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Resumo 
 

 

O principal objetivo deste trabalho consistiu no estudo do equilíbrio sólido-
líquido de misturas binárias constituídas por líquidos iónicos. Os líquidos 
iónicos utilizados eram compostos por um anião comum, o hexafluorofosfato, e 
catiões de diferentes naturezas, como os aromáticos imidazólio e piridínio, e os 
catiões não aromáticos como o pirrolidínio, piperidínio e o tetrabutilamónio e 
fosfónio. As temperaturas de fusão das misturas e dos componentes puros 
foram obtidas com recurso a um microscópio ótico com luz polarizada e com 
uma platina termostatizada acoplada. Além disso, também foi utilizada a 
técnica de calorimetria diferencial de varrimento (DSC) para obter algumas 
informações adicionais. Através da avaliação dos diagramas de fase, verificou-
se que todas as misturas apresentaram um comportamento eutético, com a 
exceção de um sistema. Verificou-se também que, na maioria dos casos, este 
comportamento pode ser bem descrito considerando a idealidade das fases 
liquida e sólida. Dado que alguns compostos puros estudados apresentam 
transições sólido-sólido significativas, os termos relativos a estas transições 
não podem ser desprezados quando efetuamos a modelação dos diagramas 
de fase. Acreditamos que as semelhanças estruturais entre os compostos 
utilizados na mistura binária justificam o comportamento ideal da maioria das 
misturas. Verificámos diferenças substanciais de temperaturas entre a 
composição eutéctica e o componente puro, e em alguns casos mais de 100 K. 
Isto significa que através de sistemas eutéticos podemos gerar novos líquidos 
iónicos a partir de sólidos iónicos. 
Alguns sistemas revelaram um comportamento não-ideal. As diferenças 
estruturais entre os componentes com diferentes comprimentos de cadeia 
alquílica, e o caracter alifático e a simetria em contraponto com componentes 
com carácter aromático e assimétrico foram as principais razões encontradas 
para o desvio do comportamento à idealidade. A não-idealidade da fase líquida 
foi modelada através da equação de Margules.  
O modelo COSMO-RS (COnductor-like Screening MOdel for Real Solvents), 
um modelo baseado numa combinação de química quântica com cálculos de 
termodinâmica estatística, foi utilizado para calcular os coeficientes de 
atividade respeitantes aos sistemas eutéticos estudados. Foi feita a 
comparação entre os valores calculados pelo modelo e os experimentais. 
Foram também determinados alguns diagramas sólido-liquido utilizando o 
modelo COSMO-RS. Os resultados obtidos pelo modelo foram concordantes 
com os dados experimentais, sobretudo nos sistemas com maior desvio à 
idealidade, validando assim a potencialidade deste modelo para prever o 
comportamento de novos sistemas.     
O sistema composto por hexafluorofosfato de 1-propil-3-metilpiperidínio e 1-
propil-3-metilpirrolídinio revelou um comportamento único, uma solução sólida 
contínua com a formação de uma liga. 
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abstract 

 
The main aim of this work was the study of the solid-liquid equilibrium of binary 
mixtures composed of ionic liquids. The ionic liquids evaluated were 
constituted by a common anion, the hexaflourophosphate and different nature 
cations as the aromatic, imidazolium, pyridinium, non-aromatic as the 
pyrrolidinium and piperidinium and the tetrabutylammonium and 
tetrabutylphosponium cations. The melting temperatures of the pure 
components and their mixtures were obtained by a polarized optical 
microscope coupled to a controlled temperature stage. Furthermore, 
Differential Scanning Calorimetry (DSC) was used to obtain additional 
information. Through the evaluation of the phase diagrams behavior, it was 
found that all mixtures presented an eutectic-like behavior with the exception of 
one system. It was found also that in most of the studied examples the eutectic 
behavior could be well described considering the liquid and solid phases as 
ideal. For some pure compounds important solid-solid transitions were 
observed. In the cases of the mixtures formed by these components the 
contribution terms based on these transitions could not be neglected when 
modeling the phase behavior. The similarities between mixed components 
justify the ideal behavior observed for most systems. Reasonable temperatures 
differences between the eutectic composition and the pure component were 
found, and in some cases over 100 K, meaning that it is possible to generate 
new ionic liquids from ionic solids.   
Some of the studied systems revealed a mild non-ideal behavior. The 
structural differences between components composed of different alkyl chain 
lengths and the aliphatic and symmetrical nature versus aromatic and 
asymmetrical components are the main reasons behind the deviations to the 
ideal behavior. The non-ideality of the liquid phase was modeled by the 
Margules equation. 
The COSMO-RS (Conductor-like Screening MOdel for Real Solvents), a model 
based on the combination of quantum chemistry calculations with statistical 
thermodynamics, was used to calculate the activity coefficients of the studied 
systems. A comparison was made between the values calculated by the model 
and experimental data. The solid-liquid phase diagrams of some systems were 
also calculated by COSMO-RS. The results obtained by the model were 
consistent with experimental data, especially for the systems with higher 
deviation from ideality, validating thus the ability of this model to describe the 
phase behavior of new systems. 
The system, composed of 1-propyl-3-methylpiperidinium and 1-propyl-3-
methylpyrrrolidium hexafluorophosphate, presented a unique behaviour, a 
continuous solid solution with a formation of an alloy. 
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1.1.  Scope and objectives 

The high melting temperature of some mesotherms salts, with chemical similarity 

to ionic liquids but with melting temperatures above 100ºC, excludes them from 

the ionic liquid realm and also from some applications since high process 

temperatures are needed for their use. The use of mixtures composed of these 

salts and also ionic liquids with higher melting temperatures is a promising path to 

decrease the melting points of these salts by formation of eutectic systems, while 

maintaining the favorable properties of ILs, such as the low vapor pressure and 

their aprotic character.1-2  

The possible number of feasible mixtures between these materials is vast3, while 

the number of mixtures composed of ionic liquids, as well as the phase behavior of 

these systems is still poorly investigated.4 These facts confirm the pioneering 

aspect as well as the pertinence of the present work. Furthermore, a profound 

understanding of these mixtures, and of their phase behavior and properties, can 

greatly contribute to future improvements on the “designer solvent” concept.   

The aim of this work is to generate ionic liquids (from binary mixtures), with melting 

points lower than room-temperature, from simple mixtures of ionic liquids with 

higher melting temperatures. Moreover, it is also expected to evaluate the 

deviations of the liquid phase to the ideal behavior of binary mixtures composed of 

a range of ionic liquids/mesotherm salts, in particular those formed by a vast 

number of cations coupled with the hexafluorophosphate anion ([PF6]
-). With this 

work it is expected to reach a more complete understanding on the chemical 

interactions occurring between ionic liquids by evaluating the non-ideality of the 

liquid phase, assessed from the difference between the experimental behavior and 

the calculated ideal behavior based on the melting profile of the mixture. 

Additionally, it is also evaluated the predictive ability of COSMO-RS (COnductor-

like Screening Model for Real Solvents) for the description of the phase behavior 

of investigated binary systems. 
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1.2.  Ionic Liquid Definition  

Ionic liquids (ILs) could be simply defined as liquids entirely composed of ions4; 

however, this is not so straightforward since the definition itself is a continuous 

working definition. Usually they can be classified as molten salts, mostly 

composed of large organic cations with dispersed charge, being the most used 

cations in synthesis the nitrogen-based, as shown in figure 1. Examples of this 

family include the 1-alkyl-3-methylimidazolium ([CnC1im]+), 1-alkyl-2,3-

dimethylimidazolium ([CnC1C1im]+), N-alkylpyridinium ([Cnpy]+), N-alkyl-N-

methylpiperidinium ([CnC1pip]+), N-alkyl-N-methylpyrrolidinium ([CnC1pyrr]+), 

tetraalkylammonium ([Nm,n,o,p]
+), and also the phosphonium- and sulphonium-

based, as the tetraalkylphosphonium ([Pm,n,o,p]
+) and the trialkylsulfonium ([Sm,n,o]

+) 

cations. The anions can be either inorganic or organic, and the most widespread 

used are hexafluorophosphate ([PF6]
-), bis(trifluoromethylsulfonyl)imide ([NTf2]

-), 

tetrafluoroborate ([BF4]
-), choride ([Cl]-), bromide ([Br]-), iodide ([I]-), 

trifluoromethanesulfonate ([OTf]-), acetate ([C1CO2]
-), among others. Some 

examples of the anions chemical structures are depicted in figure 2.  

It is a well established, albeit arbitrary, criterion that ILs should present a melting 

temperature below 373 K. These low melting points can be considered a 

consequence of the large size of their ions, the unsymmetrical nature of the 

cation5, as well as of a delocalized charge6. This melting point criterion is based on 

the boiling point of water and has no physical meaning.4 For this reason, a large 

range of mesotherms salts, which are chemically similar to ionic liquids, 

nevertheless with a higher melting temperature, seem to be rejected from the ionic 

liquids realm. Regardless of this fact, the reality is that a low melting temperature 

is an important property which enlarges the liquidus domain of these salts, keeping 

their specific chemical characteristics as ionic substances, and by this, expanding 

their applicability range while turning them into more useful materials.7   
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Figure 1 - Common cations used in the synthesis of ionic liquids and their common abbreviations.   

 

Figure 2 - Most used anions in the composition of ionic liquids and their typical abbreviations.  
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1.3.  Historical view of Ionic liquids 

The ionic liquids field started when Paul Walden8, in 1914, by the neutralization of 

ethylamine with concentrated nitric acid synthesized the ethylammonium nitrate. 

This salt presented a melting temperature between 286-287 K, which was a quite 

unique behavior for a salt, since they normally melt at considerable higher 

temperatures (for instance, NaCl has a melting temperature of 1074 K). Despite 

this discovery, not much interest was attributed to this new class of liquids, and 

only in 1934, Charles Graenacher9 filled the first patent of an industrial application 

involving the use of ionic liquids, claiming that halides salts of nitrogen-containing 

bases were able to dissolve cellulose at temperatures above 373 K.10 Then, only 

after the World War II, in 1948, new developments were performed, and another 

two patents appeared describing the use of mixtures of aluminium(III) chloride and 

1-ethylpyridinium bromide for the electrodeposition of aluminium. Later on11 it was 

reported the phase diagram of the mixture of aluminium chloride and ethyl 

pyridinium bromide, as presented in figure 3, showing the lower melting eutectic 

temperature at a composition of two moles of aluminium chloride (AlCl3) per mole 

of ethylpyridinium bromide ([C2py]Br).3 Nevertheless, the moisture sensitiveness of 

these ionic liquids represented a major drawback for their use in industry, which 

was overcome by the report in 1992, by Wilkes and Zaworotko12, for the synthesis 

of water and air stable ILs with the introduction of alternative anions as 

tetrafluoroborate and nitrate. Moreover, a major advantage in the preparation of 

these compounds was highlighted since the need of an inert atmosphere box was 

avoided.    
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Figure 3 - First solid-liquid phase diagram reported for the system composed of [C2py][Br] – 

AlCl3.
11

 

In the past few years, the total number of publications dedicated to ionic liquids, 

either patents or scientific publications, increased almost exponentially and 

exceeded the 12500 publications in 2013, as shown in figure 4. These amazing 

records can be explained by the ILs exquisite thermophysical properties, as a 

negligible volatility, high electrochemical and thermal stability, among many others,  

and which could explain the great interest that both academia13 and industry3 have 

conceded to these materials.  

 

Figure 4 - Number of publications concerning the ionic liquid topic per year, patents (light blue) 

and scientific publications (dark blue). Data taken from Web of knowledge™ with the topic search 
keywords – “ionic liquid*”.
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1.4.  Designer Solvents Concept  

One of the most important features of ILs is their capability as “designer 

solvents”15, i.e, a proper selection of an anion and a cation allow the tuning of their 

physical and chemical properties to meet a specific criteria or a specific 

application16. This plethora of possible ionic liquids leads to the creation of novel 

solvents with designed properties and able to replace the volatile organic solvents 

currently used, contributing thus to a reduction of the environmental impact while 

improving safety.5, 17 The possibility of choosing one cation and one anion, among 

so many different possible ionic species, opens the possibility to prepare about 106 

potential new ionic liquids; yet, if one consider their combination into binary 

systems, or even in ternary systems, the possible new mixtures products are 1012 

and 1018, respectively, and which means a massive range of new customized 

applicative-solvents.3 These numbers are highly appealing when compared with 

the 600 conventional solvents used in industry and illustrate the broad range of 

opportunities and the undiscovered world that one still have to unveil in the future. 

Moreover, the capability of tailor made design products turned ionic liquids into 

materials with an industrial interest that can take part in the changes of the 

paradigm of the world industry, building a more sustainable and versatile route of 

alternative processes.  

1.5.  Mixtures composed of Ionic liquids 

Surprisingly, and despite the fact that until now there are more than 1000 ionic 

liquids already reported, still a long path has to be made into the ionic liquid 

mixtures topic.4,18 Nevertheless, up to present there are already quite promising 

results reported for binary mixtures of ionic liquids in diverse fields of application, 

such as in heterogeneous catalysis19, in the preparation of cellulose nanofibers20, 

for improving gas solubility21, in dye-sensitized solar cells22-24, as solvent reaction 

media25, as gas chromatography stationary phases26, in biphasic 

polymerizations27, in the liquid-liquid extraction of organic solvents28, in lipids 

extraction from microalgae29, and in CO2  absorption30 and separation31. 

Furthermore, some works have evaluated, in a theoretical perspective, the IL-IL 

mixtures by molecular simulations32-34, their physical properties, such as 
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densities35-40, viscosities1, 36, 38, 40-41, excess volumes35-36, 40, 42,  surface 

tensions20,37, 39, vapor pressures43-45, diffusion coefficients41, conductivities36, 46, 

and surface structures47 and nanostructures48. Also chemical properties were 

evaluated as probing solute and solvent interactions49, mutual miscibility50-51, 

dielectric measurements36, optical heterodynedetected Raman-induced Kerr effect 

spectroscopy (OHD-RIKES)52, and one of the most important, the phase 

behavior1-2, 50, 53-66, which is the main objective of the present work.  

Some mixtures present a complex phase behavior; for instance, many simple ionic 

liquids do not exhibit a clear freezing point and many of them never form a 

crystalline phase4. This pattern can be even more intensified when making 

mixtures of ionic liquids which lead to the enormous difficulty to acquire the full 

phase diagrams.1, 54-56, 59 Most of the studies on solid-liquid phase diagrams 

display a eutectic-type phase diagrams.2, 62-63, 67 This type of diagram exhibit an 

eutectic (from the Greek word eutēktos “easy melting”) reaction which as defined 

by Gamsjäger et al.68, as an isothermal reversible reaction of a liquid phase l 

which is transformed into two (or more) different solid phases,   and  , during the 

cooling of a system. In a binary system,  

        

where   is a liquid phase,  ,   are solid phases, and the forward arrow indicates 

the direction of cooling. The equilibrium reaction occurs along the eutectic line at 

the eutectic temperature. At the eutectic composition, the compositions of the 

liquid and solid phases are equal, and intermediate to the compositions of the solid 

phase of the system. This means that, in this type of systems, one can mix two 

ionic solids that at the eutectic composition will present a melting temperature 

below or close to room temperature, i.e, it is possible to generate room 

temperature ionic liquids from two ionic solids, enlarging therefore the liquidus 

range of the mixture. There are some systems composed of mixtures of ionic and 

non-ionic components that can exhibit a large depression in the melting 

temperature, the called deep eutectic solvents (DES) proposed by Professor 

Abbott69, and which have received much interest in the past years.70-72  
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1.6.  Solid-liquid phase behavior of mixtures composed of 

Ionic liquids 

In 1998, Gordon et al.73, when performing investigations on ionic liquid crystals 

composed of long alkyl chain lengths and hexafluorophosphate-based salts, 

studied the effect of mixing two ionic salts,  1-hexadecyl-3-metylimidazolium 

hexafluorophosphate ([C16C1im][PF6]) and 1-hexadecylpyridinium 

hexafluorophosphate ([C16py][PF6]), with the intention of decreasing their melting 

points without affecting the liquid crystalline temperature range. Curiously, this was 

a failed attempt on the aim of significant lowering of the melting temperature of the 

mixture, since contrarily to the authors’ expectations, the phase diagram presented 

a solid solution, showing always a solid phase at temperatures close to room 

temperature. A recent work carried out by Wang et al.74, aiming at evaluating the 

mesogenic properties of the binary system composed of 1-dodecyl-3-

methylimidazolium tetrafluoroborate ([C12C1im][BF4]) and  1-dodecyl-3-

methylimidazolium iodide ([C12C1im][I]), also presented solid solution phase 

behavior. Since this aspect was not the focus of these works, there is still a lack on 

a more profound description and explanation to this solid solution phase behavior.  

In 1998, Sun et al.63 published an important study, namely the phase behavior of 

two binary systems composed of different tetraalkylammonium bis-

(trifluoromethylsulfonyl)imide salts. Contrary to the previous cases, the phase 

diagrams obtained presented eutectic-like phase behavior. Furthermore, some 

ternary and quaternary mixtures were investigated. Different cations or anions 

were added to the binary mixture, and it was always found a decrease on their 

melting temperatures. The authors considered that the effect of the introduction of 

a new component on the mixture, and thus on the decrease of the eutectic 

temperature, is independent whether a different cation or anion is introduced into 

the mixture. The Passerini53 group reported, for the first time, mixtures composed 

of N-alkyl-N-methylpyrrolidinium ([CnC1pyrr]+) and lithium cations and a common 

anion bis(trifluoromethanesulfonyl)imide ([NTf2]
-)53, and later with two different 

pyrrolidium-based cations varying the alkyl side chain length and four different 

types of anions54, and revealed important improvements on their ionic conductivity 
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and on the design of new electrolytes for direct application in lithium-based 

batteries. Later, Bayley and co-workers61 reported the phase behavior of a binary 

system composed of two different anions - bis(trifluoromethanesulfonyl)imide 

([NTf2]
-) and bis(fluorosulfonyl)imide ([FSI]-) - while keeping the same cation.61 The 

authors61 also studied a ternary system, a so-called reciprocal ternary, combining 

the prior binary mixture with the addition of [Li][NTf2]. In this study, it was shown 

that the mixtures have an ideal behavior, but with solid complex forming. It was 

also demonstrated that the addition of another component to the binary mixture, 

enlarges the liquidus range, mostly due on the entropic effect.61 Moreover, in 

2012, Annat and co-workers1 also reported an important study where they 

compared properties of binary mixtures, made of [C3C1pyrr][[NTf2]
 and other ILs, 

while varying the alkyl chain size within the same cation family, and using different 

cation cores such as imidazolium and phosponium, and maintaining the 

pyrrolidinium cation but using a different anion. In this work simple eutectic 

behaviors were also demonstrated in addition to an immiscibility gap formation and 

complex crystallization behavior. In 2013, Kick et al.2 reported a solid-liquid 

diagram of a binary mixture composed of imidazolium–chloride-based ILs, in this 

case [C2C1im]+ and [C4C1im]+, where a simple eutectic was observed with an ideal 

liquid mixture.  

 

1.7.  Defining the ionic liquid mixtures nomenclature  

The emergence of studies in literature regarding ionic liquids mixtures created a 

simple new necessity, i.e, the need to have a well-defined nomenclature to 

describe ionic liquids mixtures. Until this moment, no problem was found to name 

ionic liquids, since they are salts simply composed of one cation [A]+ and one 

anion [X]-. With the appearance of a more complex system, as for example [A][X] + 

[B][X], it was found that it is necessary to have a nomenclature, since the usual 

ionic liquid nomenclature was not suitable to describe these new 

binary/ternary/quaternary systems. Two different nomenclatures are being used in 

order to define these new systems, the constituent and the component 

nomenclature. 4, 75 
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A constituent of a chemical system is any distinct chemical species, such as an 

individual molecule or an ion that is present in the system; conversely, a 

component is defined as a chemically independent constituent. As an example, a 

cation [A]+ can be defined as a constituent but not as a system component, since it 

is chemically dependent on the anion [X]-. As the name indicates, the constituent 

nomenclature is based upon the number of constituents, while the component 

nomenclature is based upon the number of components in the product mixture, as 

described by Welton and co-workers.1This information is summarized in table 1. In 

this work we will adopt the component nomenclature since it is more appropriate in 

terms of simplicity when facing systems of higher complexity, and is in agreement 

with previous methodologies (following the molten salts mixtures nomenclature) 

and semantics if one consider that the product of the mixture is a mixture of ionic 

liquids4.  

Table 1 - Nomenclature for the mixtures of ionic liquids, and adapted from Niedermeyer et al.
4
  

Mixture 
 

Abbreviation 
 

No. of 
Comp.* 

 

No. of 
Const.† 

 

*Comp. 
nom. 

 

†Const. 
nom. 

None 
 

[A][X] 1 2 Simple Binary 

[A][X] + [A][Y] or 
[A][X] + [B][X] 

[A][X][Y] or 
[A][B][X] 

2 
 

3 Binary Ternary 

[A][X] + [B][Y] [A][B][X][Y] 2 4 Reciprocal 
binary 

 

Quaternary 

[A][X] + [B][X] + 
[B][Y] or [A][X] + 

[A][Y] + [B][Y] 

[A][B][X][Y] 3 4 Reciprocal 
ternary 

Quaternary 

* Component nomenclature 
†
 Constituent nomenclature 

 

1.8.  Ideal solutions and thermodynamics of mixing 

The first concept that should be considered is the definition of an ideal solution. 

François Raoult, observed that when doing a sequence of experiments involving 

mixtures of components with large similarities, the mole fraction of component A in 

the mixture (  ) is approximately equal to the ratio between the partial vapor 
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pressure of component A and the vapor pressure of the pure liquid (     
 ). 

Nowadays, this definition represents the well-established Raoult’s law: 

  
        

  (1)  

Therefore, an ideal solution is a liquid mixture that obeys Raoult’s law all the way 

through the complete range of composition from pure A to pure B.75 However, it is 

better to define an ideal solution in terms of chemical potential since it implies the 

Raoult’s law instead of stemming from the law itself. Hence, the chemical potential 

of a component A in an ideal solution is defined as the relation between the 

chemical potential of pure A (  
 ) and the mole fraction of component A in the 

solution:   

  
      

           (2)  

Henceforth, from this definition, it is possible to derive a series of concepts 

intrinsically related with the thermodynamics of mixing, as the Gibbs energy 

(     
  ) and the ideal entropy energy (     

  ) of binary mixing described in the 

following equations:  

     
                       (3)  

     
                      (4)  

As a result of the two previous equations, the expression for the ideal enthalpy of 

mixing (      
  ) can be derived: 

     
        

          
     (5)  

This leads us to conclude that in an ideal liquid mixture, all the interactions cancel 

each other, and as a result, the mixing phenomenon is entropically-driven.  

 An important parameter which should be considered in order to define ideal 

solutions and their deviations to the ideality is the activity coefficient ( ). In the 

presence of an ideal solution, the activity coefficients of all the constituents of the 

mixture are equal to one. Nonetheless, in the presence of a non-ideal solution, the 

activity coefficients can present values either superior or inferior to one meaning, 
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respectively, positive or negative deviations to ideal behavior. It is possible to 

obtain these activity coefficients either from vapor-liquid equilibrium (VLE) or solid-

liquid equilibrium (SLE) data.  

Other form of defining deviations to the ideal behavior is to consider 

thermodynamics excess functions (  ), which is the difference between the 

measured value and the expected value for an ideal mixture. For instance, excess 

volume (  ), an example of an excess function, is defined as the difference 

between the observed volume of mixing and the ideal volume of mixing as showed 

in equation 6. The    can present positive and negative values which represent 

positive or negative deviations to ideality.  

             (6)  

For instance, Lopes et al.42 described the excess volumes of IL-IL binary mixtures 

aiming at evaluating the effect of changing the IL cation and anion on the 

deviations to the ideal mixing behavior. The authors42 claimed that no significant 

new interactions appear between the two anions or cations and a constant cation 

or anion. This pattern means that a quasi-ideal behavior is observed. 

Nevertheless, with the increase of the difference between the sizes of the cation 

alkyl side chain, an increase on the non-ideality was observed. This is an 

expectable trend since with the addition of an IL composed of a cation with a 

shorter alkyl chain to an ionic liquid composed of a larger alkyl chain length results 

in the disruption of the dispersive forces.4         

As mentioned by Niedermeyer et al.4, it is fundamental to learn with previous 

studies with molten salts on the thermodynamics of mixing, given that the ones 

regarding IL-IL mixtures have been scarcely reported in literature.35, 64, 76 

Essentially, in these studies77-78, when the metal complex formation was not 

observed, an ideal behavior was mostly found. Furthermore, when small negative 

excess enthalpies of mixing (  ) were observed, these were attributed mainly to 

the ions size differences79, while positive deviations were related to ions with no 

significant size differences and the deviations were attributed to the changes in the 

dispersion forces between ions.80 Small negative excess entropies of mixing 
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(     
 ) were also found by Kleppla81, contrarily to what was expected, since up 

to then it was believed that molten salts had ideal mixing entropies. Negative 

excess entropies were observed for ionic liquids either with a common anion or 

with a common cation and they were due to deviations from a random distribution 

of the ions in solution.81    

Concerning the excess enthalpy of mixing of ionic liquids, interesting evidences 

were revealed by Navia et al.35, which can be linked with previous information on 

the molten salts behavior. Notwithstanding to be possible to consider an overall 

ideal mixture behavior, two distinct behaviors were observed with small positive 

and negative excess enthalpies of mixing (  ).35 Positive    mean a net 

destruction of interactions between constituents in the mixing process, while 

negative    represent a net creation of interactions. Positive deviations were 

found in the case of mixtures between ILs with a common anion35, meaning that 

interactions between different cations are weaker than the ones between similar 

cations. Negative excess enthalpies were observed in the case of the mixtures 

between ILs composed of a common cation and different anions.35 These results 

show that the interactions between similar anions are weaker than those between 

unlike anions.  

 

1.9.  Modeling phase behavior 

In order to model the solid-liquid phase equilibrium, the classical thermodynamic 

approach reported in literature82 based on the isofugacity criterion will be adopted 

herein. From this it is possible, by means of a general simplification based on 

conventional physicochemical behavior, to characterize the phase behavior of a 

binary system by equation 7,        

L
fusi i

fus,i tr,ii i

fus fus,i fus,i

1

ln 1
1 1 1 1

ln

n
i tr i

S

p

tr

H CHx

R

T T

T T R T T Rz T T


       
                    





 
 

(7)  

where the mole fraction of liquid and solid state are respectively, ix , and iz , the 

activity coefficients of component i in the liquid and solid state are, respectively, L
i
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i
S , the melting temperature is fus,iT (K), the melting enthalpy is fus iH , the solid-

solid transitions temperature and enthalpy are tr,iT (K), and tr iH  (J.mol-1), and the 

heat capacity is fus pC  (J.K-1.mol-1) at the melting temperature fus,iT . Additionally, 

there is the universal gas constant (R = 8.314 J·K-1·mol-1) and the melting 

temperature of the mixture is represented by T (K).  

 For an eutectic system the solid phase is formed by two immiscible solids, and the 

product between the solid mole fraction and activity coefficient is equal to one. 

Additionally, another simplification is possible as one can neglect the term 

containing the heat capacity, fus pC , since the error introduced is small, if the 

temperature fus,iT  and T are not far apart and considering that the enthalpy-related 

terms are dominant over the heat capacity term, meaning that the absolute value 

of the heat capacities are lower than the enthalpies.83-84 If one can consider the 

ideality of the liquid phase, which means a liquid activity coefficient equal to one, 

the following equation can be used to describe the ideal solid-liquid phase 

behavior: 

 id fus tr
i

fus,i tr,tr 1

1 1 1 1
ln

n
i i

i

H H
x

R T T R T T


     
       

   
     

  (8)  

The activity coefficient, L
i , can be estimated based on these simplification from the 

differences between equations 8 and 9, i.e, the differences between the estimated 

ideal behavior and the experimental one.  

 
id exp

i i
ln ln ln x x  L

i  (9)  

 

In order to model moderately non-ideal behavior of binary mixtures, the two- and 

three-suffix Margules equations give good results while they are mathematically 

easier to handle. In the case of the two-suffix Margules equation, it is only applied 

for simple mixtures where components are similar in chemical nature and 
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molecular size.85 In equation 10 and 11 we depicted the two and three-suffix 

Margules equations, respectively.    

            
  and            

  (10)  

                
       

   and                 
       

  (11)  

 

1.10. COSMO-RS (COnductor-like Screening MOdel for Real 

Solvents) 

In order to validate a tool that could allow the forecasting of the phase behavior 

and the deviation from ideality of the IL-IL systems, COSMO-RS (COnductor-like 

Screening MOdel for Real Solvents) was used. 

COSMO follows a quantum chemical approach combined with statistical 

thermodynamics calculations. The quantum chemical basis is a dielectric 

continuum model.86-88 This model is able to predict the phase behavior and 

thermophysical properties of real solvents (RS). This model allows calculations 

without having any previous knowledge on experimental data, and only based on 

the properties of each atom that composed a molecule or ion. COSMO 

calculations are performed in the un-scaled, i.e., an ideal/perfect conductor 

interface. This virtual conductor environment surrounds the molecules, considering 

interactions on the electrostatic screening and back-polarization of the solute 

molecule. All the information that characterizes the electron density and geometry 

and screening charge density (σ), at a minimum energetic state of the conductor, a 

reference state, is stored at the so-called COSMO files. The description of the 

molecular interactions is attained by a σ-profile,  Sp , a distribution function, 

which provide the complete description of the molecule.  

COSMO also considers three different specific interactions energies, the 

electrostatic misfit energy (
MFE ), the hydrogen-bonding energy (

HBE ) and van der 

Waals energy (
vdWE ). The two first energies are a function of the polarization 
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charges of the two interacting segments  ',  or  
donoracceptor  , . The following 

equations describe these three energies:  

- electrostatic misfit energy: 

   2
'

2

'
', 


  effMF aE , (12)  

- hydrogen-bonding energy: 

    HBacceptorHBdonorHBeffHB caE   ;0max;0min;0min  
(13)  

- van der Waals energy: 

 vdWvdWeffvdW aE '  . 
(14)  

where 
effa  is the effective contact area between two surface segments, '  is an 

interaction parameter, HBc  is the hydrogen-bond strength,  HB is the threshold for 

hydrogen-bonding, and vdW  and vdW'  are element specific van der Waals 

interaction parameters. 

Through the following equations (15 and 16), it is possible to calculate the σ-

potential  S  and the pseudo-chemical potential of the component Xi in a 

solvent S, iX

S . This permits to predict thermodynamic properties and phase 

behavior, such as the activity coefficients (equation 17).  
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
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In this work, all the calculations were preformed assuming the electroneutral 

mixture approach, treating separately each cation and anion in COSMO-RS 

calculations. Moreover, the conformers used in these calculations were the ones 

of lower energy, that according to Freire et al. 89 is the most accurate approach. 

The quantum chemical COSMO-RS calculations were carried out in the 

Turbomole program package90 with the BP density functional theory, giving the 
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surface charge density and the Ahlrichs-TZVP (triple-ζ valence polarized large 

basis set).91 The activity coefficients, solid-liquid equilibrium diagrams and excess 

properties were estimated employing the COSMOtherm program using the 

parameter file BP_TZVP_C2.1_1301. 

COSMO-RS has been widely used as a tool for forecasting thermodynamics 

properties of ionic liquids and phase behavior. COSMO-RS as also been used as 

a screening tool to evaluate the plethora of ionic liquids for a specific application, 

as for example for thiols desulfurization.92 Moreover, as showed by Freire et al.89, 

93,  COSMO-RS model yields good predictions, either quantitative or, qualitative 

trends on the LLE and VLE of binary mixtures composed of ionic liquids with 

alcohols89 or water93. It was also shown that COSMO-RS can reasonable predict 

the liquid-liquid phase behavior of IL-IL mixtures.50, 94 Solid-liquid equilibria of 

mixtures composed of ILs-thiophenes, IL-alcohols and IL-hydrocarbons95 predicted 

by COSMO-RS have also been reported. To the best of our knowledge, there has 

been no previous report on the evaluation of the solid-liquid phase behavior of IL-

IL mixtures.    
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2.1.  Materials 

In this work, seven different pure ionic liquids for the preparation of the binary 

mixtures were used. They are 1-methyl-3-propylimidazolium hexafluorophosphate, 

[C3C1im][PF6], 1-methyl-3-propylpyridinium hexafluorophosphate, [C3C1py][PF6], 1-

methyl-1-propylpiperidinium hexafluorophosphate [C3C1pip][PF6], 1-methyl-1-

propylpyrrolidinium hexafluorophosphate [C3C1pyrr][PF6], 1-dodecyl-3-

methylimidazolium hexafluorophosphate [C12C1im][PF6], tetrabutylammonium 

hexafluorophosphate [N4,4,4,4][PF6], and tetrabutylphosphonium 

hexafluorophosphate [P4,4,4,4][PF6]. The chemical structures of the ionic liquids 

investigated are depicted in figure 5. All ionic liquids were purchased from IoLiTec 

company (Heilborn), with the exception of [N4,4,4,4][PF6] and [P4,4,4,4][PF6], 

purchased from Apollo Scientific (Bredbury, UK) and Fluka (Buchs, Switzerland), 

respectively.  

 
Figure 5 - Chemical structures of the cations and anions used for creating the binary mixtures of 

ionic liquids. 



  2 – Experimental Section 

24 
 

These ILs present mass fraction purities higher than 99%. The water content of all 

compounds was verified by Karl Fischer titration (Metrohm 831 Karl Fischer (KF) 

coulometer) and is presented in table 2. At least 3 measurements were conducted 

on the water content determination. 

Table 2 – Name, supplier and water content of all the salts used in this work.  

Sample Supplier 
Purity / 

(wt %) 
Water content (wt %) 

[C3C1im][PF6] IoLiTec 99.0 0.0104 ± 0.0017 

[C3C1py][PF6] IoLiTec 99.0 0.2017 ± 0.0026 

[C3C1pip][PF6] IoLiTec 99.0 0.0105 ± 0.0012 

[C3C1pyrr][PF6] IoLiTec 99.0 0.0420 ± 0.0024 

[C12C1im][PF6] IoLiTec 99.0 0.1044 ± 0.0007 

[N4,4,4,4][PF6] Appolo Scientific 98.0 0.1055 ± 0.0035 

[P4,4,4,4][PF6] Fluka 99.0 0.1228 ± 0.0016 
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2.1.1. Preparation of mixture samples 

The binary mixtures were prepared by weighting ≈ 1 g of the mixture, composed of 

mole fractions of compound 1 comprised between x1 = [0 to 1] with a estimated 

uncertainty of x = 5×10−4 (in mole fraction), in an analytical balance (Mettler 

Toledo, Columbus, USA) with an uncertainty of ± 1×10-4 g. The binary mixtures, as 

depicted in figure 6, were heated to a temperature 10 K higher than the highest 

melting point of the two pure ionic liquids. Moreover, a continuous stirring under a 

nitrogen atmosphere, and until the mixture is completely melted was carried out, 

and then stayed for one hour at a constant temperature and under continuous 

stirring. After this step, the mixture was cooling down until room temperature at a 

temperature rate of circa to 5K.min-1.  

 

 

Figure 6 - Mixture mixing experimental scheme: 1- Vegetable oil bath; 2 – Sample vial; 3 – 

Nitrogen inlet to keep an inert atmosphere; 4 – Temperature sensor; 5 – Magnetic stirrer; 6 – 
Temperature controller; 7– Magnetic Stirrer rpm controller. 
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2.2.  Experimental equipment and procedure  

2.2.1. Differential Scanning Calorimetry  

All the ionic liquids were submitted to differential scanning calorimetry (DSC) using 

a Q200 calorimeter (TA Instruments, New Castle, USA) for determining their 

melting temperature and melting enthalpy at ambient pressure. The DSC was 

previously calibrated with primary calibration standards, namely indium, 

naphthalene and cyclohexane, with weight fraction purities higher than 99.99%, 

and at a heating rate of 1 Kmin−1. A constant flow of 50 cm3
min-1 of nitrogen was 

supplied to the DSC cell to avoid water condensation at lower temperatures. 

Approximately, 5 mg of each sample were sealed hermetically in aluminum pans 

and have been subjected to three heating and cooling cycles, between the 

temperatures ranging from 183.15 K to a temperature higher than the melting point 

in circa to 20 K, and at a constant cooling/heating rate of 1 K.min-1. The melting 

temperatures considered were the top peak values, and the temperature and 

enthalpy of melting were taken from the last heating run. The uncertainties of the 

melting temperatures and enthalpies were estimated according to the mean 

standard deviation of six replicates coupled to their standard deviations.  

2.2.2. Temperature controlled polarizing optical microscopy 

The binary mixtures melting temperatures were obtained by visual inspection of 

the salt melting using a temperature controlled polarizing optical microscopy 

(POM). For this purpose, as depicted in figure 7, an optical microscope Olympus 

BX-51 (Olympus Co., Tokyo, Japan) and an attached temperature controller stage, 

Linkam LTSE120 (Linkam Scientific Instruments Ltd., Tadworth, UK) with a 

precision of ± 0.05 K and with a limit temperature range between 248 K and 393 K, 

was used. A water pump ECP is coupled to the equipment to provide a 

temperature gradient to the peltier system when the stage is cooling or heating. 

The acquisition of images was carried out with a modified homemade apparatus, 

based on a webcam model Trust elight HD 1080P (Trust International B.V., 

Dordrecht, Netherlands) from which was taken a light filter, which allowed the CCD 
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sensor to receive the small amounts of light coming from the interior of the 

microscope. This procedure was adapted from telescope webcam technology.96 

This webcam is coupled to the microscope. Subsequently, the acquisition of 

images and videos was performed with a USB cable linked to the computer and 

with the use of a free software, namely MICAM© (Microscope Image Capture and 

Measurement) designed by Marien van Westen.97  

The methodology used to accomplish the melting point data consisted in a first fast 

cooling and heating run with a temperature rate of 10 Kmin-1 in order to evaluate 

the melting temperature range and if it was within the equipment limit. Then, after 

an isothermal treatment at 248.15 K for crystallization during 30 min, the samples 

were heated at 1 K.min-1 until reaching 10 K below the melting temperature, and 

then a rate of 0.1 K.min-1 was performed until all the sample was completely 

melted, this means, until the melting of the last small crystal observed on the 

microscope. The samples consisted in a small amount of mixture of approximately 

5.0 mg, which were placed in a concave glass slide to maximize the contact 

between the liquid that starts forming and the melting solid mixture.  

The evaluation of the accuracy of this equipment was performed by measuring 

melting points for some pure components and comparing them with data reported 

in literature98 - table 3. Cyclohexane (99.9%, HPLC grade), octadecane (99%)  all 

from Sigma-Aldrich (St. Louis, MO, USA), and tetradecane olefine free (99%) from 

Fluka (Buchs, Switzerland) were used. The absolute deviation (AD) was calculated 

by the absolute difference between experimental and literature data (equation 18). 

Observing the low absolute deviations it is possible to affirm that this technique is 

quite accurate.  

        
        

            (18)  
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Table 3 – POM experimental measurements and DSC literature values for the melting points of 
some pure compounds. 

Component Our Work / (K) Reference98 / (K) AD / (K) 

Cyclohexane 279.45 ± 0.06 279.6 ± 0.3 0.15 

Tetradecane 278.8 ± 0.06 278.7 ± 0.9 0.1 

Octadecane 301.35 ± 0.06 301.0 ± 0.7 0.35 

 

 

 

Figure 7 – Temperature controlled optical microscopy experimental scheme  A - Olympus BX 51 

optical microscope; B – Temperature controlled stage (Linkam LTSE 120); C – Controller with 
touch screen LCD for user interface (T95 LinkPad); D – Temperature controller device (T95-PE); E 
– Water pump for controlling the internal device temperature; F – Modified webcam for image and 
video acquisition (Trust Full HD Webcam); G – Computer with MICAM® software for image and 
video record; H – Concave slide glass.  

2.2.3. Single crystal and Powder X-ray diffraction equipments  

The pure compounds were  investigated by single crystal X-ray diffraction at 180 K 

with monochromated Mo-Kα radiation (λ = 0.71073 Å) on a Bruker SMART Apex II 

diffractometer (Bruker, Billerica, USA) equipped with a CCD area detector. Data 
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reduction was carried out using a SAINT-NT software (Bruker, Billerica, USA) and 

multi-scan absorption corrections were applied to all raw intensity data using the 

SADABS program (Bruker, Billerica, USA). The structures were solved by a 

combination of direct methods with subsequent difference Fourier syntheses and 

refined by full matrix least squares on F2 using the SHELX-9799. Anisotropic 

thermal parameters were used for all non-hydrogen atoms while the C-H hydrogen 

atoms were refined with isotropic parameters equivalent 1.2 times those of the 

atom to which they are bounded. Molecular diagrams were drawn with Mercury 

software (CCDC, Cambridge, UK).  

For the powder X-ray diffractometry (XRD) it was used two different equipments. 

The XRD of the pure components [C3C1pyrr][PF6] and [C3C1pip][PF6] were 

performed with a Philips X’Pert - MPD diffractometer (Philips, The Netherlands). It 

was used monochromatic Cu-K radiation (λ=1.54180 Å) in the 3.50º- 49.98º 2ϴ 

range and with a step of 0.04º(2ϴ), at a rate of 35s per step. The measurements 

were made from 303 K to 390 and 376 K, respectively, for [C3C1pyrr][PF6] and 

[C3C1pip][PF6], with a heating rate of 1 Kmin-1. 

For the investigation of the system composed of [C3C1pyrr][PF6] and 

[C3C1pip][PF6], an Empyrean powder diffractometer (PANalytical, Almelo, 

Netherlands) was used. The measurements were made at room temperature (298 

K), with nickel filter, Cu-K radiation (λ=1.54180 Å) step-scanned in 0.04º (2 at 

each 30 s, with a 2 detection range from 4.01º to 49.98º.  

 

 

 

 

 

 

 



 

 
 

 



 

 

 

 

 

 

 

3.  Results and discussion 
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3.1.  Solid-liquid phase behavior of pure ionic liquids  

In order to accurately evaluate the solid-liquid equilibrium phase diagrams of the IL 

binary mixtures, it is crucial a fine understanding of the solid-liquid behavior of the 

respective pure components. Therefore, the melting enthalpies and temperatures 

for all the pure compounds used in this work were also determined by DSC in 

addition to POM. The melting temperatures and melting enthalpies and entropies 

of fusion of the pure ionic liquids are reported in table 4.  

Based on the absolute value of the melting points it is possible to compare them, 

and to make some interpretations linking the melting points with the chemical 

structure of the compounds. Firstly, analyzing the increase on the alkyl side chain 

length in the imidazolium cation, [C3C1im][PF6] and [C12C1im][PF6], it is observed 

an increase in the melting temperature with the increase of the size of the aliphatic 

tail. This trend has already been reported previously by Lopez-Martinez et al.100 

which have seen a decrease from 403 K to 199 K, followed by an increase on the 

melting point from 199 K to 342 K, revealing thus a trendshift occurring at 

[C6C1im][PF6]. A trend shift occurring for hexyl as the longest alkyl side chain in 

imidazolium-based compounds was also observed for other properties, such as 

densities, viscosities, refractive index (for the series of [CnC1im][PF6]), volatility, 

enthalpy and entropy of vaporiztion (for the series of [CnC1im][NTf2]).
101-103 Another 

parameter which one can evaluate using the available data is the effect of the 

aromaticity on the cation. It is clear that there is a difference between the 

compounds composed of an aromatic ring, i.e., imidazolium and pyridinium, and 

which have lower melting temperatures comparing with those with a heterocyclic 

and saturated ring, respectively, the piperidinium and the pyrrolidinium-based ionic 

liquids. It is also possible to observe that the ILs composed of an aromatic ring do 

not present solid-solid transitions, contrarily to the others, that present two highly 

energetic solid-solid transitions of the same order of magnitude of the melting 

phase transition. Finally, the quaternary alkyl-based ionic liquids, [N4,4,4,4][PF6] and 

[P4,4,4,4][PF6], present higher melting points than the remaining compounds 
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investigated. The fact that these compounds exhibit a higher symmetry, than for 

example the alkylimidazolium-based compounds, allows us to probe the effect of 

the cation symmetry on the melting point that has been for long recognized.63, 104 

The melting temperature of the pure [N4,4,4,4][PF6] and [P4,4,4,4][PF6] were not 

measured by POM since the melting points of both compounds are higher than the 

maximum limit of the equipment, 393 K. 

The uncertainty of the melting temperatures of the pure components obtained by 

microscopy was estimated to be not higher than T = 1.30 K. This value was 

determined according to the mean values obtained by the evaluation of at least 

three replicates of the pure compounds. The mean absolute deviations between 

the two techniques were always lower than the uncertainty associated to the 

melting temperature obtained by the microscopy approach.  



 

 
 

 

Table 4 - Melting and transition enthalpies,  transition and melting temperatures and fusion entropies measured by DSC and melting temperatures 
obtained by POM, at a heating rate of 1K∙min

-1
. 

   [C3C1im][PF6] [C12C1im][PF6] [C3C1py][PF6] [C3C1pyrr][PF6] [C3C1pip][PF6] [N4,4,4,4][PF6] [P4,4,4,4][PF6] 

POM -      ) 311.1 ± 0.06 326.95 ±  0.15 311.6  ±  0.12 384.65 ± 0.06 370.65 ± 0.15 - - 

DSC Exp.          
310.95 ± 0.04 326.30 ± 0.09 312.27 ± 0.27 382.45 ± 0.08 368.65 ± 0.09 524.3 ± 0.14 498.60 ± 0.03 

DSC lit.        313.15
100

 328.15
100

 
 

386.15
105

    

         

(  .      ) 
14.20 ± 0.08 25.82 ± 0.12 15.98 ± 0.19 3.39 ± 0.03 5.10 ± 0.01 16.41 ± 0.129 14.67 ± 0.02 

         
- - - 347.94 ± 2.22 312.37 ± 1.71 303.95 ± 0.26 263.63 ± 0.04 

       (  
.      ) - - - 2.75 ± 0.09 8.07 ± 0.02 2.10 ± 0.04 1.81 ± 0.02 

         
- - - 359.57 ± 0.23 352.59 ± 0.02 360.70 ± 0.53 - 

      (  .      ) - - - 2.30 ± 0.02 5.10 ± 0.01 2.09 ± 0.53 - 

         

( .     
.      ) 

49.78 ± 0.34 81.73 ± 1.32 44.56 ± 0.35 9.59 ± 0.15 14.37 ± 0.22 31.61 ± 0.55 29.75 ± 0.59 
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For some compounds showing solid-solid transitions, as revealed by the DSC 

experiments, it was also possible to confirm these transitions with crossed 

polarized light, and as shown in figure 8 for the [C3C1pyrr][PF6]. In this example 

there are two highly energetic solid-solid transitions, presenting enthalpies of 

transitions comparable with the fusion enthalpy. For this compound it was possible 

to observe clear differences in the structure showing different polymorphic forms 

when comparing the figures 8a), 8b) and 8c). The refraction of the crystal, when 

observed by POM, undergoes several changes during the polymorphic transitions.  

 

Figure 8 – DSC thermogram of pure 1-methyl-3-propylpyrrolidinium hexafluorophosphate and 

images acquired by POM at three different temperatures from the different polymorphic forms: a) 
[C3C1pyrr][PF6] at 313 K; b) [C3C1pyrr] [PF6] at 351 K; c) [C3C1pyrr] [PF6] at 373 K .    

The diffractions patterns obtained by powder x-ray for the [C3C1pyrr][PF6] acquired 

for the same temperatures also corroborate the same idea. In figure 9, the 

disappearing of some intensity peaks and the appearance of new ones is 

presented for the different mesophases. The increase on temperature leads to a 

drastic reduction on the level of crystallinity of the salt, meaning that, although 
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being solid phases, a lower level of organization of the crystal lattice is presented 

for higher temperatures. The powder XRD also support the same pattern shifts for 

[C3C1pip][PF6] as one can see in appendix A.   

Figure 9 – Powder XRD patterns for pure [C3C1pyrr][PF6] at different temperatures, T = 313 K, T = 

351 K and T= 373 K, illustrating the pattern shifts on the two S-S transitions. 

One can suppose that high complex solid-solid transitions influence the melting 

temperature observed by POM, based on the last crystal melting and by this 

increasing the deviation from the DSC measurements. Even if the temperatures 

considered in this work by DSC measurements were the peak temperatures, 

contrarily to the most common onset temperatures, substantially higher deviations 

persist between POM and DSC for these compounds. One presume that the 

complexity of the solid phase leads to broad peaks in DSC measurements, 

representing less precision, contrarily to pure components that present much 

narrower peaks. Using the POM technique, it is possible to observe two distinct 

moments when reaching the melting temperature. The first, when almost all 

crystals melt, and that roughly corresponds to the melting temperature observed in 

the DSC measurements, and the last phase, an ionic plastic crystal phase. It could 

thus be assumed that the fusion enthalpy released by these metastable crystals is 

too low and can be considered negligible by DSC measurements, as suggested 

previously by Pringle et al.106. This introduces a greater difficulty on the 

observation and correct evaluation when considering the most accurate 

temperature for the melting point. This so-called plastic crystal phase behavior has 
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already been described by MacFarlane and co-workers105, for the component 

[C3C1pyrr][PF6]. Ohno et al.107 reported the same behavior for a piperidinium 

hexafluorophosphate compound. One particular characteristic of these materials is 

a low fusion entropy, bellow 20 (J.K-1.mol-1), as the criterion established by 

Timmermans.108 As can be observed in table 4 for the studied c,s [C3C1pyrr][PF6] 

(9.59 ± 0.15 J.K-1.mol-1) and [C3C1pip][PF6] (14.37 ± 0.22 J.K-1.mol-1), they obey this 

criterion. In the plastic crystal phase, ions have an enlarged degree of freedom, 

related to their isotropy and globular shape108, allowing their rotational mobility, 

which can explain the increased conductivity on these phases.109 Figure 10 shows 

a micrograph of one of these metastable crystals for [C3C1pyrr][PF6]. 

 

Figure 10 – Micrograph of the supposed plastic crystal of [C3C1pyrr][PF6] before melting.  
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3.2.  Crystallographic data of pure components  

In order to better characterize the crystals of pure components, X-Ray acquisition 

was also performed. The unit cells for some components whose crystal data were 

obtained in this work are represented in figure 11. In the crystal packing of all 

compounds, non-covalent interactions are observed, including CH∙∙∙F hydrogen 

bonds with distances varying between 2.961(2) and 3.467(2) Å, which may play a 

role in the crystal lattice stabilization. The crystal structure results can provide 

relevant information to define the solid-liquid equilibrium thermodynamic profile of 

the mixtures as will be shown later. In table 5, all the crystal data obtained by X-

ray are reported.   

 

Figure 11 - Molecular diagrams showing the unit cell of pure (A) [C3C1im][PF6], (B) [C12C1im][PF6], 

(C) [C3C1py][PF6] and (D) [C3C1pyrr][PF6] (CCDC code: QOPZUQ), drawn with Mercury 3.1 
software (CCDC, Cambridge, UK) (download available in http://www.ccdc.cam.ac.uk/mercury). 
Color scheme: C, grey; N, blue; O, red; H, white; P, orange; and F, green. 

  

(A) (B)

(D)(C)
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 Table 5 - Crystal data and selected refinement details for the compounds [C3C1im][PF6], 
[C12C1im][PF6], [C3C1py][PF6], [C3C1pyrr][PF6] and [C3C1pip][PF6]. 

Compound [C3C1im][PF6] [C12C1im][PF6] 

 

[C3C1py][PF6] [C3C1pyrr][PF6]
 

¥
 

[C3C1pip][PF6] 

 Formula C7H13F6N2P C16H31F6N2P C9H14F6NP C8H18F6NP C9H20F6NP 

Mw (g
.
mol

-1
) 270.16 396.40 281.18 273.20 287.23 

Crystal System Monoclinic Monoclinic Triclinic Monoclinic Monoclinic 

Space group P 21/c P 21/c P -1 C 2/c P 21/c 

a  (Å) 8.5236(14) 22.2422(8) 8.8517(5) 25.0964(7) 14.4143(7) 

b  (Å) 10.0435(17) 9.8387(3) 9.1524(5) 13.5788(5) 14.2106(8) 

c  (Å) 13.640(3) 9.2465(3) 9.2668(5) 34.0634(13) 13.4918(6) 

α  (°)  (90) (90) 63.953(5) (90) (90) 

β  (°) 106.075(5) 94.611(2) 64.555(2) 109.797(1) 109.466(2) 

   (°)  (90) (90) 85.076(2) (90) (90) 

V  (Å
3
) 1122.0(3) 2016.90(12) 604.15(6) 10922(4) 2605.6(2) 

Z  (Z’) 4 4 2 36 8 

Dc  (Mgm
-3

) 1.599 1.305 1.546 1.495 1.464 

  (mm
-1

) 0.302 0.191 0.282 0.277 0.262 

reflections 

collected  

27615 21166 22246 33739 1907 

unique 

reflections,  

[Rint] 

4326,  

[0.0243] 

4137,  

[0.0355] 

4662,  

[0.0206] 

10190, 

[0.048] 

7003, 

[0.0654] 

Final R indices      

R1, wR2,,  

[I>2I] 

0.0468, 

0.1275,  

[3583] 

0.0424, 

0.1035,  

[3001] 

0.0443, 

0.1227, 

 [3940] 

0.0775, 

0.1985 

[6622] 

0.0554, 

0.1297  

[4055] 

R1, wR2 (all 

data) 

0.0565, 

0.1364 

0.0654, 

0.1158 

0.0522, 

0.1314 

0.1241, 

0.2320 

0.1118, 

0.1586 

Crystal structure parameters obtained in this work, comparable to those published 

by Gordon et al.73.  ¥ Crystal data from literature105 at 123 K.  
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3.3.  Evaluation of the mixtures’ experimental solid-liquid 

equilibrium behavior  

In this work nine binary systems were prepared composed of components with the 

most commonly used cations and with a fixed anion, hexafluorophosphate, as 

shown in table 6. The binary mixtures composed of [C3C1im][PF6] + [N4,4,4,4][PF6] 

and [C3C1im][PF6] + [P4,4,4,4][PF6] were only partially studied, for a mole fraction of 

[C3C1im][PF6] higher than 0.7, since for mole fractions richer in the tetraalkyl-

based compounds have melting temperatures higher than 393.15 K, being this the 

upper limit of temperature of the POM equipment. This is a major limitation on the 

complete description of these two systems.  

Table 6 - Matrix containing all the studied binary mixtures composed of the several cations and the 

common [PF6]
-
 anion:  , Binary mixture studied;  , Binary mixture not studied. 

 

From this point, the solid-liquid phase diagrams determined by POM for all the 

binary mixtures, with the exception of the system composed of [C3C1pyrr][PF6] + 

[C3C1pip][PF6], are presented in figure 12. Later, this system will be presented in 

detail because of the particular characteristics on the solid-liquid phase behavior of 

this mixture. 

[C3C1pyrr]
+

[C3C1pip]
+

[N4,4,4,4]
+

[P4,4,4,4]
+

[C3C1im]
+

[C3C1py]
+

[C3C1pyrr]
+

[PF6]
-

[C12C1im]
+

[C3C1py]
+
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Figure 12 – Solid-liquid phase diagrams (temperature, T / K, versus mole fraction of the 

component 1, x1) of the mixtures studied. Melting temperatures obtained by optical microscopy (); 
melting and solid-solid transitions temperatures obtained by DSC (); modeling results considering  

i
L
 = 1.0 and xi

S
i

S
 = 1.0 (full lines), and using 2 or 3-suffix Margules (dashed lines). Grey lines 

represent the solid-solid transitions temperatures, Ttr1 and Ttr2 (from table 4). Grey regions highlight 
the concentration range for which the mixture is liquid at room temperature (T = 298.15 K). 
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All the SLE phase diagrams studied exhibit an eutectic-like phase behavior. These 

eutectic-like behaviors can lead to new ionic liquids since a major depression on 

the melting point corresponding to the eutectic composition can be reached. These 

results show that it is possible to depart from two compounds with melting points 

higher than room-temperature, and just by mixing them, reaching a component 

presenting a lower melting temperature, and in most cases lower than room-

temperature. In fact, it is possible to observe massive melting temperature 

depressions, where in some examples the difference between the melting 

temperature of the pure and the eutectic composition can reach 100 K. The higher 

melting depression is observed in the system composed of [C3C1im][PF6] + 

[C3C1pyrr][PF6], where the temperature depression between the pure melting 

temperature of [C3C1pyrr][PF6] (384.65 K) and the melting temperature on the 

eutectic composition (x1 = 0.501; T = 283.15 K) reaches 101.5 K.  

The eutectic temperatures, with the exception of the ammonium- and the 

phosphonium-based salts mixtures with [C3C1im][PF6], are all below or close to 

room-temperature, i.e, 298.15 K. This is affected by the melting temperature of the 

pure component, as in the mixtures composed of the tetrabutylammonium and 

phosphonium cations, the pure components present a high melting temperature, 

and then, the depression on the melting point is not enough to reach a 

temperature at or below room temperature. The range of compositions at which 

the melting temperatures are below room-temperature is dependent on the mixture 

under study, and as seen in figure 12, where the grey zones represent the liquidus 

range at room-temperature. For instance, the SLE phase diagram of the mixture 

composed of [C3C1im][PF6] and [C3C1py][PF6], presents a broader range of 

composition at which the melting temperature is at or below room-temperature, 

when compared, for example, with a narrower liquidus range in the system 

[C3C1im][C12C1im][PF6]. These results show that one of the main goals of this 

work, to generate new materials exhibiting a larger liquidus range through the 

understanding of the solid-liquid phase behavior of mixtures composed of ionic 

solids, was attainable. The lowering of the melting points of mixtures confers to 

these new materials the possibility of enlarging their range of applications in 

chemical engineering processes.   
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3.4.  Modeling the solid-liquid phase behavior  

The first approach to describe the solid-liquid phase behavior, as written 

previously, consisted on a simpler thermodynamic approach considering an ideal 

behavior of the liquid and pure solid phases.   

On a first glance at the experimental phase behavior obtained by POM, it is 

evident that in most systems an ideal behavior is followed. Most experimental data 

for the melting temperatures for the different compositions of the different systems 

can be well-described by the liquidus line calculated by equation 8. As described 

previously, it is assumed the liquid ideal behavior, considering the activity 

coefficient,   
 , equal to one, and the immiscibility of the solid phase. Furthermore, 

the heat capacity factor was neglected.  

A point that further evaluated was the introduction on this analysis of the 

contribution of the solid-solid transitions. In literature82, 85, the contribution of this 

term for the modeling of the phase behavior is often considered as negligible. The 

reason for this is that, commonly, these transitions present much lower enthalpies 

when comparable with fusion enthalpies. Furthermore, the transition temperatures 

may be too far from the melting temperature, thus presenting no effect on the 

eutectic point, or too close to the melting temperature, and can thus be considered 

as part of the melting process. This has guided us to be cautious on the 

assessment of the effect of the solid-solid transitions enthalpies and temperatures 

of the components. As discussed previously, most of our components present high 

absolute values of solid-solid transition enthalpies, too high to not being 

considered into the modeling. Moreover, the transition temperatures are too 

different from the melting temperatures to be considered as a part of the melting 

process, but close enough so that they are above the eutectic temperatures and 

therefore must be taken into account. An example of this effect is depicted in 

figure 13, for the system composed of [C3C1im][PF6] and [C3C1pip][PF6], where 

one can observe the difference between the modeling considering the term related 

with the polymorph transitions for [C3C1pip][PF6] and neglecting them. Taking the 

solid-solid transitions into account a near-ideal behavior is observed. 
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Figure 13 - Comparison between the modeling of the SLE ideal phase behavior diagram, 

considering the ideal assumptions model (  
  = 1.0, xi

S
i

S
 = 1.0), for the mixture composed of 

[C3C1im][PF6] and [C3C1pip][PF6], introducing the polymorph transition term (dashed line) or  
neglecting it (solid line) into the calculations of the ideal model, and comparing them with the 

experimental data obtained by POM ().   

The fact that the studied systems behave approximately as ideal, exhibiting an 

eutectic behavior, means that they can be well and easily predicted by an ideal 

model without adjustments on the non-ideal parameter, the liquid phase activity 

coefficient (  
 ). The solid-liquid phase behavior can be estimated from the 

knowledge of the melting enthalpies and temperatures, as well as the solid-solid 

transitions of the pure compounds that compose the binary mixtures.            

3.5.  Non-ideal behavior assessment on IL-IL mixtures 

Figure 12 reports the activity coefficients estimated for all the systems studied 

using equation (9). It is shown that only three binary mixtures, 

[C3C1im][C3C1py][PF6], [C3C1im][C3C1pip][PF6] and [C3C1pyrr][C3C1py][PF6], can 

be rigorously considered as ideal. In the other systems, slight positive and 

negative deviations are observed. This is the case of the mixtures composed of 

[C3C1im][C3C1pyrr][PF6] and [C3C1py][C3C1pip][PF6]. In the case of 
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[C3C1im][C3C1pyrr][PF6], minor negative deviations are observed in the domains of 

both component mole fractions. Contrarily, the [C3C1py][C3C1pip][PF6] binary 

mixture exhibits positive deviations only observed in the piperidinium-rich region. 

In the pyridinium-rich phase the mixture behaves ideally. These deviations occur 

mostly around the eutectic region. In these two examples, an insightful evaluation 

of all the parameters leads us to assume that the mixtures behave as ideal or 

almost ideal. The assumptions made to calculate the ideal model, as for example 

while neglecting the heat capacities, and also the uncertainty associated to the 

method and experimental procedure, are sufficient to cover the differences 

between experimental data and ideal behavior.  

 

Figure 14 - Liquid phase’s activity coefficients of component 1 () and 2 (o) calculated by Eq. (3) 

and using i
L
 equations: 2-suffix-Margules (full lines) and 3-suffix-Margules (dashed lines). Error 

bars were calculated by error propagation at the 0.95 confidence level. 

In the remaining cases, the binary mixtures composed of [C3C1im][PF6] with 

[C12C1im][PF6], [N4,4,4,4][PF6] and [P4,4,4,4][PF6], the liquid phase non-ideal behavior 

is more significant. This is as expectable trend if an inspection of the molecular 

structure of the components is carried out. The systems described above present 

a high similarity between the cations, simply differing in the ring size, such as 
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pyridinium and imidazolium which differ only in one carbon atom, or differing in the 

aromatic character as the pyrrolidinium and imidazolium or piperidinium and 

pyridinium, which leads them to generate ideal liquid mixtures. Here, the mixing of 

components significantly different in terms of the cation molecular structure opens 

the path to a non-ideal behavior of the mixtures.  

In the case of the mixture composed of [C3C1im][ PF6] and [C12C1im][PF6], a patent 

positive deviation is observed in the region rich in [C12C1im][PF6] reaching activity 

coefficients higher than two, while in the narrow domain of [C3C1im][PF6], slight 

negative deviations are observed. One could expect that the entropic effect of the 

introduction of a component with a shorter alkyl chain would generate a negative 

deviation, but precisely the opposite is happening. A high positive deviation to 

ideality is observed. This can be explained as a result of the highly ordered 

nanostructure, an interdigitated ion-ion nanostructure73, 110, as seen in figure 15, 

which can result into stronger and more favorable interactions between the ions of 

[C12C1im][PF6] . 

 

Figure 15 - Molecular diagram showing the unit cell of pure [C12C1im][PF6]. (CCDC code: 

QOPZUQ), drawn with Mercury 3.1 software (CCDC, Cambridge, UK) (download available in 
http://www.ccdc.cam.ac.uk/mercury). Colour scheme: C, grey; N, blue; O, red; H, white; P, orange; 
and F, green. 

 

For the mixtures composed of  [C3C1im][PF6] and [N4,4,4,4] [PF6] or [P4,4,4,4][PF6], 

although only restricted parts of the phase diagrams were measured due to 
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limitations on the experimental technique used, high deviations from the ideal 

behavior were observed. In these two examples the differences between the 

molecular cation structures are evident and the deviations to the ideal behavior are 

thus expectable. From one side, the [C3C1im]+ cation, containing an aromatic ring 

and presenting an evident asymmetry, whereas on the other side, two aliphatic 

tetraalkyl cations are present with marked symmetry. However, the evaluation on 

the general phase behavior is possible despite some limitations on the phase 

diagram. The first inference that can be made is that the eutectic region on these 

systems is too close to the [C3C1im][PF6] pure concentrations meaning that the 

information on the imidazolium-rich region is too short to allow conclusions about 

the deviations of ideality on this side of the phase diagram. In addition, the 

limitation imposed by the equipment to make measurements in the region of high 

concentrations of tetraalkylammonium or phosphonium cations, since they present 

melting temperatures over the 393 K, is a major drawback. Even so, one can 

presume that the interactions between the tetraalkyl cations with similar cations 

are much stronger than the interactions between unlike cations, i.e, tetraalkyl and 

1-propyl-3-methylimidazolium cations. This leads obviously to a non-ideality 

displayed by these two mixtures.  

In order to describe the non-ideal liquid phase behavior, it was used the 2- or 3- 

suffix Margules model82, 85 (equations 10 and 11) for the calculations of the liquid 

phase activity coefficients,   
 . Based on these activity coefficients it was possible 

to calculate the non-ideal phase behavior profiles. As seen in figure 12, in the 

dashed lines, they describe well the non-ideal phase behavior in the whole solid-

liquid phase diagram except in the case of the system composed of [C3C1im][PF6] 

and [C12C1im][PF6]. In this example, deviations of opposite type do not allow the 

modeling description of the eutectic behavior. 

3.6.  COSMO-RS  

In this work, it was evaluated the ability of COSMO-RS to predict the phase 

behavior of the studied systems by comparing it with the experimental data. In 

order to evaluate the accuracy of the model to describe the non-ideality, the 

activity coefficients were calculated for the eight previously studied eutectic 
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systems. Thenceforth, they were compared with the experimental data, as 

reported in figure 16. It was found that COSMO-RS is able to forecast accurately 

the deviations from ideal behavior. In fact, the systems that presented higher 

deviations to ideality, the mixtures composed of quaternary alkyl-based ionic 

liquids, [N4,4,4,4][PF6] and [P4,4,4,4][PF6] and [C3C1im][PF6], and also the mixture 

composed of [C3C1im][PF6] and [C12C1im][PF6], are well described by COSMO-RS. 

For the systems that present minor deviations, as for example for the mixture 

composed of [C3C1py][PF6] and [C3C1pip][PF6] that presents slight deviations, 

COSMO-RS can’t describe these small deviations from ideal behavior.  

 

Figure 16 - Liquid phase’s activity coefficients of component 1 () and 2 (o) calculated by Eq. (3) 

and i
L
 predicted by COSMO-RS model (dashed lines). Error bars were calculated by error 

propagation at the 0.95 confidence level. 

For the systems where higher deviations from ideality are observed, and for which 

COSMO-RS can predict these deviations, as for the quaternary alkyl-based ILs, 

the contributions for these deviations were evaluated in terms of the excess 

enthalpies not only for the total, but also for the electrostatic, hydrogen-bonding 

and van der Waals interactions. The individual contributions of each ion are 

presented in appendix C. In both cases, the quaternary alkyl cations are predicted 

as the main responsible to the positive deviations to ideality observed, presenting 

higher positive values for the excess enthalpies. This indicate that these cations 
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interact preferably with similar than with unlike ions in the mixture, which 

corroborates what was stated previously and the expectable trend. The misfit 

interactions are predicted as the main contributors for the global positive 

deviations since higher excess enthalpies values, corresponding to this kind of 

interactions, are observed when compared with excess enthalpies corresponding 

to hydrogen-bonding or van der Waals interactions.     

The COSMO-therm software permits to forecast SLE phase diagrams of IL-IL 

mixtures, only based on the melting point and fusion enthalpy of the pure 

components that compose the mixture, as in the examples presented in the phase 

diagrams of the eutectic systems composed of [C3C1im][C3C1py][PF6] and 

[C3C1im][C12C1im][PF6]. Nevertheless, it was also observed that since it is not 

possible to introduce the solid-solid transitions enthalpies and temperatures into 

COSMO-RS calculations, these contributions are neglected when predicting the 

phase diagrams. This leads to higher deviations between the calculated and the 

experimental data in the systems composed of ionic liquids presenting higher 

solid-solid transitions and temperatures close to solid-liquid transition.  

Summarizing, in this work it is shown that COSMO-RS can be used as a predictive 

tool for describing the IL-IL mixtures SLE phase behavior. This model also leads to 

valuable information towards the understanding on the main important interactions 

occurring between the components in the mixtures and which majorly contribute to 

the non-ideality.  
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Figure 17 - Comparison between the modeling of the SLE ideal phase behavior diagram, 

considering the ideal assumptions model (  
  = 1.0, xi

S
i

S
 = 1.0) (solid lines), the COSMO-RS 

predicted phase behavior diagrams (dashed line), from the mixtures composed of 
[C3C1im][PF6][C3C1py][PF6] and [C3C1im][PF6][C12C1im][PF6], and comparing them with the 

experimental data obtained by POM (). In the case of [C3C1im][PF6][C12C1im][PF6] it is also 
compared the modeling with 2-suffix Margules (dotted and dashed line).  

 

3.7.  The exceptional behavior of the mixture composed of 

[C3C1pyrr][PF6] and [C3C1pip][PF6]: the formation of an alloy  

As previously mentioned, the mixture composed of [C3C1pyrr][PF6] and 

[C3C1pip][PF6] exhibits a unique behavior, unlike any other of the systems studied. 

This mixture exhibits a very uncommon non-eutectic phase behavior contrarily to 

all the other systems presented before. In order to evaluate this behavior, 

additionally to POM, two other techniques were employed, namely the DSC at all 

the compositions and powder X-ray diffractometry of the solid phase. These two 

techniques allow us to corroborate the results obtained by POM.  

The thermograms obtained by DSC, reported in figure 18, present only an 

endothermic peak on the melting process, contrarily to what is observed for most 

of the mixtures that exhibit two endothermic peaks, one related with the eutectic 

transition and another at the melting temperature.1, 111-112 Moreover, this behavior 

is in agreement with that observed by POM. This led us to believe that the mixture 

forms a continuous solid solution and thus forms an alloy.  
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Figure 18 – Thermograms obtained by DSC regarding the phase behavior of the binary mixture 

composed of [C3C1pyrr][PF6] and [C3C1pip][PF6].  

In a solid state, the solid phase exhibits a monophasic region and both 

components crystallize on a single crystal lattice. In order to prove this behavior of 

our mixture, powder X-ray diffractometry of the solid phase was performed. This 

experiment revealed that the patterns change rapidly, just after           and 

from those of pure [C3C1pip][PF6] for those of pure [C3C1pyrr][PF6] as seen in 

figure 19, and that this pattern is maintained in all the entire range of composition. 

This behavior is different from what is expected when the mixtures display 

immiscibility in the solid region. In this case, the diffractograms would display the 

diffraction peaks from both pure components. The diffractograms reported in figure 

19 confirm that a monophasic alloy is formed in this system.  
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Figure 19 - Powder XRD patterns of the [C3C1pyrr][PF6] (1) and [C3C1pip][PF6] (2) mixture at T = 

298.15 K. 

The similarities of the crystallographic structures of the two pure compounds leads 

us to assume that the [C3C1pip][PF6] crystal is incorporated as a guest in the 

crystalline lattice of [C3C1pyrr][PF6]. Moreover, the single crystal X-ray data, 

presented in table 5, concedes additional information in order to understand this 

behavior. It can be observed that the two components are very similar since they 

present a monoclinic unit cell containing exactly the same crystallographic axes. In 

addition, for the crystal packaging there are some substantial differences since 

[C3C1pip][PF6] presents only eight unit cells while [C3C1pyrr][PF6] presents 36. 

Since the volumes of the crystalline structure are quite different, this can reveal the 

ability of the [C3C1pyrr][PF6] to act as host-structure to [C3C1pip][PF6], and by this, 

allowing the [C3C1pip][PF6] crystal to accommodate into its structure. This behavior 

was also reported by Gordon et al.73, when studying the solid-liquid equilibrium of 

a mixture composed of [C16C1im][PF6] and [C16py][PF6] in order to obtain an 

eutectic mixture. In this case, a continuous solid-solution is also displayed but 
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containing long alkyl chain length cations, contrarily to our components that have 

short alkyl chains. 

In figure 20 it is possible to observe the comparison between the experimental 

melting temperatures observed by POM and DSC. It is also depicted the ideal 

behavior profile and the modeling of the non-ideal behavior. One should note that 

the observations done by POM, were affected by the formation of some 

metastable crystals, supposedly plastic crystals, while the melting was occurring, 

and which adds a major difficulty to the observation and identification of the last 

melting crystal.       

 

Figure 20 – Solid-liquid equilibrium phase diagram of the [C3C1pyrr][PF6] (1) and [C3C1pip][PF6] 

(2) mixture with experimental data obtained by POM () or by DSC (▲). Model results considering  

i
L
 = 1.0 and xi

S
i

S
 = 1.0 (dashed lines), and considering i

L
 = 1.0 and i

S
  1.0 using 2-suffix-

Margules equation (solid lines) with binary interaction parameter aij = 0.35 kJmol
-1

. In detail, i
S
 of 

component 1 (dashed line) and component 2 (solid line). Error bars with the uncertainty for T, T = 
1.30 K.  

Based on the previous results, the non-ideal behavior of this mixture was 

evaluated. The SLE modeling of a system with solid phase non-ideality and 

miscibility requires that zi i
S  1.0. Given the similarity of the two compounds and 

the results obtained above, for the modeling of the phase diagram it was assumed 

that the non-ideality of this mixture is only due to the solid phase, and the 2-suffix-
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Margules equation was used for the description of the activity coefficient of the 

solid phase i
S.  

Figure 20 presents the phase diagram of such system comprising both liquidus 

and solidus lines. This i model was chosen because even with just one single 

adjustable parameter, aij, the description of the experimental data is as accurate 

as obtained for the other systems. The calculated phase diagram shows a 

homogeneous azeotrope-type shape with a minimum point close to x1 = 0.340 

([C3C1pyrr][PF6]) mole fraction and a narrow biphasic region, i.e., xi  zi. This 

profile is in agreement with a positive deviation from ideality113, as depicted in 

detail in figure 20. 

The forecast of this behavior with COSMO-RS failed, since it predicted an 

eutectic-like phase behavior instead of a solid-solution phase behavior.   

 

  



 

 
 

 



 

 

 

 

 

 

 

4.  Final Remarks 



 

 
 

 



  4 – Final Remarks 

59 
 

 

4.1.  Conclusions 

In this work, mixtures of mesothermal salts were prepared and their phase 

behavior were assessed by DSC and polarized optical microscopy, showing that 

novel ionic liquids can be prepared by simply mixing these salts and thus 

expanding their range of application. Moreover, based on the gathered data it was 

possible to conclude that, and in accordance with literature, most IL-IL or similar 

components mixtures have a quasi-ideal behavior. The results obtained also show 

the importance of considering the solid-solid transitions enthalpies and 

temperatures into the modeling of the phase diagrams since the solid-solid phase 

transitions presented by some of these components are far from negligible. The 

ideal liquid phase model was in good agreement with almost of the solid-liquid 

phase behavior measured, demonstrating therefore the capability of predicting 

their solid-liquid phase behavior based only on pure components properties, such 

as the melting temperature and enthalpies.  

The non-ideality of the liquid phase behavior in some studied mixtures was also 

evaluated. In general, it was found that the differences in the cation alkyl chain 

length could contribute to a deviation from the ideal behavior. Also, the mixture 

between symmetric tetraalkylammoniums and phosphoniums, with a more 

pronounced aliphatic character, when mixed with other components constituted by  

heterocyclic aromatic and saturated cations, also leads to deviations from ideality.  

The predictive ability of COSMO-RS was evaluated and compared with 

experimental data. COSMO-RS is capable of predicting the eutectic phase 

behavior and the deviations from ideality of systems composed of ionic liquid 

mixtures. This means that it can be used as a screening tool, by predicting their 

SLE phase behavior and their thermodynamics properties, in the design of new 

ionic liquids generated by mixing of ionic solids,. Moreover, COSMO-RS can be 

useful in the understanding of the main interactions occurring between the 

components in the mixtures and their contributions to the deviations on the ideal 
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behavior. This information allows to design new materials with outstanding 

characteristics based on the mixture of other materials.      

Finally, an unique behavior was observed - a continuous solid solution by the 

formation of an alloy composed of [C3C1pyrr][PF6] and [C3C1pip][PF6]. This was 

the first time that a mixture composed of two organic and short alkyl chain salts 

was reported, being this a rare phenomenon among organic compounds.   

4.2.  Future work 

The possibilities of future work are immense. One possibility, and as a direct 

continuation of this work, is to extend the investigation carried out to mixtures 

composed of IL-IL with a common cation while varying the anion. This would allow 

the scanning of a much vaster range of liquid phase non-idealities. 

Another possible approach is to determine the thermophysical properties of these 

mixtures in order to get a better characterization and understanding of their 

physicochemical characteristics. This type information will represent a large 

contribution on the knowledge of the major properties obtained by simply mixing 

ionic liquids.  

To conclude, in this work, it was detected a lack of capability to predict high non-

ideal systems, as solid solutions. Therefore, it would be interesting to develop an 

approach that could provide a deeper understanding of the influence of the solid-

solid transitions and of the crystalline lattice in mixtures with a more complex solid-

liquid phase behavior. Moreover, it would be relevant if one could integrate further 

parameters of pure components that could reflect important crystallographic 

properties with the thermodynamic properties, allowing therefore the prediction of 

more accurate high deviations to the non ideality on the phase behavior. 
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6.1. Appendix A – Powder X-Ray Diffraction data for 

[C3C1pip][PF6] 

 

Figure A 1 - Powder XRD patterns from pure [C3C1pip][PF6] at different temperatures (T = 303 K, T 
= 318 K, T = 348 K and T= 354 K) illustrating the pattern shifts on the two S-S transitions.  
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6.2. Appendix B – Experimental data of binary mixtures  

Table B 1 - Experimental solid-liquid equilibrium data for the binary mixtures of ILs, in mole fraction x, melting temperature T,
 
and at a pressure p = 

102.0 kPa 
a
.  

[C3C1im][PF6] (1) + 
[C3C1py][PF6] (2) 

[C3C1im][PF6] (1) + 
[C3C1pyrr][PF6] (2) 

[C3C1im][PF6] (1) + 
[C3C1pip][PF6] (2) 

[C3C1im][PF6] (1) + 
[C12C1im][PF6] (2) 

[C3C1pyrr][PF6] (1) + 
[C3C1pip][PF6] (2) 

x1 T / K Solid 
phase 

x1 T / K Solid 
phase 

x1 T / K Solid 
phase 

x1 T  / K Solid 
phase 

x1 T / K Solid 
phase 

0.000 312.55 2 0.000 384.65 2 0.000 370.65 2 0.000 326.95 2 0.000 370.65 2 

0.100 306.65 2 0.101 357.05 2 0.099 356.85 2 0.104 324.75 2 0.100 369.95 1 + 2 

0.201 296.15 2 0.200 340.05 2 0.200 338.95 2 0.209 322.65 2 0.200 369.35 1 + 2 

0.301 290.15 2 0.300 324.55 2 0.300 323.65 2 0.303 320.25 2 0.301 368.55 1 + 2 

0.398 285.35 2 0.401 308.15 2 0.400 303.75 2 0.397 317.45 2 0.399 369.15 1 + 2 

0.502 281.45 1 0.501 283.15 2 0.499 295.65 2 0.504 314.65 2 0.500 369.55 1 + 2 

0.600 286.35 1 0.601 285.15 1 0.600 286.45 2 0.603 311.35 2 0.600 369.65 1 + 2 

0.700 296.15 1 0.699 289.45 1 0.699 293.55 1 0.698 306.05 2 0.701 371.85 1 + 2 

0.800 301.45 1 0.800 300.65 1 0.799 298.55 1 0.797 299.95 2 0.798 375.15 1 + 2 

0.900 305.55 1 0.900 303.15 1 0.900 307.05 1 0.849 297.85 2 0.900 381.60 1 + 2 

1.000 312.15 1 1.000 312.15 1 1.000 312.15 1 0.906 298.15 1 1.000 384.65 1 

         0.953 305.65 1    

         1.000 312.15 1    

              a
 Uncertainties for mole fraction, temperature and pressure are  0.001,  1.30 K  and  0.5 kPa, respectively. 
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Table B 2 - Experimental solid-liquid equilibrium data of the binary mixtures of ILs for mole fraction x, melting temperature T
 
and pressure p = 102.0 kPa 

a
. (continuation)  

[C3C1pyrr][PF6] (1) + 
[C3C1py][PF6] (2) 

[C3C1py][PF6] (1) + 
[C3C1pip][PF6] (2) 

[C3C1im][PF6] (1) + 
[P4,4,4,4][PF6] (2) 

[C3C1im][PF6] (1) + 
[N4,4,4,4][PF6] (2) 

x1 T / K Solid 
phase 

x1 T / K Solid 
phase 

x1 T / K Solid 
phase 

x1 T / K Solid 
phase 

0.000 312.55 2 0.000 370.65 2 0.000 498.60 2 0.000 524.30 2 

0.100 306.55 2 0.105 354.85 2 0.750 392.95 2 0.809 392.35 2 

0.200 294.65 2 0.311 328.65 2 0.800 382.15 2 0.855 384.25 2 

0.300 291.35 2 0.401 318.15 2 0.900 352.65 2 0.904 366.25 2 

0.400 284.65 2 0.499 306.15 2 0.950 308.15 2 0.955 338.05 2 

0.500 291.45 1 0.600 285.15 2 1.000 312.15 1 1.000 312.15 1 

0.599 313.15 1 0.701 289.15 1       

0.700 333.35 1 0.800 303.15 1       

0.800 342.15 1 0.900 307.15 1       

0.899 356.85 1 1.000 312.55 1       

1.000 384.65 1          
a
 Uncertainties for mole fraction, temperature and pressure are  0.001,  1.30 K  and  0.5 kPa, respectively 
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6.3. Appendix C – COSMO-RS Excess enthalpies  

Figure C 1 – Excess enthalpies forecasted by COSMO-RS for the system [N4,4,4,4][C3C1im][PF6]. 

The excess enthalpies were calculated from the contributions of each individual constituent: a) 
[C3C1im]

+
, b) [PF6]

- 
(1 - coupled with imidazolium based cation), c) [N4,4,4,4]

+
, d) [PF6]

-
 (2 - coupled 

with ammonium based cation). The comparison was made between the total excess enthalpy 
(blue, full line) and the different interactions contributions, i.e., (red, dashed line) for electrostatic 
interactions, (purple, dotted and dashed line) for H-bonding interactions, and (green, dotted line) for 
van der Waals forces.  

 

Figure C 2 - Global excess enthalpies calculated by COSMO-RS for the system 

[C3C1im][N4,4,4,4][PF6]. The comparison was made between the total excess enthalpy (blue, full line) 
and the different interactions contributions, i.e., (red, dashed line) for electrostatic interactions, 
(purple, dotted and dashed line) for H-bonding interactions, and (green, dotted line) for van der 
Waals forces. 
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Figure C 3 - Individual ions' total contributions for total excess enthalpy for [C3C1im][N4,4,4,4][PF6] 

calculated by COSMO-RS. The comparison was made between the total excess enthalpy for 
[C3C1im]

+
 (blue, full line) ], for [PF6]

-
 (1- coupled with imidazolium based cation) (red, dashed line), 

[N4,4,4,4]
+
(purple, dotted and dashed line) and [PF6]

-
 (2 - coupled with ammonium based cation) 

(green, dotted line).  

Figure C 4 - Excess enthalpies forecasted by COSMO-RS for the system [P4,4,4,4][PF6] 

[C3C1im][PF6]. The excess enthalpies were calculated from the contributions of each individual 
constituent: a) [C3C1im]

+
, b) [PF6]

-
(1- coupled with imidazolium based cation), c) [P4,4,4,4]

+
, d) [PF6]

-
 

(2 - coupled with ammonium based cation). The comparison was made between the total excess 
enthalpy (blue, full line) and the different interactions contributions, i.e., (red, dashed line) for 
electrostatic interactions, (purple, dotted and dashed line) for H-bonding interactions, and (green, 
dotted line) for van der Waals forces. 
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Figure C 5 - Global excess enthalpies calculated by COSMO-RS for the system 

[C3C1im][P4,4,4,4][PF6]. The comparison was made between the total excess enthalpy (blue, full line) 
and the different interactions contributions, i.e., (red, dashed line) for electrostatic interactions, 
(purple, dotted and dashed line) for H-bonding interactions, and (green, dotted line) for van der 
Waals forces. 

 

Figure C 6 - Individual ions' total contributions for total excess enthalpy for [C3C1im][P4,4,4,4][PF6] 

calculated by COSMO-RS. The comparison was made between the total excess enthalpy for 
[C3C1im]

+
 (blue, full line) ], for [PF6]

-
 (1- coupled with imidazolium based cation) (red, dashed line), 

[P4,4,4,4]
+
(purple, dotted and dashed line) and [PF6]

-
 (2 - coupled with ammonium based cation) 

(green, dotted line). 
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