
Fast VPN Mobility Across Wi-Fi Hotspots
André Zúquete

IEETA / Instituto de Telecomunicações
Dep. de Electrónica, Telecomunicações e Informática

Universidade de Aveiro
Campus Universitário de Santiago

3810–193 Aveiro, Portugal
andre.zuquete@ua.pt

Carlos Frade
Instituto de Telecomunicações

Campus Universitário de Santiago
3810–193 Aveiro, Portugal

carlos.frade@av.it.pt

Abstract— Wi-Fi hotspots deployed by domestic networks are
an attractive approach to foster ubiquitous Internet access for
mobile computers. However, it raises several security issues, since
the owners of such hotspots cannot be trusted to be honest;
therefore, visitors should consider them as potential Man-in-the-
Middle attackers. On the other hand, the owners of such hotspots
should not be legally accounted for illegal or unethical activities
performed by visitors. We defend that both issues can be tackled
by using a VPN-based access architecture for visitors. However,
current VPN solutions do not handle gracefully the mobility of
clients, an interesting possibility to navigate in a sea of user-
provided hotspots. In this paper, we propose a modification of
OpenVPN, a very effective and secure, open-source VPN solution,
to support the seamless mobility of VPN clients. The proposed
modification allows OpenVPN tunnels to be reconfigured as
soon as possible after a client handover, in order to minimize
outage delays and traffic losses. Performance evaluation with an
implemented prototype in different test scenarios showed that we
can reduce the handover delay imposed at the VPN level down
to 1.7% of the current value, at least.

I. INTRODUCTION

Mobility and/or roaming capability are fundamental re-
quirements of current and future Internet clients. To address
these requirements, it is fundamental to provide widespread
connectivity and handover support for Internet clients. At an
absolute limit, clients should be able to use any available
mean, and possible several means (e.g. multi-homing), to get
seamless access to the Internet.

User-provided networks [16] go towards this goal. By
empowering each current Internet subscriber to share its
network subscription with others, through domestic wireless
hotspots using unregulated bands (e.g. IEEE 802.11), we can
implement a grassroots approach for installing an ubiquitous
Internet access infrastructure. With this model, everyone with
a broadband subscription can become a micro-provider [16]
of Internet access.

A. Motivation

However, in terms of trust, user-provided networks (UPNs)
make a critical shift relatively to the traditional Internet
architecture. Traditionally, Internet clients access the Internet
through an Internet Service Provider (ISP), which mediates
their access to the Internet backbone. Clients (implicitly)
believe that an ISP is an honest organization, following well-
known guidelines for protecting the privacy of costumers,
although keeping enough records for legal liability in case
of abuse. In particular, clients believe that an ISP will not
deeply inspect their traffic for a purpose other than to fulfil
legal obligations. In short, clients believe that an ISP protects
their privacy to some extent.

On the contrary, such beliefs no longer stand when one
considers UPNs. In fact, UPNs are provided by ordinary
people, not by organizations, and they do not have to follow
any legal rules or ethical guidelines to protect the privacy of
clients (visitors). Furthermore, a UPN stands between visitors
and the Internet, which is the perfect location to conduct Man-
in-the-Middle (MitM) attacks against the traffic of visitors.

Therefore, by default, visitors should not ever trust on
the honesty of the owners of UPN hotspots. Consequently,
they should protect all their traffic flowing through such
hotspots. Such protection should encompass integrity control
(to prevent traffic forgery and mangling by a MitM), data and
traffic confidentiality (to prevent the identification of actions
performed and their actual details) and anonymity (to prevent
attacks using the identity of visitors). A way to fulfil all these
security requirements is to use a strong VPN between the client
and Internet services, throughout a UPN.

On the other hand, people running UPN hotspots will have
contracts with ISPs, which held them responsible for the traffic
they generate. Therefore, they need to protect themselves from
abuses perpetrated by hotspot visitors. An absolutely minimum
requirement for protecting an hotspot owner from such abuses
is to empower his ISP to differentiate the traffic initiated by the
subscriber (hotspot owner) from the traffic initiated by visitors.

In this paper we defend that both these security problems –
privacy and protection for the traffic of UPN visitors and traffic
differentiation at the ISP level – can be solved by using a VPN
for encapsulating the traffic of UPN visitors (see Fig. 1). UPN
visitors have a Virtual ISP, or virtual operator [16], which
essentially is an organization that allows authorized people to
create VPNs. Virtual ISPs can also be provided by traditional
ISPs, as a virtual complement to their physical Internet access
provisioning.

Fig. 1. Proposed architecture, using a VPN (thick blue arrow) for enforcing
the privacy of UPN visitors and for enabling proper accountability, by Virtual
ISPs, of traffic generated by UPN visitors

978-1-4244-6939-0/10/$26.00 ©2010 IEEE



A VPN between a visitor and his Virtual ISP (VISP) will
naturally enforce the protection of the visitor’s traffic regarding
any eavesdropping, tampering and forging attempts by UPN
owners. On the other hand, UPN owners may only authorize
traffic of their visitors to well-known VISPs. This way, they
are able to transfer legal liabilities of visitors’ traffic to VISPs,
which will then have to deal with abuses perpetrated by their
clients. From the ISP point of view, they do not have to deal
with abuses initiated by any visitors of UPNs ran by their
subscribers. Finally, both the ISP and the VISP can easily
implement several mechanisms and policies for regulating the
QoS provided to UPN visitors, such as traffic shaping.

Note, however, that this approach is the opposite of the one
proposed in [16]. They argue that all these security and trust
problems, identified as short-term challenges, do not require

tight security mechanisms but, instead, should be tackled with
innovative trust managements schemes, following the human

trust behaviour and using reputation schemes. However, eaves-
dropping leaves no trace, thus it is very difficult, or even
impossible, to build a reputation scheme providing the honesty
of someone regarding eavesdropping. Concluding, we argue
back that reputation schemes are not enough, we still need
strong security mechanisms to effectively deal with all these
security issues.

B. Contribution

Above we defended the use of VPNs between UPN visitors
and their VIPS to tackle two security issues raised by UPNs.
But we want to go further ahead, as we want UPN visitors
to be able to move seamlessly among UPN hotspots, possibly
seeking for the best offer regarding costs or QoS.

In this paper we studied and implemented a fast mobility
solution for a VPN, namely for OpenVPN. Our goal was to
enable OpenVPN sessions to be maintained across modifi-
cations of the IP address of the client host. For our work
we assumed no more than OpenVPN already does about the
network between the client and the server (see details in
Section II). Furthermore, we tried to change OpenVPN as little
as possible, to prevent the involuntary inclusion of security
vulnerabilities. Namely, we completely maintained the existing
control protocol: no control messages where changed and no
new control messages were added.

The solutions here discussed encompass both a lazy ap-
proach and an aggressive approach regarding the reconfig-
uration of an OpenVPN tunnel. The lazy approach simply
reconfigures the OpenVPN when the server gets client traffic
from a new address. The aggressive approach does the same
but the client proactively generates traffic when it detects a
change in its IP address. This last approach is a best effort
attempt to redirect the server-client traffic as soon as possible
after an handover, in order to minimize the amount of traffic
sent by a server to the former location of a client.

This paper is structured as follows. Section II overviews
OpenVPN in order to justify our contribution. Section III
explains the mobility problem of OpenVPN visitors. Sec-
tion IV presents our contribution. Section V shortly presents
the implementation of the proposed OpenVPN modification.
Section VI presents the practical evaluation of our contri-
bution. Section VII presents some related work, namely the
reasons for using OpenVPN instead of other VPN solutions.
Finally, Section VIII concludes the paper.

← authenticated →
← encrypted →

MAC IV Packet ID payload

Fig. 2. DATA message format

II. OPENVPN OVERVIEW

OpenVPN is an open-source VPN solution1. It operates at
the application layer and interacts with the TCP/IP protocol
stack through the TUN/TAP virtual interface2.

OpenVPN implements two channels, control and data, on
top of UDP datagrams (using the same ports for addressing).
On top of the control channel it also implements a reliable
transport protocol, required for supporting SSL/TLS [3] au-
thentication and key agreement protocols. Optionally, Open-
VPN can also run on top of TCP, but we will not address it
here.

OpenVPN supports two authentication modes: (i) static key
mode, with pre-shared keys, or (ii) TLS mode, with X.509
public key certificates. We will not discuss the advantages and
disadvantages of either mode; all that matters to our work
is that both modes required the exchange of several control
messages for setting up a new security context for a VPN
tunnel.

OpenVPN can use several types of triggers in a VPN to
renegotiate new, security-related session contexts (shared keys,
sequence counters, etc.). In our work we had not the goal of
adding a new trigger to negotiate new session contexts; instead,
our goal was to add triggers to reconfigure only the end-point
addressing information of a VPN tunnel, while keeping all
existing key material (session contexts) and rekeying policies.

A. OpenVPN messages

OpenVPN encapsulates messages in independent UDP data-
grams. Each message contains a header, identifying the mes-
sage type (OpCode field) and the set of session keys being
used, and the payload, which depends on the message type
(CONTROL, ACK or DATA)

The structure of a DATA message, presented in Fig. 2, is
divided as follows:

• A header, with 3 optional fields: a Message Authenti-
cation Code (MAC), an Initialization Vector (IV) for a
cipher mode and a sequence number (Packet ID);

• The payload.
The MAC is a full-message authenticator, computed with

HMAC [9], either with MD5 [13] or SHA-1 [1]. IV is a
random 32 or 64-bit array, required by the CBC, CFB and
OFB cipher modes3 supported by OpenVPN. Packet ID
is a monotonic sequence number, with 32 or 64 bits, for
preventing message replay attacks. Receivers use a sliding-
window mechanism to accept or discard messages given their
Packet ID. Messages with an already received Packet
ID (belonging to a valid message) are also discarded.

The DATA channel is also used to exchange a few extra
control messages. This is the case of Ping messages, which are
DATA messages starting with a pre-defined, 16-byte payload,

1http://openvpn.net
2http://vtun.sourceforge.net/tun
3Cipher Block Chaining, Cipher FeedBack and Open FeedBack



time �
Delays L2 handover L3 handover VPN termination VPN instantiation

Causes 802.11 authentication & association DHCP Inactivity timeout Authentication
802.1X authentication & key distribution Key distribution

Fig. 3. Connectivity outages created by mobility: delays and causes

time �
Delays L2 handover L3 handover VPN reconfiguration

Causes 802.11 authentication & association DHCP Update of server-side
802.1X authentication & key distribution session context

Fig. 4. Our goal: reduction of the overall outage delay replacing the termination and re-instantiation of the VPN by its reconfiguration

used as keep-alive beacons. These Ping messages have no
reply.

During the setup of an OpenVPN tunnel, client and server
exchange configuration information using the OpenVPN Con-
figuration Control (OCC) protocol. OCC messages are DATA
messages with a pre-defined set of initial 16 bytes (OCC
magic) and an OCC request or reply.

B. VPN contexts and session’s contexts

A OpenVPN server may keep several VPN tunnels, one for
each active client. For each VPN tunnel, both client and server
manage a related context, which can have several session
contexts (set of shared keys, etc.), each with a unique session
identifier (Session ID).

The server always uses the client UDP address (IP address
+ UDP port) to lookup for its VPN context; session identifiers
are never used for this purpose. Session identifiers are only
exchanged within CONTROL messages, on behalf of key
agreement and setup protocols; they are never exchanged on
DATA messages.

III. OPENVPN MOBILITY PROBLEM

The OpenVPN was conceived to protect the traffic flowing
in all kinds of IP networks, namely those containing Net-
work Address Translation elements (NAT boxes). The only
assumption that OpenVPN makes about the network is that
the client of a VPN tunnel always uses the same IP address
and UDP port number (UDP address), possibly provided by
a NAT box along the client-server routing path. Fortunately,
this is the normal behaviour of NAT boxes, otherwise it would
be impossible to establish dialogs (sequences of requests and
responses) using UDP through NAT boxes (possibly many).

When the IP address of the client changes, because it moved
to another network, the server is no longer capable of finding
the correct VPN context from the client’s datagrams, and
silently discards them. Note that the change of the client’s IP
address is relevant from the server’s point of view (i.e. in the
datagrams that arrive at the server). Thus, even when a client
keeps its IP address when moving to another network (using,
for instance, the same private IP address), the IP address that
will be observed by the server will naturally be different.

On the other hand, when the IP address of the client
changes, because it moved to another network, the server
is no longer capable of sending data to it, as it does not
know the new UDP address of the client and datagrams
sent to the old UDP address are not likely to be rerouted
to the new one (unless using MIP on the client side, for
instance). Furthermore, the OpenVPN server ignores ICMP
error messages caused by undelivered UDP datagrams, to

prevent Denial of Service (Dos) attacks, therefore it will
keep the (now) useless VPN until its garbage collection (for
instance, after a threshold inactivity period).

Summarizing, when an OpenVPN client moves between
networks, the VPN becomes entirely inoperative, as client
messages become unacceptable to the server and server mes-
sages cannot be routed to the new client address.

In theory, this problem could be solved with IP routing
mechanisms designed to handle mobility, such as MIP [12].
This approach, however, has two major drawbacks: (i) it
would require a widespread use of MIP or other similar
protocols, which is far from being a reality and (ii) re-routed
IP datagrams should continue to be routed through the initial
sequence of NAT boxes used when the VPN was established.
Otherwise, even with MIP the client IP address would change,
from the server’s point of view. Nevertheless, it was proposed
for commercial solutions for mobility of VPN clients (e.g.
Motorola’s Mobile VPN [11]).

Concluding, the actual OpenVPN implementation forces a
mobile client to negotiate a new VPN tunnel when its IP
address changes (from the server’s point of view), which is
a natural occurrence when the client moves across networks.
This means that, in a mobility scenario, OpenVPN clients
would have to, repeatedly, wait for inactivity timeouts after
an IP reconfiguration and renegotiate a new VPN tunnel
afterwards. The consequences of all this are connectivity
outages created by mobility far longer than the ones created
by ordinary reconfiguration delays within layer 2 and layer
3 handovers (e.g. 802.11 authentications/reassociations and
DHCP IP address reservation, see Fig. 3).

IV. SUPPORT FOR CLIENTS’ MOBILITY

In this section we present our solution for enabling a
seamless and fast reconfiguration of an OpenVPN tunnel
when the client IP address changes. Our final goals were
the following: (i) VPN reconfigurations should occur in the
minimum possible time, after the change of the client IP
address, (ii) reduce to the minimum the amount of traffic loss
during a reconfiguration action and (iii) involve only the VPN
client and server, and not any network element the in path(s)
between them.

After studying the current OpenVPN protocol and imple-
mentation, we established the following guidelines for our
contribution:

• Do not update the control protocol, to minimize the risk
of introducing new security breaches by adding extra
complexity to the control state machine.

• Do not increase the size of ordinary DATA messages, for
keeping the original performance of OpenVPN.



Regarding legacy compatibility, our goal was to keep back-
ward compatibility without extra signalling. This means that
an updated server should be able to interact with a legacy
client without any extra configuration, and, vice-versa. In this
last case, however, it would be useful if updated clients could
learn the mobility support from the server they are using. This
is still an open issue.

A. Lazy reconfiguration approach

Client DATA messages originated in a different UDP ad-
dress cannot be handled by the server because it has no means
to find the related VPN context. Therefore, as a first approach
we considered adding extra information to DATA messages
that could help servers to find out the correct context upon
the change of the client’s IP address. An obvious choice for
this extra information would be the (current) session identifier
being used in the VPN.

From the observation of the structure of a DATA message
we conclude that the IV field could be used, in some cases,
for carrying a (constant) session identifier, instead of a random
value. The specific cases depend on the relevance of the
randomness of this field value. For CBC, for instance, it does
not need to be random for improving security. On the contrary,
for CFB, and mainly for OBF, its randomness is of utmost
importance.

Session identifiers are 64-bit TLS session identifiers. With
ciphers with a 64-bit data block, the session identifier could
only replace the IV for the CBC cipher mode, and both client
and server would have to exchange explicitly a (constant) IV
in all DATA messages, which would be a waste of time and
bandwidth. With ciphers with a 128-bit data block, the session
identifier could replace only half of the random IV, which
could then be used with all cipher modes (CBC, CFB and
OFB). However, CBC can be used with a fixed IV, which
does not need to be transmitted in all DATA messages, and
piggybacking the session identifier in the IV would force the
exchange of an IV in all DATA messages.

Summarizing, we can fully or partially replace the IV by
the session identifier but usually with some restrictions (we
cannot use CFB and OFB) or performance penalties (we are
obliged to transmit a constant or useless IV always). The only
cases where we do not loose in performance and we do not
affect security significantly is when using CFB or OFB with
128-bit data block ciphers.

In spite of being easy and straightforward to implement this
solution, it does not solve the problem of server messages that
get lost until some client datagram reaches the server (either
with a Ping or with an ordinary DATA message). This problem
is addressed in the next section.

B. Aggressive reconfiguration approach

The aggressive configuration approach attempts to reconfig-
ure the server’s VPN context as soon as the client changes its
IP address. Furthermore, it creates no restrictions on the use
of cipher modes and adds no extra traffic overhead during the
normal operation of VPNs.

In the aggressive mode, the VPN client works normally as
it does now. When the client detects a modification in the
network IP address of the TUN interface, it enters a special
reconfiguration state. During this state, the client aggressively
sends (modified) Ping messages to the server until receiving
some DATA message from the server. Such reception is the

← authenticated →
← encrypted →

MAC IV Packet ID Usual Ping payload Session ID

Fig. 5. Modified Ping message format, used for server-side VPN reconfig-
uration

required evidence that the server was correctly reconfigured;
consequently, the client can abandon the reconfiguration state
and resume normal operation.

The modified Ping messages are Ping messages that include
an extra cleartext session identifier at the end of the payload
(see Fig. 5). The server should now be able to recognize two
types of Pings: (i) the current keep-alive Ping and (ii) the
reconfiguration Ping.

When a reconfiguration Ping reaches a server, there are two
possibilities: (i) the VPN context was not yet reconfigured
or (ii) the VPN context was already configured. In the first
case, the server cannot find the correct VPN context from
the source UDP address. In this case, it checks the message
size to validate if it can be a reconfiguration Ping and, in
case of success, it fetches a session identifier from the tail
of the payload, uses it to find the correct VPN context and
validates the Ping as usually. If valid, the VPN context is
updated with the new client UDP address, and a new context
index is created based on that UDP address, replacing the old
one. In the second case, the server is already able to validate
and identify the reconfiguration Ping using its source UDP
address, thus no further configuration is required.

In both cases, immediately after checking the validity of
a reconfiguration Ping, the server sends a DATA message to
the new client UDP address. This message can be either an
ordinary DATA message already in the queue to be sent to
the client, or a normal Ping message otherwise. The faster the
reaction of the server, the less the client floods the network
with reconfiguration Pings.

Note that the session identifier at the end of a reconfigu-
ration Ping does not need to be authenticated; its goal is to
replace the client’s UDP address in the lookup of the VPN
context, and the UDP address is not authenticated as well.

We decided to use reconfiguration Pings instead of modified,
ordinary DATA messages, because we did not find a way
of adding a reconfiguration tag to them without changing
the format of all DATA messages. We even considered the
possibility of adding such tag to other fields of the UDP
datagram, but UDP has no option fields, similar to the ones
of TCP, and kernels, by default, do not provide the means to
add arbitrary options to IP headers.

C. Comparison between the two modes

The lazy reconfiguration mode provides a minimal recon-
figuration approach, as it only reconfigures the server side of
the VPN when the client sends a DATA message after an
IP change. Consequently, all traffic sent by the server in the
meanwhile gets lost. This mode also imposes limitations in
the possible cipher suites used in the VPN and may create
overheads in DATA messages by forcing them to contain
always an IV with a piggybacked session identifier.

The aggressive reconfiguration mode provides a just in time,
as fast as possible reconfiguration approach, but it depends on
the client’s ability to detect the modification of the IP address



of its TUN interface. This mode may also temporarily flood
the network during the reconfiguration phase, but it reduces the
loss of traffic sent by the server after the change of the client
IP address. Finally, this mode has no impact on the cipher
suites used by VPNs and does not create any extra overhead
during the normal operation of VPNs.

In both cases, the modified DATA messages do not create
new security problems, since the receiver validates them using
the same methodology. Thus, attackers should not be able to
send spoofed DATA messages that could reconfigure the VPN,
because it requires them to send a DATA message with both
a valid sequence number, which is already infeasible in the
current OpenVPN implementation.

An attacker sitting between a client and a server (e.g. the
UPN hotspot owner) may intercept a DATA message with a
session identifier and change its source UDP address before
dispatching it to the server. In this case, the server would be
fooled by the tampered DATA message and would reconfigure
the VPN in a defective way. Nevertheless, an attacker using
this strategy can only deploy a DoS attack, and even this would
be limited in time, because after a given period without a reply,
the client would destroy the VPN and the attacker no longer
could be able to continue the attack, eventually leading to the
destruction of the VPN on the server side as well. Finally,
OpenVPN is already vulnerable to this kind of attacks, both
during the initial setup of VPN contexts and during its normal
exploitation. Therefore, we did not introduce a new security
vulnerability; it simply cannot be solved because OpenVPN,
deliberately, does not authenticate source addresses (in order
to handle NAT boxes in the client-server path).

V. IMPLEMENTATION

We implemented the aggressive reconfiguration mode in
Linux using version 2.0.9 of OpenVPN (the current stable
one).

The server modifications included a new hash table for
finding VPN contexts given a session identifier, the detec-
tion and validation of reconfiguration Pings, the immediate
dispatching of a reply DATA message after the validation of
a reconfiguration Ping, the reconfiguration of the client UDP
address of a VPN context and the update of the hash table
that finds VPN contexts from source UDP addresses.

The client modifications included the detection of the mod-
ification of the IP address of the TUN interface, the switching
to and from the reconfiguration state and the aggressive
transmission of reconfiguration Pings. For detecting IP address
modifications, we used a NETLINK ROUTE socket and we
added its descriptor to the client’s socket polling main loop.

VI. PRACTICAL EVALUATION

For evaluating the effectiveness of our VPN reconfigura-
tion protocol, we created an OpenVPN tunnel between two
machines and we continuously changed the IP address of
the client TUN interface while maintaining a continuous,
bidirectional client-server data flow. Due to the reconfiguration
latencies, some traffic from the server to the client was lost
during reconfigurations, but the server was always able to
reconfigure itself.

We evaluated the performance of the OpenVPN modifi-
cation in terms of overhead introduced during the normal
operation of the VPN and traffic loss during reconfigurations.
From our measurements we observed that the overhead is

negligible and mostly due to extra socket readings on the client
side (to process events on the NETLINK ROUTE socket other
that the RTM NEWADDR event).

Traffic losses and outage delays depend on at least four fac-
tors: computational speed of client and server hosts, network
distance, in terms of hops and latency, between client and
server hosts and data throughput between server and client.
Since these parameters can vary a great deal in different
operational scenarios and with different kinds of traffic flowing
through the VPN, results obtained for a specific test scenario
cannot be easily extrapolated to other scenarios.

Nevertheless, we present some performance evaluation re-
sults to enable readers to get an idea of the performance gains
and limits of our proposal for OpenVPN reconfiguration.

The first is a throughput penalty evaluation in a very simple
environment: two Linux computers, interconnected by a 100
Mbit/s switched, wired network, one being the VPN client and
the other the server. We evaluated the throughput performance,
both from the client to the server and vice-versa, using a
very aggressive UDP traffic injection (with the iperf tool4).
The throughput was measured in four different scenarios: (i)
with the current OpenVPN, (ii) with the modified OpenVPN
without mobility and (iii and iv) with the modified OpenVPN
and frequent IP reconfigurations, in each direction. Each
evaluation was performed during 60s, with 3 different injection
ratios that create packet drops (35, 36 and 37 Mbit/s), and for
the 3th and 4th scenarios we changed the IP address each 5
seconds (11 times during 60s). For each measure we took three
samples for calculating average and standard deviation values.
Table I summarizes the results.

Note that in these evaluation scenarios we intentionally re-
moved all throughput disturbances created by reconfiguration
outages due to L2 or L3 handovers (secure reassociations,
DHCP, etc.). Such disturbances are independent of the VPN
management, and vice-versa, therefore it would be meaning-
less to consider them when evaluating the performance gain
of our VPN reconfiguration mechanism.

Injection rate Average recv σ
OpenVPN (Mbit/s) rate (Mbit/s) (Mbit/s)

Original
35 33.52 0.20
36 34.46 0.14
37 34.66 0.77

Modified
35 33.15 0.31
36 34.23 0.29
37 33.98 0.37

Modified 35 31.47 1.0
w/ mobility 36 33.74 0.73
(C→S) 37 31.30 1.05
Modified 35 25.81 0.92
w/ mobility 36 27.86 0.92
(S→C) 37 27.00 0.58

TABLE I
THROUGHPUT EVALUATION OF THE ORIGINAL OPENVPN, THE MODIFIED

OPENVPN AND THE MODIFIED OPENVPN WITH MOBILITY (BOTH FOR

THE C→S AND FOR S→C DIRECTIONS)

The results above presented show that the throughput
penalty imposed by the modifications introduced in OpenVPN
vary from 0.7 to 2%, thus almost irrelevant. When mobility is
considered, and for the evaluated scenario, penalties vary from
2.1 to 9.7% in the C→S direction and 19.2 to 23% in the S→C
direction. This last direction provides worse results because

4http://iperf.sourceforge.net



when the client IP changes, the entire pipeline of datagrams
flowing from the server to the client, inclusively already in
the client’s operating system, are lost. On the contrary, when
the flow is from the client to the server, such pipeline will
eventually reach the server and be accepted, thus yielding a
higher throughput.

The other performance evaluation was relative to the delay
of VPN reconfiguration, upon handovers, when compared
with the delay of VPN terminations and re-instantiations.
However, VPN termination delays depend a great deal on
two unpredictable factors: (i) the maximum inactivity period
configured by the user and (ii) the inactivity period observed
before the handover. Consequently, we will not include it in the
presented figures, which, therefore, represent our worst case.
In the evaluation of VPN reconfigurations, we considered the
time the client is not able to communicate with the server, i.e.
the time from the modification of the client’s IP until receiving
a valid message from the server. Again, this represents out
worst case, since the outage time from the server’s perspective
is smaller.

For evaluating the delays we used two architectures, one
where the server is in the same network of the client and
another where the server is in a network far from the client (11
hops away). In both cases we used OpenVPN with TLS mode
for mutual authentication based on pre-distributed, X.509
public key certificates. Table II shows average and standard
deviation values of delays of 10 VPN re-instantiation and
reconfiguration tests.

Server in the same Server in a distant
network (ms) network (ms)

average σ average σ
VPN re-instantiation 2203 148 2259 37
VPN reconfiguration 4 0.9 39 7.4

TABLE II
DELAYS EXPERIENCED DURING THE RE-INSTANTIATION AND

RECONFIGURATION OF OPENVPN SESSIONS UPON HANDOVERS USING A

SERVER IN THE SAME NETWORK OR A SERVER IN A DISTANT NETWORK

The results of Table II show that the delay of the VPN
reconfiguration is, at most, 1.7 % of the VPN re-instantiation
delay. Naturally, this percentage would be much smaller if
we had included the inactivity timeout in the value of the re-
instantiation delay.

The performance of the lazy approach was not explicitly
evaluated, but we can reason about its boundaries. Unlike the
aggressive approach, the lazy one does not need to monitor the
TUN interface, therefore it achieves a slightly higher through-
put performance, equal to the one of the original OpenVPN.
However, after an handover, the VPN reconfiguration delay
depends on the client-server (upload) traffic rate, namely on
the delay between the completion of the L3 reconfiguration
and the next uploaded message. This delay may vary from zero
(with intense upload traffic) up to the interval between keep-
alive beacons (with reduced upload traffic). In any case, this
delay does not depend on the download traffic. Concluding,
the upload throughput performance of the lazy and aggres-
sive approaches should be very similar. On the other hand,
the download throughput performance of the lazy approach
depends on the upload traffic load, while in the aggressive
approach it always reaches the maximum possible value,
independently of traffic load.

VII. RELATED WORK

In this section we provide a short motivation for choosing
OpenVPN for adding client mobility instead of other VPN
solutions. Considering only open-source solutions, since com-
mercial solutions could not be adapted, we could consider
IPSec-based VPNs [8] or PPTP [6].

IPSec was not considered a good option since it does
not natively supports NAT boxes; it requires the help from
some sort of a NAT transversal protocol [7]. Nevertheless,
there is already an IETF standard for overlay VPN mobility,
Mobike [4]. This standard addresses the fast reconfiguration of
IPSec IKE Security Association in mobility scenarios, where
peers can change their IP address. However, Mobike is much
more complex than our reconfiguration protocol, as it takes 8
control messages while we only require 2 messages (and one
them can even contain useful data).

There is also some research work and commercial products
combining both MIP and IPsec, such as the work of Rup-
pelt et al. [14] and the Motorola’s Mobile VPN product [11].
However, as we stated in the introduction, we considered
from start that MIP is not likely to be widely available and,
consequently, that we had to choose a different approach for
handling scenarios without MIP.

PPTP, on the other hand, was also not considered a good
option for two reasons. First, it uses a TCP connection for
keeping the VPN alive. Therefore, adding mobility support
would require adapting an established TCP connection in both
the client and the server, and that would require a major
modification in the PPTP management of live VPNs. Second,
PPTP is not very strong in terms of effective security [15],
therefore it should never be used to get proper protection
from possibly very dangerous, MitM attackers hiding behind
UPN hotspots. The Internet Encyclopedia [2] describes it as
being “good for low-threat environments”, offering “medium

security for moderate threat environments”, which is certainly
not the case of UPNs. Graham & Cook, in [5], also say that
“PPTP is inherently insecure because there are too many

unauthenticated control packets that are readily spoofed”,
which is trivial for MitM attackers.

To conclude the related work, we can also refer the work
of Lee et al. [10], describing a solution for supporting VPN
mobility in a MPLS (Multi Protocol Label Switching) network
using Costumer Edge Routers. The deployment of this solution
is limited, as it depends on the availability of MPLS, so it
is not particularly suitable for a widespread exploitation for
accessing IP-based UPNs.

VIII. CONCLUSIONS

In this article we presented a modification of OpenVPN that
allows clients to move across networks and, simultaneously,
reconfigure their VPN tunnels in a very efficient and secure
way. The proposed modification was implemented and tested
in a real environment, using Linux machines. This work was
motivated by the fundamental idea that the use of VPNs could
solve two security issues of UPNs: protection of visitors’ traf-
fic and accountability of visitors’ traffic. Therefore, our work
may help visitors to move seamlessly across UPN hotspots,
enabling them to move aggressively to the best hotspots in
terms of costs and QoS.



ACKNOWLEDGEMENTS

This research work was supported by the Portuguese QREN
(Quadro de Referência Estratégico Nacional) project n. 3144
(PANORAMA).

REFERENCES

[1] D. E. 3rd and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC
3174, IETF, Sept. 2001.

[2] H. Bidgoli. The Internet Encyclopedia. John Wiley & Sons, 2004.
[3] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246,

IETF, Jan. 1999.
[4] P. Eronen. IKEv2 Mobility and Multihoming Protocol (MOBIKE). RFC

4555, IETF, June 2006.
[5] D. J. S. Graham and M. Cook. Secure Virtual Private Networks:

Technical Guide. ja.net, 2009.
[6] K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, and G. Zorn.

Point-to-Point Tunneling Protocol. RFC 2637, IETF, July 1999.
[7] A. Huttunen, V. Volpe, L. DiBurro, and M. Stenberg. UDP Encapsulation

of IPsec ESP Packets. RFC 3948, IETF, Jan. 2005.
[8] S. Kent and K. Seo. Security Architecture for the Internet Protocol.

RFC 4301, IETF, Dec. 2005.
[9] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for

Message Authentication. RFC 2104, IETF, Feb. 1997.
[10] Y. Lee, H. Choi, J. Na, and S. Sohn. A Mobility Support Mechanism

for IP VPN on the MPLS Network. In IASTED Int. Conf. on Commu-
nications, Internet, and Information Technology, St. Thomas, US Virgin
Islands, Nov. 2002.

[11] I. Motorola. Mobile VPN, Secure Connectivity on the Move. White
Paper, 2008.

[12] C. Perkins. IP Mobility Support for IPv4. RFC 3344, IETF, Aug. 2002.
[13] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, IETF, Apr.

1992.
[14] R. Ruppelt, A. Pelinescu, C. Constantin, J. Floroiu, D. Sisalem, and

B. Butscher. Building ALL-IP Based Virtual Private Networks in Mobile
Environment. In Int. Works. on Informatik and Mobile communication
over wireless LAN: Research and applications, Austria, Sept. 2001.

[15] B. Schneier, Mudge, and D. Wagner. Cryptanalysis of Microsoft’s PPTP
Authentication Extensions (MS-CHAPv2). In In CQRE ’99, pages 192–
203. Springer-Verlag, 1999.

[16] R. Sofia and P. Mendes. User-provided networks: consumer as provider.
IEEE Communications Magazine, 46(12):86–91, Dec. 2008.


