ch][Cl] > [Ch][MES] > [Ch][HEPES] > [Ch][Tricine]. Considering the fact that all ILs 

share the same cation, yet combined with different anions, this pattern could be explained 

by the decreased hydrophobic nature and therefore the higher affinity for water of the IL 

anion [115].  

  For a better inspection of the IL anion effect, the phase diagrams obtained for the 

carboxylic-acid-derived ILs, commercial ILs and those obtained for the GB-based ILs are 

shown in separated figures, namely Figures 3.3, 3.4 and 3.5.  
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The phase diagrams of the systems composed of ILs with anions derived from 

carboxylic acids allow to conclude that shorter alkyl side chains have higher affinity for 

water and thus hydrate more easily and induce the formation of a second liquid phase in 

the presence of highly hydrophobic polymers, such as PPG [91]. This trend is confirmed 

with the ILs comprising the anions acetate, propanoate and butanoate. For this type of 

anions (derived from carboxylic acids) the fowling trend was observed: [Ch][Ac] > 

[Ch][Gly] > [Ch][Lac] ≈ [Ch][Prop] > [Ch][But] > [Ch][DHCit]. Despite the anions 

propanoate and lactate having the same alkyl chain length, the latter presents an additional 

hydroxyl group, which will favor the formation of hydrogen bonds and therefore will 

provide a more hydrophilic character to the ionic liquid. This is confirmed by Figure 3.4, 

since the lactate diagram is slightly closer to the origin.  

[Ch[DHCit] is the IL with the lower ability to form ABS with PPG 400 amongst the 

several ILs derived from carboxylic acids. The [Ch][DHCit] anion is derived from citric 

acid, which has a high ability to act as an H-bond and/or an H-acceptor anion, and as as 

consequence it is expected to behave has a strong salting-out agent. However, similar to 

what happens in systems formed by PEG [153], this IL shows a small ability to form ABS 

when compared with other anions derived from carboxylic acids. This can be explained 

based on the crystal structure previously studied by Glusker et al. [154]. They reported that 

citrate anions can suffer some phenomena of self-aggregation, as a result of the presence of 

intermolecular hydrogen bonds between the hydroxyl hydrogen atoms and one of the 

oxygens of the central carboxyl group. This will result in a more hydrophobic character of 

the anion and decreases its interaction with water [154]. 
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Figure 3.3. Phase diagrams for systems composed of PPG 400 + IL + water  at 25ºC and atmospheric 

pressure in wt% (left) and in mol.kg-1 (right): () [Ch][Ac]; () [Ch][Gly]; () [Ch][lac]; () [Ch][Prop]; 

() [Ch][But]; () [Ch][DHCit]. 

 

In the studied ABS formed by commercial ILs, [Ch][DHPhs] showed the highest 

ability to promote ABS, whereas [Ch]Cl exhibited the lowest (Figure 3.4). This trend 

complies to the idea that an increase in the anion polar surface improves the ability of each 

IL to induce ABS. ILs with higher affinity for water are more capable to exclude PPG to a 

second liquid phase. This fact suggests that these interactions are mainly governed by 

solvation in water, where a higher affinity for water implies a higher ability to promote 

phase separation. This behaviour is in close agreement with what was previously observed 

in the PEG–IL ABS, in which the anions with higher charge density are more able to create 

ion–water complexes and larger repulsive interactions with the ether oxygens of the PEG 

[153]. 
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Figure 3.4. Phase diagrams represented in molality for the systems composed of PPG + IL + water in units 

wt% (left) and in mol.kg-1 (right): () [Ch]DHPhs]; () [Ch][Bit]; () [Ch]Cl. 

 

Finally, when evaluating the ABS formed by GB-ILs, the following trend was found: 

[Ch][MES] > [Ch][HEPES] > [Ch][Tricine] (Figure 3.5).   The respective phase diagrams 

are depicted in Figure 3.6. This trend can be explained based on the log(Kow) values of 

each buffer: MES-2.48; HEPES-3.11; Tricine-5.25. On the contrary to what happens in IL 

+ salt ABS, since polymers are the phase components with a more hydrophobic character, 

the higher the anion value log(Kow), the lower the ability of IL to promote the ABS 

formation.  
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Figure 3.5. Phase diagrams represented in molality for the systems composed of PPG + IL + water in units 

wt% (left) and in mol.kg-1 (right): () [Ch][Tricine]; () [Ch][HEPES]; () [Ch][MES]. 

 

It was already shown that in contrast to what is observed in IL + salt systems, in 

aqueous systems of polymers and ILs, the hydrophilic ILs are more prone to act as 

“salting-out” species and thus reverse orders on the ILs ability to form ABS are commonly 

found. However, the underlying mechanisms on the formation of IL-polymer-based ABS 

are by far more complex and still not completely understood. Recent studies are proving 

that unlike the salt + IL systems, the salting-out phenomenon is not the main inducer of 

ABS formation but the liquid-liquid demixing mainly results from the polymer−IL mutual 

miscibilities and interactions [155]. Tomé et al. [156] showed that a very small amount of 

water (depending on the binary mixture and temperature) is enough to trigger the liquid–

liquid phase separation of a completely miscible binary system composed of [C4mim]Cl 

and PEG 1500. In polymer-IL binary systems ([C4mim]Cl + PEG) the main interactions 

occurring are the hydrogen bonds established between Cl
−
 and the OH

-
 groups of PEG, and 

also some bonds between the polymer and the IL cation at the level of the hydrogen atoms 

of the imidazolium ring [156]. However, the authors [156] proved that the introduction of 

water in this binary system will disrupt the IL ions and polymer hydrogen bonds 

(interfering however to a lesser extent with the interactions between the non-polar moieties 

of the cation and the polymer) and will be replaced by more favourable and stronger 

water–IL anion hydrogen bonds, leading to a ‘‘washing-out’’ phenomenon. Therefore, it is 
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also expected that the phase separation of the systems studied in this work are also mainly 

driven by the formation of stronger water–IL anion hydrogen bonds (allowing the 

separation of the anion from the PPG), and that both the IL and the polymer become 

independently solvated by water and two aqueous-rich phases can be formed [156]. 

Nevertheless, no major conclusions can be derived at this point since there is still a lack in 

literature regarding the understanding of the molecular-level phenomenon involving PPG 

and other ILs different from imidazolium-based. ABS formed by PPG 400 and ILs were 

already reported [109], however only using imidazolium-based ILs. In general, the authors 

concluded that with the increase of the ILs hydrophilicity lower concentrations of ILs are 

needed to create an ABS. 

For the studied systems, the experimental binodal data were further fitted by the 

empirical relationship described by Eq. 1 [130]. The regression parameters were estimated 

by least-squares regression, and their values and corresponding standard deviations (σ) are 

provided in Table 3.2. The experimental TLs, along with their TLLs, are reported in Table 

3.3 as well as the initial composition of each system. An example of the TLs obtained is 

shown in Figure 3.6. 

 

Table 3.2. Correlation parameters used to describe the experimental binodal data by Eq. 1 and respective 

standard deviations (σ) and correlation coefficients. 

IL A ± σ B ± σ 10
5 
(C ± σ) r

2
 

[Ch][DHPhs] 215.0 ± 5.2 -0.81 ± 0.01 1.00± 0.85 0.9989 

[Ch][Ac] 240.4 ± 15.1 -0.81 ± 0.00 1.00 ± 1.86 0.9938 

[Ch][Bit] 205.8 ± 13.9 -0.57 ± 0.0 1.00 ± 0.43 0.9962 

Ch][Lac] 235.0  ± 8.5 0.67 ± 0.01 1.05 ± 0.00 0.9979 

[Ch][Prop] 162.0 ± 6.1 -0.50 ± 0.02 12.25 ± 2.83 0.9981 

[Ch][But] 452.9 ± 33.6 -0.84 ± 0.03 0.01 ± 1.12 0.9984 

[Ch][DHCit] 342.6 ± 2.3 - 0.62 ± 0.01 0.03 ± 0.00 0.9991 

[Ch]Cl 265.4 ± 16.1 -0.69 ± 0.00 1.08 ± 0.20 0.9902 

[Ch][Tricine] 179.3 ± 5.4 -0.56 ± 0.01 1.00 ± 0.4 0.9972 

[Ch][MES] 169.2 ± 3.9 -0.42 ± 0.01 1.69 ± 0.16 0.9971 

[Ch][HEPES] 187.1 ± 9.1 -0.52 ± 0.02 1.00 ± 0.40 0.9936 
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Table 3.3.. Data for the tie-lines (TLs) and tie-line lengths (TLLs). Initial mixture compositions are 

represented as [Salt]M and [PPG]M whereas [Salt]Salt and [PPG]Salt are the composition of IL and salt at the IL-

rich phase, respectively, and vice-versa.  

IL 
Weight fraction composition / wt % 

TLL 
[PPG]PPG [Salt]PPG [PPG]M [Salt]M [PPG]Salt [Salt]Salt 

[Ch][DHPhs] 40.8214 4.1447 20.0916 19.2240 1.4111 32.8214 44.1466 

[Ch][DHPhs] 81.4241 1.4169 30.0568 29.9829 0.3007 46.5305 92.8237 

[Ch][Ac] 95.7430 1.3007 30.1093 29.9757 0.5527 42.8888 103.8786 

[Ch][Ac] 91.7995 1.3119 24.9112 24.9477 3.7843 29.3653 90.2118 

[Ch][Gly] 63.2805 3.2068 30.4085 29.7656 0.2953 54.0955 80.9741 

[Ch][MES] 77.0069 3.5595 56.1147 9.9973 20.4344 22.2437 57.3042 

[Ch][Bit] 98.3921 1.6971 30.3889 31.0858 2.2065 43.2653 104.7835 

[Ch][Lac] 90.5132 1.1171 30.0546 30.4477 2.0271 44.0508 98.7808 

[Ch][Prop] 88.5791 1.4479 29.488 31.5532 2.4200E-05 46.5765 99.4125 

[Ch][But] 96.5904 3.3854 29.9202 30.0195 2.0697 41.0608 101.7526 

[Ch][HEPES] 96.6420 1.5832 29.9242 30.0627 3.1079 41.5100 101.6995 

[Ch][DHCit] 82.4292 5.3832 29.8696 29.9531 6.6731 40.7967 83.6248 

[Ch]Cl 96.7066 1.4471 29.9440 29.9679 3.9281 40.9909 100.8542 

[Ch][Tricine] 91.2958 1.5648 30.0874 30.0874 1.9926 42.7543 98.3445 

[Ch][Tricine] 81.0250 2.0125 49.8924 10.1744 13.957 19.595  69.3350 
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Figure 3.6. Phase diagram for the ternary system composed of PPG 400+ [Ch][DHPhs] + water at 25 ºC: 

binodal curve data (); TL data (+); adjusted binodal data using Equation 1 (-). 

 

3.3.3. Extraction efficiencies of BSA 

In the present work, the BSA partition in the ABS composed of cholinium-based ILs + 

PPG 400 at 25 ºC has been examined. The extraction efficiencies of BSA, at 25 ºC and at a 

common TLL   30-30, are shown in Table 3.4.  

In all systems it is observed a preferential partitioning of BSA for the IL-rich aqueous 

phase. In general, the partitioning of proteins between the two phases of an ABS is a 

complex phenomenon, guided mainly by several competing interactions of the partitioned 

solute and the phase components [91]. During partitioning, the exposed groups of proteins 

come into contact with the phase components and therefore determine the partitioning 

behaviour. This surface-dependent phenomenon is very complex since a protein can 

interact with the surrounding molecules through hydrogen-bonding, electrostatic 

interactions, van der Waals forces, hydrophobic interactions and steric effects. The net 

effect of these interactions is likely to be different in the two phases and the protein will 

partition preferentially into one phase. In this case, the preferential migration of BSA for 

the IL-rich phase can be explained by the protein affinity for the most hydrophilic phase 
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(IL-rich phase) of the ABS. In fact, the complete extraction of BSA in a single-step 

procedure was achieved with several ILs, such as [Ch][MES], [Ch][Tricine], [Ch][DHCit], 

[Ch][Prop], [Ch][But] and [Ch][Ac]. Remarkably, the extraction efficiencies of BSA vary 

between 91.79% to 100%, and increase in the following order: [Ch][Lac] < [Ch][DHPhs] < 

[Ch][Bit] < [Ch][HEPES] < [Ch][MES] ≈ [Ch][Tricine] ≈ [Ch][DHCit] ≈ [Ch][Prop] ≈ 

[Ch][But] ≈ [Ch][Ac]. Rito- Palomares et al. [157] reported the application of ABS formed 

by polymer (PEG) and phosphate salt for BSA extraction of whole bovine blood. They 

obtained a maximum overall protein recovery of 62%, results that are not very significant 

compared with the ones described in this work. In 2010, another work reported the use of 

polymers, namely PEG and PPG, combined with three inorganic salts for the extraction of 

BSA. The maximum extraction obtained was 90.4 %,  with the ABS formed by PPG + 

MgSO4 +  water [158]. In this work, the combination of polymers and ionic liquids leads to 

higher extraction efficiencies overall. 

 

Table 3.4. Percentage extraction efficiencies of BSA , EEBSA% and respective standard deviations (σ), in the 

ABS composed of IL + PPG 400 at 25 ºC. Initial mixture compositions and respective standard deviations (σ) 

are represented as [IL]M and [PPG400]M. 

IL 
Weight fraction composition / (wt %) 

EEBSA% 

[IL]M [PPG400]M 

[Ch][Ac] 30.06 ± 0.09 30.11 ± 0.12 100.0 

[Ch][Ac] 24.43 ± 0.24 24.67 ± 0.27 100.0 

[Ch][Ac] 20.23 ± 0.21 19.94  ± 0.27 100.0 

[Ch][Prop] 29.70 ± 0.58 29.05 ± 0.78 100.0 

[Ch][But] 29.92 ± 0.27 30.39 ± 0.32 100.0 

[Ch][Tricine] 29.93 ± 0.14 30.02 ± 0.07 100.0 

[Ch][MES] 29.80 ± 0.02 29.88 ± 0.04 100.0 

[Ch][DHCit] 29.70 ± 0.33 29.72 ± 0.37 100.0 

[Ch][HEPES] 30.12 ± 1.43 31.64 ± 1.58 99.76 ± 0.24 

[Ch][Bit] 30.26 ± 0.23 30.03 ± 0.35 98.02 ± 0.21 

[Ch][DHPhs] 29.73 ± 0.05 30.30 ± 0.60 96.10 ± 1.09 

[Ch][Lac] 30.34 ± 0.11 29.99 ± 0.07 91.79 ± 0.05 
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Figure 3.7 displays some examples of the obtained chromatograms. For instance, for 

[Ch][Ac], the complete extraction is verified since there is no evidence of the presence of 

BSA in the top (PPG 400) phase. Also, it is represented the complete extraction of BSA in 

[Ch][DHCit]; however, despite the good extraction results, it was observed some 

precipitation of protein in the systems formed by this ILs (Figure 3.8).  

    An example where the complete extraction ([Ch][Phs] was not verified is also 

depicted in Figure 3.7, and where the peak corresponding to BSA at the polymer-rich 

phase is visible. 

 

Figure 3.7. Size exclusion chromatograms of BSA in ternary system composed of PPG 400+ IL + water at 

25 ºC. X-axis – Absorbance 280 (mV) a y-axis - Elution time (min). 

 

 In figure 3.8 are also represented others examples of systems with protein 

precipitation, and in some cases extend to the PPG-rich phase. 
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Figure 3.8. BSA extraction with ABS formed by PPG + IL + water with visible protein precipitation at the 

interface. 

 

From the overall results it is evident that the cholinium-based ILs composed of anions 

derived from carboxylic acids and with anions derived from Good’s buffers present a 

better performance since they lead to a complete extraction of BSA with no precipitation or 

loss of protein. 

Despite the hydrogen-bonding interactions as the main driving force for the 

partitioning of BSA into the ionic liquid phase, protein partitioning can be also favored by 

electrostatic interactions. Proteins are composed of sequences of amino acids that carry 

charged groups (depending upon their acidic or alkaline character); the net electric charge 

on a protein surface represents the sum of all electric charges present on the amino acids. 

The net charge on the protein varies with the pH of the ABS, and depending on the 

isoelectric point (pI) of the protein it influences the partitioning between the two phases. 

All systems studied (except the ones formed by GB-IL) in this work were done under 

controlled pH (≈7.0) using a PBS buffer solution. The pI of BSA is 4.7, and above this 

value the protein carries a negative net charge which will promote electrostatic interactions 

with the IL. However, and in addition to the different phase-forming components studied, 

in this type of systems BSA also has a higher affinity for the IL-rich phase.  

It is known that the TLL can affect the protein affinity for the phases by changing the 

hydrophobicity and interfacial tension between the phases of a given ABS. As the TLL 

increases the top- and bottom-phases show increasing differences in compositions [159]. 

[Ch][DHCit] [Ch][DHPhs] [Ch][Bit] 
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The ABS becomes more hydrophobic with an increase in the TLL due to a reduction in the 

water content. With a reduction in the water content the saturation solubility of the proteins 

in a given phase can be reached and thus the protein can precipitate as commonly observed 

[159]. After the study at a common TLL on the ability of the PPG-IL-based ABS to extract 

BSA, it was further evaluated the effect of the two phase compositions on the extraction 

efficiency of BSA. The IL chosen was [Ch][Ac] because it presents an extraction 

efficiency of 100% and leads to a negligible protein precipitation. The new TLLs chosen 

were   25 and 20, in order to avoid a decrease in extraction efficiency associated with the 

protein solubility in water. With these two TLLs the water content is increased while 

reducing the amount of IL and PPG required for extraction. The mixture compositions used 

in partitioning experiments are presented in Table 3.3 whereas the respective phases’ 

compositions and TLLs are presented in Table 3.4. It is clear in Table 3.3 that the 

extraction efficient of BSA is not affected by changing the TLL (at least at the TLLs 

considered). 
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3.3.4 Stability of BSA 

The stability of proteins during extraction is a prerequisite for the application of this 

technique. In fact, small changes in the protein environment such as temperature, pH and 

type of solvent can alter the native fold of the protein; so, it is important to confirm the 

protein stability in the extracted phase. Several studies on proteins interactions with ILs 

and their stability have been performed [117, 160, 161]. Rodrigues et al. [160] have 

already shown that cholinium-based ILs can either  increase lysozyme stability  or have a 

negligible effect on protein stability. Furthermore, it was also proved that low levels of 

[Ch][Ac] do not affect the conformation of proteins like lipase [160].  

In our work, the samples of the IL-rich top phase were investigated by HPLC and a 

careful analysis of the resulting chromatograms allowed the study of the BSA stability in a 

PBS solution composed of 20 wt% of IL. [Ch][Ac] proved to be the most suitable IL for 

the extraction of BSA. The chromatogram depicted in Figure 3.9 revealed that the peak 

intensity and shape do not change significantly, supporting thus the stability of the protein 

when in the IL-rich phase after ≈ 30 min. In order to support the stability of BSA solution 

in [Ch][Ac] (Table 3.5) the area of the peak of the standard BSA in the PBS buffer was 

calculated and compared with the area obtained for a solution of BSA in 20 wt% of IL. As 

clearly shown by the relative standard deviation (RSD <= 5), the peak area remains 

constant, which ensures the stability of the protein in the presence of [Ch][Ac].  

 

 

Figure 3.9. Size exclusion chromatogram of BSA in PBS solution with 20% of [Ch][Ac]. Yellow line: BSA 

in PBS; Red line: BSA in 20% of [Ch][Ac]. 
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Table 3.5. BSA stability test in 20% solution of IL conducted in HPLC. 

Solution 
[BSA] / 

(g.L
-1

) 
Peak area ± σ 

RSD / 

(%) 

PBS 

0.005 

4450 ± 195 

5.05 
20 wt% IL 4143 ± 30 

PBS 
0.5 

509746 ± 3964 
0.57 

20 wt% IL 513775 ± 17460 

 

The protein stability can be strongly influenced by the type of ILs present in aqueous 

solution. Although the interactions between ILs and protein are not well understood, there 

are some discussions indicating that ILs follow the Hofmeister series [162]. An IL can be 

constituted by a kosmotropic anion and a chaotropic cation - and this combination can 

stabilize proteins. In this work, we used cholinium-based ILs which are constituted by a 

chaotropic quaternary ammonium cation. Rodrigues et al. [160] have already shown in a 

systematic study on the stability of lysozyme that the cholinium-based ILs can increase the 

protein stability. Furthermore, it was also proved that low levels of [Ch][Ac] do not affect 

the conformation of proteins like lipase, and also a study on the stability of lipase in 

sodium di-2-ethylhexylsulfoccinate (AOT) reverse micelles indicated that the IL is able to 

maintain the activity of lipase up to a certain extent [161]. The effect of [Ch][Ac] is thus 

consistent with that predicted based on the Hofmeister series [161].  

 

3.4 Conclusions 

In the present work, the effect of the IL anion on the phase forming ability of ABS was 

evaluated. The following order represent the overall trend: [Ch][DHPhs] > [Ch][Ac] > 

[Ch][Lac] ≈ [Ch][Prop] > [Ch][But] > [Ch][Bit] > [Ch][Ac] > [Ch][DHCit] > [Ch]Cl > 

[Ch][MES] > [Ch][HEPES] > [Ch][Tricine]. The data obtained with the extraction of BSA 

also shown that cholinium-based ILs + PPG400 ABS can be used to efficiently extract 

proteins in a single-step. Moreover, a proper choice of the IL avoids the protein 

precipitation or denaturation. Since both the cholinium-based ILs and PPG400 tend to be 

less toxic and more biodegradable, these ABS offer a greener and highly efficient 

technique for extracting and concentrating proteins of high interest- 
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4.1. Introduction 

As pointed out before, one of the major concerns related with the biomarkers analysis, 

identification and/or quantification is related to their low concentration in body fluids. 

Most of the biomarkers assays on the market are formulated for use in specific 

immunoassay tests in clinical chemistry laboratories [163]. Moreover, they require skilled 

personnel and are associated with a time-consuming sample processing so that results are 

not instantly available [163]. Also, the investment in time (several weeks) and resources 

required to generate such immunoassays are considerable, what often obstructs the 

development of clinically useful protein-based assays in the absence of compelling pre-

clinical data [6]. Furthermore, differences in the choice of the antibody, the method design 

and the method robustness will inevitably contribute to the between-method variation in  

results that are observed even for accurately calibrated equimolar assays [163]. Therefore, 

these tests are not ideally suited for the establishment of large screening programs to be 

potentially carried out in urological clinics and general medical practices [163].  

IL-based ABS represent an appealing alternative to the current request for fast, 

economic, and easy-to-implement processes and besides their extraction ability, IL-based 

ABS have also shown to be a promising concentration technique. Passos et al. [146] 

reported that IL-based ABS can be used to concentrate endocrine disruptors from 

biological fluids up to 100-times in a single-step. These results can revolutionize the 

clinical analyses with the pre-concentration of most proteins from biological fluids [164]. 

Therefore, IL-based ABS offer the opportunity to combine the extraction and concentration 

of proteins in a single-step procedure for the detection of cancer biomarkers present in 

human fluids. 

 

4.2. Experimental Section 

4.2.1. Chemicals 

The salt potassium citrate tribasic monohydrate (K3C6H5O7·H2O, purity ≥ 99 wt%), 

and the polymer PPG 400 were obtained from Sigma–Aldrich Chemical Co. BSA/fraction 

V, pH = 7.0, was obtained from Acros Organics. Methanol (HPLC grade, purity > 99.9%) 

was obtained from Fisher Scientific. Acetonitrile (purity > 99.7%) was supplied from Lab-

Scan. The buffer Tricine (purity > 99 wt%) was purchased from Sigma–Aldrich Chemical 

Co. The choline hydroxide solution (40 wt %, in H2O) hydroxide-based compound, 
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[N4444][OH] (40 wt% in H2O), was also supplied by Sigma–Aldrich Chemical Co.. The ILs 

[Ch][Tricine] and [N4444][Tricine] were synthesized according to the procedure described 

in section 3.2.2.1. Purified water passed through a reverse osmosis and a Milli-Q plus 185 

water purifying system was used in all experiments. 

 

4.2.2. Experimental Procedure 

4.2.2.1. Lever-Arm Rule  

The lever-arm rule was used to determine the weight percentages ratio of the 

coexisting phases in the respective phase diagram. Several extractions were carried out at 

different compositions in the same TL (Figure 4.1) which correspond to different 

concentration factors. Along the same TL the composition of the phases is maintained 

while varying the weight or volume ratio between them. First, a fixed and long TL was 

selected and a weight balance approach, as described in section 2.2.2.1, was used to 

determine the weight fraction of each phase-forming component ([Ch][Tricine] and 

PPG400 or [N4444][Tricine] and K3C6H5O7).  

For each mixture the salt concentration was varied to obtain the desired concentration 

factor (fc, equation (11)), 

 

         (               )⁄      (8) 

 

where       ,      and          correspond to the water percentage in the 

mixture point, ABS total weight and IL weight percentage in the top phase. 
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Figure 4.1. Different compositions along the same the same TL obtained by applying the lever-arm rule. Salt 

+ IL + water ABS (left), and PPG 400 + IL + water (right). MP: mixture point; 5x, 7x, 10x, 12x, 20x, 40x 

corresponds to concentration factors. 

 

4.2.2.2. Concentration Factors of BSA  

The ternary mixtures compositions used in the partitioning experiments were chosen 

based on the phase diagrams determined here for each PPG-400-IL-water system and salt -

IL-water system. Several ternary mixtures within the biphasic region were prepared, 

namely 3 wt % of IL, 78 wt % of PPG400 and 19 wt % of water (fc = 7) and 2.5 wt % of 

IL, 18.5 wt % of PPG400 and 48 wt % of water (fc = 12) for PPG 400-IL-water systems. 

Considering  the salt-IL-water systems, ternary mixtures with the following compositions 

were prepared: 12 wt % of IL, 43 wt % of salt and 48 wt % of water (fc = 2), 6 wt % of IL, 

47 wt % of salt and 47 wt % of water (fc = 5), 4 wt % of IL, 49 wt % of salt and 47 wt % of 

water  (fc = 10), 2 wt % of IL, 50 wt % of salt and 47 wt % of water  (fc = 20), 2 wt % of 

IL, 51 wt % of salt and 48 wt % of water (fc = 40). Each mixture was vigorously stirred, 

centrifuged for 30 min, and left to equilibrate for at least 10 min at (25 ± 1) ºC. 

After a careful separation of the phases, the quantification of BSA in the two phases 

was carried by HPLC, using the same procedure presented in section 2.2.3. 

The percentage extraction efficiency of BSA,       , is the percentage ratio between 

the amount of protein in the IL-rich aqueous phase to that in the total mixture, and is 
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defined according to Eq. 7 Further, the final concentration of BSA in the IL-rich phase was 

determined and compared to the initial concentration in water solution aiming at 

calculating each concentration factor. 

 

4.3. Results and Discussion 

4.3.1. Concentration Factors of BSA 

In order to optimize the liquid-liquid extraction method for the biomarkers 

concentration, more specifically PSA, several extractions of the model protein (BSA) were 

carried out at different compositions along the same TLL (Figure 4.1). This procedure 

reduces the volume of the IL-rich phase down to a minimum capable of concentrating the 

BSA that is actually present in a larger volume of an initial aqueous solution (for instance, 

biological fluids). The several initial compositions are along the same TL; yet, different 

initial concentrations lead to a different volume/weight ratio.  

The results obtained are depicted in Figures 4.2 and 4.3. At first, the PPG-400-IL-

water system was used (TLL for 49 wt% of salt and 10 wt % of IL), where two 

concentration factors were tested, and using a system that allows the 100% of extraction 

([Ch][Tricine] + PPG 400 + water). The results shown in Figure 4.2 reveal that this system 

is not ideal for the final goal since it wasn´t possible to achieve the desired concentration 

levels. Probably, the high viscosity of PPG 400 turns more difficult the complete/accurate 

phase separation, even after centrifugation. When increasing the concentration factor we 

are decreasing the volume of the IL-rich phase turning more difficult the accurate 

separation and weight of this phase. This difficulty is more evident with the higher 

concentration factor since it was necessary to increase the total volume of the mixture 

(from 10g to 60g) to obtain a larger IL-rich phase that would be easier to separate. 

However, this resulted in a significant increase in the amount of PPG 400 which in turns 

makes more difficult the phases separation. However, it should be noted that no BSA was 

detected in the PPG phase in all experiments meaning that the extraction remained at 100% 

for all the concentration tests performed. 
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Figure 4.2. Concentration factors (fc) of BSA (EBSA%) in the systems composed of [Ch][Tricine] + PPG400 + 

water: fc=7 and f= 12; p1 and p2 represent the different experiments. The filled line: experimental values; 

dashed green line: theoretical values. 

 

Aiming at overcoming this problem of phase separation, that seems to derive 

mainly from the polymer high viscosity, the same concentration procedure was employed 

with a salt-IL-water system. As with the PPG-400-IL-water system, a common TLL was 

chosen (for the initial composition of 29.8 wt% of salt and 28.7 wt% of IL). 

[N4444][Tricine] and K3C6H5O7 were the IL and salt selected and concentration factors 

equal to 2, 5, 10, 20 and 40 were tested. In Figure 4.3, it is possible to observe that up to a 

concentration of 20 times the results obtained are very close to the predicted ones by the 

level-arm rule. Only at the concentration factor of 40 the results start to deviate. At this 

point more experimental investigations are required as well as the development of a more 

convenient separation technique. The IL-rich liquid phase formed in the system 

corresponding to a 40 times concentration was too small (0.662 g for a total of 60 g), and 

probably losses through the walls of the tubes used for extraction may be in the origin of 

these results. However, similarly to the PPG-400-IL-water system, at all tested 

concentrations the extraction efficiency of BSA remained at 100%. 
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Figure 4.3. Concentration factors (fc) of BSA (EEBSA%) in the systems composed of [N4444][Tricine] + salt + 

water: fc=2, 5, 10, 20 and 40; p1;p2;p3;p4;p5 represents the different experiments. Filled lines: experimental 

values; dashed green line: theoretical values. 

 

Still, based in the latest results (Figure 4.3) it can be affirmed that controlling the 

volume ratio of the aqueous phases, aiming at decreasing the volume of the IL-rich phase, 

makes possible the concentration of proteins while keeping the complete extraction in a 

single-step. Therefore, different mixture compositions along the same TL always led to the 

complete extraction of BSA. In this context, the concentration of BSA can be increased at 

least up to 900 × by the reduction of the total volume of the extractive phase (from a 

theoretical calculation and for the mixture point composed of 0.90 wt% of IL and 51.1 

wt% of salt). Nevertheless, additional experiments are still required in what concerns the 

optimization of the procedure employed for separating the coexisting phases. As already 

discussed, the pre-concentration of biomarkers from biological fluids is traditionally 

carried out by highly cost techniques and according to well-known protocols. Therefore, 

the alternative process presented in this work is, in comparison to the later, simpler and 

more economical and certainly deserves further investigations.  
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4.4. Conclusions 

Based on the theoretical concentration factors that can be achieved, small kits 

containing the optimized ILs and K3C6H5O7 in fixed amounts can be conceptualized as 

analytical/clinical strategies where the identification/quantification of cancer biomarkers is 

required. Nevertheless, it is still required to optimize the separation of the coexisting 

phases. PSA, as most biomarkers, is found in very low concentrations in biological fluids, 

and often below the detection limits of conventional devices. The possibility created by the 

application of this type of ABS, eliminates the need of using very expensive equipment, 

such as ELISA, and specialized personnel in conducting screening tests that overload the 

national health system. 

 

 





Application of ILs in the concentration of cancer biomarkers 

 

87 

 

 

5. Extraction of PSA using 

optimized IL-based ABS  
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5.1. Introduction 

Since PSA discovery and introduction into clinical use, it has become one of the most 

important tumor markers in cancer detection [20]. In general, a PSA value of > 4.0 µg/L 

has been defined in the literature [29] as abnormal and it is frequently used as a cut-off. 

This value is below the detection limit of most quantification equipment, making the 

selection of extraction/concentration techniques relevant in order to prevent the cancer 

progression to advanced states [15]. Although, as has been carefully reviewed in Chapter 1, 

some of the conventional tests and techniques used for clinical analysis, presents serious 

drawbacks. Currently, immunoassays are the most common type of assays commercially 

available, such as ELISA [46], but this type of techniques require the identification and 

characterization of immunoassay-qualified antibodies and highly qualified technical 

operators [5]. Also, the investment on time and resources required to generate such 

immunoassays are considerable and must be developed on clinically specific chemistry 

laboratories [6].  In addition to these, it was reported the use of fluorescence and 

electrochemistry-based techniques, but these also have disadvantages like a high detection 

limit and the need to modify the target analyte - a step that could result in sample loss 

consequently affecting the quantification results [83].Therefore, is of great need to develop 

an alternative platform for the extraction and concentration of PSA from human urine 

samples. 

At this point of the work, the ABS formed by [N4444][GB] + salt + water were chosen 

as the improved system. With the aim to support the potential application of this type of 

ABS as alternative techniques for the extraction and concentration of cancer biomarkers, 

the ABS formed by K3C6H5O7 and [N4444][Tricine] was here used in an isolated experiment 

for the extraction of PSA. 

.  

5.2. Experimental Section 

5.2.1. Chemicals 

The salt potassium citrate tribasic monohydrate (K3C6HO4·H2O, purity ≥ 99 was 

obtained from Sigma–Aldrich Chemical Co. PSA (purity ≥ 95%,) was obtained from 

Sigma–Aldrich Chemical Co.. The buffer Tricine (purity > 99 wt%) was purchased from 

Sigma–Aldrich Chemical Co. The choline hydroxide solution (40 wt %, in H2O) 

hydroxide-based compound, [N4444][OH] (40 wt% in H2O), was also supplied by Sigma–
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Aldrich Chemical Co. The IL [N4444][Tricine] was synthesized according to the procedure 

described in section 3.2.2.1. Purified water passed through a reverse osmosis and a Milli-Q 

plus 185 water purifying system was used in all experiments. 

 

5.2.2. Experimental Procedure 

5.2.2.1. Extraction efficiencies of PSA 

The ternary mixture composition used in this partitioning experiment was chosen 

based on the previous results carried out with BSA. A ternary mixture with a common 

composition, and within the biphasic region, was prepared with 30 wt % of PPG 400, 30 

wt % of IL and 40 wt % of water. The mixture was vigorously stirred, centrifuged for 10 

min, and left to equilibrate for at least 10 min at 25 ºC. 

After a careful separation of both phases, the quantification of PSA in the two phases 

was carried by UV-spectroscopy, either using a Shimadzu UV-1700, Pharma-Spec 

Spectrometer (to gather the whole spectrum from 190-800 nm and from which it was 

possible to select the wavelength correspondent to the highest absrovance value (280 nm) 

or  a microplate reader from BioTec, SYNERGY|HT. 

Two samples with three readings were used in order to determine the average in the 

partition coefficient and extraction efficiency, as well as the corresponding standard 

deviations. The interference of the salts and ILs with the quantification method was also 

ascertained and blank control samples were always employed.  

 The percentage extraction efficiency determined by UV-spectroscopy is defined as the 

percentage ratio between the  amount of PSA (absorbance obtained in the IL-rich aqueous 

phase time the weight of the corresponding phase) to that in the total mixture, and is 

defined according to Equation 9, 

 

       
      

      

      
              

          
               (9) 

 

where       and          are the weight of the IL-rich phase and the weight of the salt-rich 

phase, respectively.        
   and        

     are the absorbance of PSA at the maximum 

wavelength, adjusted by the respective dilution factor, in the IL-rich and in the salt-rich 

aqueous phases, respectively. 
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5.3. Results and Discussion 

5.3.1. Extraction efficiencies of PSA 

In the previous chapters it was proven the possibility of extracting 100% of BSA, a 

protein chosen as a model, for the IL-rich phase, and in a single-step procedure. This was 

achieved wither with salt + IL or polymer + IL ABS.  

The concentration of BSA to the IL-rich phase up to ≈ 30 x was attained resorting to 

the use of ABS formed by salts and ionic liquids as improved systems. The combination of 

these results allowed us to define the K3C6H5O7 + [N4444][Tricine] ABS as an optimized 

system that can be applied in the extraction of PSA. Hereupon, the PSA partition in the 

ABS composed of 30 wt % of K3C6H5O7 + 30 wt% of [N4444][Tricine] ABS at 25 ºC was 

performed. The extraction efficiencies of PSA were obtained from the results gathered by 

two different analytical instruments to have more confidence on the final results. At this 

point it should be stated that the HPLC technique was not used due to some faced 

operational problems that were not solved up to the end of this work. The extraction 

efficiencies of PSA at 25 ºC are displayed in Figure 5.1.  
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Figure 5.1. Extraction efficiencies of PSA (EEPSA%) for the IL-rich phase in the systems composed of 

K3C6H5O7 + [N4444][Tricine] + water at 25 (±1)º C and atmospheric pressure determined from the two 

different techniques 

 

As expected and based on what has been previously discussed, it was observed the 

complete partitioning of PSA for the IL-rich aqueous phase without any signs of 

denaturation and protein precipitation. The study on other ABS and the respective 

concentration factors of PSA is of paramount importance and should be carried out in the 

near future. 

 

5.4. Conclusions 

To the best of our knowledge, the remarkable ability of IL-based ABS to extract the 

PSA biomarker in a single-step procedure was reported here for the first time.  

Huge advances were obtained in this work allowing to conclude that IL-based ABS are 

improved liquid-liquid systems for extracting and further concentrating proteins.  The 

studies carried out with BSA led to the identification of the best systems to be used in the 

extraction and concentration of   PSA aiming at attaining the biomarker in detectable levels 

that could be quantified by conventional methods.  
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6. Final remarks 
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6.1. Conclusions 

The main purpose of this work consisted on the development of novel aqueous 

biphasic systems composed of ionic liquids that could allow not only an efficient 

extraction and a high concentration factor but also able to maintain the protein stability. 

At first, new GB-IL-based ABS combined with the biodegradable organic salt, 

K3C6H5O7, were tested. More specifically, [P4444][Tricine], [P4444][CHES], [P4444][MES], 

[P4444][HEPES], [P4444][TES], [N4444][Tricine], [N4444][CHES], [N4444][MES], 

[N4444][HEPES] and [N4444][TES] were used to form ABS at a controlled/buffered pH. 

Their phase diagrams were initially ascertained, followed by extraction experiments using 

BSA as a model protein. In all systems, 100% of extraction of BSA for the IL-rich phase 

was reached in a single-step procedure with no denaturation or precipitation effects 

observed. 

As a second approach, and with the intent of finding more benign and sustainable 

extraction/concentration systems, several ABS composed of cholinium-based ILs, 

representative materials from renewable resources, and a biodegradable and biocompatible 

polymer, were evaluated. The ternary phase diagrams (PPG 400 + IL + water) were 

determined with the following ILs: [Ch]Cl, [Ch][Ac], [Ch][Prop], [Ch][Gly], [Ch][But], 

[Ch][Lac], [Ch][Cit], [Ch][MES], [Ch][HEPES] and [Ch][Tricine]. After, their extraction 

ability for BSA was evaluated. ABS composed of [Ch][Ac], [Ch][Tricine], [Ch][But], 

[Ch][MES], [Ch][DHCit] and [Ch][Prop] revealed to be a promising separation process 

since they provide a complete extraction while maintaining a suitable aqueous environment 

for the protein.  

In order to optimize the liquid-liquid extraction method for biomarkers concentration, 

more specifically PSA, several concentration factors for the model protein (BSA) were 

experimentally investigated. These were performed with different ABS formed at different 

compositions along the same TL and with two systems that allowed a 100% extraction of 

BSA: [Ch][Tricine] + PPG 400 + water and [N4444][Tricine] + K3C6H5O7 + water. It was 

shown that the ABS formed by [N4444][Tricine] and K3C6H5O7 is the better choice when 

evaluating the ABS as a concentration technique.  

Finally, in order to support the potential application of the studied ABS as alternative 

techniques for the extraction and concentration of cancer biomarkers, the ABS formed by 

K3C6H5O7 and [N4444][Tricine] was used in an isolated experiment for the extraction of 
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PSA and where it was confirmed the complete extraction of the biomarker for the IL-rich 

phase by UV-spectroscopy. 

In summary, small kits containing the optimized ILs and K3C6H5O7 in fixed amounts 

can be conceptualized analytical/clinical strategies where the identification/quantification 

of cancer biomarkers is required. Nevertheless, much more work is still required, 

particularly on the concentration factors of PSA from aqueous solutions and making use of 

biological-fluids-type samples. 

 

6.2. Future work   

Once validated this method for general protein extraction, it is also important to study 

a protein structurally and functionally analogous to PSA, such as chymotrypsin, to predict 

the biomarker results. 

 The next step is to study and implement the optimized systems in the extraction and 

concentration of PSA.  

It is necessary, at an early stage, to optimize the quantification process, similar to what 

was done in this work with BSA. Then, the concentration factors should be studied in more 

detail and it is still required to optimize the experimental phases’ separation. After, the 

same procedure should be applied to urine-type samples. Since PSA is a biomarker with 

more clinical relevance in serum, the selected ABS should be finally evaluated with serum-

type samples. At these stages, the partitioning and interference of other proteins in 

biological fluids need to be deeply evaluated. With this, the following objective is the 

implementation of these systems not only in PSA analyses, but also to other types of 

biomarkers which face the same quantification problem, such as α-fetoprotein and β-

microglobulin (biomarkers of hepatocellular carcinoma and multiple myeloma/lymphoma, 

respectively). 
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A.1. HPLC Calibration Curve for BSA 

 

Figure A 1. Calibration curve for BSA in PBS solution by HPLC at λ = 278 nm.  
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B.1. Experimental Binodal Data for Systems Composed of IL + salt + H2O.  

 

Table B.1.1. Experimental weight fraction data for the binodal curve of the systems composed 

of [P4444][GB] (1) + K3C6H5O7 (2) at (25 ± 1) °C 

[P4444][TES] 

Mw = 453.66 g.mol
-1

 

[P4444][MES] 

Mw = 453.66  g.mol
-1

 

[P4444][HEPES] 

Mw = 496.72 g.mol
-1

 

100w1 100 w2 100w1 100 w2 100 w1 100 w2 100 w1 100 w2 

61.8678 4.36723 62.3717 1.9534 14.4682 21.4879 60.6808 1.7776 

47.0190 8.97101 55.0746 3.0687 14.0210 21.8603 48.7062 4.7776 

25.5215 19.1506 46.1457 5.2053 13.5973 22.2147 44.9539 6.0756 

23.7507 20.2187 38.9888 7.5466 13.3496 22.436 39.0405 8.3030 

22.0028 21.4418 35.5324 9.4461 13.1172 22.5457 25.2803 15.2525 

20.3078 22.4654 32.1736 10.4337 12.8557 22.7482 22.1920 18.3454 

19.2364 23.1661 29.2351 12.177 12.6174 22.8941 19.0199 20.8474 

18.3514 23.7213 25.0058 14.2196 12.3314 23.0981 18.7982 21.059 

17.3671 24.4091 24.3730 14.9448 12.1281 23.2549 18.2316 21.3805 

16.5209 24.9562 23.4465 15.5913 11.9372 23.4139 17.9539 21.6286 

15.4982 25.6797 22.7324 15.9857 11.6437 23.7911 17.6748 21.8651 

14.5372 26.3873 22.1010 16.2701 11.4069 23.8702 17.1974 22.1548 

13.9789 26.7876 21.0463 17.2067 11.1862 24.1448 16.9076 22.2605 

12.6568 28.2183 20.1913 17.4856 10.8123 24.4067 16.5236 22.5372 

11.9845 28.7496 19.8753 17.7077 10.6356 24.5665   

11.4811 29.1502 19.296 18.0770 10.2575 25.3191   

11.0247 29.4545 18.8178 18.3213 10.0548 25.3267   

9.7313 30.4098 18.4771 18.7802 9.90130 25.4396   

9.3105 30.8228 17.9601 19.0542 9.76240 25.5814   

9.0700 30.8791 17.5589 19.3400 9.4916 25.9226   

8.7344 31.1791 17.1589 19.5134     

7.9971 31.8818 16.7271 19.9010     

7.6370 32.2070 16.3047 20.0070     

7.1529 32.6797 15.9311 20.2144     

6.7983 33.0729 15.7730 20.5767     

6.2622 33.6999 15.0549 21.1613     

5.8512 34.1718 14.7790 21.3413     

5.2969 34.7178 14.4682 21.4879     

  14.0210 21.8603     

  13.5973 22.2147     

  13.3496 22.436     

  13.1172 22.5457     

  12.8557 22.7482     

  12.6174 22.8941     
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Table B.1.2 Experimental weight fraction data for the binodal curve of the systems composed of 

[P4444][GB]  (1) + K3C6H5O7 (2) at (25 ± 1) °C. 

 

 

 

 

 

[P4444][CHES] 

Mw = 465.71  g.mol
-1

 

[P4444][Tricine] 

Mw = 437.59 g.mol
-1

 

100w1 100w2 100w1 100w2 100w1 100w2 

56.0295 2.1514 16.4509 13.8854 49.0588 8.6992 

49.8386 2.9995 15.9852 14.2903 43.9675 10.2137 

44.5654 4.0045 15.5886 14.1837 47.6961 9.1530 

32.6368 7.7831 15.3380 14.3336 32.0490 15.8351 

31.6348 8.0459 15.0681 14.4827 27.3453 19.3309 

27.8080 9.1536 14.6794 14.6118 19.5583 25.3643 

26.9733 9.6042 14.3922 14.7490 16.6714 27.8062 

26.3242 9.7600 14.0809 14.8845 15.3375 28.9483 

25.9007 9.9304 13.7886 15.0419 13.3246 30.5587 

25.1314 10.3976 13.4654 15.1744 11.2654 32.4796 

24.6113 10.4534 13.1300 15.3955 10.3802 33.1815 

23.8957 10.9677 12.8337 15.4474 9.0383 34.2280 

23.1845 11.1648 12.5353 15.6245 8.4519 34.7186 

22.3504 11.4097 12.2196 15.7977 7.7450 35.2786 

21.7190 11.6700 11.9575 15.9053 7.3003 35.5413 

21.0972 11.9757 11.8131 16.0626 6.9272 35.8852 

20.6540 12.1558 11.5101 16.2111 6.5390 36.1197 

20.2407 12.2667   6.2128 36.4294 

19.6123 12.4833   5.8104 36.3621 

19.4026 12.6567   5.5379 36.6229 

19.1298 12.7742   5.3077 36.7289 

18.8311 13.0228   5.0206 36.8553 

18.4910 13.0977     

17.9544 13.4087     

17.4981 13.5529     

17.0529 13.6584     

16.6000 13.8609     
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Table B.1.2. Experimental data mass fraction for the binodal curve of the system composed of 

[N4444][GB] (1) + K3C6H5O7 (2) at (25 ± 1) °C. 

[N4444][TES] 

Mw = 470.7 g.mol
-1

 

[N4444][MES] 

Mw = 436.69 g.mol
-1

 

[N4444][HEPES] 

Mw = 479.75 g.mol
-1

 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

60.6248 3.5221 61.4054 2.8040 49.4787 4.8618 29.2137 15.5311 

56.1248 4.1141 56.7183 3.5916 46.2898 6.3893 28.4070 15.9580 

54.1559 4.8890 52.4237 4.0263 43.764 7.6769 26.2531 17.6910 

47.7225 7.1459 49.6251 5.0111 42.0049 8.2477 24.9637 18.4296 

44.9413 8.4650 47.3829 5.8218 39.2991 9.6115 24.1665 18.9653 

40.1389 11.2892 44.3436 6.5954 37.1717 10.6517   

35.2034 14.3904 41.6020 7.2906 34.7759 12.0841   

29.8266 18.1741 40.5412 7.8690 33.3929 12.9164   

27.2017 20.0343 37.7732 8.3407 31.3675 14.1100   

23.2966 23.0217 34.7701 9.9901 29.2137 15.5311   

21.9686 24.0255 33.0372 10.9006 28.4070 15.9580   

20.3775 26.0993 29.8618 12.7984 26.2531 17.6910   

18.0592 27.8101 28.5029 13.7175 24.9637 18.4296   

60.6248 3.5221 27.1237 14.5163 24.1665 18.9653   

  25.6895 15.4944 22.5916 20.2709   

  24.6592 16.1094 20.9033 21.4207   

  23.4150 17.2196 19.6424 22.1288   

  22.4664 17.8083 18.4485 23.1335   

  21.7983 18.5649 17.0663 24.1471   

  21.0613 19.1106 16.3445 24.7717   

    15.2264 25.7542   

    14.4333 26.1961   

    14.2421 26.2555   

    13.0309 27.3161   

    12.2152 28.0560   

    11.5620 28.5904   

    10.9958 29.0709   

    10.5826 29.5005   

    10.0336 29.8162   

    9.7698 30.1147   

    9.3672 30.6088   

    31.3675 14.1100   



Application of ILs in the concentration of cancer biomarkers 

 

122 

 

Table B.1.3. Experimental data mass fraction for the binodal curve of the system composed of 

[N4444][GB]  (1) + K3C6H5O7 (2) at (25 ± 1) °C. 

 [N4444][CHES] 

Mw = 448.74 g.mol
-1

 

[N4444][Tricine] 

Mw = 420.62 g.mol
-1

 

100 w1 100 w1 100 w1 100 w1 100 w1 100 w2 100 w1 100 w2 

57.5741 4.3595 8.2864 21.3362 48.2463 8.5815 17.0513 29.1451 

49.7951 5.4885 8.1364 21.3748 44.6489 10.7724 16.3110 29.7432 

45.0789 6.4316 8.0764 21.5365 43.3425 11.5793 15.7645 30.1447 

42.4844 7.3569 7.6322 21.7491 42.1253 12.2497 15.2459 30.5384 

40.4427 8.2403 7.4752 21.9145 41.0591 12.7489 14.6169 31.0718 

37.8860 8.7157 7.1446 22.7635 39.8372 13.5505 14.1015 31.4787 

35.7309 9.3461 6.9200 23.0455 38.1933 14.6085 13.5202 31.9596 

34.6828 9.9063 6.7012 23.1616 36.2742 15.7678 12.8619 32.5152 

32.7218 10.8505 6.3725 23.6590 34.6087 16.7694 12.2324 33.0209 

29.9862 11.6212 6.0739 23.6358 33.1372 17.7943 12.0106 33.1806 

25.5988 13.5087 5.8788 24.0770 32.1573 18.1785 11.6513 33.4869 

24.1441 13.9681   31.7469 18.3389 11.4962 33.6289 

23.1690 14.3891   31.0114 18.8360 11.1564 33.8981 

22.0879 15.0957   29.9834 19.6339 10.4995 34.4976 

21.3568 15.5439   28.1113 20.9998 9.9389 35.0097 

20.3457 15.5442   26.4768 22.2000 9.4991 35.3803 

19.4087 16.1333   25.9227 22.5364 9.1337 35.7540 

18.0468 17.0493   25.2101 23.0306 8.6148 36.2365 

17.3541 16.8495   24.4242 23.6589 8.0910 36.6959 

16.0194 17.8183   23.4762 24.3404 7.7570 36.9904 

15.0623 18.0782   22.9368 24.7026 7.3539 37.3906 

14.3852 18.3897   22.3403 25.1777 7.1370 37.6344 

13.9453 18.4047   21.8922 25.4478 6.7822 37.9600 

13.4255 18.8291   21.3077 25.9037 6.4953 38.2110 

12.7435 19.2393   20.7949 26.2962   

12.0429 19.6324   19.8940 26.9181   

11.5476 19.8836   18.9674 27.6444   

10.9424 20.0558   18.5053 28.0635   

10.2330 20.3634   18.3376 28.1522   

9.7194 21.0633   17.7885 28.5883   

 



Application of ILs in the concentration of cancer biomarkers 

 

123 

 

B.2. Experimental Binodal Data for the IL-based ABS Systems Composed of IL + PPG 

400 + H2O. 

Table B.2.1. Experimental data mass fraction for the binodal curve of the system composed of IL 

(1) + PPG400 (2) at (25 ± 1) °C. 

[Ch][DHCit] 

Mw = 295.29 g.mol
-1

 

[Ch][DHPhs] 

Mw = 407.48 g.mol
-1

 

[Ch]Cl 

Mw = 139.62 g.mol
-1

 

[Ch][Ac] 

Mw = 163.21 g.mol
-1

 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

70.1536 2.3417 55.4325 2.7881 48.7073 6.2832 59.387 4.6520 

65.9819 3.4383 49.3628 3.2744 43.0658 6.9546 53.524 5.7410 

61.6203 4.7738 45.4998 3.7429 39.1209 7.4608 49.188 6.7000 

56.6761 6.3941 36.5270 4.7463 36.279 8.0541 37.388 9.4050 

52.3928 7.8162 33.5006 4.9368 33.5576 8.4440 35.046 9.6350 

50.2383 8.4651 32.4385 5.2692 31.3208 8.9212 33.690 10.2290 

39.6114 12.1179 31.1122 5.4413 29.6235 9.2445 31.875 10.5070 

38.4475 12.6739 29.4377 5.9556 26.2245 10.6186 27.986 12.1730 

29.5967 15.8001 27.9268 6.3037 25.4599 11.2173 26.771 12.9600 

26.1514 17.5801 25.8670 6.7016 24.2382 11.5553 25.409 13.5720 

25.8432 17.7910 23.5555 7.2560 23.571 12.0105 24.351 14.1490 

25.1537 17.9041 21.8186 7.6481 20.4964 14.0182 23.482 14.9080 

24.8347 18.0937 20.3480 8.2812 19.9674 14.3353 22.483 15.2510 

22.7529 19.5688 19.2992 8.5568 19.3311 14.5712 21.587 16.0310 

21.4427 20.2485 18.4855 9.0082 18.8858 14.8972 20.564 16.3290 

20.8654 20.3651 17.7096 9.2539 18.4645 15.2441 19.758 16.9150 

20.5197 20.7738 16.6752 9.9229 17.9548 15.4338 18.977 17.5720 

20.2059 21.0008 10.3907 13.9265 17.2173 16.0146 18.259 18.0890 

19.3468 21.5827 9.8248 14.3877 16.7918 16.6792 17.354 19.2490 

18.5068 22.1900 8.8675 14.6940 16.4596 16.8786 16.929 20.0760 

18.3322 22.2421 8.6881 15.3362 15.9752 17.5472 16.316 20.672 

15.0601 25.6635 8.2300 16.0529 15.4786 17.5268 15.3800 21.2250 

12.5891 28.5293 7.8176 16.5972 6.9155 39.2329 14.7210 21.9620 

11.2100 30.5431 7.1779 17.4248 5.7351 44.6712 13.9560 22.7510 

9.72180 33.14760 6.9475 18.5105   13.3020 23.1640 

      12.8000 23.8880 

      12.1860 24.6520 

      11.5650 25.3420 

      10.9020 26.1680 
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Table B.2.2. Experimental data mass fraction for the binodal curve of the system composed of IL 

(1) + PPG400 (2) at (25 ± 1) C °                                    

[Ch][Bit] 

Mw = 253.247 g.mol
-1

 

[Ch][Prop]  

Mw = 177.24 g.mol
-1

 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

54.6562 5.7383 6.5518 35.6425 73.8795 2.4499 

50.2356 6.0681 5.7408 39.0975 65.1232 3.2181 

48.4004 6.5524 4.4054 44.5808 57.8134 3.8680 

46.5267 6.9060 14.1015 31.4787 54.6503 4.5710 

44.9571 7.4007 13.5202 31.9596 46.6709 5.8241 

42.5266 7.7080 12.8619 32.5152 43.3357 6.7603 

41.0379 8.2784 12.2324 33.0209 39.3911 7.3039 

39.0351 8.7010 12.0106 33.1806 36.3439 8.0177 

37.8387 9.2356 11.6513 33.4869 30.9154 9.4875 

36.0547 9.5499 11.4962 33.6289 27.9846 10.1696 

33.4898 9.9097 11.1564 33.8981 26.3380 10.6931 

32.5690 10.2686 10.4995 34.4976 22.1174 12.3729 

31.6897 10.6442 9.9389 35.0097 
  

30.1394 11.1050 9.4991 35.3803 
  

29.6221 11.2820 9.1337 35.7540 
  

28.9419 11.4563 8.6148 36.2365 
  

28.4316 11.6253 8.0910 36.6959 
  

22.7443 13.4543 7.7570 36.9904 
  

21.4948 14.1535 7.3539 37.3906 
  

20.4860 14.7502 7.1370 37.6344 
  

19.8450 15.3551 6.7822 37.9600 
  

18.6803 16.3650 6.5518 35.6425 
  

17.9659 16.9610 5.7408 39.0975 
  

17.2787 17.2906 4.4054 44.5808 
  

16.3757 18.0381 
    

16.0134 18.2056 
    

15.4307 18.4583 
    

14.8828 18.9417 
    

14.4190 21.0743 
    

11.9483 24.7771 
    

11.0418 26.6543 
    

10.0298 28.4367 
    

9.1865 30.2331 
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Table B.2.3. Experimental data mass fraction for the binodal curve of the system composed of IL 

(1) + PPG400 (2) at (25 ± 1) °C. 

[Ch][MES] 

Mw = 298.40 g.mol
-1

 

[Ch][HEPES] 

Mw = 341.46 g.mol
-1

 

[Ch][Tricine] 

Mw = 282.33 g.mol
-1

 

100 x1 100 x2 100 x1 100 x2 100 x1 100 x2 100 x1 100 x2 

69.8838 4.2285 56.5128 5.0882 97.8736 1.2991 16.6959 18.0693 

64.7860 5.3217 53.8068 5.5568 69.4904 3.1259 16.0723 18.5787 

60.1333 6.2874 50.5166 6.7184 60.1858 3.6327 15.4576 19.0313 

55.1965 7.1847 47.5280 6.8257 56.7761 4.2760 14.7720 19.5331 

48.5012 8.7696 45.9982 7.6268 54.1640 4.7039 14.2343 20.0327 

46.7958 9.5501 41.1425 8.6022 51.5482 5.4519 13.6790 20.5952 

43.7971 10.9016 37.7310 9.3213 49.2567 5.7598 12.9267 21.3824 

42.4334 11.3568 35.2451 9.9419 47.5950 6.2286 12.4041 21.9015 

38.2685 12.7829 34.1140 10.2609 45.8467 6.6634 11.7706 22.6844 

36.5502 13.0879 32.5947 10.5324 43.7788 6.9466 10.9575 24.4370 

35.0770 13.4386 32.0678 10.8553 42.2302 7.2639   

34.1312 13.9794 29.1506 11.5405 40.6019 7.6593   

32.8241 14.2450 27.8870 12.1211 39.1487 8.1093   

31.7028 14.5477 27.3756 12.4586 37.4811 8.2817   

30.2208 15.3318 26.8674 12.7469 36.3467 8.5527   

28.3978 16.1937 25.6239 13.6923 35.3796 8.8117   

27.8386 16.4653 25.0401 14.0154 34.5481 9.0611   

27.2691 16.7319 24.4870 14.2415 33.5101 9.2900   

26.4884 17.4968 22.6722 15.0782 32.6664 9.4897   

25.4908 18.0547 21.8793 15.7214 31.5901 9.9985   

24.6919 18.7448 20.8241 16.4387 30.4569 10.5764   

23.7332 19.2341 19.6307 18.5430 29.6016 10.7434   

23.2839 19.4249 19.3357 18.5453 29.1003 10.9652   

22.6274 20.0168 17.0628 20.1884 28.2516 11.5057   

22.0293 20.5238 16.4335 20.6799 27.1456 11.7318   

21.3505 20.8697 15.6755 21.3473 26.5879 12.2269   

20.8101 21.3969 15.1071 21.9024 25.9404 12.5196   

20.4555 21.5852 14.7864 22.2729 25.1396 12.6329   

19.9875 22.1150 14.5126 22.7060 23.9538 12.9995   

19.4955 22.6714 14.1541 22.7205 23.0370 13.5410   

18.8630 22.9970 13.5237 23.4890 22.4053 13.8492   

18.3951 23.4678 13.0076 23.7844 21.7388 14.3094   

17.5490 24.1697 12.7396 24.0960 20.9602 14.7788   

17.1939 24.5979 12.1180 25.0286 20.3241 15.2128   

  11.7603 25.3532 19.5962 15.7613   

    18.4586 16.6578   

    17.7894 17.2612   

    17.2629 17.6150   


