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resumo 
 

 

A dessulfuração é um dos processos mais importantes na indústria da 
refinação. Devido a uma preocupação crescente com os riscos para a saúde 
humana e ambiente associados às emissões de compostos de enxofre, a 
legislação tem vindo a tornar-se mais rigorosa, exigindo uma redução drástica 
do teor de enxofre nos combustível para níveis próximos de zero (< 10 ppm S). 
No entanto, os processos convencionais de dessulfuração são ineficientes e 
apresentam custos operacionais elevados, o que tem impulsionado a melhoria 
dos processos existentes e o desenvolvimento de novas tecnologias com 
maior eficiência. Com o objetivo de colmatar as lacunas referidas, este projeto 
de doutoramento investiga um processo alternativo de dessulfuração com a 
utilização de líquidos iónicos para a remoção de mercaptanos de correntes de 
“jet-fuel”. 
A triagem e a seleção do líquido iónico mais adequado foram realizadas com 
base em dados experimentais e previstos, utilizando o modelo termodinâmico 
COSMO-RS, de equilíbrio líquido-líquido. Foi seleccionada uma alimentação 
modelo de 1-hexanotiol e n-dodecano para representar a corrente de “jet-fuel”. 
Foram observadas seletividades elevadas, como resultado da baixa 
solubilidade mútua entre o líquido iónico e o hidrocarboneto, o que demonstra 
o potencial de utilização dos líquido iónicos, uma vez que a contaminação e a 
perda do combustível para o solvente são evitadas. Os coeficientes de 
distribuição dos mercaptanos em relação aos líquidos iónicos são 
desfavoráveis, o que torna os processos tradicionais de extração líquido-
líquido inadequados para a remoção de compostos alifáticos com enxofre, 
devido ao volume elevado de solvente que seria necessário utilizar. Este 
trabalho explora métodos alternativos e propõe a utilização dos líquidos iónicos 
num processo de separação assistido por membranas. No processo 
desenvolvido, o líquido iónico é utilizado como solvente na extracção do 
mercaptano da alimentação, realizada num contator de membrana de fibra 
oca, sem a co-extração do hidrocarboneto do “jet-fuel” modelo. Recorrendo a 
um segundo contator, o líquido iónico é regenerado através de uma corrente 
de gás de arraste, o que permite a sua reciclagem e reutilização em circuito 
fechado entre os dois contactores. Este processo integrado de 
extração/regeneração produziu um “jet-fuel” modelo com teor de enxofre 
inferior a 2 ppm, atingindo-se assim valores inferiores aos estabelecidos pela 
actual legislação. Demonstra-se assim que este processo tem um potencial de 
desenvolvimento elevado para aplicação em processos industriais de 
dessulfuração profunda. 

 



 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

keywords 

 
Desulfurization; mercaptan removal; jet-fuel; phase equilibria; COSMO-RS; 
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abstract 

 
Desulfurization is one of the most important processes in the refining industry. 
Due to a growing concern about the risks to human health and environment, 
associated with the emissions of sulfur compounds, legislation has become 
more stringent, requiring a drastic reduction in the sulfur content of fuel to 
levels close to zero (< 10 ppm S). However, conventional desulfurization 
processes are inefficient and have high operating costs. This scenario 
stimulates the improvement of existing processes and the development of new 
and more efficient technologies. Aiming at overcoming these shortcomings, this 
work investigates an alternative desulfurization process using ionic liquids for 
the removal of mercaptans from "jet fuel" streams. 
The screening and selection of the most suitable ionic liquid were performed 
based on experimental and COSMO-RS predicted liquid-liquid equilibrium data. 
A model feed of 1-hexanethiol and n-dodecane was selected to represent a jet-
fuel stream. High selectivities were determined, as a result of the low mutual 
solubility between the ionic liquid and the hydrocarbon matrix, proving the 
potential use of the ionic liquid, which prevents the loss of fuel for the solvent. 
The distribution ratios of mercaptans towards the ionic liquids were not as 
favorable, making the traditional liquid-liquid extraction processes not suitable 
for the removal of aliphatic S-compounds due to the high volume of extractant 
required. This work explores alternative methods and proposes the use of ionic 
liquids in a separation process assisted by membranes. In the process 
proposed the ionic liquid is used as extracting solvent of the sulfur species, in a 
hollow fiber membrane contactor, without co-extracting the other jet-fuel 
compound. In a second contactor, the ionic liquid is regenerated applying a 
sweep gas stripping, which allows for its reuse in a closed loop between the 
two membrane contactors. This integrated extraction/regeneration process of 
desulfurization produced a jet-fuel model with sulfur content lower than 2 ppm 
of S, as envisaged by legislation for the use of ultra-low sulfur jet-fuel. This 
result confirms the high potential for development of ultra-deep desulfurization 
application. 
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General Introduction 

3 

1.1. General Context 

Petroleum industries are committed to reducing their sulfur emissions and improve 

existing or develop new desulfurization technologies, both to comply with regulatory 

requirements, and optimize the fuel economy achieving a superior treatment capacity. 

Sulfur emissions from fossil fuels, coal and chemical burning, as well as by refinery 

industries have a great impact in human health and in the overall environment. The 

release of sulfur compounds is responsible for the production of SOx, which additionally 

lead to acid rain, ozone depletion, and respiratory insufficiency in humans. Regarding the 

fuel use, the presence of these sulfurous compounds on fuel acts as a catalyst poison 

either on the control systems of exhaust emissions by fuel engine’s, as in catalyst-aided 

refinery processes. These compounds deactivate the catalytic converters which further 

inhibit the pollution control and lead to the release of additional toxic and volatile organic 

compounds.1 To minimize these major environmental and health concerns, the 

authorities implemented more strict policies towards more stringent limits on the fuel 

sulfur content, envisaging the use of ultra-low sulfur fuels (< 10 ppm S).2-3  

However, the availability of crudes reserves with superior quality, i.e., with low sulfur 

content, is decreasing turning refining industries prospect crudes heavier and sourer. 

The sulfur levels on these crudes can reach values up to 3.5% wt, that are much higher 

than the found on the light and sweet crudes, commonly treated due to their relative easy 

and cheap desulfurization.4 Obviously, this quality deterioration on the supply side, and 

the more strict fuel specifications on the demand side, hinder the conventional 

desulfurization processes capacity and efficiency, demanding an expansion and upgrade 

of the desulfurization processes.5 

Along with gasoline and diesel fuel, jet-fuel also follows the growing trend on the 

worldwide fuel transportation demand, although more steadily.5 The current jet-fuel 

specification allows 3000 ppm of total sulfur, being 30 ppm in the form of mercaptan 

species (R-SH, R = radical). However, ongoing trends and initiatives expect to reduce 

these maximum levels of total sulfur down to 350 ppm in 2020, and 50 ppm in 2025.5 

These facts maintain the interest from industry and research community, reflecting the 

need of deeper desulfurization for the heavy and inferior crudes to attain the more 

stringent fuel quality specifications for sulfur content. 

The removal of sulfur from fuel streams in the refining industry is currently and primarily 

carried out by hydrodesulfurization processes, which consist mainly in a catalytic 

hydrogenation of the organic sulfur compounds, at very high temperatures and hydrogen 
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partial pressures, 300 – 400 ⁰C and 20 – 100 atm of hydrogen, respectively, producing 

hydrogen sulfide (H2S), converted to elemental sulfur in a subsequent recovery sulfur 

unit (Claus process). The extremely demanding operating conditions make this process 

very costly, in particular when high molecular weight and more stable sulfur compounds 

are presented in the fuel, requiring higher residence time and much more severe 

operating conditions.1 Concerning the sulfur species, mercaptans (aliphatic sulfur 

compounds) can also be removed by a sweeting process known as Merox ®, where a 

liquid-liquid extraction with sodium hydroxide is aided with a catalytic oxidation by air.3, 6 

For heavier fractions, this process gets more difficult and fixed-bed sweetening 

alternatives are used.3 Therefore, the refining industry demands a quality upgrading of 

the existing desulfurization technologies and a continuous development of new 

alternative approaches. Their goal is to produce ultra-low sulfur fuel at moderate 

operating conditions, reducing costs with energy and reagents, when compared to the 

conventional, expensive and difficult desulfurization processes, in the presence of stable 

or higher molecular weight sulfur compounds.4 

The challenges presented are being pursued by several research groups, and comprise 

the development of a more active catalyst for the traditional catalytic 

hydrodesulfurization, or new alternatives such as oxidative, adsorptive, extractive and 

biological desulfurization processes, and their combinations.2-4, 7-8  

 

Regarding the desulfurization at mild operating conditions of temperature and pressure, 

ionic liquids-based processes have shown a high potential.7, 9-18 19 Ionic liquids belong to 

the molten salts group and are generally composed of bulky and asymmetric organic 

cations and organic or inorganic anions (Appendix A). Most ionic liquids exhibit desirable 

attributes, namely a negligible vapor pressure, a wide temperature range where they are 

liquid, high thermal and chemical stabilities, and a good solvating capacity for both 

organic and inorganic compounds, among others. 19 Therefore, ionic liquids appear as 

more attractive and competitive solvents compared to the conventional volatile organic 

solvents, especially due to their negligible vapor pressure and high thermal stability. 

Additionally, the huge number of possible ionic liquids that can be synthesized by a 

proper selection of the cation/anion combinations allows for tuning their solvation ability 

for a variety of solutes. This tailoring feature should make possible to choose an ionic 

liquid that presents reduced solubility in the feed liquid phase and a high affinity for the 

target solute to be removed. 
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Several works have been addressing the use of ionic liquids for the removal of sulfur-

compounds from distilled streams, such as gasoline, kerosene and diesel. 7, 9, 11-17 These 

studies comprise different forms of desulfurization processes and among them, one may 

found liquid-liquid extraction,17, 20-28 and simultaneous oxidation,9, 16, 29-36 oxidative 

extraction,35, 37-38 and the use of ionic liquids in membranes or solid particles.15, 39-41 Most 

studies have focused on aromatic sulfur compounds 1, 3 (thiophene, benzothiophene, 

benzothiophene and their derivates) and only very few studies have been reported in the 

literature regarding the aliphatic analogues.15, 42-43  

Taking into account the scarcity of reported results concerning the removal of 

mercaptans,15, 42-43 this work aims at studying the ionic liquids as potential extracting 

solvents for organosulfur compounds with the sulfhydryl group and a sided alkyl chain 

(R-SH), considering kerosene as the fuel fraction to be treated for the production of jet-

fuel. 
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1.2. Scope and objectives 

Aiming at replacing the current inefficient and expensive desulfurization processes, ionic 

liquids have been considered as potential solvents to be used in extraction procedures. 

In this context, this work provides an evaluation on the feasibility of ionic liquids for the 

selective extraction of a less studied class of aliphatic sulfur compounds – mercaptans - 

from “jet-fuel”. 

For this desulfurization process, one of the most crucial features is the very low mutual 

solubility that the selected ionic liquid must exhibit with the hydrocarbons present in the 

jet-fuel matrix. This is very important in order to avoid contaminations of the fuel stream 

that can prevent the use of fuel, and losses of hydrocarbons for the extracting solvent. 

The knowledge of the mutual solubilities between ionic liquids and hydrocarbons is 

therefore required. The design and selection of the most suitable ionic liquid to be 

applied through experimental screening is unfeasible due to the huge number of possible 

combinations between ionic liquids and hydrocarbons. In this context, an evaluation of 

the performance of COnductor-like Screening MOdel for Real Solvents is provided 

(COSMO-RS theory described in Chapter 2), as a predictive tool to describe the liquid-

liquid equilibria of binary and ternary systems, composed by ionic liquids and 

hydrocarbons. 

In Chapter 3 and Chapter 4, reviews of the experimental data of phase behavior 

concerning ionic liquids and hydrocarbons, available in the literature, are reported. The 

effect of various structural features of both the ionic liquids and the hydrocarbons 

through their mutual solubilities behavior is also discussed here. Chapter 3 reports the 

study concerning binary systems and Chapter 4 ternary systems. The gathered 

information was shown to be essential to the understanding of the molecular interactions 

and the effect of the various structural features of both the ionic liquids and the 

hydrocarbons on their phase behavior, allowing the development of guidelines for the 

choice of the most suitable ionic liquid for target solute separation. It is shown that 

COSMO-RS provides a correct qualitative trend of the phase behavior dependence 

regarding the ionic liquids and molecular compounds nature. Therefore, COSMO-RS can 

be a useful predictive tool with a great potential in the screening of ionic liquids for 

specific extraction applications. 

In Chapter 5, the best potential candidates for the extraction of mercaptans from a feed 

model of kerosene in “jet-fuel” composed a mixture of n-dodecane and 1-hexanethiol 

were assessed. Tie-lines for the ternary systems jet-fuel model and the imidazolium- and 

pyridinium-based ionic liquids were experimentally measured, at 298.2 K and 313.2 K, 



General Introduction 

7 

along with the determination of the distribution ratio and selectivity. Using the 

experimental data determined, the COSMO-RS was also evaluated for the predictions of 

the liquid-liquid equilibrium of the investigated systems. The extraction behavior with 

other ionic liquids not experimentally tested was also predicted by COSMO-RS, which 

allowed an extended screening of the best potential ionic liquids candidates as 

desulfurization solvents of the target mercaptan. These systems displayed a very high 

selectivity meaning that the co-extraction of the rest of the fuel compounds can be 

avoided. However, for the systems at which the co-extraction of the other fuel 

compounds was prevented, the distribution ratio of the mercaptan towards the ionic 

liquid was unfavorable. As a result of this limitation, conventional liquid-liquid extraction 

processes are unfeasible due to the high volume of ionic liquid required. On the other 

hand, the high selectivity displayed by these systems, still award ionic liquids with a high 

potential to be applied in separation processes controlled by mass transfer kinetics.  

Chapter 6 presents the work developed for a possible application of ionic liquids in an 

extraction process assisted by membranes. This approach consisted in the use of 

supported ionic liquid membranes (SILMs) applying vacuum in the downstream side. 

Here, despite the negligible mutual solubility between n-dodecane and the studied ionic 

liquids, the n-dodecane permeated through the membrane support, invalidating the use 

of SILMs in the specific task of this work. To solve this problem, a second alternative was 

explored, where the ionic liquid was used as receiving phase in a hollow fibre membrane 

contactor. Under these conditions, no n-dodecane was detected in the receiving ionic 

liquid phase, which opened a very promising opportunity for integrated 

extraction/stripping processes of mercaptans from “jet-fuel” streams. 

Taking the last results into account, a new methodology for the desulfurization of “jet-

fuel” stream is proposed in Chapter 7. It consists in a liquid extraction of the mercaptan, 

using a pre-selected ionic liquid as extracting solvent (1-ethyl-3-methylimidazolium 

triflate [C2mim][CF3SO3]), followed by its regeneration in an additional step, aiming at 

maximizing the concentration gradient and an extraction process free of thermodynamic 

constraints. The performance of two regeneration methods was assessed: stripping 

applying vacuum and stripping using a sweep gas, both applied in the downstream side 

of the membrane. 

Finally, Chapter 8 presents the general conclusions and summarizes the achievements 

of this work and proposes suggestions for further development of this new technology for 

desulfurization of sulfur compounds from fuels using ionic liquids and hollow fiber 

membrane contactors.  
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2.1. Theory 

COSMO-RS1-4 is a model for the prediction of thermophysical properties and phase 

behavior of pure fluids and/or mixtures. COSMO-RS combines quantum chemistry, 

based on the dielectric continuum model known as COSMO (COnductor-like Screening 

MOdel), with iterative cycles of statistical thermodynamics to reduce the thermodynamics 

of the mixture to the interaction of a mixture of individual surface segments (chemical 

potential determination). 

 

COSMO calculations are performed in a perfect/ideal conductor 1-4, i.e., molecules are 

assumed to be surrounded by a virtual conductor environment, and the interactions are 

completely made on the conductor interface taking into account the electrostatic 

screening and the back-polarization of the solute molecule. As a result, it provides a 

discrete surface around the solute molecule which is characterized by its geometry and 

screening charge density (σ) that iteratively corresponds to a minimum energetic state at 

the conductor. As COSMO-RS treats the surface around the solute molecule as 

segments it is also necessary the screening charge density of the respective segment, σ 

'. These data are stored in the so called COSMO files. 

 

In the molecular interaction approach, the electrostatic misfit energy, 
misfitE , and the 

hydrogen bounding energy, HBE , are the most relevant and are described as a function 

of the polarization charges of the two interacting segments -  ',  or  
donoracceptor  , . 

The van der Waals energy ( vdWE ) is also taken into account, yet it only depends on the 

atoms involved. These energies are described by the equations 2.1, 2.2 and 2.3, 

respectively: 

   2'
2

'
', 


  effmisfit aE , (2.1) 

    
HBacceptorHBdonorHBeffHB caE   ;0max;0min;0min , (2.2) 

 vdWvdWeffvdW aE '  . (2.3) 

There are five adjustable parameters fitted to the individual atoms properties: 
effa is the 

effective contact area between two surface segments; ' is an interaction parameter; 
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HBc
 is the hydrogen bond strength; HB

 is the threshold for hydrogen bonding; and vdW

and vdW'
 
are element specific van der Waals interaction parameters. 

COSMO-RS does not explicitly depends on the discrete surface geometry, thus the 3D 

density distribution on the surface of each solute molecule Xi is converted into a 

distribution function called σ-profile,  Xp . This distribution function describes the 

relative amount of surface segment with polarity σ. The combination of the molecular σ-

profiles with the pure or mixture solvents (S) σ-profiles results in the mole fraction 

weighted sum of σ-profiles of its compounds,  Sp , that normalized by the total surface 

area, SA , gives the normalized σ-profile of the overall system,  Sp' : 
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where ix  is the mole fraction of component i,  iX
p  is the corresponding σ-profile, and 

iX
A  is surface area of the solute molecule Xi. 

 

Since  Sp'  describes molecular interactions, the chemical potential can be estimated 

by solving iteratively equation 2.54: 
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where  S , known as σ-potential, is the chemical potential of a surface segment with 

screening charge density σ, and it is a measure of the affinity of a solvent S to the 

surface segment with polarity σ. 

Integrating equation 2.6, described below, over the surface of a compound, it is possible 

to calculate the pseudo-chemical potential of the component Xi in a solvent S1: 

     dp S

XX

SC

X

S
iii  ,

 (2.6) 

where iX

SC , is a combinatorial contribution of the different size and shape of the molecules 

in the mixture. 
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This set of COSMO-RS equations gives the chemical potential of all components in a 

mixture and allows the estimation of several thermodynamic properties, namely activity 

coefficients, distribution ratios, phase equilibria, among others.1, 3-6 

More complex molecules, such as ionic liquids, present different conformational 

geometries corresponding to various energy states. Freire et al.6 showed that improved 

results were obtained using the conformers with lower energies (energetically more 

stable) and then, as in our previous work,7 the COSMO-RS calculations were carried out 

at the lower energy state of the conformers of each IL anion, IL cation and hydrocarbon.  

The quantum chemical COSMO calculation was performed in the Turbomole program 

package8-9 with the BP density functional theory, giving the surface charge density and 

the Ahlrichs-TZVP (triple-ζ valence polarized large basis set).10 The binary and ternary 

liquid–liquid equilibria of ionic liquid and hydrocarbons were estimated employing the 

COSMOtherm program using the parameter file BP_TZVP_C2.1_0110,11 and the ionic 

liquid, hydrocarbon and thiol systems, the parameter file BP_TZVP_C3.0_1301.12 
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3.1. Introduction 

Ionic liquids (ILs) are a new class of solvents that have been object of a growing interest 

from both academia and industry in the past few years. They are molten salts composed 

by bulky organic cations, and organic or inorganic anions, which form crystalline 

structures with low lattice energies, allowing these salts to be in the liquid state at or near 

room temperature. Ionic liquids exhibit, in general, negligible vapor pressures, often 

possess high thermal and chemical stabilities, and have good solvating capacity for both 

organic and inorganic compounds, among others unique properties. Given the huge 

number of possible ionic liquids, their properties can be fine-tuned by an adequate 

combination of specific ions and/or functional groups, making of them “designer solvents” 

that could be tailored to fit the requirements of a specific process. 

The interesting properties of ionic liquids are commending their application in numerous 

chemical and industrial processes aiming at replacing conventional organic solvents, 

including chemical, catalytic and biological reactions, 1-2 organic/inorganic synthesis, 3-5 

liquid-liquid separation processes, 6-8 separation and purification of gases 9-10 and 

contaminants removal from aqueous streams. 11 There are some industrial processes 

that already use ionic liquids due to their economical advantages and reaction yields, 12-

13 such as the BASIL (Biphasic Acid Scavenging utilizing Ionic Liquids) process, 14-16 

proposed by BASF technologies, and the Difasol process, 17-18 developed by Institute 

Français du Pétrole (IFP) that is an improvement of the traditional Dimersol route. 

Refining companies belong to an industrial sector that has shown a considerable interest 

in ionic liquids. Various separation processes relevant for refineries have been studied, 

namely the desulfurization of fuels, 19-24 the selective separation of aromatic/aliphatic 

hydrocarbon mixtures, 6-7, 25-27 and extractive distillation 12, 28. Besides the ionic liquids 

enhanced performance on these separations, their low volatility can reduce the energy 

consumption to separate the solvents from the product streams and to regenerate them 

6, 29. To evaluate the applicability of ionic liquids in these processes the large body of 

experimental data of various ionic liquids with a broad range of hydrocarbons that has 

been reported 30-50 is detailed and reviewed below.  

To identify the improved ionic liquids to be used in particular applications it is necessary 

to know their thermophysical properties and to understand the phase behavior of 

systems containing such ionic fluids. This cannot be accomplished using only the 

available experimental data due to the very large number of possible combinations of 

ionic liquids and hydrocarbons that undergo through liquid-liquid phase equilibria. It is 

thus necessary to develop a comprehensive understanding of the impact of the 
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hydrocarbon molecules features (such as aromaticity, chain length and cyclization of 

aliphatic hydrocarbons), as well as of the ionic liquids structural changes impact (cation 

and anion nature, alkyl side chain length and additional functional groups), on their 

phase behavior. The development and testing of predictive models able to describe the 

phase behavior of systems containing ionic liquids can produce an important tool for this 

purpose. 

A number of models based on the excess Gibbs free energy have been applied on the 

modeling of the phase behavior of systems involving ionic liquids and hydrocarbons. 

Some classical local composition models, such as the Non-Random Two Liquid (NRTL) 

31-32, 35-36, 38-43, 45, 50-53 and UNIQUAC, 35, 40, 51 were applied with success to the description 

of these systems while their performances were shown to be similar. 35, 40, 51 The 

modified Flory-Huggins equation and a lattice model based on polymer-solution models 

have also been applied, 30, 54 yielding good quantitative descriptions of the phase 

diagrams. Although the models employed in these studies provide improved correlations, 

they present a limited predictive capability since they require parameters fitted to 

previous experimental data and to the ionic liquid complex groups. A  fully predictive 

alternative relays in the use of the Conductor-like Screening Model for Real Solvents 

(COSMO-RS) proposed by Klamt and co-workers. 55-57 COSMO-RS does not require 

adjustable parameters, and therefore, it is applicable to virtually all possible ionic liquids 

and hydrocarbons mixtures. COSMO-RS has already been applied by Domańska et al. 

33 in the description of the equilibrium of (ILs + hydrocarbon) systems. Albeit reasonable 

results were obtained, 33 the limited number of systems studied was insufficient for a 

detailed evaluation of the COSMO-RS performance and applicability. 

In the current work, a review of the experimental data published hitherto, concerning the 

mutual solubilities of hydrocarbons and ionic liquids, is carried out to garner a broader 

picture of the structural changes of both hydrocarbons and ionic liquids towards their 

phase behavior. Aiming at appraising a predictive model for the screening and design of 

ionic liquids for task specific applications involving hydrocarbons, the performance of 

COSMO-RS in the description of the (ILs + hydrocarbons) liquid-liquid equilibria (LLE) is 

further evaluated. 
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3.2. Ionic liquid + hydrocarbon liquid-liquid equilibria  

An extensive search was performed on the liquid-liquid equilibrium experimental data of 

ionic liquids and hydrocarbons binary systems available in literature. The ionic liquid and 

hydrocarbon used, measurement technique, temperature and composition ranges, as 

well as the respective literature reference, are summarized in Tables B1 to B3, in 

Appendix B. Table B1 reports systems regarding aliphatic hydrocarbons, Table B2 

concerns aromatics hydrocarbons, and Table B3 summarizes the available data 

involving cyclic hydrocarbons.  

Owing to the high expectation through the application of ionic liquids in petroleum 

refineries and fuel production a large number of experimental systems could be found, 

with ionic liquids ranging from the most common types to task specific compounds. The 

experimental data available are based on imidazolium, pyridinium, pyrrolidinium, 

ammonium, and phosphonium cations, and bis(trifluoromethylsulfonyl)imide, alkylsulfate, 

hexafluorophosphate, tetrafluoroborate, thiocyanate, tosylate, nitrate, dicyanamide, and 

trifluoromethanesulfonate anions. Their ionic structures are described in Table A1 and 

Table A2, in Appendix A. LLE measurements were carried out for the n-alkanes pentane, 

hexane, heptane, octane, nonane, decane and hexadecane; for the aromatics benzene, 

toluene, ethylbenzene, propylbenzene, butylbenzene, o-xylene, m-xylene and p-xylene; 

and for the cycloalkanes cyclopentane, cyclohexane and cycloheptane. 

The large bank of experimental data gathered allows the drawing of the solvents 

structural features ruling the solvation phenomenon, and to evaluate the performance of 

COSMO-RS in anticipating their solution behavior. 

 

3.3. Results and Discussion 

The systems reported in Tables B1, B2 and B3 at Appendix B were used to study the 

effect of the various structural characteristics of the hydrocarbons molecules (such as 

aromaticity, chain length, cyclization and positional isomerism) and of the ionic liquids 

(cation and anion cores, side alkyl chain length and additional functionalized groups) on 

their phase behavior. A detailed discussion through the structural features impact in the 

phase behavior of these systems is reported below. It should be remarked that the 

solubility data from different researchers/sources show some discrepancies for similar 

systems. 30, 33, 35 This fact could derive from the different experimental techniques used, 

purities of the compounds employed, among others sources of error 30, 33, 35. In this work 

a critical evaluation of the experimental data was carried out by comparing similar 
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systems and, whenever outsider results were observed, they were not considered in the 

following discussion. 

The COSMO-RS model was applied to the description of selected systems to evaluate 

its capacity to predict the phase equilibrium data experimentally available. The impact of 

structural factors of the solvents on the miscibility gap of the LLE diagrams are analyzed 

and discussed. 

 

3.3.1. Hydrocarbons + ILs binary systems 

Fixing a common ionic liquid in several systems allows the investigation of the 

differences between the mutual solubilities regarding various hydrocarbon families. Data 

for [C4mim][SCN] with hexane, cyclohexane and benzene are reported in Figure 3. (for 

other ionic liquids see Figures B1-B16 in Appendix B). The asymmetric behavior of the 

ionic-liquid-containing systems is one of the most striking features of these diagrams. As 

previously observed with alcohols 58 and water 59 the solubility of ILs in hydrocarbons is 

usually orders of magnitude lower (in a mole fraction basis) than the solubility of 

hydrocarbons in ionic liquids. Particularly, while at the IL-rich phase the solubility of 

hydrocarbons is quite substantial, at the hydrocarbon-rich phase the solubility of 

[C4mim][SCN] is very small. Moreover, the solubility of benzene in aromatic ionic liquids, 

such as the imidazolium-based ionic liquid presented in Figure 3.1, is significantly higher 

than that observed for the aliphatic hydrocarbons. Nevertheless, slight differences also 

exist in the solubilities of both aliphatic hydrocarbons studied and the ionic liquid. 

Generally, the mutual solubilities between hydrocarbons (with a constant carbon 

number) and ionic liquids follow the increasing order (cf. also Appendix B): aromatics > 

cyclic aliphatic hydrocarbons > n-alkanes. The large solubility of aromatic hydrocarbons 

in ILs is certainly related with the formation of  interactions between the aromatic 

rings of both ionic liquid ions and aromatic hydrocarbons. On the other hand, the cyclic 

conformation of aliphatic hydrocarbons can reduce steric hindrance and allows a more 

effective package of the hydrocarbon at the IL-rich phase. 

COSMO-RS predictions for the phase behavior of the studied systems are also depicted 

in Figure 3.1. COSMO-RS displays an enhanced performance in describing all systems 

containing the ionic liquid [C4mim][SCN]. Besides the qualitative trend description, 

improved quantitative results are also obtained. Nevertheless, COSMO-RS is not able to 

achieve consistently predictions of this quality for all ionic liquids evaluated (cf. Appendix 

B). However, in general, a semi-quantitative description of the phase diagrams is 
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achieved, with the model being able to describe the differences between the various 

types of hydrocarbons. Particularly, the large differences in the mutual solubilities with 

ionic liquids displayed between the aromatics and aliphatic hydrocarbons are usually well 

described. As previously observed 58-60, the COSMO-RS model performs better for less 

miscible systems. Since COSMO-RS calculations consider that the interactions are 

made on the conductor interface surrounding the molecules (thus isolated species), 

stronger interactions responsible for larger mutual solubilities are not adequately taken 

into account by COSMO-RS. 

 

Figure 3.1 Liquid–liquid phase diagram for [C4mim][SCN] with n-hexane 32 ( ) ( ), 

benzene 32 ( ) ( ) and cyclohexane 32 ( ) ( ). The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

3.3.2. N-alkanes + ILs binary systems 

As described in Table B1 (at Appendix B) a large number of measured systems of n-

alkanes + ILs are available. The LLE data taken from the literature are, in general, based 

on n-alkanes from C5H12 to C10H22 and, in most examples, only data for the solubility of 

the n-alkanes at the ionic-liquid-rich regime are available. The experimental 

measurements of the solubility of ionic liquids in n-alkanes are a challenging task since 

the equilibrium saturation values of ILs in n-alkanes are very small - in the range from 

1×10-5 to 3×10-5 in mole fraction for the reported systems.36, 38, 51 Moreover, the solubility 

of n-alkanes in ionic liquids is extremely low, compared, for instance, with aromatic 

hydrocarbons, due to the striking strength differences on the type of interactions that 

take place between the hydrocarbons (dispersion forces) and the ionic liquid ions (mainly 

hydrogen bonding and electrostatic interactions). 
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3.3.2.1. Effect of the n-alkane chain length upon the phase behavior  

Fixing the ionic liquid, the n-alkane influence in the liquid-liquid phase diagram of 

systems IL + n-alkane was studied and selected LLE diagrams are shown in Figure 3.2, 

and in Figures B17 to B36 in Appendix B. 

The increase of the n-alkane chain length increases the immiscibility of the binary 

system as shown in Figure 3.2 for [Cnmim][SCN]. The increasing miscibility gap 

increases accordingly to the rank: n-decane < n-nonane < n-octane < n-heptane < n-

hexane. This trend is found to be independent on both the ionic liquid cation and anion 

nature. Although an increase in the dispersive forces is expected between the alkyl 

chains of the ionic liquids and longer chain hydrocarbons, the decrease in solubility at 

the IL-rich phase is related with the difficulty that n-alkanes with higher chains meet to fit 

into the free volume between the ionic liquid ions, reducing therefore their packing 

efficiency 34. As can be extrapolated from Figure 3.2, as well as from the Figures B17 to 

B36 in Appendix B, the alkane chain length increase leads to an increase in the upper 

critical solution temperature (UCST) of all the binary systems evaluated. Indeed, dealing 

with aliphatic hydrocarbons, all diagrams converge to an UCST behavior. 

The liquid-liquid equilibria of [SCN]-based ionic liquids presented in Figure 3.2 and 

Figure B24 is quantitatively described by COSMO-RS regarding the alkane chain length 

effect. For systems with different ionic liquids, with higher miscibility among the binary 

compounds, a fair qualitative description of the solubilities was obtained as displayed in 

Appendix B in Figures B17 to B34. For the hydrocarbon-rich phase, no experimental 

data are available, and thus, COSMO-RS predictions were not attempted. 
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Figure 3.2 Liquid–liquid phase diagram for [C4mim][SCN] with n-hexane 32 ( ) ( ), n-

heptane 32 ( ) ( ), n-octane 32 ( ) ( ), n-nonane 32 ( ) ( ) and n-decane 32 ( ) (

). The symbols and the lines represent respectively the experimental data and the 

COSMO-RS prediction calculations. 

 

3.3.2.2. Effect of the ionic liquid cation core upon the phase behavior  

The effect of the ionic liquid cation core on the solubility of hydrocarbons in ionic liquids 

is depicted in Figures 3.3 and 3.4 where the solubilities of n-hexane in [CF3SO3]- and 

[TOS]-based ionic liquids are presented. The solubilities seem to be highly anion 

dependent. Nevertheless, a remarkable effect of the cation family is also observed when 

comparing, for instance, significantly structural different ionic liquids, such as all, 

nitrogen-based ILs with the phosphonium-based ionic liquid. Gathering the results 

displayed in Figures 3.3 and 3.4 the increasing miscibility of n-alkanes in ionic liquids 

follows the cations trend: [1,3-C4mpy]+ < [C4mpyr]+ < [C4mim]+ << [Pi(444)1]
+. Among the 

nitrogen-based ionic liquids the five-sided ring cations (imidazolium- and pyrrolidinium-

based) present lower miscibilities with n-alkanes compared to the six-sided ring cation 

studied (pyridinium-based ionic liquid). Since both pyridinium- and imidazolium-based 

ionic liquids present an aromatic character while the pyrrolidinium-based cation is 

aliphatic, it can be anticipated that the size is more relevant than the presence of π 

molecular orbitals in defining the mutual solubilities. The most significant differences in 

solubilities, among different ionic liquid cations, were observed with the phosphonium-

based ionic liquid, as shown in Figure 3.4, presenting a significantly smaller miscibility 

envelope. The phosphonium-based structure, based on four alkyl chains, leads to 

favorable dispersive interactions with n-alkanes than those observed with other families 

of ionic liquids with a more polar character, and increasing thus the mutual solubilities.  
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COSMO-RS can satisfactorily predict the solubility dependency with the cation family as 

can be seen in Figures 3.3 and 3.4 (as well as for other systems presented in Figures 

B36 to B39 at Appendix B).  

 

Figure 3.3 Liquid–liquid phase diagram for [C4mim][CF3SO3] 
50 ( ) ( ), 

[C4mpyr][CF3SO3] 
50 ( ) ( ) and [1,3-C4mpy][CF3SO3] 

50 ( ) ( ) with n-hexane. The 

symbols and the lines represent respectively the experimental data and the COSMO-RS 

prediction calculations. 

 

 

Figure 3.4 Liquid–liquid phase diagram for [C4mim][TOS] 36 ( ) ( ), [1,4C4mpy][TOS] 

49 ( ) ( )  and [Pi(444)1][TOS] 47 ( ) ( ) with n-hexane. The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 
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3.3.2.3. Effect of the ionic liquid cation alkyl chain length upon the 

phase behavior  

The cation alkyl chain length affects the mutual solubilities between ionic liquids and n-

alkanes. Indeed, the chain length has a significant impact on the phase diagrams as 

shown in Figure 3.5. Figure 3.5 show that the increase of the ionic liquid cation alkyl 

chain from [C4mim]+ to [C6mim]+ in the [Cnmim][SCN] series leads to an increase in the 

mixture solubility. This enhanced miscibility is the result of a free volume increase in the 

IL-rich solution and of the prevalence of non polar regions in the ionic liquid that enhance 

the probability of favorable dispersive interactions with the n-alkane chain. Curiously this 

trend is not observed when changing the ionic liquid anion for the systems containing 

[C1mim][MeSO4] and [C4mim][MeSO4] (see Figures B40 and B41 in Appendix B). 

Nevertheless, it is difficult at present to establish if this is a peculiar behavior related with 

the [C1mim] + cation, the [MeSO4]
- anion, or just a problem associated with the limited 

experimental data available. More data on these systems are required to establish the 

reasons behind this particular trend.  

Moreover, for the alkoxymethyl-based ionic liquids (CnH2n+1OCH2) a similar pattern was 

observed. As shown in Figure B44 in Appendix B, n-alkanes are more soluble in 

[(C6H13OCH2)2im][NTf2] than in [C6H13OCH2mim][NTf2] at similar temperatures. The 

substitution of a methyl group by a longer alkoxymethyl chain improves the miscibility 

with aliphatic hydrocarbons. Most of the imidazolium-based ionic liquids phase diagrams 

shown presented n-alkanes solubilities lower than 0.30 in mole fraction units. For the 

cations with the hexyloxy-groups, the n-alkane solubility increases up to 0.5 in mole 

fraction. Nevertheless, with the data published hitherto it is not possible to conclude if 

this is a direct effect of the increased polarity of the chain dominated by the alkoxy group 

or a simple contribution of the second and longer hexyl chain.  

The trend observed with the cation alkyl chain length is similar to that observed for 

alcohols + ILs binary systems 58. Also, as the alkyl chain length of the cation increases 

the UCST of the system decreases. Moreover, the opposite effect verified with the n-

alkanes chain length increase, leading to higher UCST, is similar to that presented by 

alcohols and ionic liquids systems 58. 

COSMO-RS provides a correct qualitative description of the experimental data of the 

systems studied in Figure 3.5 (and Figures B43 and B44 at Appendix B). The effect of 

the increase in the cation chain length leading to higher mutual miscibilities is well 

predicted. It should be remarked that this trend is also supported by COSMO-RS for the 

systems comprising the methylsulfate-based ionic liquids, although experimentally a 

different pattern was observed. 
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Figure 3.5 Liquid–liquid phase diagram for [C4mim][SCN] 32 ( ) ( ) and [C6mim][SCN] 

38 ( ) ( ) with n-hexane. The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

3.3.2.4. Effect of the ionic liquid anion upon the phase behavior  

The experimental data available (Table B1 at Appendix B) allows a comparison of the 

effect of several ionic liquid anions on the n-alkanes solubility in the ionic media. 

Although more data are available, as described in Table B1, the systems here analyzed 

are mainly based on the [C4mim][anion] + n-hexane and the [C6H13OCH2mim][anion] + n-

hexane systems, because they allow the direct comparison of the effect of a large 

number of anions on the mutual solubilities. Results are displayed in Figure 3.6 and 

Figure B46 (at Appendix B). 

The ionic liquid anion nature has a slight influence in the mutual solubilities and similar to 

that presented before with the ionic liquid cation core. The main deviation was observed 

with the IL containing the [PF6]
- anion. Experimentally, the solubility of n-alkanes in 

[C4mim]-based ionic liquids increases with the following order: [MeSO4]
- < [SCN]- < 

[TOS]- < [CF3SO3]
- < [MDEGSO4]

- << [PF6]
-,  while for [C6H13OCH2mim]-based ionic 

liquids the increasing solubility follows the rank:  [BF4]
- < [NTf2]

-. These patterns closely 

follow the hydrogen bond basicity (hydrogen-bond accepting strength) of [C4mim]-based 

ionic liquids regarding their anions. The hydrogen bond basicity, β solvatochromic 

parameter, accordingly to the ionic liquid anion nature follows the sequence: [MeSO4]
- > 

[SCN]- > [CF3SO3]
- > [BF4]

- > [PF6]
- > [NTf2]

- 61-62. Thus, it seems that the solubility of n-

alkanes in ionic liquids decreases with an increase of the hydrogen-bond basicity of the 

ionic liquid anion. It should be noted that no liquid-liquid equilibrium data were found 

regarding the influence of the ionic liquid anion at the hydrocarbon-rich phase. 
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As previously observed for other systems containing ionic liquids 58-59, the solubility 

dependence with the anions nature is not qualitatively well described by COSMO-RS. 

Due to the similarity on the solubilities observed for most anions, although COSMO-RS 

can often provide an acceptable prediction of the phase diagrams, it cannot identify the 

correct experimental solubility trends as shown in Figure 3.6 for the ionic liquids 

[C4mim][MeSO4], [C4mim][PF6] and [C4mim][TOS]. Nevertheless, in Figure B46 

concerning only the [NTf2]
- and [BF4]

- anions, there is a close qualitative agreement with 

experimental data. 

 

Figure 3.6 Liquid–liquid phase diagram for [C4mim][MeSO4] 
35 ( ) ( ), [C4mim][PF6] 

51 

( ) ( ), [C4mim][SCN] 32 ( ) ( ), [C4mim][TOS] 36 ( ) ( ), [C4mim][CF3SO3] 

50 ( ) ( ) and [C4mim][MDEGSO4] 
39 ( ) ( ) with n-hexane. The symbols and 

the lines represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

3.3.2.5. Effect of the ionic liquid anion alkyl chain length upon the 

phase behavior  

As discussed before, the increase in the cation alkyl chain length leads to a pronounced 

increase in the mutual miscibility between ILs and n-alkanes. The same trend is 

observed with the increase of the anion alkyl chain length displayed in Figure 3.7. 

Ranging from [C4mim][MeSO4] to [C4mim][OcSO4]-containing systems there is a 

solubility increase of around 0.5 in mole fraction. Such enhanced solubility results from 

the decrease in the polarity of the anion and from the increase of the dispersion forces 

between longer alkyl chain anions and n-alkanes. In Figure B47, a similar pattern is 

observed. [C4mim][MeSO4] is less soluble in n-hexane than [C4mim][MDEGSO4]. 
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Although an oxygenated group is introduced in the former ionic liquid, this ionic liquid 

possesses a longer alkyl chain that favors liquid-liquid miscibility. 

In spite of the limitations of COSMO-RS to describe the ionic liquid anion effect through 

the binary phase diagrams, as discussed above, the influence of the anion alkyl chain 

length is correctly described. However, the observed experimental differences in 

solubilities are more remarkable than those predicted by COSMO-RS. 

 

 

Figure 3.7 Liquid–liquid phase diagram for [C4mim][MeSO4] 
35 ( ) ( ) and 

[C4mim][OcSO4] 
37 ( ) ( ) with n-hexane. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

3.3.3. Aromatics + ILs binary systems 

The LLE data available in literature for binary systems containing aromatic hydrocarbons 

and ionic liquids are reported in Table B2 in Appendix B. They are based essentially in 

benzene, alkyl-substituted benzenes and xylene isomers. The experimental miscibility 

gap observed for the IL + aromatic hydrocarbons is smaller than with n-alkanes, being 

the aromatics much more soluble in ionic liquids. Nevertheless, the solubility of ionic 

liquids in the aromatics is still very low, in the order of 10-3 in mole fraction 32, 36, 38, 41, 46, 51, 

53, 63. These important solubility differences observed between aromatics and alkanes in 

ionic liquids are the basis of the use of ionic liquids for aromatic/aliphatic selective 

separations  6-7, 25, 64-65. The greater solubility of aromatics in ionic liquids can be a 

consequence of the enhanced interactions between ionic liquids and aromatic 

hydrocarbons due to π-π interactions (for aromatic ionic liquids) and favorable packing 

effects (for non-aromatic ionic liquids). The various structural effects of aromatic 
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hydrocarbons and ionic liquids on the mutual solubilities will be studied and discussed 

below. 

 

3.3.3.1. Effect of the aromatics structure on the phase behavior  

The solubility of the ionic liquid in hydrocarbons increases with their aromaticity. As the 

alkylation of the benzene ring increases, the solubility of the ionic liquid at such rich 

phase decreases, as shown in Figure 3.8 (similar results are also shown at Appendix B 

for other systems in Figure B50 to Figure B91). In general, the miscibility gap increases 

accordingly to: benzene < toluene < ethylbenzene < propylbenzene. 

The solubility of xylene isomers in ionic liquids depends on the second methyl group 

position as shown in Figure 3.9 for [C4mim][MeSO4] and for other systems presented in 

Figures B50 to B91. The small differences observed among the positional isomers are 

due to differences in the xylene molecular structure that have an impact in the aromatic 

induced dipole moment. As a result, and in general, the ortho position presents higher 

solubility at the IL-rich phase.  

Moreover, from all the data gathered in Figures 3.8 and 3.9, it can be seen the favorable 

solvation of ethylbenzene at the IL-rich solution over the xylene similar structures. A 

single alkyl chain at the ring allows an enhanced solubility in the ionic liquid as a 

consequence of its larger dipole moment. 

For the hydrocarbon aromatic systems, COSMO-RS is able to qualitatively describe the 

effect of the alkylation of the benzene ring on the miscibility gap between ionic liquids 

and aromatics, as shown in Figure 3.8. Similar results are reported for other systems at 

the Appendix B (Figures B50 to B91).  

The behavior of the xylene isomers systems predicted by COSMO-RS, although only 

semi-quantitative, is qualitatively correct, as shown in Figure 3.9. The COSMO-RS can 

predict the similar experimental solubilities observed for the isomers meta and para, 

while providing higher miscibilities at the IL-rich phase for the ortho-xylene isomer.  
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Figure 3.8 Liquid–liquid phase diagram for [C4mim][TOS] with benzene 36 ( ) ( ), 

toluene 36 ( ) ( ), ethylbenzene 36 ( ) ( ) and propylbenzene 36 ( ) ( ). The 

symbols and the lines represent respectively the experimental data and the COSMO-RS 

prediction calculations. 

 

 

Figure 3.9 Liquid–liquid phase diagram for [C4mim][MeSO4] with o-xylene 35 ( ) ( ), 

m-xylene 35 ( ) ( ) and p-xylene 35 ( ) ( ). The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

3.3.3.2. Effect of the ionic liquid cation core upon the phase behavior  

As discussed for the IL + n-alkane systems, the cation family plays a minor role on the 

mutual miscibilities when the cation is based on nitrogen-containing heterocyclic rings. 

Imidazolium-, pyridinium- and pyrrolidinium-based ionic liquids exhibit similar solubilities 

as shown in Figure 3.10. However, pyridinium-based ionic liquids are slightly more 

soluble in aromatic hydrocarbons, and as observed before with n-alkanes. Other types of 
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cation may however present a different behavior, as suggested by the data for the 

[Pi(444)1][TOS] displayed in Figure 3.11, that presents a large solubility for aromatic 

hydrocarbons. 

In all systems evaluated, COSMO-RS can satisfactorily predict the trend of the influence 

of the cation family on the mutual solubilities, as shown in Figures 3.10 and 3.11. 

Nevertheless, significant quantitative differences were observed between the 

experimental and predicted data. Contrary to what was observed for n-alkanes, COSMO-

RS predicts more significant differences in solubilities between the imidazolium, the 

pyridinium, and the pyrrolidium cations, than those experimentally observed. Again, and 

as observed before with n-alkanes, COSMO-RS predicts an inversion in the solubility 

trends between the pyridinium- and pyrrolidinium-based ionic liquids at the hydrocarbon 

phase. Moreover, the experimental data suggest that a number of IL + aromatic systems 

may have a phase diagram of the lower critical solution temperature (LCST) type (for 

instance, [C4mim][CF3SO3] 
50, [1,3C4mpy][CF3SO3] 

50 and [C4mpyr][CF3SO3] 
50 presented 

in Figure 3.10, as well as other systems provided at Appendix B, such as [C2mim][NTf2] 

46, [C4mim][SCN] 32
 and [C6mim][SCN] 38 in Figures B60, B5 and B78, respectively). In all 

systems COSMO-RS seems to be unable to describe correctly this particular behavior, 

predicting UCST diagrams instead. LCST is caused by the conjugation of attractive 

interactions and free volume effects which result in negative enthalpies of mixing, and 

these are not well described by COSMO-RS predictions.  

The COSMO-RS predictions usually deteriorate with the increasing miscibility between 

the compounds 58-59. For the systems here studied, the COSMO-RS model does not 

seem to describe correctly the π-π interactions between aromatic rings. The COSMO-RS 

calculations consider that the interactions are made at the interface of the virtual 

conductor environment surrounding the molecules, and stronger interactions responsible 

for larger mutual solubilities are thus not adequately taken into account. This makes the 

model less able to describe the aromatic containing systems as compared to the n-

alkanes systems presented previously. Nevertheless, the model always provides a 

qualitative description of the ionic liquid cation influence on the mutual solubilities and 

can be an a priori screening tool for particular systems.  
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Figure 3.10 Liquid–liquid phase diagram for [C4mim][CF3SO3] 
50 ( ) ( ), 

[C4mpyr][CF3SO3] 
50 ( ) ( ) and [1,3-C4mpy][CF3SO3] 

50 ( ) ( ) with benzene. The 

symbols and the lines represent respectively the experimental data and the COSMO-RS 

prediction calculations. 

 

 

Figure 3.11 Liquid–liquid phase diagram for [C4mim][TOS] 36 ( ) ( ), 

[1,4C4mpy][TOS] 49 ( ) ( )  and [Pi(444)1][TOS] 47 ( ) ( ) with toluene. The symbols 

and the lines represent respectively the experimental data and the COSMO-RS 

prediction calculations. 

 

3.3.3.3. Effect of the ionic liquid cation alkyl chain length upon the 

phase behavior  

The cation alkyl chain length has an important impact on the solubility of aromatic 

hydrocarbons in ionic liquids as shown in Figures 3.12 and 3.13. The increase of the 

alkyl chain length decreases the polarity of the ionic liquid cation enhancing favorable 
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interactions with the hydrocarbon. Moreover the alkyl chain length also increases the 

entropic effects that contribute to an enhanced solubility, such as the asymmetry and the 

free volume of the ionic liquid. Figure B104 (Appendix B) shows the effect of the addition 

of a hexyloxy-group to the imidazolium cation and its impact in the liquid-liquid 

equilibrium with benzene. The presence of a more polar and electronegative element, 

such as oxygen, increases the miscibility between the aromatic and the ionic liquid. 

Although the COSMO-RS predictions presented in Figures 3.12 and 3.13 are quite 

different from experimental data they can, even so, correctly predict the miscibility trends 

with the cation alkyl chain length. The only limitation observed in this section was the 

inability of COSMO-RS to predict the alkoxymethyl group effect on the systems solubility 

shown in Figure B104. 

 

Figure 3.12  Liquid–liquid phase diagram for [C1mim][MeSO4] 
33 ( ) ( ) and 

[C4mim][MeSO4] 
35 ( ) ( ) with benzene. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure 3.13 Liquid–liquid phase diagram for [C2mim][NTf2] 
46 ( ) ( ), [C4mim][NTf2] 

46 ( ) ( ), [C6mim][NTf2] 
46 ( ) ( ), [C8mim][NTf2] 

46 ( ) ( ) and [C10mim][NTf2] 

46 ( ) ( ) with benzene. The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

3.3.3.4. Effect of the ionic liquid anion upon the phase behavior  

The anion effect on the mutual solubilities between aromatic hydrocarbons and ionic 

liquids is a well-studied field with a large body of data available as described in Table B2. 

As shown in Figure 3.14 the ionic liquid anion has a more important influence on the 

mutual solubilities with aromatic hydrocarbons than that observed before with n-alkanes. 

The solubility of benzene in the [C4mim]- and [C2mim]-based ionic liquids, shown in 

Figure 3.14, and Figures B105 and B109, range from 0.4 to 0.8 in mole fraction. The 

solubility increases with the ionic liquids anions sequences: [MeSO4]
- < [SCN]- <  

[MDEGSO4]
- < [PF6]

- < [TOS]- < [CF3SO3]
- < [NTf2]

- for the [C4mim]-based ionic liquid and  

[EtSO4]
- < [PF6]

- < [NTf2]
- for the  [C2mim]-based ionic liquid. In Figure B109 the solubility 

with an IL containing a 2-(2-methoxyethoxy)ethyl group at the cation increases as 

follows: [BF4]
- < [NTf2]

-. These patterns follow, with few exceptions, the general trend for 

the dipolarity/polarisability measurements of ionic liquids (π*): [MeSO4]
- ≈ [SCN]- > [BF4]

-  

> [PF6]
- > [CF3SO3]

- > [NTf2]
- 62. Thus, the mutual solubilities of aromatic hydrocarbons 

and ionic liquids increase with the decrease of the polarity of the ionic liquid anion. 

The COSMO-RS predictions are quantitatively acceptable for a number of ionic liquids 

but, as observed before for the n-alkanes, the correct qualitative trend predictions 

present some limitations with the ionic liquid anion nature. 
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Figure 3.14 Liquid–liquid phase diagram for [C4mim][MeSO4] 
35 ( ) ( ), [C4mim][PF6] 

51 ( ) ( ), [C4mim][BF4] 
63 ( ) ( ), [C4mim][NTf2] 

46 ( ) ( ), [C4mim][SCN] 32 (

) ( ), [C4mim][TOS] 36 ( ) ( ), [C4mim][CF3SO3] 
50 ( ) ( ) and 

[C4mim][MDEGSO4] 
39 ( ) ( ) with benzene. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations.  

 

3.3.4. Cycloalkanes + ILs binary systems 

The LLE of binary mixtures of IL + cycloalkanes available in literature are based in C5, C6 

and C7 cycloalkanes and are summarized in Table B3. In general the solubilities of these 

compounds in ionic liquids are slightly larger than those observed for n-alkanes due to 

their lower molecular volume and cyclic structure responsible by a more effective 

packing effect. As discussed before, for the solubility of the ionic liquids in other 

hydrocarbons, the solubility in cycloalkanes is also very small, being of the order of 3×10-

5 (in mole fraction) 36, 38, 51 for systems for which data are available. 

The predictions provided by COSMO-RS for the description of the LLE experimental data 

for IL + cycloalkanes systems are discussed below. 

 

3.3.4.1. Effect of the cycloalkanes structure upon the phase behavior  

The cycloalkanes size has an important effect on the solubilities of these compounds in 

ionic liquids. The immiscibility region increases with the cycloalkanes size (or carbon 

number increase) as shown in Figure 3.15. A number of other systems with distinct ionic 

liquids, yet a similar behavior, are reported in Appendix B (Figures B11 to B114).  
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The COSMO-RS predictions can describe correctly the decreased miscibility with the 

increase of the cycloalkane size. In the most part of the studied examples a fine 

quantitative description of the data was also achieved.  

 

 

Figure 3.15 Liquid–liquid phase diagram for [C6mim][SCN] with cyclohexane 38 ( ) ( ) 

and cycloheptane 38 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

3.3.4.2. Effect of the ionic liquid cation core upon the phase behavior  

As previously observed for different hydrocarbons, the cycloalkane containing systems 

do not vary appreciably with the cations based on nitrogen-containing heterocycles, such 

as the imidazolium-, pyrrolidinium- and pyridinium-based ionic liquids, and presented in 

Figure 3.16. Again slightly higher solubilities were observed with the pyridinium-based 

ionic liquid. Therefore, the increasing solubility of hydrocarbons in ionic liquids follows 

the general rank that is independent on the hydrocarbon nature: pyridinium- > 

pyrrolidinium- ≈ imidazolium- based ionic liquids. Other types of cations (such as 

phosphonium- and ammonium-based ionic liquids) may however present quite different 

behaviors. Yet, the experimental data available are too scarce to draw any conclusions 

concerning this matter.  

COSMO-RS can correctly predict the solubility trends experimentally observed in Figure 

3.16 and, as observed for the aromatic hydrocarbons, it predicts a larger difference in 

solubility between the imidazolium, the pyridinium, and pyrrolidium cations than that 

observed experimentally.  
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Figure 3.16 Liquid–liquid phase diagram for [C4mim][CF3SO3] 
50 ( ) ( ), 

[C4mpyr][CF3SO3] 
50 ( ) ( ) and [1,3C4mpy][CF3SO3] 

50 ( ) ( ) with cyclohexane. 

The symbols and the lines represent respectively the experimental data and the 

COSMO-RS prediction calculations. 

 

3.3.4.3. Effect of the ionic liquid cation alkyl chain length upon the 

phase behavior  

From Figure 3.17, the increase of the cation alkyl chain length allows dispersive type 

interactions between the hydrocarbon and the ionic liquid, which that along with a higher 

free volume and the favorable packing effect, contribute to an increase in the miscibility 

between both solvents. Moreover, at Figure B118, the replacement of a methyl group by 

a longer alkoxymethyl group at the ionic liquid cation also leads to a higher solubility of 

the cyclohexane in the ionic liquid. In fact, this general trend was observed for the three 

types of hydrocarbons studied. 

Although the experimental data is scarce for a full evaluation of the model, COSMO-RS 

can provide an excellent quantitative and qualitative description of the systems behavior 

presented in Figure 3.17 and Figure B118 (at Appendix B). 

 

290

312

334

356

378

400

0.70 0.75 0.80 0.85 0.90 0.95

T/
K

xIL

290

312

334

356

378

400

0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

pent_exp hex_exp hep_exp

pent_cosmo_il hex_cosmo_il hep_cosmo_il

non_cosmo_il dec_cosmo_il pent_cosmo_ar

hex_cosmo_ar hep_cosmo_ar oct_cosmo_ar

hexadec_cosmo_ar hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

pent_exp hex_exp hep_exp

pent_cosmo_il hex_cosmo_il hep_cosmo_il

non_cosmo_il dec_cosmo_il pent_cosmo_ar

hex_cosmo_ar hep_cosmo_ar oct_cosmo_ar

hexadec_cosmo_ar hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

pent_exp hex_exp hep_exp

pent_cosmo_il hex_cosmo_il hep_cosmo_il

non_cosmo_il dec_cosmo_il pent_cosmo_ar

hex_cosmo_ar hep_cosmo_ar oct_cosmo_ar

hexadec_cosmo_ar hexadec_exp hexadec_cosmo_il290

312

334

356

378

400

0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

pent_exp hex_exp hep_exp

pent_cosmo_il hex_cosmo_il hep_cosmo_il

non_cosmo_il dec_cosmo_il pent_cosmo_ar

hex_cosmo_ar hep_cosmo_ar oct_cosmo_ar

hexadec_cosmo_ar hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.75 0.80 0.85 0.90 0.95 1.00

T
/K

xIL

pent_exp hex_exp hep_exp

pent_cosmo_il hex_cosmo_il hep_cosmo_il

non_cosmo_il dec_cosmo_il pent_cosmo_ar

hex_cosmo_ar hep_cosmo_ar oct_cosmo_ar

hexadec_cosmo_ar hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

pent_exp hex_exp hep_exp

pent_cosmo_il hex_cosmo_il hep_cosmo_il

non_cosmo_il dec_cosmo_il pent_cosmo_ar

hex_cosmo_ar hep_cosmo_ar oct_cosmo_ar

hexadec_cosmo_ar hexadec_exp hexadec_cosmo_il



Chapter 3 

42 

 

Figure 3.17 Liquid–liquid phase diagram for [C4mim][SCN] 32 ( ) ( ) and 

[C6mim][SCN] 38 ( )( ) with cyclohexane. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

3.3.4.4. Effect of the ionic liquid anion upon the phase behavior  

The experimental data available, reported in Table B3, allow the comparison of the effect 

of several anions towards the liquid-liquid equilibria with cycloalkanes. Two main 

examples are displayed in Figure 3.18 and Figure B120 for ([C4mim]- and 

[C6H13OCH2mim]-based ionic liquids + cyclohexane) binary systems. 

The influence of the anion is more relevant in the cycloalkanes solubility in ionic liquids 

than the cation family effect discussed above. In the [C4mim]-based ionic liquids the 

miscibility with cyclohexane increases in the order:  [SCN]- < [CF3SO3]
- < [MDEGSO4]

- < 

[PF6]
-. For the [C6H13OCH2mim]-based ionic liquid the solubility with cyclohexane 

increases from [BF4]
- to [NTf2]

- composing anions. As observed before with n-alkanes, 

these sequences closely follow the solvatochromic β parameter trend (hydrogen bond 

basicity of the ionic liquid):61-62  [SCN]- > [CF3SO3]
- > [MDEGSO4]

- > [PF6]
-.  

The COSMO-RS predictions are not complete reliable to describe the ionic liquids anions 

influence in their mutual solubilities with cycloalkanes, and as previously observed for n-

alkanes and for aromatic hydrocarbons. The results reported in Figure 3.18 show that 

some anions are correctly described, e.g. [SCN]-, [CF3SO3]
- and [MDEGSO4]

-, while for 

others, such as [PF6]
-, the model fails in describing their correct trend. COSMO-RS 

seems to fail with high charge density anions. These anions have stronger coulombic 

interactions with the combined cation that are underestimated by the COSMO-RS 

calculations. In spite of these anions, for which the COSMO-RS qualitative description 
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fails, the solubility predictions are correct at least from a semi-quantitative point of view 

and for, some anions, even a close quantitative description is achieved. 

 

  

Figure 3.18 Liquid–liquid phase diagram for [C4mim][PF6] 
51 ( ) ( ), [C4mim][SCN] 32 

( ) ( ), [C4mim][CF3SO3] 
50 ( ) ( ) and [C4mim][MDEGSO4] 

39 ( ) ( ) 

with cyclohexane. The symbols and the lines represent respectively the experimental 

data and the COSMO-RS prediction calculations. 

 

3.3.5. Summary of the various effects studied upon the phase behavior 

The influence of various factors studied on this work through the mutual solubilities of 

hydrocarbons and ionic liquids is summarized in Table 3.1, along with the performance 

of the COSMO-RS model towards the description of the experimentally observed trends. 

With the exception of the ionic liquid anion nature influence in the solubility behavior, 

which was not fully captured by the COSMO-RS iterative calculations, the model seems 

to be able to produce a semi-quantitative description of the experimental data. Often, for 

the most immiscible systems, even an acceptable quantitative prediction of the phase 

diagrams, although far from the critical point, is achieved. It seems thus that COSMO-RS 

could be a useful tool for the screening of ionic liquids to be used in processes dealing 

with hydrocarbons.  

Although binary systems can be of use to identify the ionic liquids for which the 

solubilities of hydrocarbons are quite different, and therefore are potentially interesting 

for extraction purposes, they provide limited information. To study the application of ionic 

liquids to perform extractions in more complex real systems, ternary systems studies are 

required. For that purpose a companion article to this work, dealing with ternary systems 

of ionic liquids and hydrocarbon mixtures, is under preparation.  
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Table 3.1 Summary of the factors that influence the solubility and the performance of 

COSMO-RS. 

Factor Influence on the solubility 
COSMO-RS 
performance 

Hydrocarbon type 
Aromatics >> cycloalkanes > 

n-alkanes 
 

n-alkanes + ILs systems 

n-alkane chain length ↑ Cn → ↓ Solubility  

IL cation core ≈  

IL cation alkyl chain length ↑ Cn → ↑ Solubility  

IL anion family 

[MeSO4]
- > [SCN]- > [TOS]- > 

[CF3SO3]
- > [MDEGSO4]

- > [PF6]
-  

 

[BF4]
- > [NTf2]

- 

 

IL anion alkyl chain length ↑ Cn → ↑ Solubility  

Aromatics + ILs systems 

Aromatic alkyl chain 
substituted length 

↑ Cn → ↓ Solubility  

IL cation core ≈  

IL cation alkyl chain length ↑ Cn → ↑ Solubility  

IL anion family 
[BF4]

- > [MeSO4]
- > [SCN]- > [EtSO4]

- 
>  [MDEGSO4]

- > [TOS]- > [PF6]
- > 

[CF3SO3]
- > [NTf2]

- 

 

IL anion alkyl chain length ↑ Cn → ↑ Solubility  

Cycloalkanes + ILs systems 

Cycloalkane size ↑ Cn → ↓ Solubility  

IL cation core ≈  

IL cation alkyl chain length ↑ Cn → ↑ Solubility  

IL anion family 

[SCN]- > [CF3SO3]
- > [MDEGSO4]

- > 

[PF6]
-  

IL anion alkyl chain length ↑ Cn → ↑ Solubility  

Legend: ≈ negligible influence;  COSMO-RS describes the experimental trend correctly;  

COSMO-RS does not correctly describes the experimental trend. 
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3.4. Conclusions 

The use of ionic liquids in refineries and petrochemical industries requires the knowledge 

and the complete understanding of the several structural factors that influence the liquid 

phase behavior of systems containing such fluids. Therefore, an overview of the mutual 

solubilities of hydrocarbons and ionic liquids was carried out in this work to evaluate both 

the structural features of the hydrocarbons (chain length and molecular size, aromaticity, 

positional isomerism and cyclization) and of the ionic liquids (cation family, cation alkyl 

chain and anion nature) upon the phase behavior. The ability of COSMO-RS, a 

predictive model based on the quantum chemical model combined with statistical 

thermodynamics, was also evaluated in describing the phase behavior of these binary 

systems. 

The influence of various structural factors studied in the mutual solubilities of 

hydrocarbons and ionic liquids is summarized in Table 3.1. Concerning the COSMO-RS 

predictions it was shown to be possible to achieve a good qualitative and a semi-

quantitative description of the structural effects of different hydrocarbons and ionic liquids 

in the mutual solubilities of the studied systems. The only exception appears in the ionic 

liquid anion influence for which COSMO-RS is not able to fully capture the different ionic 

liquids inducing behavior. Another limitation of COSMO-RS is the solubility prediction of 

systems presenting large mutual miscibilities (far from the infinite dilution regime). For 

less miscible systems (near complete immiscibility), the predicted values are in good 

quantitative agreement with experimental data. Despite these limitations, the capability of 

COSMO-RS to predict the LLE of IL + hydrocarbon binary systems suggests that it can 

be used as an a priori tool for the screening of ionic liquids suitable for applications 

involving hydrocarbons. 
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4.1. Introduction 

Concerning the aliphatic/aromatic separation of hydrocarbons by ionic liquids, the 

number of experimentally studied systems increased considerably in the past few years, 

1-53 as shown in Tables C1 and C2 at Appendix C. These tables report the experimental 

data available on the liquid-liquid equilibrium of ternary systems of the type ionic liquid + 

aromatic hydrocarbon + aliphatic hydrocarbon (n-alkanes in Table C1 and cycloalkanes 

in Table C2). The huge number of potential ionic liquids that can be synthesized makes 

impossible the selection of the optimal ionic liquid for a specific task, or any 

extraction/separation process, only through experimental measurements. For an 

adequate selection of an ionic liquid it is necessary the development of heuristics, or 

predictive models and correlations that, based on some few selected experimental 

measurements, will be able to predict the phase behavior of these systems. 

A number of models have been applied to the description of the phase behavior of 

systems constituted by one ionic liquid and two hydrocarbons as described in Tables C1 

and C2. Two classical local composition models, the Non-Random Two Liquid (NRTL) 1-2, 

4, 8-10, 16-22, 24, 27, 31-35, 37-39, 44, 49, 53-54 and the UNIQUAC 9, 32, 54-55 models, have been often 

applied, both showing a good correlation ability yet with no predictive capacity. The only 

predictive model that has been studied so far for the description of these systems is the 

ASOG model,56-57 but it has been only applied to a limited number of systems. 

An alternative approach, the Conductor-like Screening Model for Real Solvents 

(COSMO-RS), proposed by Klamt and co-workers,58-60 is a predictive model that can be 

used for an initial screening of ionic liquids for various applications.60-73 The COSMO-RS 

does not require adjustable parameters from experimental data and only uses the 

information on the molecular structure of the compounds. Hence, it can be applied to a 

large number of ionic liquids and hydrocarbons combinations. Following our previous 

work73, where COSMO-RS has been studied for the description of the liquid-liquid 

equilibrium of IL + hydrocarbon binary systems, in this work, the COSMO-RS is 

evaluated in the prediction of the phase behavior of IL + hydrocarbons ternary systems. 

It should be pointed out that this model has already been applied previously to the 

description of a limited number of systems.62-63, 65-67, 69-70 

This study aims at evaluating the effect of the structural characteristics of the 

hydrocarbons molecules and ionic liquids on their phase behavior from the analysis of 

the compiled experimental data published hitherto, aspiring at a better understanding on 

the main molecular interactions that control the liquid-liquid equilibrium. In addition, the 
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experimental data were used to evaluate the COSMO-RS ability in describing the phase 

behavior of these systems. 

 

4.2. Ionic Liquid + Hydrocarbons Liquid–Liquid Equilibria 

Tables C1 and C2, at Appendix C, summarize the experimental data of liquid-liquid 

equilibrium of ternary systems composed of ionic liquids, aromatic hydrocarbons and 

aliphatic hydrocarbons (n-alkanes in Table C1 and cycloalkanes in Table C2) available 

on the literature and published hitherto. 1-53 Circa 188 systems were collected and 

comprise several ionic liquids and hydrocarbons. These systems were experimentally 

addressed in the past decade regarding the applicability of ionic liquids through 

petrochemical and refinery processes. In particular, these systems deal with the 

separation or aromatics from aliphatics hydrocarbons. The n-alkanes studied were n-

hexane, n-heptane, n-octane, n-nonane, n-decane, n-undecane, n-dodecane and n-

hexadecane; the aromatic hydrocarbons were benzene, toluene, ethylbenzene, 

propylbenzene, butylbenzene, o-xylene, m-xylene and p-xylene; and the cycloalkanes 

were cyclohexane, methylcyclohexane and cyclooctane. In what concerns ionic liquids, 

22 different cations belonging to the imidazolium, pyridinium, ammonium and 

phosphonium families, combined with 20 anions, such as 

bis(trifluoromethylsulfonyl)imide, alkylsulfates, hexafluorophosphate, tetrafluoroborate, 

thiocyanate, dicyanamide, tetracyanoborate, chloride, triiodide and dialkylphosphates, 

were studied. The data used were measured at atmospheric pressure and at several 

temperatures - reported in Tables C1 and C2. The abbreviations and ionic structures of 

the ions composing the ionic liquids are depicted in Tables A1 and A2, in Appendix A. 

The large number of systems available allows a comprehensive study on the effect of the 

structural characteristics of the hydrocarbons molecules and ionic liquids through their 

phase behavior, selectivities and distribution ratio among the co-existing phases. 

 

4.3. Results and Discussion 

The experimental data reported in Tables C1 and C2, at Appendix C, were the basis for 

the study of the effect of the structural characteristics of the hydrocarbons and ionic 

liquids into their phase behavior. The structural factors, such as aromaticity, chain length, 

cyclization and positional isomerism of the hydrocarbons, and the cation core and anion 
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nature, and length of the side alkyl chain of ionic liquids are analyzed and discussed 

below regarding the impact that they have on the liquid-liquid phase behavior.  

Phase diagrams describing the liquid-liquid equilibria (LLE) for selected ternary systems 

composed of ionic liquid + aromatic hydrocarbon + aliphatic hydrocarbon are displayed 

in Figures 4.1 to 4.13. Further results are presented in Figures C1 to C35 at Appendix C. 

These diagrams allow a global overview of the phase behavior of the ternary systems 

under study. Most ternary phase diagrams reported in literature are of type 274 

presenting a partial miscibility in two pairs of compounds: the ionic liquid + aliphatic 

hydrocarbon and the ionic liquid + aromatic hydrocarbon. The binodal curves at the 

aliphatic hydrocarbon-rich phase lie close to the edge of the phase diagram due to the 

low solubilities displayed by the ionic liquid on the aliphatic hydrocarbon. Moreover, the 

addition of aromatic hydrocarbons to the ionic liquid + aliphatic hydrocarbon mixtures 

does not lead to a significant increase of the aliphatic miscibility in the ionic liquid-rich 

phase. Although the aromatic hydrocarbons present a significant miscibility with both 

compounds they do not extensively act as co-solvents. The ternary diagrams presented 

are also characterized by tie-lines with negative slopes and often solutropy, i.e., there is 

a change in the slope of the tie-lines as the aromatic content increases. The absolute 

slope of the tie-lines increases with the amount of aromatic hydrocarbon since the 

mutual solubilities between the two co-existing phases also increases. Thus, at this 

stage, an increase of at least one of phase-forming components is needed for phase 

separation. The features observed on the ternary phase diagrams, such as large 

immiscibility regions, and favorable distribution ratios and selectivities, are encouraging 

issues towards the use of these systems in aromatic-aliphatic separations by liquid-liquid 

extraction. Moreover, the very low solubility of the ionic liquid in aliphatic hydrocarbons 

minimizes the loss of the ionic liquid and the contamination of the refined stream.  

Besides the binodal curves and the tie-lines assessment to discuss and interpret the 

phase diagrams, we further evaluated the solvent selectivity (S) and distribution ratio (D). 

These parameters, defined by equations 4.1 and 4.2, respectively, provide a quantitative 

description of the partitioning of the aromatic hydrocarbons between the co-existing 

phases: 

I
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(4.2) 

where x  is the mole fraction, the subscripts aliph and aro are related with the aliphatic 

and aromatic hydrocarbons, respectively, and the superscript I refers to the aliphatic 

hydrocarbon-rich-phase, while II refers to the ionic liquid-rich phase.  

In order to evaluate the performance of COSMO-RS to predict the LLE of the ternary 

systems experimentally available, the root mean square deviation (RMSD) between the 

experimental and predicted data was additionally determined and is defined according to 

the following equation: 
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where x is the mole fraction of compound i, R is the total number of compounds (R= 3), n 

is the tie-line number, and N is the total number of experiments. The root mean square 

deviations for the studied systems are shown in Table C3 at the Appendix C. 

The selectivity and the distribution ratio for the aromatic hydrocarbons among the 

several systems evaluated were also predicted. Both COSMO-RS predicted LLE phase 

diagrams, and selectivity and distribution ratios, are compared with the experimental 

data in Figures 4.1 to 4.13, and are discussed below.  
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4.3.1. Effect of the structural characteristics of the aliphatic hydrocarbons 

upon the phase behavior 

 

4.3.1.1. Effect of cyclization 

A common ionic liquid and an aromatic hydrocarbon were fixed to study the influence of 

the structural features of cyclization on the phase behavior. This allows the observation 

of the effects of the cyclic or linear nature of the alkane upon the phase diagrams. The 

ternary systems investigated were those constituted by n-hexane/cyclohexane + 

benzene + [C2mim][EtSO4], and the corresponding diagrams are shown in Figure 4.1, 

and the n-octane/cyclooctane + benzene + [1,3C2mpy][EtSO4] (Figure C1 at Appendix 

C). A slight difference is observed between the two systems containing the cycloalkanes 

where a higher mutual solubility is observed when compared with the n-alkane systems. 

This trend is related to the reduction of the steric hindrance between the cyclic 

hydrocarbons and the ionic liquid allowing a slightly increase on the effectiveness on the 

packing of the fluids. The selectivity and the distribution ratio are plotted in Figure 4.1 at 

panels b) and c), respectively, as a function of the mole fraction of the aromatics in the 

aliphatic phase. The selectivity values of the studied systems are superior to unit 

confirming thus the potential of the ionic liquids as solvents for extraction processes 

when applied to aromatic/aliphatic hydrocarbon matrixes. The distribution ratio is low and 

inferior to 1, due to the negative slope of the tie-lines, meaning that large volumes of 

ionic liquid are required for liquid-liquid extraction processes. This behavior results from 

the predominant interactions in the ionic liquid-rich phase and is dependent on the global 

composition. When the global composition has a low content in hydrocarbons, the 

interaction forces in the ionic liquid-rich phase are dominated by interactions between the 

ionic fluid and the hydrocarbons leading to high selectivity and distribution ratio values. 

At higher hydrocarbon contents, the influence of the interactions between the ionic liquid 

and the hydrocarbons decreases being replaced by interactions between the aromatic 

and the aliphatic hydrocarbon that do not favor the separation.  

The results of COSMO-RS for the studied systems are depicted in Figure 4.1 and in 

Appendix C (Figure C1). COSMO-RS provides a good prediction of the shape and size 

of the miscibility gap and of the binodal curves and tie-lines for the systems composed of 

aliphatic hydrocarbons + benzene + [C2mim][EtSO4]. The differences between the 

predicted values and the experimental data are more significant for the systems with 

cycloalkanes (RSMD = 1.9%) as the immiscibility region decreases when compared with 
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the systems containing n-alkanes (RSMD = 1.4%). The model provides a very good 

description of the very low solubilities of ionic liquids on the hydrocarbon-rich phase.  

 

a) 

b) c) 

 

Figure 4.1 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + 

[C2mim][EtSO4]
32 (full diamonds and solid line for experimental data; and empty 

diamonds and dotted line for COSMO-RS predicted values), and cyclohexane + benzene 

+ [C2mim][EtSO4] 
9 (full triangles and solid line for experimental data; and empty triangles 

and short dashed line for COSMO-RS predicted values) at 298.15K. 
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4.3.1.2. Effect of the alkane chain length 

It was possible to study the n-alkane and the cycloalkane size on the phase behavior for 

systems with a common ionic liquid and an aromatic hydrocarbon compound. The 

ternary phase diagrams of the systems studied with linear alkanes are depicted in Figure 

4.2, and in Figures C2 – C9 at Appendix C, and for cyclic alkanes in Figures C10 and 

C12 at Appendix C. The increase on the alkyl chain length is responsible for an increase 

in the immiscibility gap on the phase diagrams. This effect is more pronounced for the n-

alkanes than for the cycloalkanes, since the shape of n-alkanes leads to more variable 

and complex molecular conformations. An increase on the alkyl chain increases the 

entropy of the system which makes difficult the packing between the hydrocarbon 

molecules and the ionic liquid ions. The selectivity and the distribution ratio, as a function 

of the mole fraction of the aromatic hydrocarbons at the hydrocarbon-rich phase, are 

shown in Figure 4.2, panels b) and c), respectively, and at the Appendix C (Figures C2 – 

C12). The increase in the hydrocarbon molecular weight leads to an increase in the 

selectivity, as expected from the observed increase in the miscibility gap. The selectivity 

is influenced by the aromatic concentration in the hydrocarbon-rich phase whereas a 

decrease of selectivity with the increase of aromatic concentration is observed. A 

decrease in the distribution ratio is also observed with the increase of the alkane chain 

length, yet less significant than that observed with the selectivity. The distribution ratio 

also decreases with the concentration of the aromatic hydrocarbon at the hydrocarbon-

rich phase being its variation more pronounced for aliphatics with longer chain lengths. A 

similar behavior is observed for the systems containing the cycloalkanes, and as shown 

in Figures C11 – C12. 

The COSMO-RS model is able to describe the effect of the alkane size on the mutual 

solubilities of the ternary systems, as depicted in Figure 4.2 and in Appendix C (Figures 

C2 – C12). The binodal curves are predicted with good accuracy. The RMSD values are 

displayed in Table C3 at Appendix C. Their description is nevertheless better at the 

hydrocarbon-rich phase where the ionic liquid concentration is very low and is not 

influenced by the alkane size. At the ionic-liquid-rich phase, the binodal curve shows 

lower deviations for the systems with longer alkane chain lengths, which present, 

therefore, higher immiscibility. 

The change on the selectivity and distribution ratio with the alkane size was also 

estimated with COSMO-RS. For both, the quality of the COSMO-RS predictions seems 

to decrease with increasing the alkane size. This may be related with the large sensitivity 

of the selectivity and distribution ratio on the very low concentrations of the alkane at the 

ionic-liquid-rich phase. In what concerns the distribution ratios, COSMO-RS provides a 
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good representation of the small dependency on the alkane size through the phase 

diagrams, although an opposite trend to what is observed from the experimental values 

is predicted. 
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a) 

  

b) c) 

 

Figure 4.2 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + 

[C2mim][EtSO4] 
32 (full diamonds and solid line for experimental data; and empty 

diamonds and dotted line for COSMO-RS predicted values), n-heptane + benzene + 

[C2mim][EtSO4] 
32 (full triangles and solid line for experimental data; and empty crossed 

triangles and dashed line for COSMO-RS predicted values), n-octane + benzene + 

[C2mim][EtSO4] 
32 (full circles and solid line for experimental data; and empty crossed 

circles and dot dashed line for COSMO-RS predicted values) and n-nonane + benzene + 
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[C2mim][EtSO4] 
32 (full squares and solid line for experimental data; and empty crossed 

squares and dot-dot dashed line for COSMO-RS predicted values) at 298.15K. 

 

4.3.1.3. Effect of the aromatic structural characteristics upon the phase 

behavior 

The influence of the aromatic structure and the aromatic isomers upon the phase 

behavior of the studied ternary systems was also investigated. The resulting ternary 

diagrams are depicted in Figures 4.3 and 4.4 and at Appendix C, Figures C13 – C20. As 

previously mentioned, the presence of aromatic compounds does not significantly affect 

the miscibility of the ternary systems of the type aliphatic + aromatic +ionic liquid. 

Nevertheless, the solubility of the mixture is increased for simpler aromatic compounds. 

The increase of the alkyl side chain length on the aromatic structure leads to a decrease 

on the mixture miscibility, as depicted in Figure 4.3. The systems solubility follows the 

order: benzene > toluene > ethylbenzene. The tie-lines slopes seem to be more 

influenced by the alkylation of the aromatics than the binodal curve itself. Moreover, 

there is an increase of the absolute slope of the tie-lines as the aromatic content and the 

alkyl side chain length increase.  

Concerning the xylene isomers, the solubility of the systems constituted by ionic liquid + 

xylene + aliphatic hydrocarbon is only slightly affected by the position of the second 

methyl group, as shown in Figure 4.4. The tie-lines slopes for these systems are also 

similar at the extremes of the ternary diagram and show some variation in the transient 

slope zone. For the o-xylene system, the slope variation is less pronounced being the 

change more abrupt in the region with a higher aromatic content. For the systems with 

m-xylene and p-xylene, the progression of the tie-line slope does not display a significant 

variation. 

The selectivity for the various aromatic systems studied presents large values and 

decreases with the increase on the aromatic alkyl side chain, fluctuating nevertheless in 

a range of identical magnitude. An interesting feature is observed for the systems based 

on the [1,3C2mpy][EtSO4] ionic liquid (Figure 4.3 and Figure C19 at Appendix C). For 

these systems, the selectivity shows a divergent behavior if the aromatic has or not a 

substituent alkyl chain. The system with benzene shows a decreasing selectivity with the 

increase of benzene content at the aliphatic rich-phase, whereas, the presence of an 

alkyl chain on the aromatics leads to its increase. Though, the observed trend for other 

systems consists in the decrease of the selectivity with the increase of the aromatic mole 

fraction at the aliphatic-rich phase, as can be seen for the systems composed of ionic 
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liquid + toluene/ethylbenzene + aliphatic hydrocarbon, and displayed in Figures C20, 

C22, C23, C24, C26, C27 and C28 in the Appendix C. This suggests that these systems 

present an anomalous behavior that must be confirmed by further experimental data. 

The distribution ratio is also much dependent on the alkyl chain while being reduced by 

the increase of the alkyl chain length, and where the benzene system presents the 

higher distribution ratio. It is also shown that the alkylation of the aromatics leads to a 

small variation on the distribution ratio as a function of the aromatic content in the 

aliphatic-rich phase.  

The impact of the aromatic structure on the systems behavior is well captured by the 

COSMO-RS model. Only a small discrepancy is observed between the experimental 

data and the predicted binodal curves. The description of the tie-lines slope is in good 

agreement with the experimental data for the benzene systems (RMSD = 1.8 %) and 

shows a slight difference with the increase on the aromatic alkyl side chain (RMSD> 2.8 

% as shown at Table C3 at Appendix C) that decreases with the increase of the aromatic 

content. As for the selectivity and the distribution ratio, COSMO-RS is able to adequately 

predict the trends observed experimentally. Given the very low concentrations of ionic 

liquid in the alkane phase, the experimental uncertainties in the selectivities and 

distribution ratios may be responsible for part of the observed differences. In view of the 

differences observed between the predicted and measured selectivities for the system 

with [1,3C2mpy][EtSO4], and the remaining systems, COSMO-RS model can be used as 

an indicative of an irregular behavior that can be present. 
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a) 

  

b) c) 

 

Figure 4.3 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + 

[1,3C2mpy][EtSO4] 
10 (full triangles and solid line for experimental data; and empty dotted 

triangles and dashed line for COSMO-RS predicted values), n-hexane + toluene + 

[1,3C2mpy][EtSO4] 
20 (full squares and solid line for experimental data; and empty dotted 

squares and dotted line for COSMO-RS predicted values), and n-hexane + ethylbenzene 

+ [1,3C2mpy][EtSO4] 
20 (full diamonds and solid line for experimental data; and empty 

dotted diamonds and dot dashed line for COSMO-RS predicted values), at 298.15K. 

 

[1,3C
2
mpy][EtSO

4
]0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

aromatic

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n-hexane

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

5

10

15

20

25

30

35

40

0.0 0.2 0.4 0.6 0.8 1.0

Se
le

ct
iv

it
y

x aromatic, hydrocarbon phase

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0

D
is

tr
ib

u
ti

o
n

 r
at

io

x aromatic, hydrocarbon phase



Phase behavior of ternary systems composed of ionic liquid and hydrocarbons  

 

67 

a) 

  

b) c) 

 

Figure 4.4 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + o-xylene + 

[1,3C2mpy][EtSO4] 
2 (full squares and solid line for experimental data; and empty dotted 

squares and dot-dot dashed line for COSMO-RS predicted values), n-hexane + m-xylene 

+ [1,3C2mpy][EtSO4] 
2 (full diamonds and solid line for experimental data; and empty 

dotted diamonds and dotted line for COSMO-RS predicted values), and n-hexane + p-

xylene + [1,3C2mpy][EtSO4] 
2 (full triangles and solid line for experimental data; and 

empty dotted triangles and dotted line for COSMO-RS predicted values) at 298.15K. 
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4.3.2. Effect of the ionic liquid cation family upon the phase behavior 

The effect of the ionic liquid cation family upon the phase behavior is described in 

Figures 4.5 and 4.6 and Figure C21 (cf. Appendix C). The systems with the ionic liquid 

containing the common [EtSO4]
- anion, n-hexane and benzene allow to study the effect 

upon the phase diagrams of different ionic liquid cations, such as imidazolium and 

pyridinium (Figure 4.5), and the systems based on the [NTf2]
- anion with n-hexane and 

benzene allow the study of the influence of the cation cores imidazolium, ammonium and 

phosphonium (Figure 4.6). The phosphonium-based IL show a large miscibility domain 

when compared with the nitrogen-based cations, being therefore not suitable for 

selective extractions from hydrocarbons’ matrixes.  he large miscibility presented by the 

ionic liquid with the phosphonium cation is due to its low polarity that results from the 

large alkyl chains. These large aliphatic chains lead to an increase of the dispersion 

forces with the alkanes enhancing thus the miscibility between the ionic liquid and the 

hydrocarbon.  

For different nitrogen-based cations, it is shown that the imidazolium- and the pyridinium-

based cations display similar binodal curves and therefore similar solubilities. These 

ternary diagrams show higher solubilities between the aromatic hydrocarbons and the 

ionic liquid due to π–π interactions that can occur. The ammonium-based cation (Figure 

4.6) leads to lower solubilities than the other nitrogen-based cations.  

The tie-lines of the nitrogen-based cations, imidazolium and pyridinium, show similar 

slopes (except in the aromatic-rich region), and those for ammonium are steeper. The 

selectivity for these systems is high and presents comparable decreasing behavior with 

the increase of the aromatic content in the alkane-rich phase. On the other hand, the 

diagram with the ammonium cation shows an increase from low to middle aromatic 

concentrations. The distribution ratios and selectivities of the studied systems show a 

decrease with the increase of the aromatic content. The imidazolium and pyridinium 

containing systems show similar distribution ratios while those for the ammonium system 

are lower. These ratios are expectable since the cation structure is distinct from the 

aromatic structures of the imidazolium and pyridinium cations, presenting therefore 

different interactions with the hydrocarbons. 

Regarding the ionic liquid cation isomers, presented at Figure 4.7, and Figure C22 at 

Appendix C, it is shown that this feature has a low impact in the solubility of the aromatic 

in the ionic liquid. It is possible to see a minor reduction of the immiscibility region for the 

meta and para positions of the methyl group, being this more significant for the isomer in 

the ortho position. The same trend is observed for the selectivity. It is higher for the ortho 
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substitution, and similar and smaller for the meta and para substitutions. For the tie-lines, 

a similar behavior is also observed for the meta and para isomers that translates into 

similar distribution ratios with values that are somewhat higher than for the ortho isomer. 

These trends result from an improved distribution of charge at the IL cation and to a 

more efficient packing provided by the lower sterical hindrance for the meta and para 

substitutions.75 

The study of the COSMO-RS performance on the description of the different cation 

families is shown in Figures 4.5 to 4.7. Regarding the cation families, COSMO-RS is 

capable of describing the binodal curves for the studied systems, with less accuracy at 

the region with higher aromatic content as observed previously for other systems, 

presenting RMSD values around 5 to 6 %. An exception is verified with the phosphonium 

cation and for which the COSMO-RS model predicts a complete miscibility. The model 

can describe correctly the behavior of the pyridinium isomers with RMSD = 2.4 % for the 

ortho substitution, which present a slightly higher immiscibility than the meta and para 

isomers which present 4.6 % and 6.4 % of RMSD, respectively. The predicted 

selectivities and distribution ratios for the various cations are described satisfactorily if 

the uncertainty on the hydrocarbon-rich phase concentrations is taken into account.  
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a) 

 

b) c) 

 

Figure 4.5 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + 

[C2mim][EtSO4] 
32 (full square and solid line for experimental data; and empty dotted 

square and dot dashed line for COSMO-RS predicted values) and n-hexane + benzene 

+ [1,3C2mpy][EtSO4] 
10 (full diamonds and solid line for experimental data; and empty 

dotted diamonds and long dashed line for COSMO-RS predicted values) at 298.15K.  
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a) 

 
b) c) 

 

Figure 4.6 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene +[C2mim][NTf2] 
3 

(full square and solid line for experimental data; and empty dotted square and dot 

dashed line for COSMO-RS predicted values), n-hexane + benzene + [N2(2OH)11][NTf2] 
27 

(full circles and solid line for experimental data; and empty dotted circles and dotted line 

for COSMO-RS predicted values), and n-hexane + benzene + [P666 14][NTf2] 
3 (full triangle 

and solid line for experimental data) at 298.15K. 
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a) 

  

b) c) 

 

Figure 4.7 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-heptane + toluene + 

[1,2C4mpy][BF4] 
33 (full squares and solid line for experimental data; and empty dotted 

squares and dot-dot dashed line for COSMO-RS predicted values), n-heptane + toluene 

+ [1,3C4mpy][BF4] 
33 (full diamonds and solid line for experimental data; and empty 

dotted diamonds and dashed line for COSMO-RS predicted values), and n-heptane + 

toluene + [1,4C4mpy][BF4] 
33 (full triangles and solid line for experimental data; and 

empty dotted triangles and dotted line for COSMO-RS predicted values) at 313.2K. 
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4.3.3. Effect of the ionic liquid cation alkyl chain length upon the phase 

behavior 

The binodal curves and the tie-lines of the systems n-hexane + benzene + [Cnmim][NTf2], 

with the number of carbons at the cation side alkyl chain (n) ranging from 2 to 12, are 

plotted in Figure 4.8. At Appendix C, similar systems are shown in Figures C23 – C25. 

These systems allow the study of the influence of the substituted alkyl chain length at the 

ionic liquid cation through the phase diagrams behavior. It is shown that the size of the 

alkyl chain length is the factor that has the higher influence on the mutual solubilities of 

the systems under analysis. This is patent in the significant decrease of the immiscibility 

region with the increase on the cation side alkyl chain length. The increase of the alkyl 

chain length leads to enhanced dispersive interactions with n-alkanes. At these nonpolar 

regions, the aromatic hydrocarbons can also be solvated, being therefore also 

responsible for the increased mutual solubility with the ionic liquid. Moreover, the effect 

of the cation side alkyl chain length is not only evident in the binodal curve deviation, but 

also the phase diagrams change from the type 2 to a type 1 ternary diagram for 

[C12mim][NTf2]. For the evaluated IL with the longest alkyl chain complete miscibility with 

benzene is observed. The tie-lines also show some dependence on the alkyl chain 

length. Comparing the experimental tie-line slopes, at a region with the same aromatic 

concentration, it is visible that they become more steep, from n = 2 to n = 12. In Figure 

4.8, b) and c), the selectivity and the distribution ratio are plotted. The visible trends are 

consistent with the binodal curve and tie-lines analysis, where the alkyl chain length has 

a great impact. The selectivity increases as the cation alkyl chain length decreases. It is 

also dependent on the aromatic content and this dependence decreases with the alkyl 

chain length increase. Moreover, in the range of 0.5 – 1.0 of aromatic mole fraction 

content in the alkane-rich phase, the selectivity for n = 8, 10 and 12 becomes similar. 

Contrarily to what is observed for selectivity, the distribution ratio increases with the alkyl 

chain length until n = 8. Above that value the distribution ratio is similar for n = 8 and n = 

10, and lower for n = 12. As discussed before, this results from the significant aliphatic 

and aromatic hydrocarbon solubility in the ionic liquid [C12mim][NTf2]. 

For the systems studied, COSMO-RS can describe the trends observed for the mutual 

solubility, binodal curves and tie-line slopes, and selectivity and distribution ratio. As 

expected, an increase in the mutual solubilities among these systems is observed with 

the alkyl chain length increase. Nevertheless, the quality of the binodal curves prediction 

decreases for systems with longer alkyl chains, reflected by the increase of the RMSD 

values from 4 % for n = 2, to > 27 % for n> 8 (Table C3 in Appendix C). In addition, a 

ternary diagram of type 1 for the system with the longer alkyl chain length is predicted, 
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and for which a diagram of type 2 is experimentally observed. The predicted selectivities 

and distribution ratios are satisfactory. 
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a) 

b) c) 

 

Figure 4.8 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + [C2mim][NTf2] 

3 (full circles and solid line for experimental data; and empty dotted circles and long 

dashed line for COSMO-RS predicted values e), n-hexane + benzene + [C4mim][NTf2] 
29 

(full squares and solid line for experimental data; and empty dotted squares and dot 

dashed line for COSMO-RS predicted values), n-hexane + benzene + [C8mim][NTf2] 
29 

(full diamonds and solid line for experimental data; and empty dotted diamonds and short 

dashed line for COSMO-RS predicted values), n-hexane + benzene + [C10mim][NTf2] 
29 

(full triangles and solid line for experimental data; and empty dotted triangles and dotted 
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line for COSMO-RS predicted values), and n-hexane +benzene + [C12mim][NTf2] 
29 (full 

crosses and solid line for experimental data; and empty crosses and dot-dot dashed line 

for COSMO-RS predicted values) at 298.15K. 

 

4.3.4. Effect of the ionic liquid anion upon the phase behavior 

The influence of the anion nature on the systems composed of ionic liquid + aromatic + 

aliphatic hydrocarbon is displayed in Figures 4.9 to 4.11. The experimental data 

collected, and described in the Tables C1 and C2, allowed to study the anions [EtSO4]
- 

and [NTf2]
- with the fixed [C2mim]+ cation, n-hexane and benzene systems (Figure 4.9). It 

was also possible to study the [SCN]-, [DCA]-,and [MeSO4]
- with [C4mim]+, n-heptane and 

toluene (Figure 4.10) and, given the low dependence of the solubility with the 

temperature, the [MeSO4]
- was also used in the comparison. Finally the systems with 

[C6mim]+, n-heptane and toluene allowed to study the influence of the anions [BF4]
- and 

[PF6]
-(Figure 4.11). Other systems are reported at Appendix C (Figure C28). As shown in 

Figures 4.9 – 4.11, the ionic liquid anion does not have, in general, a significantly impact 

on the mutual solubilities among the ternary systems. The only exception to this behavior 

seems to be the [NTf2]-based ionic liquids. They show a narrower immiscibility region 

when compared to the other anions, as seen in Figure 4.9 and Figure C28 (at Appendix 

C). This feature occurs due to the lower polarity, large volume, and dispersive charge of 

the anion [NTf2]
-, which improve the aliphatic hydrocarbons solubility in the ionic-liquid-

rich phase. In addition, for the ternary systems with this fluorinated anion, the aromatics 

solubility in the ionic liquid is not only favored by the anion large volume, the π‒π stacking 

between the aromatic hydrocarbon and the imidazolium cation, but also by inclusion-type 

interactions. These interactions occur for ionic liquids with weak interactions between the 

cation and the anion, as it happens for the [NTf2]
- anion. Weaker cation-anion interactions 

favor CH···π bonds between the C2-H at the imidazolium ring and the aromatic 

hydrocarbon. Thus, the aromatic hydrocarbons have more facility in disrupting the 

supramolecular clusters formed by the cations and the anions of the ionic liquid, 

promoting thus their easy incorporation in the ionic-liquid-rich phase. Furthermore, there 

also further interactions between the hydrogen atoms of the aromatic compound and the 

oxygen atoms of the sulfonyl group that enhance the mutual solubilities.76-78 

Regarding the anions impact at the systems selectivity and distribution ratio, it is noticed 

that for the [C2mim]-based ionic liquids, the selectivity of the anion [EtSO4]
- is higher than 

for the [NTf2]
- anion, and an inverse trend is verified for the distribution ratio. With respect 
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to the [C4mim]-based ionic liquid, the selectivity and the distribution ratio follow the same 

trend: [DCA]- > [SCN]- > [MeSO4]
-. The same happens for the [C6mim]-based ionic liquid 

where the order is [PF6]
- >  [BF4]

-. The trends observed for the selectivity and for the 

distribution ratio for the different anions, apparently follows the β solvatochromic 

parameter, which reflects the hydrogen-bond basicity (hydrogen-bonding accepting 

ability). The β solvatochromic parameter, regarding the anion nature, follows the trend 

[EtSO4]
- > [MeSO4]

- > [SCN]- > [DCA]- > [BF4]
- > [PF6]

- > [NTf2]
-.79-80 Thus, it seems that 

the selectivity and the distribution ratio decrease with the hydrogen-bond basicity 

increase. However, an exception appears for the [C2mim]-based ionic liquids, where the 

[EtSO4]
- is higher than the [NTf2]

-. Nevertheless, further experimental confirmation is 

required. For the anions with alkyl side chains it was possible to study the influence of 

the alkyl chain length on the miscibility gap of the respective systems. As shown in 

Figure 4.12, the increase of the sulfate alkyl side chain leads to a contraction of the 

immiscibility domain whereas the tie-line slopes became less negative. As expected, the 

selectivity decreases and the distribution ratio increases with the increase on the anion 

alkyl chain length. The same results were already noticed for the increase in the cation 

alky chain, although with stronger impact than what is observed with the anions. 

According to the results obtained with COSMO-RS, the change of the ionic liquid anion 

and its alkyl chain length, and their impact on the binodal curve and tie-line slopes, and 

at the selectivity and distribution ratio criteria, are qualitatively and satisfactorily captured 

for most of the anions studied. However, the model shows a worst performance on 

describing the systems containing the anions [MeSO4]
-, [EtSO4]

-, [PF6]
- and [BF4]

-. The 

predicted binodal curves for these systems present slightly larger deviations what seems 

to indicate that COSMO-RS is less reliable in the description of the effect of the anions 

on the phase behavior of mixtures, in particular of anions that present strong interactions 

with the cations. 
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a) 

  

b) c) 

 

Figure 4.9 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + 

[C2mim][EtSO4] 
13 (full diamonds and solid line for experimental data; and empty dotted 

diamonds and dot dashed line for COSMO-RS predicted values), and n-hexane + 

benzene + [C2mim][NTf2] 
3 (full circles and solid line for experimental data; and empty 

dotted circles and long dashed line for COSMO-RS predicted values), at 298.15K. 
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a) 

  

b) c) 

 

Figure 4.10 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-heptane + toluene + [C4mim][SCN] 

17 (full squares and solid line for experimental data; and empty dotted squares and dotted 

line for COSMO-RS predicted values), n-heptane + toluene + [C4mim][DCA] 17 (full 

triangles and solid line for experimental data; and empty dotted triangles and long 

dashed line for COSMO-RS predicted values) at 303.15K and n-heptane + toluene + 

[C4mim][MeSO4] 
40 (full circles and solid line for experimental data; and empty dotted 

circles and dot-dot dashed line) at 313.15K. 
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a) 

 

b) c) 

 

Figure 4.11 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-heptane + toluene + [C6mim][PF6] 
37 

(full diamonds and solid line for experimental data; and empty dotted diamonds and dot 

dashed line for COSMO-RS predicted values) and n-heptane + toluene + [C6mim][BF4] 
37 

(full squares and solid line for experimental data; and empty dotted squares and dot-dot 

dashed line for COSMO-RS predicted values) at 298.15K. 
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a) 

 

b) c) 

 

Figure 4.12 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + 

[C2mim][EtSO4]
32 (full circles and solid line for experimental data; and empty crossed 

circles and long dashed line for COSMO-RS predicted values) and n-hexane + benzene 

+ [C2mim][OcSO4] 
15(full diamonds and solid line for experimental data; and empty 

crossed diamonds and short dashed line for COSMO-RS predicted values), at 298.15K. 
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4.3.5. Effect of the temperature upon the phase behavior 

The influence of temperature upon the equilibrium behavior, selectivity and distribution 

ratio for the systems of the type aliphatic + aromatic + ionic liquid was also evaluated. 

The results of this study are reported in Figure 4.13 for the n-hexane + benzene + 

[1,3C2mpy][EtSO4] system for temperatures ranging between 283.15 K and 303.15 K, 

and at Appendix C, Figures C29 – C35, for temperatures in the range of 283.15 K to 

328.15 K. For the rank of temperatures evaluated, a small variation of the experimental 

LLE binodal curve is noticed with temperature. A temperature increase leads to an 

increased miscibility with a contraction of the immiscibility region, and mostly visible at 

the ionic liquid-rich phase. The tie-line slopes become more negative as the temperature 

rises. The selectivity and the distribution ratio are mildly influenced by the temperature 

while they decrease with the increasing on temperature. This trend indicates that the 

aromatic extraction process is more efficient at low temperatures. 

The COSMO-RS predictions for these systems are presented at Figure 4.13 and in 

Appendix C, Figures C29 – C35, and the respective RMSD to the experimental values at 

Table C3 in Appendix C. The results show that COSMO-RS can reproduce the 

temperature effect on the ternary LLE phase diagrams, with small differences between 

the experimental and the predicted binodal curve at the ionic liquid-rich phase. The 

temperature effect on the tie-line slopes is also well described, showing a good 

quantitative agreement, especially at the lower temperatures, with RMSD ranging 

between 1.3 % and 1.8 % for the n-hexane + benzene + [1,3C2mpy][EtSO4] system for 

the temperatures 283.15 K and 303.15 K, respectively. Concerning the selectivity and 

the distribution ratios, the model presents some discrepancies compared to the 

experimental values, being however the trend satisfactorily described. For instance, for 

the distribution ratio, its small variation with temperature is well captured by the COSMO-

RS model. Nevertheless, the results suggest that COSMO-RS performance degrades 

with an increase on temperature; yet, more experimental data are necessary to confirm 

this behavior. 
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a) 

 

b) c) 

 

Figure 4.13 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + 

[1,3C2mpy][EtSO4] at the temperatures 283.15K 10 (full triangles and solid line for 

experimental data; and empty triangles and long dashed line for COSMO-RS predicted 

values), 293.15K 10 (full circles and solid line for experimental data; and empty circles 

and short dashed line for COSMO-RS predicted values), 298.15K 10 (full squares and 

solid line for experimental data; and empty squares and dot dashed line for COSMO-RS 

predicted values), and 303.15K 10 (full diamonds and solid line for experimental data; and 

empty diamonds and dotted line for COSMO-RS predicted values). 
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4.3.6. Summary 

The systems studied allowed the drawing of a global picture of the influence of the 

structural features of ionic liquids and hydrocarbons on their mutual solubilities. A 

summary of the results here compiled is reported in Table 4.1. From the gathered 

information, it is possible to conclude that ILs containing cations with shorter alkyl chains 

favor the aromatic extraction process. However, it is necessary to achieve some balance 

between the selectivity and the distribution ratio values since the latter increases with the 

increase on the alkyl chain length. Concerning the ions families, the aromatic nitrogen-

based cations, and anions with low hydrogen-bond basicity, such as [EtSO4]
-, [MeSO4]

-, 

[SCN]-, and [DCA]-, are preferred. Regarding the operation temperatures, the phase 

diagrams behavior suggest that lower temperatures favor the aromatic-aliphatic 

separation, which is encouraging since the energy consumption is reduced. 

The COSMO-RS model presents a good performance on the description of these 

systems, presenting root mean square deviations below 6 % for most of the systems 

studied, where higher RMSD (> 10 %) were only obtained for the ionic liquids with longer 

alkyl side chains. The COSMO-RS prediction ability, resulting from the various features 

that were evaluated, is summarized in Table 4.1. The predictions obtained by the 

COSMO-RS show that this predictive model, based only on the individual atoms 

properties, is able to qualitatively describe the phase equilibria of the ternary systems 

composed of ionic liquid + aromatic hydrocarbon + aliphatic hydrocarbon, and provide 

reliable quantitative predictions for the most immiscible systems. This results from the 

fact that COSMO-RS calculations consider that the interactions are completely 

performed at the interface of the virtual conductor environment surrounding the 

molecules (isolated species) and thus performs better for poorly miscible systems. 

Making use of the COSMO-RS prediction potential, the selectivity and the distribution 

ratio for ternary mixtures of n-hexane + benzene + ionic liquid at 298.15K, with an 

aromatic content around 0.1 in mole fraction, were predicted and compiled in Table 4.2. 

The most studied cations, like 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 

1-ethyl-3-methylpyrrolidinium, 1-butyl-3-methylpyrrolidinium, methyl(2-

hydroxyethyl)dimethylammonium (choline), and other not so used, such as guanidinium, 

hexamethylguanidinium, N-butyl-isoquinolinium, O-ethyl-N,N,N,N-tetramethylisouronium, 

O-methyl-N,N,N,N-tetramethylisouronium, S-ethyl-N,N,N,N-tetramethylisothiouronium, 

and the anions methylsulfate, ethylsulfate, bis(trifluoromethylsulfonyl)imide, dicyanamide, 

tricyanomethane, and tetracyanoborate, were covered and compared. The results 

displayed in Table 4.2 were compared with the selectivity and distribution ratio of one the 

most conventional solvents used at aromatic extraction units – sulfolane (S = 25 and D = 
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0.74 for the same operation conditions and similar molar composition) 81. As can be seen 

the families imidazolium, pyridinium and pyrrolidium cations families combined with the 

methylsulfate and ethylsulfate anions show similar performance with sulfolane. 

Regarding the ammonium cation, the several ionic liquids based in this cation, higher 

selectivities and lower distribution ratios than sulfolane are shown. The guanidinium 

cation with all the anions show a very high selectivity and a very low distribution ratio, 

whereas the hexamethylguanidinium cation show high distribution ratio, and combined 

with the methylsulfate, ethylsulfate, tricyanomethane, and tetracyanoborate being 

therefore a good candidate to the aromatic/aliphatic separation. The not so known N-

butyl-isoquinolinium, O-ethyl-N,N,N,N-tetramethylisouronium, O-methyl-N,N,N,N-

tetramethylisouronium, S-ethyl-N,N,N,N-tetramethylisothiouronium cations present 

distribution ratios superior to one and the best selectivity predicted with the dicyanamide, 

tricyanomethane, and tetracyanoborate anions. 

In brief, some of the ionic liquids evaluated present similar or higher values of selectivity 

than the conventional molecular solvent sulfolane, being therefore strong candidates for 

its substitution. In addition, besides the so exhausted imidazolium-based and sulfate-

based ionic liquids studied, other ions, such as the isoquinolinium and isouronium 

cations or the cyano-based anion can offer an improved performance for the specific 

task of the selective extraction of aromatics from aliphatic streams. 
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Table 4.1 Summary of the different factors that influence the solubility, selectivity and 

distribution ratio, and the performance of COSMO-RS in describing these factors. 

factor 
influence on the 
solubility 

Selectivity distribution ratio 
COSMO-RS 
performance 

hydrocarbon 
type 

cycloalkanes >n-
alkanes 

n-alkanes 
>cycloalkanes 

n-alkanes 
≈cycloalkanes 

Good 

n-alkane chain 
length 

↑ Cn→ ↓ Solubility ↑ Cn→ ↑ S Variable Good 

aromatic alkyl 
chain 
substituted 
length 

↑ Cn→ ↓ Solubility ↑ Cn→ ↓ S ↑ Cn→ ↓ D Good 

temperature 

≈ for 298.15 K - 
303.15 K 

≈ for 283.15 K - 
328.15 K 

↑ T → ↓ S ↑ T → ↓ D Good 

ionic liquid 
cation core 

ammonium 

< imidazolium 

< pyridinium 

< phosphonium 

ammonium 

> imidazolium 

> pyridinium 

> phosphonium 

Pyridinium 

> imidazolium 

> ammonium 

> phosphonium 

Good 

ionic liquid 
cation alkyl 
chain length 

↑ Cn→ ↑↑ Solubility ↑ Cn→ ↓ S ↑ Cn→ ↑ D Good 

ionic liquid 
anion 

[DCA]
-
≈ [SCN]

-
≈ 

[MeSO4]
-
 

[PF6]
-
≈ [BF4]

- 

[NTf2]
-
> [BF4]

- 

[NTf2]
-
> [EtSO4]

- 

[DCA]
-
> [SCN]

-
> 

[MeSO4]
-
 

[PF6]
-
> [BF4]

- 

[BF4]
-
> [NTf2]

- 

[EtSO4]
-
> [NTf2]

-
 

[DCA]
-
> [SCN]

-
> 

[MeSO4]
-
 

[PF6]
-
> [BF4]

- 

[NTf2]
-
> [BF4]

-
 

[EtSO4]
-
> [NTf2]

-
 

Trends do 
not always 
follow the 

experimental 

ionic liquid 
anion alkyl 
chain length 

↑ Cn→ ↑ Solubility ↑ Cn→ ↓ S ↑ Cn→ ↑ D Good 
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Table 4.2 COSMO-RS predicted selectivity and distribution ratio for several n-hexane + 

benzene + ionic liquid systems at 298.15K. 

ionic liquid cation S D S D 

 [MeSO4]
-
 [EtSO4]

-
 

1-ethyl-3-methylimidazolium 23 0.68 20 0.73 

1-ethyl-3-methylpyridinium 19 0.93 17 0.98 

1-ethyl-3-methylpyrrolidinium 14 1.13 14 1.11 

methyl(2-hydroxyethyl)dimethylammonium 24 0.38 24 0.37 

guanidinium 641 0.003 202 0.01 

hexamethylguanidinium 9 2.26 9 2.42 

N-butyl-isoquinolinium 15 1.13 13 1.23 

O-ethyl-N,N,N,N-tetramethylisouronium 12 1.97 11 1.98 

O-methyl-N,N,N,N-tetramethylisouronium 13 1.85 13 1.76 

S-ethyl-N,N,N,N-tetramethylisothiouronium 12 2.06 11 2.09 

 [NTf2]
-
 [DCA]

-
 

1-ethyl-3-methylimidazolium 18 0.91 37 0.43 

1-ethyl-3-methylpyridinium 14 1.20 26 0.66 

1-ethyl-3-methylpyrrolidinium 14 1.02 21 0.89 

methyl(2-hydroxyethyl)dimethylammonium 27 0.45 51 0.20 

guanidinium 41 0.13 1475 0.01 

hexamethylguanidinium 0.16 1.79 0.09 2.36 

N-butyl-isoquinolinium 8 1.68 17 1.01 

O-ethyl-N,N,N,N-tetramethylisouronium 9 1.60 15 1.60 

O-methyl-N,N,N,N-tetramethylisouronium 11 1.38 18 1.47 

S-ethyl-N,N,N,N-tetramethylisothiouronium 8 1.66 15 1.74 

 [B(CN)4]
-
 [C(CN)3]

-
 

1-ethyl-3-methylimidazolium 58 0.65 55 0.47 

1-ethyl-3-methylpyridinium 39 0.93 36 0.73 

1-ethyl-3-methylpyrrolidinium 35 1.09 32 0.86 

methyl(2-hydroxyethyl)dimethylammonium 94 0.35 94 0.21 

guanidinium 315 0.24 420 0.07 

hexamethylguanidinium 13 2.14 12 2.05 

N-butyl-isoquinolinium 19 1.56 19 1.29 

O-ethyl-N,N,N,N-tetramethylisouronium 19 1.71 19 1.61 

O-methyl-N,N,N,N-tetramethylisouronium 27 1.37 24 1.25 

S-ethyl-N,N,N,N-tetramethylisothiouronium 18 1.93 18 1.80 
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4.4. Conclusions 

The selective separation of compounds from hydrocarbons streams are of a great 

importance to the refining and petrochemical industries. Taking into account the large 

selectivities presented by the systems composed of alkanes + aromatic hydrocarbons + 

ionic liquids there seems to be a huge potential for the use of ionic liquids as solvents in 

separation processes involving hydrocarbons matrixes. The experimental data, taken 

from the literature (and reported in Tables C1 and C2 at Appendix C), allowed the 

understanding of the impact of the diverse structural features of the hydrocarbons and of 

the ILs in the ternary phase diagrams behavior.  

As the number of ionic liquids is incredibly vast and the scanning of IL systems by simple 

trial and error is almost impossible, it was here accomplished an extensive evaluation on 

the use of COSMO-RS in the description of ternary systems composed of alkanes + 

aromatic hydrocarbons + ionic liquids. The results presented show that the quality of the 

predictions is enhanced with a decrease in the miscibility among all the components. The 

results here reported show that the COSMO-RS model can be successfully applied to 

the a priori screening of ILs to be used in separations of aliphatic-aromatic hydrocarbons 

mixtures.  
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5.1. Introduction 

Desulfurization is today one of the most important processes on a refinery. Commonly, 

the reduction of the sulfur content is attained through the conventional 

hydrodesulfurization process (HDS). This treatment consists in the hydrogenation of the 

sulfur compound (aliphatics and aromatics) into hydrogen sulfides and hydrocarbons at 

elevated temperatures and high hydrogen pressure. 1-2 Despite the hydrocarbon 

recovery, there is also an octane number decrease by the saturation of olefins. However, 

this type of treatment represents high economic investments and operation costs. In 

addition, for the distilled branches with higher molecular weight sulfur-compounds, which 

present lower reactivity, more severe conditions are even required since these 

compounds are more difficult to hydrogenate, increasing therefore the operation costs. 1-2 

The sulfur removal by the HDS process needs a quality upgrading of the existing 

technologies and a continuous development of new alternative desulfurization 

approaches. Various options were already considered, such as selective and/or oxidative 

extractions, reactive adsorption, bio-desulfurization, membrane separation, among 

others. 1-7 

Regarding the aliphatic sulfur compounds in a hydrocarbon matrix, the study of ionic 

liquids as extracting solvents were already addressed. Wasserscheid et al. 14, 41 studied 

the removal of n-butyl mercaptan from n-heptane and n-decane using imidazolium-

phosphate-, chloride- and bis[(trifluoromethyl)sulfonyl]imide-based ionic liquids, either in 

simple liquid extractions or in absorptive processes using the ionic liquid immobilized in a 

ceramic support. The ethanethiol extraction from gasoline was proposed by Martínez-

Palou et al. 42 and its interactions with both anhydrous Fe(III) chloride anions and1-butyl-

3-methylimidazolium-based ionic liquids were investigated.  

Though this hydrocarbon mixture is very complex, the “jet-fuel” model assumed here is a 

n-alkane, n-dodecane, and the mercaptan 1-hexanethiol. The liquid-liquid equilibrium for 

the ternary mixture composed of 1-hexanethiol, n-dodecane and several ionic liquids, 

based either on imidazolium or pyridinium cations, combined with the anions 

methylsulfate, methanesulfonate, triflate, bis(trifluoromethylsulfonyl)imide and 

tetrafluoroborate, was determined at 298.2 K and 313.2 K, and at atmospheric pressure. 

The large number of ionic liquids studied further allowed the understanding of the ionic 

liquid features that enhance the extraction of high molecular weight mercaptans. 

Keeping in mind that the screening of the huge number of possible ionic liquids and 

hydrocarbons mixtures is experimentally unfeasible, the use of predictive models and/or 

computational methods is a viable option for the design of the best solvent. Thus, the 
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COnductor-like Screening MOdel for Real Solvents (COSMO-RS) 41-43 was also 

employed to describe the liquid-liquid equilibria experimentally addressed aiming at 

evaluating its prediction performance. Albeit COSMO-RS was already applied in the 

description of equilibrium behavior of sulfur compounds, mainly aromatic sulfur 

compounds, with ionic liquid and hydrocarbon, 44-55 the ability of COSMO-RS to describe 

the ternary systems comprising aliphatic sulfur compounds, is here assessed. Due to its 

fundamental nature, COSMO-RS only requires the information on the molecular 

structure of the compounds and has gained a spot place in the a priori prediction of 

phase behavior, activity coefficients and other thermophysical data. 47-48, 50, 52, 56-61  

Supported on the good agreement obtained between the experimental data and 

COSMO-RS results, the model was further used in the identification of other potential 

ionic liquids for the mercaptan extraction. 

 

5.2. Materials and methods 

5.2.1. Liquid-liquid equilibrium 

The selection of the ionic liquids to be tested was carried out taking into account the 

mutual solubility between aliphatic/aromatic hydrocarbons and ionic liquids. Low mutual 

solubilities are required in order to minimize the solvent loss or the contamination of the 

hydrocarbon-rich sample. Besides these conditions it is also necessary to choose ionic 

liquids with a high selectivity and distribution ratio values for mercaptans. As 

demonstrated in our previous work62, the cation side alkyl chain length of ionic liquids is 

the feature with the major impact within these system’s miscibility. Longer alkyl side 

chains or the predominance of non-polar regions increases the dispersive interactions 

between the ionic liquid and the hydrocarbons which can lead to a significant loss of the 

feed. Therefore, the longest alkyl side chains of the ionic liquid cations studied here are 

ethyl and butyl to reduce the mutual solubility between the ionic liquid and the 

hydrocarbons. Both imidazolium- and pyridinium-based ionic liquids were evaluated. 

Others cations, such as alkylphosphoniums or alkylammoniums, were not tested due to 

their high miscibility with n-alkanes and aromatics hydrocarbons. 62 

 

Materials 

The n-dodecane and 1-hexanethiol were acquired from Sigma-Aldrich, 99% and 95% 

pure, respectively, and were used as received. The imidazolium-based ionic liquids 
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investigated were: 1-ethyl-3-methylimidazolium methylsulfate ([C2mim][MeSO4]), 1-ethyl-

3-methylimidazolium methanesulfonate ([C2mim][CH3SO3]), 1-ethyl-3-methylimidazolium 

triflate ([C2mim][CF3SO3]), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

([C2mim][NTf2]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]), 1-butyl-3-

methylimidazolium methylsulfate ([C4mim][MeSO4]), 1-butyl-3-methylimidazolium triflate 

([C4mim][CF3SO3]), and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

([C4mim][NTf2]). The pyridinium-based ionic liquids studied were: 1-ethyl-3-

methylpyridinium methanesulfonate ([C2mpy][CH3SO3]), 1-ethyl-3-methylpyridinium 

triflate ([C2mpy][CF3SO3]), and 1-ethyl-3-methylpyridinium 

bis(trifluoromethylsulfonyl)imide ([C2mpy][NTf2]). The chemical structures of the studied 

ionic liquids, divided by cations and anions, are depicted in Tables A1 and A2, in 

Appendix A. All the ionic liquids were acquired from IoLiTec, Ionic Liquid Technology, 

Germany, with a purity level > 99 wt%. Before use, the ionic liquids were dried and 

purified by heating (313.2 K) under moderate vacuum, and with constant stirring for a 

minimum of 24h. The ionic liquid water content was determined by Karl-Fischer titration, 

using a Metrohm 831 Karl Fischer coulometer. The water content values are presented 

in the Appendix D, Table D1. 

 

Experimental procedure 

The ionic liquids were selected present a very low solubility in the hydrocarbon under 

study (n-dodecane). All the ternary systems investigated present two distinct liquid 

phases, an upper phase rich in n-dodecane and a lower IL-rich phase. The 1-hexanethiol 

is partitioned between the two phases. As the real sulfur content in crude oils is very low, 

the measured equilibrium tie-lines correspond to the lowest region of the ternary phase 

diagram with the mole fraction of 1-hexanethiol ranging between 0.015 and 0.025 in the 

overall mixture composition. 

The ternary mixtures were prepared in glass vials (10 mL) with screw caps to prevent the 

evaporation of volatile compounds as well as to avoid the adsorption of moisture from 

atmosphere. Known quantities of each component were weighed within 10-4 g (Precisa, 

model XT220A, Sweden), and added directly to the glass vials. 

The ternary mixtures were stirred and left at rest for at least 24 h at the desired 

temperature ( 0.5 K). When the equilibrium was attained two clear liquid phases were 

observed. After the equilibration, individual samples were carefully taken from the upper 

and bottom phases using syringes for further quantification. 
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The mercaptan, in each phase, was quantified by potentiometric titration, using a 

TitraLab® 865 titration workstation, with an alcoholic solution of AgNO3 at 0.01 M, 

according to the ASTM D3227 standard. 63 The ionic liquid content in the hydrocarbon-

rich phase was determined by UV spectroscopy, using a Helios α UV-Vis 

spectrophotometer from Thermo Scientific. However, it should be highlighted that no 

peaks corresponding to each ionic liquid were found in all the tested samples meaning 

that their concentration is below the lower detection limit of the equipment. Therefore, in 

all situations, the content of ionic liquid in the hydrocarbon-rich phase was considered as 

insignificant or null. The n-dodecane in the ionic-liquid-rich phase was determined 

gravimetrically ( 10-4 g) after a drying process under vacuum in which the n-alkane and 

the mercaptan are removed. At this step, samples of circa 0.5 g were used. However, 

and as happened with the ionic liquids in the hydrocarbon-rich phase, the amount of n-

dodecane in the ionic-liquid-rich phase was found to be negligible in all situations. In 

summary, the quantification of each component in each layer allowed the determination 

of the corresponding tie-lines. 

 

5.3. Results and Discussion 

The phase equilibrium studies carried out in this work intent to support the selection of 

the most suitable ionic liquids for the extraction of sulfur compounds from hydrocarbon’s 

streams by understanding of the effect of the ionic liquids nature and/or chemical 

structure on the ternary systems behavior. 

Besides the determination of the corresponding tie-lines, the feasibility of the liquid-liquid 

extraction of 1-hexanethiol from the dodecane-rich layer using ionic liquids was further 

evaluated by the solvent selectivity (S) and distribution ratio (D) values. These 

parameters provide a quantitative description of the partitioning behavior of the thiol 

between the coexisting phases and can be determined according to the following 

equations: 

I

HC

I

RSH

II

HC

II

RSH

x

x

x

x

S 
 

(5.1) 

I

RSH

II

RSH

x

x
D   (5.2) 
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where   is the mole fraction and the subscripts    and    correspond to 1-hexanethiol 

and to the aliphatic hydrocarbon n-dodecane, respectively. The superscript I refers to the 

dodecane-rich-phase (upper phase) while II refers to the ionic-liquid-rich phase (bottom 

phase). 

 

5.3.1. Ternary liquid-liquid equilibrium (tie-lines data) 

The experimental liquid-liquid equilibrium (LLE) results are presented in Table D 1, in the 

Appendix D, and are plotted in Figures 5.1 to 5.4. The tie-line data are plotted in an 

orthogonal ternary phase diagram, in which the n-dodecane was omitted, for a better 

visualization of the low experimental mole fraction values. In all the phase diagrams, the 

feed overall composition and the two equilibrium phase compositions are represented. 

The ternary LLE obtained here are of type 2 64, and which consist of two pairs of partially 

miscible components, namely 1-hexanethiol + n-dodecane and 1-hexanethiol + ionic 

liquid pairs. The binodal curves appear adjacent to the diagram axes; this trend is 

indicative of large immiscible regions mainly resulting from the very low mutual solubility 

between the ionic liquid and n-dodecane. Moreover, and as experimentally observed in 

the studied concentration ranges, no ionic liquid or n-dodecane were detected in the 

respective n-dodecane- and ionic-liquid-rich phases. 
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Figure 5.1 Experimental and COSMO-RS predicted tie-lines for the LLE of ternary 

systems composed of [C2mim]-based ionic liquids + 1-hexanethiol +n-dodecane (full 

symbols and solid lines for experimental data, and empty symbols and dashed lines for 

COSMO-RS predicted values), at 298.2 K and atmospheric pressure. 

  

a)[C2mim][MeSO4] b)[C2mim][CH3SO3] 

c)[C2mim][CF3SO3] d)[C2mim][NTf2] 

e)[C2mim][BF4] 
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Figure 5.2 Experimental and COSMO-RS predicted tie-lines for the LLE of ternary 

systems composed of [C2mpy]-based ionic liquids + 1-hexanethiol +n-dodecane (full 

symbols and solid lines for experimental data, and empty symbols and dashed lines for 

COSMO-RS predicted values), at 298.2 K and atmospheric pressure. 
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Figure 5.3 Experimental and COSMO-RS predicted tie-lines for the LLE of  ternary 

systems composed of ionic liquids+ 1-hexanethiol + n-dodecane (full symbols and solid 

lines for experimental data, and empty symbols and dashed lines for COSMO-RS 

predicted values), at 313.2 K and atmospheric pressure. 
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Figure 5.4 Experimental and COSMO-RS predicted tie-lines for the LLE of ternary 

systems composed of [C4mim]-based ionic liquids + 1-hexanethiol + n-dodecane (full 

symbols and solid lines for experimental data, and empty symbols and dashed lines for 

COSMO-RS predicted values), at 298.2 K and atmospheric pressure. 
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5.3.2. Selectivity and distribution ratio 

For a better understanding of the influence of the ionic liquid structural characteristics 

through the selectivity and distribution ratio values for 1-hexanethiol, the following 

discussion is presented in different sections. The comparison between the different 

systems is expressed in distribution ratio, instead of using the LLE data, due to its 

overlapping values and undistinguishable differences in the ternary phase diagrams. 

Accordingly, using the experiments here carried out, the distribution ratio values are 

depicted in Figures 5.5 to 5.9, divided by the effect of the cation core (Figure 5.5), cation 

alkyl chain length (Figure 5.6), anion nature (Figure 5.7), temperature (Figure 5.8) and 

water content (Figure 5.9), as a function of the 1-hexanethiol concentration (mole 

fraction) in the n-dodecane-rich phase.  

In face of the negligible mutual solubilities between the studied ionic liquids and n-

dodecane (Figures 5.1 to 5.4), the selectivity of the ionic liquids for the mercaptan is 

almost complete while minimizing the loss of the ionic liquid and the contamination of the 

hydrocarbon stream. This trend represents a clear evidence of the ionic liquids potential 

for the extraction of mercaptans from hydrocarbon streams. On the other hand, the low 

distribution ratio values are related with the low affinity of the mercaptan for the ionic 

liquid and reflected by the negative tie-line slopes in the ternary phase diagrams. 

Regarding the selectivity and distribution ratio criteria, all the studied ternary systems 

display a similar behavior: high selectivity (S >> 1) and distribution ratio lower than unit 

(D << 1). The weak interaction between 1-hexanethiol and imidazolium- or pyridinium-

based ionic liquids can be explained by the different types of intermolecular forces that 

occur in the mixture. While mercaptans’ interactions essentially comprise dispersion 

forces and less prominent dipole-dipole interactions between the individual –SH groups, 

the ionic liquids mainly present electrostatic and hydrogen-bonding type interactions. 

Thus, the intermolecular interactions which could exist between both types of 

compounds are mainly van der Waals and dipole-dipole interactions. Since the tested 

ionic liquids have a short alkyl chain length the dispersive forces between the two 

compounds are small. The dipole-dipole attractions are also weak since the 

electronegativity difference between sulfur and hydrogen is low, making the S–H bond 

less polar than –OH, -NH or –FH bonds, where the hydrogen is bounded to highly 

electronegative atoms. Therefore, it is expectable that ion-mercaptan interactions are 

weaker than ion-ion or mercaptan-alkane interactions. 
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5.3.2.1. Effect of the ionic liquid cation core 

Fixing the ionic liquid anion, it is possible to study the influence of the ionic liquid cation 

core on the distribution ratio of 1-hexanethiol towards the ionic-liquid-rich layer. Figures 

5.5 a) and b) cover the common anions [CH3SO3]
- and [NTf2]

-, respectively, and allow the 

study of the effect of the imidazolium and the pyridinium cations. In both examples, the 

distribution ratio for the pyridinium-based systems is higher than for the imidazolium-

based and which corresponds to a higher affinity of mercaptan for the first type of 

systems. For the fixed anion [CH3SO3]
-, the imidazolium-based system shows a 

distribution ratio of circa 0.05 whereas for the pyridinium cation it is 0.07. For the [NTf2]
- 

anion, the distribution ratio ranges from 0.06, for the imidazolium-based compound, to 

0.21 for the pyridinium-based ionic liquid. Both cations are aromatic meaning that the 

higher affinity of 1-hexanethiol for the pyridinium-based ionic liquids should be related 

with its larger ring size. The pyridinium cation is a six-sided ring (Table A1, Appendix A), 

which being larger than the imidazolium five-sided ring, suffers a higher ring deformation 

by the charge density delocalization. 65 This delocalization of charge contributes to an 

increase in the van der Waals interactions between the mercaptan and the ionic liquid 

cation. 

A significant aspect also observed when comparing the distribution ratio data is that they 

are more pronounced in the [NTf2]-based ionic liquids than for the [CH3SO3]
- analogues. 

This reveals the importance of the anion, that has a high impact on the systems 

behavior, not only due to its nature, but that is reflected in the cation-anion interaction 

strength. 65-66 Coulombic attractions and hydrogen-bonding can be so strong that they 

attenuate the cation-mercaptan interactions. These type of interactions are dependent on 

the radius and polarity of the anion and on the electronegativity of the atom with which 

the hydrogen bond is formed. In this way, a decrease in the anion charge density reflects 

a weaker interaction between the ionic liquid ions. [NTf2]
- is a non-polar anion whereas 

[CH3SO3]
- is polar. Therefore, the cation-anion interactions are stronger for [CH3SO3]

-. 65-

66 In this case the ionic liquid cation is less available to interact with the mercaptan 

compound, leading to smaller variations in the distribution ratio when the cation is 

replaced. 

It is also noteworthy to highlight that the influence of the cation family can be significantly 

distinct of the one presented in this work and that other structural cations should be 

considered for a more complete analysis. 
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Figure 5.5 Experimental and COSMO-RS predicted distribution ratio of1-hexanethiol in 

the ternary systems: a) [cation][CH3SO3]+ 1-hexanethiol + n-dodecane; and b) 

[cation][NTf2]+ 1-hexanethiol + n-dodecane, at 298.2 K and atmospheric pressure. 

 

5.3.2.2. Effect of cation alkyl side chain length 

The length of the aliphatic moiety in the ionic liquid cation is a very important 

characteristic regarding the mutual solubilities between ionic liquids and hydrocarbons. 62 

The impact of the alkyl side chain length in imidazolium-based ionic liquids is illustrated 

in Figures 5.6 a) to c) for the [MeSO4]
-, [CF3SO3]

- and [NTf2]
-anions. It is shown that an 

increase in the alkyl chain length from [C2mim]+ to [C4mim]+ results in an increase of the 

distribution ratio due to more favorable interactions between 1-hexanethiol and the ionic 

liquids. Longer aliphatic moieties increment the non-polar region of the cation, resulting 

in a more diffusive charge density, which slightly improves the dispersive interactions 

that take place between the mercaptan and the ionic liquids. For longer alkyl chains, an 

additional effect can also be expected by the increase of the free volume that allows a 

more efficient packing of the mercaptan on the cation-anion network. In addition, and as 

observed before with the cation core analysis, the effect of the alkyl side chain length is 

also influenced by the diverse ionic liquid anions. The most significant variation on the 

distribution ratios occurs for the weaker cation-anion interactions in [NTf2]-based ionic 

liquids. 65-66 
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Figure 5.6 Experimental and COSMO-RS predicted distribution ratio of 1-hexanethiol in 

the ternary systems: a) [Cnmim][MeSO4]+ 1-hexanethiol + n-dodecane; b) 

[Cnmim][CF3SO3]+ 1-hexanethiol + n-dodecane; and c) [Cnmim][NTf2]+ 1-hexanethiol + 

n-dodecane, at 298.2 K and atmospheric pressure. 

 

5.3.2.3. Effect of the ionic liquid anion nature 
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- < [MeSO4]
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0.23. The higher distribution ratio values occur in the [NTf2]-based ionic liquids. 

Mercaptan-anion interactions are mainly due to weak dispersive forces and the 

dependency behavior with the anions nature strongly ensues from their polarity. In this 

way, with the exception of the [BF4]
- anion, the experimental trend on the distribution 

ratio values closely follows the dipolarity/polarisability solvatochromic parameter (π*) in 

[C4mim]-based ionic liquids: [MeSO4]
- > [CH3SO3]

- > [BF4]
- > [CF3SO3]

- > [NTf2]
-. 67 

 

 

Figure 5.7 Experimental and COSMO-RS predicted distribution ratio of 1-hexanethiol in 

the ternary systems: a) [C2mim][anion]+ 1-hexanethiol + n-dodecane; b) [C4mim][anion] 

+ 1-hexanethiol + n-dodecane; and c) [C2mpy][anion]+ 1-hexanethiol + n-dodecane, at 

298.2 K and atmospheric pressure. 
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5.3.2.4. Effect of the temperature 

Aiming at the improvement of the distribution ratio of the systems composed of ionic 

liquid + 1-hexanethiol + n-dodecane, the effect of temperature in the LLE was also 

evaluated for the ionic liquids [C2mim][CH3SO3] and [C2mim][CF3SO3]. The distribution 

ratio values for both ionic liquids at 298.2 K and 313.2 K are plotted in Figures 5.8 a) and 

b). The increase of temperature from 298.2 K to 313.2 K does not lead to enhanced 

distribution ratios. This behavior denotes that ionic liquids, for the extraction of 

mercaptans, can be used at temperatures close to room temperature without losing their 

performance. A separation process using ionic liquids at mild operational conditions and 

with lower energy costs is thus conceivable when compared to the traditional 

hydrodesulfurization process. 

 

 

Figure 5.8 Experimental and COSMO-RS predicted distribution ratio of 1-hexanethiol in 

the ternary systems: a) [C2mim][CF3SO3]+ 1-hexanethiol + n-dodecane, and b) 

[C2mim][CH3SO3]+ 1-hexanethiol + n-dodecane, at the temperatures 298.2 K and 313.2 

K, and atmospheric pressure. 
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was studied. From the results depicted in Figure 5.9, the increase in the water content 

leads to an increase in the distribution ratio of 1-hexanethiol. Thus, the ionic liquid 

moisture adsorption can be seen as advantageous in the process separation at industrial 

scale. 

 

 

Figure 5.9 Experimental distribution ratio of 1-hexanethiol in the ternary systems 

[C2mim][MeSO4]+ 1-hexanethiol + n-dodecane with ionic liquid water content of 130 

ppm, and 6840 ppm H2O; and [C2mim][CF3SO3] + 1-hexanethiol + n-dodecane with ionic 

liquid water content of 305 ppm, and 6583 ppm H2O, at 298.2 K and atmospheric 

pressure. 

 

5.3.3. Evaluation of the COSMO-RS prediction capability 

The ionic liquids and conditions experimentally investigated allowed the understanding of 

the influence of the ionic liquid ions nature and temperature upon the phase behavior. 

Therefore, these data can be used to evaluate the predictive ability of COSMO-RS. 

Along with the LLE experimental data (Figures 5.1 to 5.4) and the distribution ratio 

results (Figures 5.5 to 5.8), the COSMO-RS predicted values are also represented.  

The COSMO-RS aptitude to describe the LLE results was also evaluated by the root 

mean square deviation (RMSD) to the experimental data. The RMSD is defined by 

equation 5.3: 

x
I

RSH

0.00 0.02 0.04 0.06 0.08 0.10 0.12

D
is

tr
ib

u
ti
o

n
 r

a
ti
o

0.00

0.02

0.04

0.06

0.08

0.10

0.12

[C2mim][CF3SO3], 305.4 ppm H2O 

[C2mim][CF3SO3], 6583.1 ppm H2O 

[C2mim][MeSO4], 130.1 ppm H2O 

[C2mim][MeSO4], 6840.2 ppm H2O 



Phase behavior of ionic liquid + mercaptan + alkane ternary systems 

 

117 

   
  100
2

2
1

2
.exp

,

.

,

2
.exp

,

.

,


























RN

xxxx

RMSD i n

ni

pred

nini

pred

ni

IIIIII

 (5.3) 

where x is the mole fraction of compound i, R is the total number of compounds (R = 3), 

n is the tie-line number, and N is the total number of experiments. The RMSD values are 

listed in Table 5.1. 

The results obtained with COSMO-RS for the tie-lines description (Figures 5.1 – 5.4) are 

in good agreement with the experimental data. The low relative deviations presented in 

Table 5.1 between the predicted and experimental values also support this statement. 

The relative deviations vary from 0.04 to 0.8%, for the systems containing 1-hexanethiol 

in the mole fraction between 0.015 and 0.025, and in the overall mixture composition 

with n-dodecane. It is also visible that the RMSD values depend on the anion, and the 

ability of COSMO-RS to describe the liquid-liquid phase behavior of systems decreases 

with the anion polarity. Nonetheless, the low RMSD values achieved confirm the good 

performance of the COSMO-RS model on describing, quantitatively and qualitatively, 

systems containing ionic liquids and hydrocarbon mixtures. These results allow the use 

of COSMO-RS for a quick and easy screening of the vast number of ionic liquid and 

hydrocarbon combinations. 

The COSMO-RS predictive ability was also analyzed individually regarding the several 

aspects that can influence the behavior of systems constituted by ionic liquid + 1-

hexanethiol + n-dodecane. The differences in the phase behavior by the change of the 

imidazolium cation for the pyridinium cation (Figure 5.5), and also by the increase of the 

alkyl side chain length in the imidazolium cation (Figure 5.6), in systems with the 

[MeSO4]
-, [CH3SO3]

-, [CF3SO3]
-, and [NTf2]

- anions, are well described by COSMO-RS. 

However, and as previously observed for the binary phase behavior of ionic liquid + 

water systems 57, better predictions are obtained for the systems with the ionic liquids 

containing the less polar anions. 

Taking into account the lower ability of COSMO-RS to predict the phase behavior of 

systems composed of ionic liquids with more polar anions, it is thus expectable a poorer 

performance of COSMO-RS to predict the influence of the anion nature on the liquid-

liquid equilibrium (Figure 5.7). Even though, the COSMO-RS results correctly correlate 

with the anion influence in the distribution ratio values, as depicted in Figure 5.7 b), 

better results are achieved for the [C4mim]-based ionic liquids due to a decrease on the 

cation-anion interactions by the increase of the cation alkyl side chain from ethyl to butyl. 
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The minor increase on the distribution ratio with the increase on temperature from 298.2 

K to 313.2 K is well predicted for the system containing [C2mim][CF3SO3]. However, 

some disagreement is observed in the ternary system with [C2mim][CH3SO3] (Figures 5.8 

a) and b)). Once again, a better description is obtained by COSMO-RS when dealing 

with more hydrophobic anions such as triflate. 

 

Table 5.1 Root mean square deviation (RMSD) between the compositions predicted by 

the COSMO-RS model and the experimental data for the ternary phase diagrams 

studied. 

Ternary system: 

ionic liquid + 1-hexanethiol + n-dodecane 
RMSD % 

[C2mim][MeSO4] at 298.2 K 0.2 

[C2mim][CH3SO3] at 298.2 K 0.2 

[C2mim][CF3SO3] at 298.2 K 0.07 

[C2mim][NTf2] at 298.2 K 0.1 

[C2mim][BF4] at 298.2 K 0.04 

  

[C4mim][MeSO4] at 298.2 K 0.1 

[C4mim][CF3SO3] at 298.2 K 0.1 

[C4mim][NTf2] at 298.2 K 0.2 

  

[C2mim][CH3SO3] at 313.2 K 0.8 

[C2mim][CF3SO3] at 313.2 K 0.08 

  

[C2mpy][CH3SO3] at 298.2 K 0.5 

[C2mpy][NTf2] at 298.2 K 0.2 

  

[C2mpy][CF3SO3] at 313.2 K 0.07 
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5.4. Ionic liquid screening 

COSMO-RS has been widely used in the modelling and prediction of many properties of 

systems comprising ionic liquids and petroleum constituents, such as aromatic and 

aliphatic hydrocarbons 60-62, as well as nitrogen and sulfur-based compounds. 47, 71 

Taking into account the evaluation carried out in this work on the COSMO-RS capability 

to predict the phase behavior of systems containing ionic liquids, mercaptans and 

alkanes, this model was used in the screening of a vaster number of ionic liquids with the 

goal of identifying the best candidates for the extraction of mercaptans. 

 

5.4.1. Tested ionic liquids 

The ternary systems evaluated are composed of an ionic liquid, a mercaptan (1-

hexanethiol) and a n-alkane (n-dodecane). Around 280 ionic liquids were tested by the 

combination of 16 cations and 19 anions available on the COSMO-RS database. The 

cations investigated belong to very distinctive families and are: 1-ethyl-3-

methylimidazolium, 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-methyl-

3-octylimidazolium, 1,3-diethyllimidazolium, 1,3-dibutyllimidazolium, 1-ethyl-3-

methylpyridinium, 1-ethyl-3-methylpyrrolidinium, N-butyl-isoquinolinium, 3-butyl-4-

methylthiazolium, cholinium (ethyl(2-hydroxyethyl)dimethylammonium), guanidinium, 

hexamethylguanidinium, trihexyl(tetradecyl)phosphonium, O-ethyl-N,N,N,N-

tetramethylisothiouronium and S-ethyl-N,N,N,N-tetramethylisothiouronium. Furthermore, 

the anions tested are methylsulfate, ethylsulfate, butylsulfate, octylsulfate, 

methylsulfonate, trifluoromethanesulfonate (triflate), perfluorobutanesulfonate, acetate, 

bis[(trifluoromethyl)sulfonyl]imide, hexafluorophosphate, tetrafluoroborate, dicyanamide, 

tricyanomethanide, tetracyanoborate, tosylate, diethylphosphate, dibutylphosphate, 

nitrate and tetrachloroferrate. The anions/cations chemical structures and respective 

abbreviations are presented in Tables A1 and A2 in Appendix A. 

 

5.4.2. Selectivity, distribution ratio and σ-profiles 

The ionic liquids screening was performed based on the predicted selectivity and 

distribution ratio with circa 2 mol/mol% of mercaptan present at the alkane-rich phase. 

Additionally, the estimated COSMO-RS energies and σ-profiles for each aliphatic 

compound and ionic liquid ion were also used to achieve a better understanding of the 

ternary systems behavior. The selectivity and the distribution ratio values were 
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calculated by equations 5.1 and 5.2. These values, for the different cation and anion 

combinations, are presented in Tables D2 and D3 and depicted in Figures D1 a) – p), D2 

a) – k), D3 a) – d) and D4 a) – d) in the Appendix D. While Figure D1 shows the impact 

of the cation family and Figure D2 the anion nature effect, Figure D3 shows the cation 

alkyl chain length and the cation symmetry influence and Figure D4 the anion alkyl chain 

length impact, estimated by COSMO-RS on the mentioned parameters. Their 

simultaneous analysis with the σ-profiles of each compound and the COSMO-RS 

mixture energies, allows a better understanding of the interactions taking place and the 

most appropriate ionic liquid characteristics required for the mercaptans extraction 

process. 

The COSMO-RS σ-profiles are represented in Figures D5 to D16 in the Appendix D. The 

σ-profiles represent the charge density distribution, p(σ), based on the virtual σ-surface, 

and provide information on the molecular surface polarity. The σ axis represents the 

surface polarity charge and has negative values for molecule positive charges and vice-

versa; when σ < -0.0082 e/A2 or > 0.0082 e/A2 there is evidence on the hydrogen-

bonding ability, representing, respectively, donor and acceptor molecule regions. 72 

The COSMO-RS σ-profiles for the kerosene model compounds, 1-hexanethiol and n-

dodecane, are depicted in Figure D5 in the Appendix D. Both compounds show a thin 

and high peak, centered in the overall plot (-0.008 < σ (e/A2) < 0.006 and -0.006 < σ 

(e/A2) < 0.006, respectively), as a result of the non-polar and homogeneity of the charge 

density along the molecules chains. At this region, the dominant interactions are van der 

Waals forces. Being the 1-hexanethiol a more polar compound, it is also possible to 

observed two small peaks, at σ = 0.007 e/A2 and σ = 0.012 e/A2, due to the two electron 

concentration regions caused by the electronegative sulfur atom, and a third peak, at σ = 

-0.009 e/A2, by the electron delocalization of the sulfur atom leaving the hydrogen atom 

partially and positively charged. Although small, these peaks indicate a slight ability to 

hydrogen-bond. 

Based on these considerations, it is thus expectable to be able to tailor the flexible 

affinity of ionic liquids for mercaptans by changing their chemical structures. In fact, the 

cation and anion σ-profiles show more distinct type of interactions than the fuel model 

compounds. The σ-profiles of the ionic liquids cations and anions are presented in 

Figures D5 – D16 in the Appendix D. In the σ-profiles plot, the positive peaks 

correspond, in general, to the ionic liquid anions, and the negative to the ionic liquid 

cation. It is also noteworthy to mention that these strength peaks can also provide 

information on the cation-anion cohesion forces.  
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Considering the σ-profile diagram of 1-hexanethiol, the most suitable ionic liquid should 

present a cation with a peak close to σ = -0.012 e/A2 and an anion with a peak around σ 

= 0.009 e/A2 aiming at promoting a strong interaction with the mercaptan. However, 

these mercaptan peaks are small and the expected hydrogen-bonding is weak. On the 

other hand, the van der Waals interactions between the non-polar regions of the 

compounds, due to the centered high peak, and misfit electrostatic interactions caused 

by the ionic liquid charges, will be dominant. Nevertheless, these interactions also 

improve the affinity of the ionic liquids to the alkane, and consequently a decrease on the 

systems selectivity is further observed. Therefore, the most suitable ionic liquids should 

not present high peaks in the region -0.006 < σ (e/A2) < 0.006. 

COSMO-RS split the interaction energy into three specific energies, the misfit 

electrostatic energy, the hydrogen-bonding energy and the van der Waals energy, being 

the first two energies dependent on the σ-profiles of each compound. The third energy is 

only dependent on the individual atoms properties. The estimated energies can be 

assessed in Tables D4 and D5 in the Appendix D, for the model feed 1-hexanethiol + n-

dodecane and for the ternary systems ionic liquid + 1-hexanethiol + n-dodecane, 

respectively. Higher van der Waals energies are found in the model feed confirming that 

the interactions between these compounds are mainly due to dispersive forces, as 

expected. Comparing the COSMO-RS energies of 1-hexanethiol in the model mixture 

(Table D4) with its energies when ionic liquids are added (Table D5), it is possible to 

notice that strong van der Waals energies are also determined for the ionic liquid ions, 

which promote the main interactions between both compounds. A significant increase in 

the 1-hexanethiol misfit and hydrogen-bonding energies is also observed with all the 

ionic liquids studied, which demonstrates that these type of interactions also take place 

in the 1-hexanethiol and ionic liquid mixtures. 

 

5.4.2.1. Predicted effect of the ionic liquid cation core 

The selectivity and distribution ratio for the mercaptan are dependent on the ionic liquid 

cation structural differences as shown in Figures D1 a) – p), as well as in the σ-profiles 

plots in Figures D5 – D15, in the Appendix D. 

COSMO-RS predicts the complete miscibility with the fuel model compounds, high 

distribution ratios and small selectivities for quaternary phosphonium-based ionic liquids 

([P666(14)]
+). Their long alkyl chains largely increase the van der Waals energies of the 

cation (Table D5 k)) and promote dispersive interactions with non-polar compounds. This 

is consistent with the [P666(14)] cation σ-profile (Figure D5), which shows a very high 
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pronounced peak in the region -0.008 < σ (e/A2) < 0.006, covering and overlapping both 

1-hexanethiol and n-dodecane peaks. 

For the acyclic guanidinium and isouronium cations, namely [(C1)6Gu]+, [OC2(C1)4iU]+ 

and [SC2(C1)4iU]+, a high distribution ratio is observed. This is a result of these cations 

higher affinity for mercaptan. Indeed, COSMO-RS forecasts the stronger van der Waals 

and mild misfit energies (Tables D5 i), k) and l)) in these species. This can also be 

confirmed by their σ-profiles (Figure D6), which show a peak very close to the higher 1-

hexanethiol peak related with its non-polar region, and also a part of the area of 1-

hexanethiol is covered by those cations. The more negative peaks (cationic charges), at 

σ = -0.006e/A2 for the [(C1)6Gu]+ cation, and σ = -0.007 e/A2 for the [OC2(C1)4iU]+ and 

[SC2(C1)4iU]+ cations, lead to a charge delocalization allowing therefore the increase of 

the 1-hexanethiol partial negative charge interaction with the positive charge of the 

cations. The lower selectivity of these cations compared to others is also dependent on 

these factors that, on the other hand, improve the interaction of the ionic liquids with the 

linear alkane n-dodecane. 

Comparing the guanidinium cation ([Gu]+), with no alkyl groups, with the alkylated one, 

[(C1)6Gu]+, the selectivity vs. distribution ratio values occur at the opposite plot region. 

The van der Waals energies in [Gu]+ (Table D5 i)) are smaller when compared to 

[(C1)6Gu]+ (Table D5 j)). In addition, the cation [Gu]+ displays a much higher hydrogen 

bonding capacity (higher hydrogen-bonding energies and σHB << -0.0082 e/A2, Figure 

D7), which fortify the cohesion between the cation and the anion and reduces the 

interaction with mercaptan compounds while making these mixtures less miscible. 

For the cholinium cation ([Ch]+), although with non-insignificant van der Waals and 

electrostatic interactions energies, the hydrogen-bonding is a very significant interaction 

(Table D5 h)). The small peak at σHB = -0.017 e/A2 and the more pronounced peak at σHB 

= -0.009 e/A2, (Figure D7) reinforce the cation-anion forces and hinder the mercaptan 

interactions. 

For other ringed nitrogen-based cations, the predicted values of selectivity decreases 

and the distribution ratio increases according to the following order: imidazolium, 

pyridinium, thiazolium, pyrrolidinium and quinolinium. Analyzing the COSMO-RS 

energies (Tables D5 a) – f)), it is observed that for these cation-based mixtures, the 

dominant energies are van der Waals, followed by mild misfit and hydrogen-bonding. All 

of these cations show similar σ-profiles (Figure D8) even for the non-aromatic 

pyrrolidinium cation and for the quinolinium cation with two aromatic groups. Comparing 

the σ-profiles for the various cations, it is possible to notice an increase of the peak area 
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from the imidazolium to the pyridinium, leading to a slight increase of the van der Waals 

interactions and to a respective increase on the distribution ratio. Indeed, this increment 

in the van der Waals forces in the pyridinium-based ionic liquids fully agree with the 

experimental data presented before regarding the ionic liquid cation influence. The 

increase of the distribution ratio observed on the thiazolium cation is related with the 

increase of the intensity of the peak corresponding to the van der Waals interactions, 

resulting thus in an improved interaction with the mercaptan. The higher pyrrolidinium 

distribution ratio, when compared with these two cations, is related with the negligible 

hydrogen-bonding since the van der Waals and the misfit energies show lower values. 

This pattern also reflects lower cation-anion interactions, liberating the cation for 

interacting with the mercaptan. Regarding the quinolinium cation, it shows a large peak 

area that covers practically the area peak of 1-hexanethiol and thus results in its higher 

affinity and distribution ratios. Concluding, for these cations, both tendencies, namely the 

increase on the distribution ratio and the decrease on selectivity, are a result of the 

improvement of the interactions between both the mercaptan and n-dodecane with the 

ionic liquid cations, mainly due to the improvement of the van der Waals forces. 

 

5.4.2.2. Predicted effect of the ionic liquid anion 

The anions impact on the mercaptans partition predicted by COSMO-RS, namely the 

selectivity vs. distribution ratio for the different ionic liquid anions is depicted in Figures 

D2 a) – k) in the Appendix D. The COSMO-RS energies were also determined and are 

presented in Tables D5 a) – l) in the Appendix D. 

The anions [PF6]
- and [BF4]

- show the highest selectivity amongst the studied anions. In 

addition, for both anions, a very small distribution ratio is predicted. Analyzing the 

COSMO-RS mixture energy values, these fluorinated anions present relative small van 

der Waals and hydrogen-bonging energies. Therefore, there is a very low affinity of both 

anions for the mercaptan. 

For the sulfur-based anions, the COSMO-RS predicted distribution ratios and 

selectivities follow the order: [CF3SO3]
-, [MeSO4]

- and [CH3SO3]
-. The van der Waals and 

the electrostatic energies are similar in these sulfurous-based systems. In addition, all 

the anions display relatively low hydrogen-bonding energies. However, the highest 

hydrogen-bonding energy was observed for the anion [CH3SO3]
-, leading to a COSMO-

RS prediction of a high distribution ratio and low selectivity with this anion. The σ-profiles 

of the sulfurous-based anions are shown in Figure D10 in the Appendix D. The [MeSO4]
- 

and the [CH3SO3]
- anions present small peaks in the negative region and inside the 1-
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hexanethiol peak area, which further indicate weak van der Waals interactions. The 

[CH3SO3]
- also presents a peak at -0.007 e/A2, that suits the 1-hexanethiol peak at 0.007 

e/A2, and may be responsible for the high affinity between this anion and 1-hexanethiol. 

The [CF3SO3]
- shows a first peak at 0.003 e/A2 that covers part of the 1-hexanethiol 

peak, and a second peak very close to the one of the [CH3SO3]
-, at 0.014 e/A2, due to 

their structural similarity. For [(PFBu)SO3]
-, the same peak at 0.014 e/A2 is found due to 

the –SO3 group, and a higher peak is also observed at 0.001 e/A2 covering a great part 

of the 1-hexanethiol peak and explaining their predicted higher distribution ratios and 

selectivity. 

The [CH3CO2]
- anion leads to a high distribution ratio and to a low selectivity for the 

mercaptan. This anion displays a slightly higher misfit energy when compared to van der 

Waals forces. In addition, significant hydrogen-bonding energies are found that are 

correlated with its positive peak at 0.020 e/A2 (Figure D11 in the Appendix D). 

Regarding the systems based on cyano-based anions ([N(CN)2]
-, [C(CN)3]

- and [B(CN)4]
-

), their predicted distribution ratio and selectivity are not satisfactory for all the ionic liquid 

cations tested. Figure D12, in Appendix D, presents their σ-profiles where it is shown 

that these anions have peaks inside the 1-hexanethiol and the n-dodecane, at 0.004 

e/A2, 0.002 e/A2, and 0.001 e/A2, respectively. 

For the systems studied, the anions that show a higher distribution ratio and a lower 

selectivity for 1-hexanethiol are: [NTf2]
-, [TOS]-, [DEP]-, [DBP]- and [FeCl4]

-. Regarding 

the COSMO-RS results, these anions present higher van der Waals and misfit energies 

when compared to smaller hydrogen-bonding energies. All these factors provide the 

required dispersive forces to interact with both the alkane and the mercaptan. From their 

σ-profiles (in Figure D13 in the Appendix D), it can be seen that most of these anions 

contain peaks inside the range -0.006 < σ (e/A2) < 0.006, and with a large area covering 

part of the 1-hexanethiol and n-dodecane peaks. Nevertheless, additional care must be 

taken when combining such anions with different cations. Exceptions on their 

performance appear for the anions [TOS]-, [DEP]- and [DBP]- if combined with the more 

polar cations, such as[Gu]+ and [Ch]+. 

 

5.4.2.3. Predicted effect of the alkyl side chain length and symmetry 

The influence of the alkyl chain length on the systems selectivity and distribution ratio 

can be observed in Figures D3 a) – d) and D4 a) – d) in the Appendix D for the 

imidazolium cation ([Cnmim]+, with n = 2, 4, 6 and 8), and for the anions of the type 

[RSO4]
+, with R = methyl (Me), ethyl (Et), butyl (Bu) and octyl (Oc), respectively. In both 
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situations an increase in the alkyl chain length leads to an increase on the distribution 

ratio and to a decrease on the selectivity values. This pattern is a result of the 

enlargement of their non-polar region, increasing, therefore, their van der Waals 

interactions with the mercaptan.  

The cation symmetry impact was evaluated for the dialkylimidazolium cation, [CnCnim]+, 

with n = 2 and 4, and is also shown in Figure D3. The COSMO-RS predicts a slight 

increase in the distribution ratio and a decrease in the selectivity, compared to the 

asymmetric [C2mim]+ and [C4mim]+, respectively. Moreover, the symmetry effect is 

positively influenced by the cation alkyl chain size. The existence of two alkyl side chains 

duplicates the non-polar surface available for van der Waals interactions. 

The σ-profiles presented in Figures D14 to D16 in the Appendix D also corroborate the 

trends observed. 

 

5.4.3. Potential ionic liquids candidates 

From the screening approach used here, the ionic liquids that could provide the best 

performance, based on their liquid-liquid equilibrium, comprise ions that are able to 

interact either by van der Waals interactions or with the –SH group. Nevertheless, some 

of the ionic liquid features that allow improved mercaptan-ionic-liquid interactions also 

lead to a higher affinity for the remaining feed compounds. Therefore, a balance between 

the distribution ratio and selectivity must exist. Considering the σ-profiles, an important 

aspect is that the ionic liquid ions should present some enveloping of the mercaptan 

peak indicative of their favorable interaction; yet, this should not be in excess to avoid 

the interactions with n-dodecane. The cation should present a peak close to σ = -0.012 

e/A2 and the anion close to σ = 0.009 e/A2. Having these features in mind, the best ionic 

liquid candidates are those composed of imidazolium, pyridinium and pyrrolidium 

cations, with short alkyl side chains, combined with the anions [TOS]-, [DEP]-, [EtSO4]
- 

and [CF3SO3]
-. Some of them are already studied on this work. 
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Comparison between the selection of ionic liquids for aliphatic or for aromatic 

sulfur compounds removal from fuels 

In the last years, many research works have been reported addressing the fuels 

desulfurization assisted by ionic liquids, aiming at finding the best ionic liquid able to 

perform an efficient extraction of the sulfur contaminants. These works mainly addressed 

the study of aromatic compounds such as thiophene, benzothiophene and 

dibenzothiophene. 4, 73 Their interactions with the ionic liquids are quite distinct from the 

van der Waals forces observed with the aliphatic sulfur compounds, and consist of 

hydrogen bonds, CH-π bonds, and π–π interactions. 48, 74 These favorable interactions 

promote a greater affinity and solubility on the ionic liquids than the observed for the 

aliphatic sulfur compounds. 

Although many ionic liquids achieve an excellent extraction capacity and distribution 

ratios, either for aliphatic or aromatic sulfur compounds, these ionic liquids are also 

capable of co-extracting the fuel constituents, corresponding to lower selectivities. 

Therefore, as presented before and stated elsewhere, 48, 62, 75-78 some structural features, 

that provide favorable interactions with the fuel hydrocarbons of the ionic liquid, should 

be avoided, such as the long cation alkyl side chains or anions with low polarity. By this 

fact, many authors, recognized the importance of the selectivity and the need of a 

balance between the selectivity and distribution ratio for this type of systems, in order to 

avoid the cross contamination of the fuel. 17, 25, 48, 52, 75, 79-82 They chose to apply ionic 

liquids based on cations with small alkyl side chains, in order to promote higher 

selectivities, mainly from the imidazolium and pyridinium cation families. Regarding the 

anions, a greater diversity was tested and no defined pattern was identified. Various 

anions were mentioned as more suitable: [N(CN)2]
-, 25, 51 [C(CN)3]

- , 20 [B(CN)4]
-, 48 [BF4]

-, 

48 [PF6]
-, 47-48, [CF3SO3]

-, 47-48 [NTf2]
-, 17, 47 [CH3CO2]

-, 47 [SCN]- (thiocyanate), 47, 82 [EtSO4]
-

, 52 [DEP]-, 83 among others. 

 aking into account the ionic liquids’ cations and anions here selected, along with the 

findings in this work, similarities are observed between the chosen ionic liquid features. 

Moreover, the feasibility of the ionic liquid based desulfurization processes for the 

integrated aliphatic and aromatics sulfur compounds extraction is further supported by 

the negligible mutual solubility between the ionic liquid and the fuel main constituents. 

Even so, the distribution ratios determined for both aliphatic and organic sulfur species 14, 

39, 82-83 are, in many cases, low and unfavorable, which implies large volumes of ionic 

liquid for an efficient liquid-liquid extraction process. Nonetheless, since ionic liquids 

have negligible volatility and are chemically stable, their regeneration can be easily 

performed in an additional step through different techniques, as distillation, adsorption or 
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back-extraction processes. 4 This allows its reuse in the extraction process leading to a 

more economic and sustainable separation process for the sulfur species removal. 4 

 

5.5. Conclusions 

This work aimed at studying ionic liquids as potential extracting solvents for the removal 

of mercaptans from kerosene streams to fulfil the urgent need on lowering the sulfur 

content in industrial units. As a first approach, the experimental liquid-liquid equilibrium 

for the ternary systems composed of 1-hexanethiol + n-dodecane + ionic liquids was 

determined at 298.2 K and 313.2 K. Both imidazolium and pyridinium-based ionic liquids 

were investigated. Albeit the values of the distribution ratio for the tested systems are 

always lower than unit, these systems display a negligible mutual solubility between the 

ionic liquids and n-dodecane avoiding the solvent losses and the contamination of the 

hydrocarbon-rich phase. 

Due to the innumerable possibilities of cation/anion combinations in ionic liquids, the 

COSMO-RS was evaluated in the predictive description of the experimental data. The 

root mean square deviations between the predicted and the experimental data are lower 

than 1% and prove the COSMO-RS ability to describe the phase behavior of systems 

involving ionic liquids, sulfur compounds and hydrocarbons. Based on this good 

performance, a large number of ionic liquid cations and anions was further investigated 

with COSMO-RS. For the separation of 1-hexanethiol from hydrocarbon mixtures, the 

recommended ionic liquids comprise short-alkyl chain imidazolium, pyridinium and 

pyrrolidium cations, combined with the [TOS]-, [DEP]-, [EtSO4]
- and [CF3SO3]

- anions. 
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6.1. Introduction 

Among the several proposals1,2, 4-13 from other research groups for the upgrading of the 

desulfurization technology, liquid-liquid extraction appears to be an attractive alternative 

related with the moderate operating conditions (low temperature and pressure) and low 

energy cost.1-11 Regarding the extracting solvents, ionic liquids have shown a great 

potential on substituting the conventional volatile organic solvents used 1,2, 12-21 due to 

their negligible volatility, liquid state at a wide temperature, including room temperature, 

high thermal and chemical stabilities, among others. 22 Moreover, being composed by 

bulky and asymmetric organic cations and organic or inorganic anions, their endless 

possible combinations rise as another key characteristic, the ability of tailoring their 

physical, chemical and solvation properties, towards a specific application. 

Taking the latest into account, our previous work 23 presented an intensive ionic liquid 

screening aiming to understand and select the most suitable ionic liquid as extracting 

solvent for the removal of mercaptans from kerosene, by experimental and COSMO-RS 

predictions of liquid-liquid equilibrium, selectivity and distribution ratio. Based in the 

ternary system model considered of ionic liquid, 1-hexanethiol and n-dodecane, it was 

found that these systems present a very high selectivity towards the target mercaptan 

compound, due to the almost negligible mutual solubility of the ionic liquid and the n-

alkane studied. This is a remarkable feature since mutual contamination and losses of 

fuel and ionic liquid can be avoided in the separation process. Nevertheless, the 

mercaptan distribution ratios observed towards the ionic liquids tested were lower than 

unit, imposing extremely large volumes of ionic liquid in the liquid-liquid extraction 

process in order to attain the desired separation. 

Yet, it is important to reiterate that, in spite of the unfavorable aspect referred, the 

difference between the mercaptan and alkane solubilities in the ionic liquid still qualifies 

the use of ionic liquids as a solvent in separation processes regulated by mass transfer 

kinetics, or by combining it with an efficient regeneration process. 

For this purpose, membrane assisted extraction using supported ionic liquid membranes 

(SILMs) is considered a potential separation process, as suggested by several works 

that used an immobilized ionic liquid phase either for gas separation, 24-26 or liquid-liquid 

extraction 27-30. SILMs result from the immobilization of a selected ionic liquid, which acts 

as the selective medium, on a polymeric or ceramic porous support, responsible for the 

mechanical resistance of the membrane. By using an ionic liquid supported in a porous 

membrane, it is possible to provide a short diffusion path for the transport of the target 

mercaptan solute from the jet-fuel feed phase to a receiving compartment. Other 
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advantages are the solvent volume required, much lower than in a conventional liquid-

liquid extraction and, additionally, the low mass transfer resistance when compared with 

solid membranes. 31-39 

In this work, making use of the non-volatility of ionic liquids, the mercaptan transport is 

driven by a chemical potential gradient across the SILM, by reducing the target solute 

concentration in the receiving compartment, where a reduced vacuum pressure is 

applied. The mercaptan permeates selectively across the liquid membrane from the 

liquid feed phase to the vapor phase in the permeate side. This approach assures a 

simultaneous extraction and stripping in one single stage, avoiding the equilibrium 

restrictions previously identified in these systems.  

The stability and lifetime performance of the SILMs have an important impact on their 

industrial potential use. 40 Due to their negligible volatility and very low affinity for the 

feed phase mixture, the use of ionic liquids reduces drastically the deterioration of SILMs 

in comparison with conventional supported liquid membranes where the evaporation or 

dissolution of solvent into the contiguous phases may occur. Still, the integrity of the 

prepared SILMs should be tested under pressure differences identical to the ones 

employed during the extraction/stripping process, in order to assure that the ionic liquid 

is not displaced from the porous support. 

Taking into account all previous considerations, the work here developed started with the 

study of the diffusion and mass transfer of the target mercaptan compound from the n-

dodecane jet-fuel model feed to the ionic liquid phase, by performing liquid-liquid 

extraction experiments. As referred before, mercaptan species show low solubility in the 

ionic liquids, limiting the extraction capacity of the ionic liquid, which turns more relevant 

the selection of the most promising ionic liquids based on their transport characteristics. 

Nonetheless, the concern with a possible co-extraction of valuable fuel constituents 

requires the use of ionic liquids based on imidazolium cations, with small alkyl side 

chains, to guarantee the lowest mutual solubility with the aliphatic hydrocarbon. 41  

Since the application of SILMs depends from the membrane stability and selectivity 

behaviors, the previous ionic liquids were also tested with different support materials in 

order to find the SILM that fulfills the necessary requisites. 
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6.2. Mass transfer model 

The liquid-liquid extraction experiments were performed using an adapted Lewis cell 

which allows the two phases contacting with a well-defined interface. These experiments 

consist in registering the solute concentration along time, which provides information 

about the 1-hexanethiol transport from the feed phase (rich in n-dodecane) to the ionic 

liquid phase. 

During these experiments, it was assumed that at the interface, an equilibrium state is 

established. Therefore, a mass balance over the feed phase leads to the mass transfer 

of the 1-hexanethiol compound between the n-dodecane feed phase and the ionic liquid 

phase, described by the equation 6.1: 

 

   
 (  )

  
     (     

 ) 
(6.1) 

 

In this equation,    (m3) is the feed phase volume,    and the   
  (mol.m-3) are the 1-

hexanethiol concentration in the phase under consideration and in equilibrium with the 1-

hexanethiol concentration in the ionic liquid phase, respectively. The    represents the 

overall mass transfer coefficient (m.s-1), being the interfacial area of the cell,    (m
2), and 

the extraction time,   (s). 

 

  
  is related with the 1-hexanethiol concentration in the ionic liquid rich phase (   ) 

through the distribution ratio ( ), calculated using the experimental concentration of the 

feed and the ionic liquid phases at the equilibrium: 
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A simple mass balance to the solute at the initial conditions is applied to obtain an 

expression for the concentration    : 

 

    
  

   
(  

    )          
         

    (6.3) 
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where the   
  and    

  are the concentration of 1-hexanethiol in the feed and ionic liquid 

phases, at the initial time, and     is the ionic liquid phase volume. 

Substituting equations 6.2 and 6.3 in 6.1, and integrating using the initial conditions, the 

overall mass transfer coefficient,   , can be determined by fitting the experimental 

concentrations of the mercaptan as a function of time.  

 

The resistances-in-series model was used to estimate the overall mass transfer 

coefficient, based on the combination of the two individual mass transfer coefficients of 

both feed and ionic liquid boundary films,    and   , respectively: 

 

 

  
 
 

  
 

 

    
 (6.4) 

 

Taking into account that the mass transfer in each phase depends on the hydrodynamic 

conditions, mass transfer correlations using the Sherwood (  ), Reynolds (  ) and 

Schmidt (  ) numbers were used to estimate the solute individual mass transfer 

coefficients. 

The following correlation, described in equation 6.5, was selected to describe the 

individual mass transfer coefficients,  , in the laminar layers occurring at each side of the 

interface of the two individual mechanically stirred phases. 42-44 

 

                   (6.5) 

 

The dimensional numbers of Sherwood, Reynolds and Schmidt are defined as    
   

  
, 

   
   

  

  
 (impeller Reynolds number) ,    

 

   
, respectively. 

  is the diffusion coefficient of 1-hexanethiol in the feed (n-dodecane) or in the ionic 

liquid (m2.s-1),    and   are the impeller diameter (m) and speed (rad.s-1), and   and   

the density (kg.m-3) and the dynamic viscosity (Pa.s) for each phase, respectively. 

 

Information about the diffusion coefficient of liquids in ionic liquids is very scarce, and 

consequently, there are no specific correlations for the transport and molecular 
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properties for this type of systems. Therefore, the Wilke-Chang correlation (equation 6.6) 

was chosen to estimate the 1-hexanethiol diffusion coefficient in the ionic liquids tested, 

due to its vast and general application and good agreement with experimental values 

determined for organic solute diffusion in ionic liquids. 45 

For the 1-hexanethiol diffusion coefficient in the n-dodecane solvent, the most suitable 

correlation for organic mixtures is the Scheibel correlation (equation 6.7). 46 

 

             
        (       )

    

          
    (6.6) 

                
  (  (

       
    

)
    

)
 

          
     (6.7) 

 

In these expressions,              and           are the mutual diffusion coefficient of 

solute 1-hexanethiol at very low concentrations in solvent ionic liquid or n-dodecane 

(cm2.s-1), by the Wilke-Chang correlation or the Scheibel correlation, respectively, at a   

temperature (K). The        is the molecular weight of solvent ionic liquid or n-dodecane 

(g.mol-1),   is the association factor of solvent, dimensionless, being 1 considering in this 

case the ionic liquid as non-associating compound,        is the viscosity of solvent 

(mPa.s), and     ,        are the molar volume (cm3.mol-1) of the solute 1-hexanethiol 

and the solvent ionic liquid or n-dodecane, respectively, at their normal boiling 

temperature (K). 

Being the studied ionic liquids composed by organic ions, the Scheibel method was also 

applied to the mercaptan diffusion in the ionic liquids, for comparison of the estimated 

values. 

The molar volume for the 1-hexanethiol, ionic liquid and n-dodecane, at their normal 

boiling temperature, are also values that needed to be estimated and were calculated by 

the Schroeder method. 46 
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6.3. Materials and methods 

6.3.1. Materials 

 he model “jet-fuel” constituents selected were the hydrocarbon n-dodecane and the 

mercaptan 1-hexanethiol, 99% and 95% pure, respectively, from Sigma-Aldrich, 

Germany. 

Three ionic liquids with different density and viscosity properties were tested: 1-ethyl-3-

methylimidazolium methylsulfate, 1-ethyl-3-methylimidazolium triflate, and 1-ethyl-3-

methylimidazolium bis (trifluoromethylsulfonyl)imide. All the ionic liquids were acquired at 

IoLiTec, Ionic Liquid Technology, Germany, with a purity superior to 99%. Before using, 

the ionic liquids were dried and purified by heating (313.15 K), under constant stirring 

and at moderate vacuum (1 mPa) for a minimum of 24h. 

Each ionic liquid content in water, after the drying procedure, and the respective physical 

properties are reported in Table 6.1. 

 

Table 6.1 Solvents (n-dodecane and ionic liquids) physical properties, at 298.2 K. 

Solvent        (mol.g-1)      (ppm)        (kg.m-3)        (mPa.s) 

n-dodecane 170.33 28.2 745.7 47 1.36 48 

[C2mim][MeSO4] 222.3 130.1 1278.3 49 84.19 49 

[C2mim][CF3SO3] 260.2 305.2 1379.1 50 40.58 50 

[C2mim][NTf2] 391.3 283.3 1519.3 51 32.46 52 

 

6.3.2. Liquid-liquid extraction kinetic experiments 

The extraction cell used for these studies consists of a modified Lewis cell 53-54 with a 

total volume of 22.8 ml. A double paddle vertical stirrer, 15 mm of diameter, promotes 

the individual phase mixing by a regulated motor with a tachometer (Model 461895, 

Extech Instruments). To maintain a constant temperature fixed at 298.2 K (± 0.1 K), the 

cell is thermostatized by circulating water through a tube enfolding the cell. The water 

was thermo-regulated with a temperature stability of ± 0.1 K by means of a thermostat 

bath circulator (Julabo MC). 

The ionic liquid and the feed mixture (n-dodecane + 1-hexanethiol) were added to the 

extraction cell (11.4 ml each phase), remaining the ionic liquid as the lower phase, and 

the feed as the upper phase, due to their different densities (Table 6.1). Samples of each 
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phase (0.3 ml) were collected simultaneously and analyzed at suitable intervals until the 

equilibrium was reached. 

 

Analytical methods 

The mercaptan concentration, in each phase, was analyzed by potentiometric titration (± 

2.6% for the n-dodecane rich phase and ± 7.9% for the ionic liquid rich phase), using a 

TitraLab® 865 titration workstation, with an alcoholic solution of AgNO3 at 0.01 M, 

according to the ASTM D3227 standard. 55 This method has a detection threshold of 1 

mol/m3 for the mercaptan concentration for the sample volumes analyzed. 

Supporting our previous work results, 41 no peaks corresponding to the tested ionic liquid 

in the hydrocarbon-rich phase were found by UV spectroscopy. For the ionic-liquid-rich 

phase, also no dodecane was found by gravimetrical analysis (± 10-4 g). Therefore, the 

content of ionic liquid and n-dodecane in the dodecane and ionic liquid-rich phases, 

respectively, were considered negligible. Nevertheless, traces of these compounds might 

be present at each phase in concentrations below the detection threshold. 

The water content of the solvents tested was determined by Karl-Fischer titration, using 

a Metrohm 831 Karl Fischer coulometer. 

 

Calculation methods 

The software package MatlabTM, from Math Works Inc. (USA), was applied to perform 

the fitting of the mercaptan concentration variation with time, for the kinetic experiments, 

using the nlinfit routine. The overall mass transfer coefficients were determined 

performing a nonlinear regression, using the iterative least squares algorithm, and 

simultaneously solving the differential equations system specified in mass transfer 

modelling.  he parameters’ errors were calculated within a 95% confidence interval. 

 

6.3.3. Supported ionic liquid membranes (SILMs) experiments 

In order to assess the feasibility of the application of supported ionic liquid membranes 

for mercaptan desulfurization by a reduced pressure driven process, different ionic 

liquids and support membrane materials were investigated. 

The ionic liquids studied comprised the previous ionic liquids of the liquid-liquid 

extraction experiments (1-ethyl-3-methylimidazolium methylsulfate, 1-ethyl-3-
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methylimidazolium triflate, and 1-ethyl-3-methylimidazolium bis 

(trifluoromethylsulfonyl)imide), in order to understand the impact of their properties on 

the stability and permeation behavior of the resulting supported liquid membranes. 40 

In terms of membrane materials, both PVDF supports were already tested hitherto for 

gas separation processes 56-57 and a higher stability behavior was obtained for the 

hydrophobic PVDF. Hydrophilic PVDF and hydrophilic PES with imidazolium ionic liquids 

were applied and compared in gas separation experiments 58 and long term stabilities 

were achieved for  both materials. Nevertheless, in order to determine which support 

would be more appropriate to produce stable SILMs for this specific desulfurization task, 

stability experiments were carried out for these and other materials with different 

composition and properties, identified in Table 6.2, with the respective specifications and 

supplier. 

 

 



 

 

 

 

Table 6.2 Membrane support specifications and properties. 

Membrane  
support 

properties 

Hydrophobic  
polyvinylidene 

fluoride 
(hb-PVDF) 

Hydrophilic 
polyvinylidene 

fluoride 
(hl-PVDF) 

Teflon 
(PTFE) 

Polyethersulfone 
(PES) 

Cellulose 
acetate 

(CA) 

Polypropylene 
(PP) 

 Millipore Corporation Pall Corporation 
Sartorius Stedim  
Biotech GmbH 

Pall Corporation GVS Group Celgard
®
 

Thickness 
(µm) 

125 129 50.5 145 80 130 

Pore diameter 
(µm) 

0.22 0.20 0.2 0.2 0.22 0.05 

Porosity (%) 70 80 30 80 70 30 

Wettability to the ionic 
liquids 

high high low high 
membrane is 

dissolved 
low 
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6.3.3.1. SILMs preparation 

The ionic liquid was immobilized on the support membranes by first removing the air 

from the pores of the membrane applying vacuum for 1h on a stainless steel vacuum 

chamber, which facilitates the incorporation of the ionic liquids into the porous structure. 

After spreading ionic liquid drops on the membrane surface, still under vacuum and, after 

stabilization for at least 1h, the SILM excess of ionic liquid was removed using a tissue. 

The amount of ionic liquid incorporated was determined gravimetrically, and the 

membrane thickness change due to swelling was also measured using a micrometer 

Metric z169048, Sigma-Aldrich, Spain (± 5 µm). 

 

6.3.3.2. SILMs characterization 

Regarding the supported ionic liquid membranes characterization, the weight and 

thickness of the membrane, before and after the immobilization procedure, were 

measured using an analytical balance Sartorius A.G. Göttingen CP225D, Germany (± 10-

4 g), and a micrometer Metric z169048, Sigma-Aldrich, Spain (± 5 µm), respectively. 

The contact angle of 1-ethyl-3-methylimidazolium triflate in the hydrophobic 

polyvinylidene fluoride and polypropylene supports were also measured using a sessile 

drop method measured by a KSV's CAM 101 goniometer, which captures and 

automatically analyses video images for the contact angles measured. 

 

6.3.3.3. SILMs stability 

The SILMs stability was investigated by two different techniques, which allowed to 

evaluate the ionic liquid displacement from the membrane support by the permeation of 

air, as a result of a pressure gradient applied to the membrane system. 

The first set of experiments consisted in measuring the SILM ionic liquid loss when 

submitted to a pressure higher than atmospheric pressure. For this, the SILMs were 

placed in a dead-end filtration cell (10 mL AmiconTH ultrafiltration unit), and a nitrogen 

stream was used to apply pressure up to 2 bar in the feed circuit. At regular periods of 

time, the SILMs were weighed, using a Sartorius balance (A.G. Göttingen CP225D, 

Germany), to determine the reduction of the SILM weight caused by ionic liquid losses. 

The second type of experiments was carried out in a stainless steel flat circular unit 

composed by two compartments, separated by the SILM. A lower pressure was applied 

to the downstream compartment, while the upper compartment was exposed to air. After 
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stabilization of the pressure in the downstream compartment, vacuum was cut and the 

pressure evolvement, due to the permeation through the membrane, was registered over 

time. The SILMs were weighed before and after this experimental procedure, also to 

measure the ionic liquid loss. 

 

6.3.3.4. Permeation through the SILMs 

The permeation behavior of the components of the jet-fuel model through the SILMs is 

an important aspect to be considered, since these SILMs must present a high selectivity 

to be viable for a membrane assisted desulfurization process. 

The n-dodecane permeation tests were performed in a stainless steel flat circular 

module. This unit is composed by two compartments that were separated by the SILM. 

To evaluate the SILM stability using organic solvents, after applying vacuum at the 

downstream compartment and stabilization of the pressure, the upper compartment was 

filled with n-dodecane. Then, the vacuum was cut and the pressure evolvement over 

time was registered. The SILM was also weighed before and after this experimental 

procedure. 

 

6.4. Results and discussion  

In consequence of the extremely low mutual solubility between the alkanes and the ionic 

liquids, and despite the low mercaptan partition for these extracting solvents, shown in 

our previous work 41, that makes the conventional liquid-liquid extraction process 

unviable, the liquid extraction process was here evaluated using a supported ionic liquid 

membrane. 

Due to the importance of the extraction kinetics on this process, this section presents the 

study of the diffusion and mass transfer of 1-hexanethiol to the selected imidazolium 

based ionic liquids. In order to evaluate the application of SILMs in the membrane 

extraction process, their stability and selectivity are also analyzed testing the 

aforementioned ionic liquids and different support materials. 
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6.4.1. Liquid-liquid extraction kinetics 

To further understand the mercaptan mass transfer between the hydrocarbon phase and 

the selected ionic liquids, extraction experiments were carried out with different ionic 

liquids, in a modified Lewis cell, previously described. 

The experimental 1-hexanethiol concentrations (CRSH, mol.m-3) in the dodecane and ionic 

liquid phases during the extraction process, for the ionic liquids [C2mim][MeSO4], 

[C2mim][CF3SO3], and [C2mim][NTf2], are depicted in Figure 6.1. The different 

experiments were carried out at a fixed stirrer speed of 200 rpm, to not disturb the 

interface, and at a constant temperature of 298.2K. The mercaptan concentration was 

measured for the dodecane and ionic liquid rich phase, except for the samples with 

concentration of mercaptan below the detection threshold. 
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Figure 6.1 1-hexanethiol experimental concentration profile in the dodecane and ionic 

liquid rich-phases (filled and empty symbols, respectively), and data fitting (lines) at 

298.2 K and atmospheric pressure, using different extracting ionic liquids: a) 

[C2mim][MeSO4] (diamonds and dot-dashed line), b) [C2mim][CF3SO3] (squares and 

dotted line), c) [C2mim][NTf2] (triangles and dashed line). And d) comparison between 

the three extraction systems studied (dodecane phase). 

 

 

6.4.1.1. Mass transfer kinetics 

By fitting the experimental concentrations of the feed phase with the set of differential 

equations (equations 6.1 – 6.3), the overall mass transfer coefficient was determined for 

each system studied. The respective distribution ratio values were calculated by using 

the experimental concentration at the equilibrium for the feed and the ionic liquid phases 

(Figure 6.1). The values obtained for each parameter are gathered in Table 6.3. 
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Table 6.3 Overall mass transfer and coefficient distribution ratio for the systems ionic 

liquid + 1-hexanethiol + n-dodecane, at 298.2 K and atmospheric pressure. 

 

 

Regarding the mass transfer kinetics, the values obtained for the fitted overall mass 

transfer coefficients were 0.67 ± 0.32 × 10-7 m.s-1, 1.72 ± 0.80 × 10-7 m.s-1, and 2.01 ± 

0.48 × 10-7 m.s-1, for the systems with the ionic liquids [C2mim][MeSO4], 

[C2mim][CF3SO3], and [C2mim][NTf2], respectively (Table 6.3). From these fitted 

coefficients, and analyzing the 1-hexanethiol concentration profile plots (Figure 6.1), the 

extraction rates observed can be considered as low, taking between 5 to 20 hours to 

achieve the concentration plateau for the various systems tested. 

Given that the operating conditions are similar for the individual experiments, the 

differences observed are directly related with the ionic liquid tested, and consequently, 

with their physical properties. The behavior observed is determined by the ionic liquids 

viscosity, which has a significant impact on the mass transfer coefficients. In fact, high 

ionic liquid viscosities are responsible for increasing the boundary layer immediately 

adjacent to the interface, hindering the molecular transport in this region. 59 

Consequently, the decrease of the ionic liquid viscosity contributes for the mass transfer 

coefficients increase from [C2mim][MeSO4], [C2mim][CF3SO3], to [C2mim][NTf2]. 

Additionally and as supported by the resistances-in-series model (equation 6.4), the 

distribution coefficient within also attains a large contribution in the overall mass transfer 

coefficients. For the systems studies, this impact is be estimated to be between 10 – 

100. 

 

Regarding the distribution ratio, the values obtained were low due to the low solubility of 

the 1-hexanethiol in the tested ionic liquids (Table 6.3). The [C2mim][MeSO4] ionic liquid 

shows the lowest distribution ratio, with a value of 0.010 ± 0.008, whereas the 

[C2mim][CF3SO3] and the [C2mim][NTf2] exhibit higher values, 0.095 ± 0.026 and 0.079 ± 

0.017, respectively. Comparing these results with the distribution ratios obtained by 

ternary liquid-liquid equilibrium experiments in our recent work 41, the values found are in 

Ionic liquid        (mPa.s)         × 107 (m.s-1)   

[C2mim][MeSO4] 84.19 49 0.67 ± 0.32 0.010 ± 0.008 

[C2mim][CF3SO3] 40.58 50 1.72 ± 0.80 0.095 ± 0.026 

[C2mim][NTf2] 32.46 52 2.01 ± 0.48 0.079 ± 0.017 
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accordance (0.010 ± 0.007, 0.113 ± 0.009 and 0.115 ± 0.011, values converted from 

molar fraction ratio to concentration ratio, as defined in equation 6.2). 

The low distribution ratios observed are a result of the weak interactions between the 1-

hexanethiol and the ionic liquids in study. The n-dodecane and the 1-hexanethiol are 

essentially non- and very low polar molecules, respectively, where the main 

intermolecular interactions are van der Waals forces, albeit the mercaptan can also 

involve less significant dipole-dipole interactions, due to the individual –SH group. On the 

other hand, much different electrostatic and hydrogen-bonding type interactions occur in 

the ionic liquids. Combining these compounds, the interaction forces between them 

contemplate essentially week dispersive forces and dipole-dipole attractions. Since the 

cation [C2mim]+ is common in the ionic liquids tested, the differences observed are 

related with anions mostly due to their different polarity. Here anions with lower polarity 

tend to interact through dispersive van der Waal forces, which promote a better affinity 

between the mercaptan and the ionic liquid. A more extensive explanation on the 

mercaptan/alkane/ ionic liquid interaction can be found in our prior work. 41 Nonetheless, 

it is necessary to have in mind that fuels are a very complex mixture, and improving the 

affinity of ionic liquids to the target compounds for extraction, can also lead to increasing 

the undesirable ability to extract alike fuel compounds.  

 

6.4.1.2. Mass transfer correlations 

The individual mass transfer coefficients were estimated using the Sherwood correlation 

for the laminar layers at the system interface (equation 6.5). To apply this correlation, the 

1-hexathiol diffusion coefficients in the feed and ionic liquid phases were evaluated using 

the Scheibel and the Wilke-Chang correlation, respectively. The calculated values are 

shown in Table 6.4. The results estimated are in the order of 10-9 m.s-1 in the feed phase 

and two orders lower (10-11 m.s-1) in the different ionic liquids studied. This is a 

consequence of the significative differences on the solvents viscosity, being superior two 

orders of magnitude for the ionic liquids. For the systems tested, the n-dodecane 

viscosity is slightly higher than 1 mPa.s, whereas for the ionic liquids, it is superior to 30 

mPa.s.  

In the case of the feed n-dodecane, the diffusion coefficient is consistent with others 

reported in the literature for diffusion of solvents in organic solvents 46. For the ionic 

liquids, the data on liquid diffusion coefficients in ionic liquids are still very scarce and, in 

spite of the diffusivity coefficient deviations encountered, the values here estimated are 

in the same range of other values reported in the literature for solute diffusivity in ionic 
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liquids. 34, 60 It is also noticeable that, the diffusion of the mercaptan in the ionic liquids 

depends from the ionic liquids viscosity. Regarding the comparison between the use of 

the Wilke-Chang or the Scheibel correlations, the estimated diffusion coefficients are 

very similar. 

 

Table 6.4 Estimated diffusion of 1-hexanethiol in the n-dodecane and several ionic 

liquids, by the Scheibel (         ) and the Wilke-Chang (            ) correlations, with 

the molar volume at the boiling point temperature calculated by the Schroeder 

correlation. 

Solvent        (mPa.s)           (m
2.s-1)              (m2.s-1) 

n-dodecane 1.36 48 1.20 × 10-9 ------- 

[C2mim][MeSO4] 84.19 49 1.86 × 10-11 1.86 × 10-11 

[C2mim][CF3SO3] 40.58 50 3.83 × 10-11 4.12 × 10-11 

[C2mim][NTf2] 32.46 52 5.60 × 10-11 6.38 × 10-11 

 

Having estimated the diffusion coefficients, the individual mass transfer coefficients were 

predicted by the Sherwood correlation described in equation 6.5. The mass transfer 

coefficients were obtained by summing the individual mass transfer coefficients 

(equation 6.4). All values determined are shown in Table 6.5 a) and b), with the 

respective Reynolds, Schmidt and Sherwood numbers. 

For the systems studied, the values determined for the individual mass transfer 

coefficients in the laminar layer in the feed phase side, are identical and have a 

magnitude in the order of 10-5 m.s-1. With concern to the ionic liquid phase film, the 

values obtained are one order lower than the feed phase, standing on 10-6 m.s-1.  

Since the inverse of these estimated individual mass transfer coefficients, weighted by 

the respective distribution coefficients (equation 6.4), reflects the resistance of the 1-

hexanethiol transport through the phase films, it is possible to state that the solute 

founds higher resistances for mass transfer in the ionic liquid phase. Also, in light of the 

selected Sherwood correlation, combined with the equation of the resistances-in-series 

model, it is also possible to infer about the controlling step. Therefore, independent 

variation of the phases’ hydrodynamics shows that the rate of 1-hexanethiol extraction is 

controlled by the ionic liquid phase. 

Analyzing specifically the ionic liquid phase, the low mass transfer coefficients are 

determined by the viscosity, as can be seen by the viscosity contribution to the decrease 
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of the diffusion coefficients (Table 6.4), and the reduced agitation degree (low Reynolds 

numbers), which are responsible for a slow mercaptan transport in a thick boundary 

layer. For the tested ionic liquids, the individual mass transfer coefficients increase 

following the order [C2mim][MeSO4], [C2mim][CF3SO3], and [C2mim][NTf2], obeying to the 

decrease of the viscosity and the respective increase of the diffusivity. 

With relation to the overall mass transfer coefficients, a good agreement between the 

experimental and the estimated values by the selected Sherwood correlation was 

achieved. 

 

From the previous experiments, it was possible to conclude that, due to the very slow 

extraction rates of the mercaptan compound from the feed to the ionic liquid along with 

the low partition of the 1-hexanethiol towards the ionic liquid, the use of conventional 

liquid-liquid extraction equipment is discouraged in real conditions as a viable separation 

process, since it would require high operation time and very high volume of ionic liquid to 

achieve the mandatory mercaptan limits in the fuel. 

On the other hand, the negligible mutual solubility between the majority aliphatic 

compounds of jet-fuel compounds, as is the n-dodecane, and the large variety of ionic 

liquids, still makes very attractive the application of these non-volatile solvents for the 

removal of mercaptans. Thus, the addition of a regeneration step of the ionic liquid to the 

liquid-liquid extraction process might overcome the problems perceived, since the ionic 

liquid might be continuously cleaned, promoting a higher concentration gradient and a 

separation process kinetically controlled. 

In view of these considerations, the next section presents the extraction of mercaptans 

using supported ionic liquid membranes as an alternative approach to the desulfurization 

process. 

 



 

 

Table 6.5 a) Estimated individual mass transfer coefficients for the several tested ionic liquids, with the respective Reynolds, Schmidt and 

Sherwood numbers determined.  

Note: the subscripts      and    indicate if the value estimated was calculated using the Scheibel or the Wilke-Chang diffusion coefficient, 

respectively. 

 Feed phase Ionic liquid phase 

Ionic liquid                  
   × 105 

(m.s-1) 
   

        

× 105 

      

× 105 
            

        × 106 

(m.s-1) 

      × 106 

(m.s-1) 

[C2mim][MeSO4] 2871 1518 406 3.25 80 35.11 35.05 898 898 1.11 1.11 

[C2mim][CF3SO3] 2806 1518 401 3.21 172 7.77 7.22 795 777 2.03 1.98 

[C2mim][NTf2] 2754 1518 398 3.19 235 3.82 3.35 734 703 2.74 2.62 

 

Table 6.5 b) Estimated and experimental overall mass transfer coefficients for the several tested ionic liquids.  

Note: the subscripts      and    indicate if the value estimated was calculated using the Scheibel or the Wilke-Chang diffusion coefficient, 

respectively. 

 
Overall mass transfer 

Estimated Experimental 

Ionic liquid       
 × 107 (m.s-1)     

 × 107 (m.s-1)         × 107 (m.s-1) 

[C2mim][MeSO4] 0.11 0.11 0.67 ± 0.32 

[C2mim][CF3SO3] 1.92 1.87 1.72 ± 0.80 

[C2mim][NTf2] 2.15 2.06 2.01 ± 0.48 
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6.4.2. Supported ionic liquid membrane experiments 

The extraction of 1-hexanethiol from the fuel stream by the selected ionic liquids can be 

performed using supported ionic liquid membranes (SILMs). The ionic liquid confined 

inside the pores of the membrane works as a liquid membrane and, by applying 

vacuum on the permeated side, the 1-hexanethiol selectively solubilizes and diffuses 

across the ionic liquid and is continuously stripped. 

With regard to the SILMs requisites, such as chemical and mechanical resistance, and 

high selectivity to the target solute, SILMs are expected to benefit from the almost 

negligible mutual solubility between the aliphatic hydrocarbons and ionic liquids. In this 

way, the ionic liquid will work as a carrier to the target compounds and, due to the 

differences between the mercaptan and the dodecane partition, their separation should 

occur in a very selective mode, with a minimal volume of ionic liquid, filling the porous 

supporting membrane. 61-62 

Nevertheless, as stated before, the instability of supported liquid membranes is usually 

a critical issue for industrial application. For the separation in question, the SILMs 

should exhibit long term integrity with no liquid losses nor swelling and degradation of 

the supporting membrane material, and favorable transport towards the target solute. 

 

6.4.2.1. Membrane support 

Both hydrophobic and hydrophilic polyvinylidene fluoride (PVDF) and the 

polyethersulfone (PES) supports are easily wettable by the tested ionic liquids. Figure 

6.2 a) shows the low contact angle of the [C2mim][CF3SO3] ionic liquid on the 

hydrophobic membrane of PVDF. For the ionic liquid incorporation in polypropylene 

(PP) and Teflon (PTFE) membrane supports, the method and/or period of 

immobilization used in this work were not effective. This can be explained by the 

smaller pores of the PP support and higher hydrophobicity of the PTFE support, that 

promote lower wettability (high contact angle) of the supports by the ionic liquids 

(Figure 6.2 b for the PP support)). As for the cellulose acetate (CA) support, it was 

visually observed a physical degradation of the support material. 
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Figure 6.2 Contact angle of the ionic liquid [C2mim][CF3SO3] with a) the hydrophobic 

PVDF membrane, and b) the PP membrane. 

 

The incorporation of ionic liquid into the hydrophobic PVDF, hydrophilic PVDF and PES 

supports resulted in an increase of the weight and thickness of the membranes, as can 

be seen in Table 6.6. The weight variation corresponds to the necessary amount of 

ionic liquid to fill the pores, and the thickness expansion is related to the swelling effect 

of the ionic liquid in the support material, being more pronounced when the hydrophilic 

PVDF support was used. 

 

Table 6.6 Weight increase (∆m %) and thickness (∆δ %) after immobilization. 

  

[C2mim][MeSO4] [C2mim][CF3SO3] [C2mim][NTf2] 

(2745.3 ppm H2O,  

  = 84.17 mPa.s) 

(1020.8 ppm H2O,  

  = 39.38 mPa.s) 

(202.9 ppm H2O,  

  = 32.46 mPa.s) 

Hydrophobic 
PVDF SILM 

∆m % 141.9 154.7 179.1 

∆δ % 5.4 9.0 17.3 

Hydrophilic 
PVDF SILM 

∆m % 252.3 273.7 310.7 

∆δ % 11.3 13.5 22.4 

PES SILM 
∆m % --------- 386.8 --------- 

∆δ % --------- 9.6 --------- 

 

 

6.4.2.2. Ionic liquid losses 

In order to evaluate the integrity of the SILMs when operated under pressure 

differences due to ionic liquid displacement from the membrane support pores, two 

different approaches were used. In the first set of experiments, a positive pressure 

difference is applied using a nitrogen gas stream in the feed compartment; in the 

second case, the SILM was submitted to a negative pressure difference (vacuum in the 

a) b) 
θ = 120.92 ± 1.20 

θ = 52.64 ± 1.97 
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downstream compartment). In both cases, the SILM weight was measured before and 

after the experiment. 

From the positive pressure difference experiments, Figure 6.3 shows that the SILMs 

prepared with hydrophobic PVDF support are more stable than the ones prepared with 

hydrophilic PVDF. As can be seen, the ionic liquid loss from the hydrophobic support is 

lower than 4% for all the ionic liquids tested up to 2 bar, with exception of the 

[C2mim][MeSO4]/hb- PVDF SILM, that start showing a more pronounced ionic liquid 

displacement after 1.5 bar of pressure difference. When comparing the ionic liquids 

tested, it can be concluded that the [C2mim][CF3SO3]/hb-PVDF SILM is the most stable 

membrane, presenting losses lower than 2% up to 1.4 bar, followed by the 

[C2mim][NTf2] up to 1 bar. These losses are extremely low and they may be due to a 

removal of excess of ionic liquid from the membrane surface and not to a displacement 

of ionic liquid from the membrane pores. 

 

Figure 6.3 SILM ionic liquid loss along time, for the SILMs composed by PVDF 

hydrophobic (full symbols) and hydrophilic (dotted symbols), with the ionic liquids 

[C2mim][CF3SO3] (black symbols and solid line), [C2mim][NTf2] (grey symbols and dot-

dashed line), and [C2mim][MeSO4] (white symbols and dashed line), for positive 

pressure differences of 0.5 bar (circles), 1.0 bar (squares), 1.4 bar (hexagons), 1.5 bar 

(diamonds), 1.6 bar (cross), 1.8 bar (inverse triangles), and 2.0 bar (triangles), using a 

nitrogen gas stream on the AmiconTH 8010 cell. 

 

When filling the feed compartment of the permeation cell with air at atmospheric 

pressure and applying vacuum in the downstream side (negative pressure difference), 

an increase of the permeate pressure side is observed due to air permeation through 

the SILM (Figure 6.4), as a result of air solubility in the ionic liquid. A linear pressure 

profile confirms that the membrane pores are totally filled with the ionic liquid since no 
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abrupt gas leak is observed. Moreover, it indicates that no pronounced removal of the 

ionic liquid from pores of the membrane occurs. The losses observed are lower than 

0.7%, 2.2% and 4.7%, for the [C2mim][MeSO4], [C2mim][CF3SO3], and [C2mim][NTf2]-

SILMs, respectively. 

 

Figure 6.4 Pressure profile in the permeate side, when applying a negative pressure 

difference across the hydrophobic PVDF/ionic liquid SILM. Feed compartment: air at 

atmospheric pressure; Downstream compartment: vacuum at a starting pressure of 0.9 

mbar. 

 

6.4.2.3. Permeation through SILMs 

The mercaptan removal from fuel requires the highest SILM selectivity possible, i.e., a 

high permeability for the target mercaptans and very low, rather negligible, permeation 

of the hydrocarbons. Based on the jet-fuel model assumed in this work, the pure n-

dodecane permeation across the studied SILMs was evaluated in first place. 

Taking into account the results of the good and stable ionic liquid incorporation in the 

membrane support, the hydrophobic PVDF membrane support was tested with the 

ionic liquid [C2mim][CF3SO3], due to its low mutual solubility with aliphatic 

hydrocarbons, aiming to assure no permeation these compounds. The experimental 

results obtained for the hydrophobic PVDF/[C2mim][CF3SO3] are plotted in Figure 6.5 

a), represented by the full square symbols. They show the pressure increase in the 

permeate side during operation time, which results from the n-dodecane permeation 

across the SILM. This result was unexpected given the high stability of the SILM 

prepared with this specific membrane support and ionic liquid. The observed 

permeation of n-dodecane cannot be explained by a displacement of ionic liquid from 

the membrane pores. 
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In order to understand the undesirable transport of n-dodecane through the 

hydrophobic PVDF-based SILMs, other support materials were evaluated, namely 

hydrophilic PVDF (aiming at increasing the polarity of the SILM), and PES. Still, the 

results were unsatisfactory in both cases, as depicted in Figure 6.5 a). For these 

SILMs, a faster n-dodecane permeation through the [C2mim][CF3SO3] hydrophilic SILM 

was even observed, and the ionic liquid loss with the hydrophilic PVDF and PES 

supports was higher (7.4%wt. and 8.7%wt., respectively). 

As the permeation of n-dodecane could not be attributed to transport through empty 

pores, due to ionic liquids displacement, neither transport through the ionic liquid itself 

(as result of the extremely low affinity of n-dodecane to the ionic liquids), it was decided 

to investigate the transport of n-dodecane through the polymeric materials that 

constitute the supporting porous membrane. 

 

To understand if the n-dodecane SILM permeation was due to the support, a dense 

PVDF membrane was used in the reduced pressure unit. It was found that the PVDF 

polymer is extremely permeable to n-dodecane, as can be seen by the very fast 

pressure increase in the permeate side (Figure 6.5 b)). Comparing Figure 6.5a) and b), 

it can be concluded that the ionic liquid in the pores of the membrane acts as a barrier 

to the n-dodecane transport, as can be inferred from the different operation time to 

achieve the same pressure increase of 16 mbar. While for the tested SILMs it requires 

between 5 to 16 minutes, for the dense PVDF, it is almost instantaneous. Therefore, it 

may be concluded that although the membrane pores are well impregnated with ionic 

liquid, n-dodecane permeation occurs through the membrane support material. 

Figure 6.5 c) explains how the transport of n-dodecane take place in SILMs. 
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Figure 6.5 Pressure profile in the permeate side, for the n-dodecane permeation when 

applying a negative pressure difference across a) [C2mim][CF3SO3]-based SILMs with 

different membrane supports; and b) a dense PVDF membrane. A proposed scheme 

for the n-dodecane transport occurring in SILMs is illustrated in c). 

 

To overcome the undesirable permeation of the alkane through the polymer, an 

alternative could be the use of ionic liquid as an additional barrier after the SILM, in 

order to block the n-dodecane crossing over to the permeate side. This approach is 

shown in a schematic illustration in Figure 6.6. In this approach a membrane wettable 

or non-wettable by the ionic liquid can be used, however, the overall resistance to the 

mercaptans transport must be evaluated. Considering the study carried out in this work 

concerning the mass transfer of the 1-hexanethiol from the feed phase to the ionic 

liquid, from which it was concluded that the dominant resistance to the mercaptan 

transport occurs in the ionic liquid, it would be more adequate the use of a non-

wettable membrane by the ionic liquid, in order to reduce the resistance in the 

membrane, as shown in Fig. 6 b). In both cases, the alkanes presented in the “jet-fuel” 

are expected to not permeate to the receiving ionic liquid phase. 
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Figure 6.6 Mercaptan and n-dodecane transport through the membrane under different 

operating modes with an ionic liquid as the receptor phase, using a) a membrane 

wetted or b) a membrane not wetted by the ionic liquid. 

 

Taking into account the previous discussion, a membrane not wetted by the selected 

ionic liquid ([C2mim][CF3SO3]) was evaluated. The experiments were carried out in a 

Liqui-cel MiniModule® Contactor with microporous polypropylene hollow fiber 

membranes (Celgard® X-10), circulating the feed phase in the shell side and the ionic 

liquid inside of the fibres. 

With this configuration, no n-dodecane was detected in the ionic liquid phase, 

eliminating the problem of n-dodecane transport. Additionally, the use of this equipment 

favors the extraction step of the process since it promotes a very high interfacial area 

of transport (3225 m2/m3), reducing the extraction time from 20h to 2h. Figure 6.7 

shows the transport of the target solute 1-hexanethiol from the n-dodecane feed phase 

to the ionic liquid phase, when operating this equipment. 
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Figure 6.7 1-hexanethiol experimental concentration profile in the n-dodecane feed 

phase (filled squares) and ionic liquid receiving phase (empty squares), for the 

extraction in a Liqui-cel MiniModule® Contactor with microporous polypropylene hollow 

fiber membranes (Celgard® X-10), at 298.2 K and atmospheric pressure. Shell side: 

jet-fuel model (1-hexanethiol + n-dodecane); Lumen side: ionic liquid 

([C2mim][CF3SO3]). 

 

Having in mind the mass transfer steps taking place in the extraction process with 

SILMs, the mass transfer mechanism can be decoupled into simultaneous actions in 

two membrane contactors. This methodology consists in the use of a first membrane 

contactor in which occurs the selective extraction of the target solute from the feed 

phase, without losses of other fuel constituents (as shown). Then, the ionic liquid with 

the extracted mercaptan can be regenerated in a second membrane contactor, by 

applying vacuum or using a sweep gas in the downstream compartment. This step 

should allow for a complete cleaning of the ionic liquid allowing its reuse in the 

extraction step. Integrating both steps, the ionic liquid circulates in a closed loop 

between both membrane contactors, requiring therefore much lower volumes of ionic 

liquid than in conventional equipment. Additionally, this configuration allows for 

maximizing of the concentration driving force, making possible a continuous 

desulfurization of the fuel feed.  
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6.5. Conclusions 

This work addressed the study of ionic liquids for the removal of mercaptans from jet-

fuel streams. As the affinity of the mercaptans compounds towards the ionic liquids is 

relatively low, high volumes of extracting ionic liquid would be required in conventional 

liquid-liquid extraction. This requirement turns the conventional process unviable. 

This work proposes an alternative method. It was investigated the incorporation of ionic 

liquid in the pores of a membrane support (supported ionic liquid membrane – SILM) to 

be applied in the extraction of mercaptans from a jet-fuel model stream, composed by a 

mixture of 1-hexanethiol and n-dodecane. Making use of the ionic liquids’ negligible 

volatility and their very low mutual solubility with the aliphatic compounds, SILMs can 

be applied in a separation process in which vacuum is applied in the downstream side 

to remove the mercaptan selectively extracted by the SILM. 

To understand the transport behavior of the mercaptan from the n-dodecane-rich 

phase to the ionic liquid, extraction experiments were carried out testing an ionic liquid 

from the family of the 1-ethyl-3-methylimidazolium cation. The systems tested 

presented low mass transfer rates, controlled by the mercaptan transport in the ionic 

liquid phase, which can be overcome due to the permanent removal of the ionic liquid 

in the SILM to the receiving phase. 

The stability behavior of SILMs was also evaluated. The tested SILMs demonstrated an 

efficient immobilization of the ionic liquid and a good stability when using an organic 

feed and applying vacuum. However, the permeation of n-dodecane observed through 

the SILM polymeric support was noteworthy, even though the negligible mutual 

solubility between the n-dodecane and the studied ionic liquids. 

This problem was surpassed by using ionic liquid as a receiving phase in the 

downstream side of a hollow fibre membrane contactor, in counter-flow with the feed 

stream. The ionic liquid tested was [C2mim][CF3SO3], which has a very low mutual 

solubility with n-dodecane and, as a result, no dodecane was detected in the ionic 

liquid phase. This work opens the possibility for an integrated extraction/stripping of 

mercaptans from “jet-fuel” streams by using two membrane contactors in series, where 

extraction to a selected ionic liquid takes place in the first contactor, and stripping from 

the ionic liquid occurs in a second contactor. Using this configuration, the ionic liquids 

used can be continuously regenerated and recycled between both contactors. 
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7.1. Introduction 

Regarding the extraction of mercaptans (aliphatic sulfur species) from “jet-fuel” streams, 

our previous work1 showed the high potential of ionic liquids as extracting solvents, 

despite the low mercaptan affinity towards the ionic liquids. This feature makes the 

conventional liquid-liquid extraction not viable due to the high volumes of extracting ionic 

liquid that would be required. However, the ionic liquids studied and n-dodecane, used 

as the “jet-fuel” model, presented almost negligible mutual solubility, which avoids mutual 

contamination and losses of fuel and ionic liquid in the separation process. For this 

reason, the use of ionic liquids as solvents is potentially interesting, as discussed in our 

previous work,1 where supported ionic liquid membranes (SILMs) were studied. SILMs 

were evaluated for the selective extraction of a mercaptan target solute applying vacuum 

in the downstream side, in order to benefit from the very low mutual solubility between 

the aliphatic compounds and the ionic liquids. Though, it was observed a significant 

permeation of n-dodecane through the SILM polymeric support. This problem was 

overcome using the ionic liquid as a receiving phase and no dodecane was detected, 

opening opportunities for new approaches. This extraction process experiment was 

carried out in a hollow fiber membrane contactor, in a counter-current flow mode. 

Hollow fiber membrane contactors have proven to be very advantageous in separation 

processes, as shown by the large variety of systems tested in both liquid and gas 

separations,2-9 including mercaptans removal from a simulated naphtha stream under a 

reactive extraction with an aqueous NaOH solution.10-11 Membrane contactors provide 

large interfacial area between the two contacting phases, through the pores of the 

membrane, not requiring density differences and dispersion between the two phases. 

Consequently, back-mixing and formation of stable emulsions are prevented. 

Additionally, each fluid phase can be independently operated within a wide range of flow 

rates.6, 9 

The present work addresses the study of an integrated process using hydrophobic 

hollow fiber membrane contactors of polypropylene, where the selective mercaptan 

extraction occurs in a first membrane contactor and, simultaneously, regeneration takes 

place in a second contactor aiming at a complete removal of the mercaptan from the 

ionic liquid. This configuration offers several advantages, such as the reuse of the ionic 

liquid in the extraction process, by recirculation in a closed loop between the two 

membrane contactors. Therefore, the volume of ionic liquid required is much lower than 

in conventional equipment. Moreover, the driving force for solute transport is maximized, 

which is particularly important when the partitioning of the target solute is not 
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thermodynamically favored. The ionic liquid regeneration can be performed by different 

techniques, such as direct distillation, 12-15 evaporation, 16-18 re-extraction by an organic or 

aqueous solvent 19-21 or by using supercritical carbon dioxide 22-24, membrane separation, 

25-27 stripping with a sweep gas or vacuum, with or without thermal treatment, 28-32 or by a 

combination of methods. In this work, stripping applying vacuum and by using a sweep 

gas in the downstream of the membrane compartment were studied for the regeneration 

of the ionic liquid. 

 

7.2. Experimental Section 

The membrane contactors experiments were carried out using three different 

configurations in order to study the most promising set-up for the mercaptans removal 

from a jet-fuel model mixture. The configurations tested were: single extraction, 

simultaneous extraction and stripping with vacuum, and simultaneous extraction and 

stripping by using a sweep gas. 

The most suitable ionic liquid to be used in the extraction of mercaptans from a jet-fuel 

supply should present high affinity to the target compound and low mutual solubility with 

other feed compounds, avoiding their co-extraction, 33 and should present high mass 

transfer kinetics coefficients. Based on our previous work 1 on liquid-liquid equilibrium 

and mass transfer kinetics in a classical liquid-liquid extraction process, the ionic liquid 

that was identified to fulfill these separation requirements was the 1-ethyl-3-

methylimidazolium triflate, [C2mim][CF3SO3]. 
33 

To perform these experiments, two hollow fiber membrane contactors with porous 

polypropylene membranes were selected based on their wetting properties. These 

hydrophobic membranes are not easily wetted by the selected ionic liquid. Therefore, in 

the first extraction contactor, the membranes pores are wetted and filled with the n-

dodecane phase, while in the stripping contactor, the pores are filled by air (both in the 

case of the vacuum stripping and the sweep gas stripping). This selection of an 

hydrophobic material allows, therefore, to minimize the mass transfer resistance for 

solute transport through the membrane area. Additionally, given the positive mercaptan 

partition towards the hydrocarbon feed, it is also favorable to have the feed wetting the 

membrane pores, instead of the ionic liquid. 
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7.3. Materials 

The jet-fuel feed solution is composed by the hydrocarbon n-dodecane and circa 1% of 

the mercaptan 1-hexanethiol, which were acquired from Sigma-Aldrich, with 99% and 

95% purity, respectively.  

The [C2mim][CF3SO3] ionic liquid was acquired from IoLiTec, Ionic Liquid Technology, 

Germany, with purity superior to 99% and, before use, it was vacuum dried (1 mPa) at 

313.2 K, under constant stirring for a minimum of 24h. 

The sweep gas selected to perform the re-extraction of the mercaptan from the ionic 

liquid was compressed air, since it is the most economic option. 

The membrane contactors used were supplied by Membrana GmbH, Germany. The 

single extraction and the extraction stage in the integrated configurations were carried 

out in a Liqui-cel MiniModule® Contactor, while for the ionic liquid regeneration stage, 

either by vacuum or sweep gas, it was used a Liqui-cel ExtraFlow® Contactor. Both 

modules comprise microporous polypropylene hollow fiber membranes by Celgard®, 

Hoechst Celanese, Germany. In the case of the MiniModule® the membranes are 

Celgard® X-10, while for the ExtraFlow®, it was used the Celgard® X-50 type fibers. 

Additional information about the membrane contactors and fibers can be accessed in 

Table 7.1. 
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Table 7.1 Characteristics of the laboratory Liqui-cel MiniModule® and Extra-flow 

Module®Contactor, and respective hollow fibers properties, Celgard X-10 and Celgard 

X-50. 

Module Mini-module Extra-flow 

Shell inner diameter (cm) 2.5 6.6 

Length (cm) 20 28 

Effective area (m2) 0.23 1.4 

Specific area (cm2/cm3) 40 40 

Number of fibers  2100 10200 

Membrane fiber Celgard X-10 Celgard X-50 

Internal diameter (μm) 240  220 

External diameter (μm) 300 300 

Porosity (%) 30 40 

Effective pore size (μm) 0.05 0.04 

Pore dimensions (μm) 0.05 x 0.15 Not available 

Effective fiber length (cm) 16  16 

 

7.3.1. Experimental procedure 

The membrane contactor experimental set-up, for the single extraction of 1-hexanethiol 

from the model feed stream, is depicted in Figure 7.1. A second membrane contactor 

was coupled to the extraction module to perform the ionic liquid regeneration, either by 

applying vacuum or a sweep gas, as can also be seen in Figure 7.1.  

Closed vessels (500 mL) with small headspaces were used in order to minimize the loss 

of the feed compounds to the atmosphere and variations of phase volume and 

concentration.  

In the extraction module the feed was pumped into the shell side, while the ionic liquid 

extracting phase was circulated in counter-current inside the hollow fibers (lumen side). 

This operating mode was selected due to the different viscosities of the fluids, being 

thirty times higher for the ionic liquid [C2mim][CF3SO3] compared with the hydrocarbon 

feed. Therefore, circulating the ionic liquid in the lumen side allowed for a better fluid 

hydrodynamics and avoided death volumes that could easily occur in the shell side. For 
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this reason, the ionic liquid was also circulated in the lumen side of the regeneration 

module. 

In order to assure appropriate starting conditions, all independent experiments started by 

circulating the ionic liquid in the lumen side and, only after completion of this procedure, 

the feed stream was then circulated in the shell side. This procedure assured that no 

feed stream was able to permeate through the pores to the lumen side (remember that 

the membrane used is hydrophobic and, therefore, wetted by the n-dodecane feed). 

The higher viscosity of the ionic liquid promoted a slight overpressure on the lumen side, 

which also helped to obtain a more stable interface between the feed and the ionic liquid 

in the extraction module. For the integrated process, the same procedure was adopted, 

circulating the ionic liquid in each contactor before introducing the feed in the extraction 

contactor in order to reduce the delay related with the regeneration of the ionic liquid. 

During all experiments, representative samples of the feed and ionic liquid phases (0.3 – 

0.5 ml) were collected and analyzed along time. 

During the experiments, the flow-rate of each fluid was controlled by magnetic drive gear 

pumps (Ismatec, Switzerland), and measured using variable area flowmeters at the exit 

of the contactor. These pumps allowed for eliminating flow-rate oscillations and pulsating 

effects. During the experiments, the pressures at the inlet and outlet of the shell and 

lumen were also measured with analogical manometers. To achieve a better control of 

the operation temperature, the feed and ionic liquid reservoirs and the membrane 

contactor were jacketed by circulating thermo-regulated water using a thermostat bath 

(Julabo MC), with a temperature stability of ± 0.01 K. The temperature in the vessels was 

measured using a thermometer (± 0.1 K). 
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Figure 7.1 Experimental set-up. A indicates the ionic liquid direction in the single 

extraction configuration, and B in the integrated extraction and regeneration 

configuration. a) extraction hollow fiber membrane contactor, b) regeneration hollow fiber 

membrane contactor, c) feed stirred vessel, d) ionic liquid stirred vessel, e) recirculating 

pump, PI = pressure indicator, and FI = flow indicator. 

 

7.3.2. Operating conditions 

All experiments for the study of the removal of mercaptans were carried out under 

controlled operating conditions. It was decided to operate at a temperature of 298.15 ± 

0.2 K. However, as discussed later in this work, higher operating temperatures were also 

considered and their potential impact was simulated, supported on the knowledge about 

their effect on viscosity and diffusion coefficient of the target solute. 

For all configurations studied, the modules were operated in a counter-current mode in 

order to guarantee the highest possible mass transfer. 

In terms of selection of the stream flow rates, some precautions were considered: it was 

assured that the pressure drop inside the membrane fibers does not overcome the 

pores’ breakthrough pressure (minimum pressure required to force the ionic liquid into 

the membrane pores), in order to maintain a stable interface between the ionic liquid 

phase and the feed phase.  

a) 

d) 
e) 

e) 
c) 

b) 

A 

B 
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The breakthrough pressure (    ) was determined using the Young-Laplace equation, 

     
      

     
      bar.8 For the interfacial tension ( ) determination, it was assumed, 

that the low concentration of the mercaptan in the feed phase does not have a significant 

impact on the interfacial tension. Thus, the interfacial tension measured between the n-

dodecane and the [C2mim][CF3SO3], at 298.15 K, by the du Nouy ring method using a 

Attension Sigma 702ET, was of 15.2 mN.m-1. The contact angle between the ionic liquid 

and the polypropylene membrane   has the value of 121⁰ (2.11 rad). The       is the 

pore radius (m), assuming parallel cylindrical pores. 

Taking into account the ellipsoidal shape of the pores of the membrane Celgard X-10, an 

average breakthrough pressure of 3.85 bar was obtained. Therefore pressures 

differences up to 3.85 bar can be applied without interface disturbance and ionic liquid 

penetration inside the membrane pores. Experimentally, the flow rate of the ionic liquid in 

the lumen side of both contactors, was set at 0.96 cm3/s for all experiments. Under these 

conditions, the inlet pressure for the ionic liquid side was observed to be at 0.65 bar 

during the single extraction experiments, and between 0.70 bar to 0.75 bar for the 

integrated configuration, to assure a stable interface. The outlet pressures were kept at 

atmospheric pressure and 0.2 bar, respectively, for the single extraction and the 

integration operation. This last value of outlet pressure corresponded to the inlet 

pressure in the regeneration contactor. 

For the feed flow, circulating in the shell side of the extraction contactor, it was set at a 

flow-rate of 6.5 cm3/s. The operating pressures for the feed phase, in the extraction 

module, were lower than 0.05 bar at the inlet, and in its exit was atmospheric pressure.  

From these pressures values, the membrane pressure differences varied from 0.7 to 0.0 

bar, due to the pressure drop observed along the lumen side, quite below the estimated 

breakthrough pressure. 

The fluid velocity for the feed phase, considering the hydraulic diameter, is 1.90 cm.s-1, 

and for the ionic liquid phase, the velocities varied between 1.01 cm.s-1 and 1.04 cm.s-1 

in the extraction module and between 0.248 cm.s-1 and 0.255 cm.s-1 in the regeneration 

module. 

In the integrated set-up, vacuum or sweep gas were applied at the module shell side. 

The experiments started by testing vacuum at a pressure of 1 mbar. For the experiments 

carried out using the sweep gas, compressed air flow rates of 1.23 cm.s-1, 7.84 cm.s-1 

and 19.30 cm.s-1 were tested to study its impact in the mass transfer. 
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The membrane contactors were cleaned after each experiment in order to maintain the 

same initial conditions. The washing procedure consisted in removing the highest 

amount of the solvents without using any external agents. Then, water was added to the 

lumen side for removing the ionic liquid and, in the feed side, isopropanol helped to 

eliminate the hydrocarbon compounds. This procedure was repeated two to three times 

and then compressed air was passed through the system until it was completely dried 

and free of solvents. 

 

7.3.3. Analytical methods 

The concentration of the model mercaptan compound was measured in each stream by 

a potentiometric titration, using a TitraLab® 865 titration workstation, with an alcoholic 

solution of AgNO3 at 0.01 M, according to the ASTM D3227 standard 34. The ionic liquid 

content in the feed phase was analyzed by UV spectroscopy, using a Helios α UV-Vis 

spectrophotometer from Thermo Scientific, though no peaks corresponding to the ionic 

liquid were found, assuring that no contamination of the feed stream by the ionic liquid 

took place (at least, not above the detection limit). The n-dodecane content in the ionic 

liquid stream was determined gravimetrically ( 10-4 g) using a vacuum drying process 

and was found negligible. Nevertheless, even considering that the contents of ionic liquid 

in n-dodecane and of n-dodecane in ionic liquid-rich streams are insignificant, it must be 

keep in mind that traces of these compounds can occur at concentrations below the 

detection threshold. 
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7.4. Mass transfer model 

In order to model the extraction of 1-hexanethiol from the feed stream into the ionic liquid 

phase in the all the configurations tested, single extraction and integrated 

extraction/stripping, a material balance was performed to the membrane contactor and 

vessel. 

Considering the extraction module and assuming equilibrium at the feed/ionic liquid 

interface, the differential mass balance is described as: 

   
   

   
   (     

 ) (7.1) 

where    (m3.s-1) is the feed flow rate,    and the   
  (mol.m-3) are the 1-hexanethiol 

concentration in the phase under consideration and in equilibrium with the 1-hexanethiol 

concentration in the other phase.    represents the overall mass transfer coefficient (m.s-

1), and             (m2) the module membrane area, where     .is the internal fiber 

diameter (m),    is the fiber length (m) and    the number of fibers in the membrane 

contactor. 

The differential mass balance to the feed fluid vessel can be written as: 

   
   

  
   (  

      
  ) (7.2) 

where    (m3) is the feed phase volume,   
   and   

    (mol.m-3) are the inlet and outlet 1-

hexanethiol concentrations in the membrane contactor. The operating time is defined by 

  (s). 

Since the feed stream is operated with recirculation and assuming that the driving force 

variation in a single passage over the membrane contactor can be assumed negligible 

for the small interfacial area,    (0.23 m2), and the fluid vessels have a high degree of 

mixture, which turns the mercaptan concentration in the feed vessel equal to the inlet 

concentration of the module, equations 7.1 and 7.2 can be combined in the following 

equation: 

   
   

  
     (     

 ) (7.3) 

 

The   
  is related with the 1-hexanethiol concentration in the ionic liquid rich phase (   ) 

applying the distribution ratio ( ) definition: 
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 (7.4) 

The distribution ratio was determined in a previous work 1 and a value of 0.095 ±0.026 

for the system [C2mim][CF3SO3] + 1-hexanethiol + n-dodecane was obtained. 

For the single extraction process, the concentration     is obtained from a simple mass 

balance to the solute, at the initial conditions, in the feed phase and ionic liquid phase, 

  
  and    

 , respectively: 

    
  

   
(  

    )          
         

    (7.5) 

 

The overall mass transfer coefficient,   , is determined by fitting the experimental 

mercaptan concentration in function of time with the integration of equations 7.3, 7.4 and 

7.5, considering the initial conditions. 

 

In the case of the integrated process, when applying regeneration by sweep gas, a 

differential material balance to the ionic liquid must also be done, to a more accurate 

description of the solute mass transport in this stream: 

   
    
  

     (     
 )      (       

 ) (7.6) 

In this equation,    and    are the overall mass transfer coefficients associated with 

each module of the integrated process, extraction and regeneration, with the respective 

membrane areas    and   . Here,    
  is the concentration of mercaptan in the ionic 

liquid in equilibrium with its concentration in the gaseous phase (  ) inside the pore of 

the membrane (   
  

  

 
,   = Henry’s constant).  he value of   was estimated 35 by the 

product of the vapor pressure of 1-hexanethiol at the operating temperature (298.15 K) 

and the activity coefficient at infinite dilution. The   value was calculated to be 0.0022 

(mol.m-3/mol.m-3). 

By a material mass balance to the system, the mercaptan concentration in the gas phase 

can be described as: 

   
  (  

    )        

   
          

         
         

    (7.7) 

 



Integrated extraction/regeneration process for mercaptans desulfurization 

185 

Considering an efficient regeneration process where the mercaptan is completely 

removed from the ionic liquid (    ≈ 0 mol.m-3), and assuming the extraction process as 

the limiting stage of the integrated process, the overall mass transfer can be determined 

by fitting the experimental mercaptan concentration of the feed phase with equation 7.3 

for    
   . 

 

The resistances-in-series model, based on the combination of the individual mass 

transfer resistances, is helpful understanding the mercaptan extraction/stripping process.  

Equations 7.8 and 7.9 describe the resistances in the extraction and regeneration 

modules, respectively: 

 

 

  
 

     

       
 

     

         
 

 

      
 (7.8) 

 

  
 

     

        
 

     

          
 

 

     
 (7.9) 

 

   and the    (m.s-1) represent the overall mass transfer coefficient for the extraction 

and the regeneration process, respectively. In terms of the individual mass transfer 

coefficients, they are described by   ,      ,       and    (m.s-1) for the boundary films 

associated with the feed, the ionic liquid and the gaseous phase, respectively. The    , 

    and      (m) are the inner, outer and logarithmic mean fiber diameters in the 

extraction and regeneration modules. 

 

The mass transfer coefficients associated with transport through the membrane in each 

module are the     and     (m.s-1) and are determined accordingly with the phase 

wetting the membrane: 

    
       

        
  and      

       

        
 (7.10) 

where   is the diffusion coefficient (m2.s-1) at a   temperature (K).,  ,   and   are the 

porosity, thickness (m) and tortuosity of the membrane, in the extraction ( ) and 

regeneration ( ) modules. 
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As shown in our previous work, 1 due to the high ionic liquid viscosity and low mercaptan 

diffusion in the ionic liquid, the ionic liquid phase presents the highest mass transfer 

resistance to the transport of mercaptan. Moreover, since the membranes in the 

extraction and regeneration modules are wetted by the feed and gas phases (not-

controlling phases), respectively, the resistance in series equations can be simplified to 

the resistance in the ionic liquid boundary film. 

 

Calculation methods 

The fitting of the mercaptan concentration variation with time, for the various experiments 

were performed using the nlinfit routine, from the software package MatlabTM, from Math 

Works Inc. (USA). The overall mass transfer coefficients for the single extraction process 

and for the integrated process were determined by performing a nonlinear regression, 

using the iterative least squares algorithm, and simultaneously solving the differential 

equations system previously specified for each configuration.  he parameters’ errors 

were calculated within a 95% confidence interval. 

 

7.5. Results and discussion  

The work here developed aims at demonstrating the potential use of membrane 

contactors and ionic liquids in an efficient desulfurization process. The liquid extraction 

process using membrane contactors is explored using a mixture of 1-hexanethiol and n-

dodecane, as jet-fuel model feed, and the ionic liquid [C2mim][CF3SO3]. This ionic liquid, 

was selected in order to avoid the co-extraction of the n-dodecane and other fuel 

compounds.  

The methodology followed in this work involved a pre-evaluation of the membrane 

contactor applicability in the extraction process, followed by regeneration of the 

extractant in a coupled contactor. The regeneration step aims at re-extract the target 

solute from the ionic liquid, and reuse this extractant in the extraction module, in a closed 

loop, allowing for reducing the amount required and costs associated with the extractant. 

This integrated process, proposed for the removal of mercaptans from the jet-fuels, is not 

only dependent from the behavior of the extraction step, but it is also determined by the 

stripping process and its regeneration efficiency. 
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7.5.1. Single extraction in a membrane contactor 

The 1-hexanethiol extraction was firstly studied in a single membrane contactor and the 

experimental data is plotted in Figure 7.2. The 1-hexanethiol concentration profile 

obtained is very regular and smooth, reaching equilibrium at circa 1.5h of operation time. 

Comparing this profile with the profile obtained in mass transfer studies in an extraction 

cell, previously reported,1 it was found that these extraction profiles present the same 

behavior, except for the time needed to reach equilibrium, due to the different interfacial 

areas available for mass transfer. As expected, the mass transfer rate was faster using 

the membrane contactor, due to a higher interfacial area of 0.23 m2 (3225 m2/m3) 

assured by the membrane contactor, against the 0.0002 m2 (20 m2/m3) available in the 

stirred extraction cell. 

Regarding the overall mass transfer coefficient for this single extraction, the experimental 

concentration data were fitted considering equations 7.3, 7.4 and 7.5 and the value 

obtained was 7.88 ± 0.35 × 10-8 m.s-1, which can be considered relatively low when 

comparing with other extraction systems using this type of equipment. 

Though the low mass transfer rate, the mercaptan extraction using the selected ionic 

liquid shows a high potential since, as a result of the very low mutual solubility between 

the ionic liquid and the n-dodecane, no n-dodecane was detected in the ionic liquid 

phase. The ionic liquid worked as a liquid barrier to the transport of the n-dodecane and 

the undesirable co-extraction of the fuel compounds was prevented. 

  

Figure 7.2 1-hexanethiol experimental concentration profile in the n-dodecane and ionic 

liquid rich-phases (filled and empty symbols, respectively), and data fitting (lines), for the 

single extraction configuration, at 298.2 K and atmospheric pressure. Extraction module: 

shell side – jet-fuel model stream (1-hexanethiol + n-dodecane); lumen side – ionic liquid 

([C2mim][CF3SO3]). 
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7.5.2. Simultaneous extraction and regeneration in membrane contactors 

The thermodynamic equilibrium observed and the consequent low extraction capacity is 

a limitation for the extraction process, even in a membrane contactor with the high 

interfacial area that favors high mass transfer rates. However, this constrain can be 

solved by adding a regeneration step of the ionic liquid, which impacts favorably on the 

extraction step by the continuous cleaning of the ionic liquid and increasing of the driving 

force for solute extraction.  

The following experiments aim at evaluating the regeneration technique more suitable to 

be integrated with the extraction unit. The extraction and regeneration processes were 

run in two membrane contactors (Figure 7.1). The first experiment consisted in testing 

the use of vacuum in the shell side of the second contactor to strip the mercaptan from 

the ionic liquid stream. The second approach used a sweep gas stream also circulated in 

the shell side. In these experiments, the ionic liquid stream was operated in a closed 

cycle, between the extraction and the regeneration contactors, and the effect of the 

regeneration process was monitored by analyzing the mercaptan concentration variation 

in the jet-fuel feed phase. 

 

7.5.2.1. Vacuum-based regeneration 

The regeneration with vacuum was performed at 1 mbar and room temperature to allow 

the evaporation of 1-hexanethiol at 298.2 K under vacuum, which has a vapor pressure 

around 6 mbar at this temperature. The experimental concentrations of mercaptan in the 

feed and the ionic liquid phase are plotted in Figure 7.3.  

As can be observed from the mercaptan extraction results, its extraction from the feed 

stream stops after 2h and tends to a constant value. The use of vacuum does not have a 

positive impact on the extraction of the target solute and, therefore, cannot be 

considered as a potential process for the re-extraction of mercaptans from the ionic liquid 

extractant. This unfavorable behavior results from the partial penetration of the ionic 

liquid inside the pores of the polypropylene membrane. Under these circumstances, the 

ionic liquid wets the pores of fibers creating an additional significant mass transfer 

resistance to the process of solute transfer. This additional resistance cannot be 

neglected since the ionic liquid has a high viscosity (41 mPa.s). Consequently, the 

transport of mercaptan by diffusion from the ionic liquid phase to the vacuum phase 

becomes extremely slow. This negative effect on the overall mass transfer of solute does 

not allow for an effective regeneration of the extractant in a short operating time. This 

problem was difficult to anticipate, since the ionic liquid has a negligible vapor pressure 
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and, from our previous work 1, the polypropylene membrane tested is not easily wetted 

by the [C2mim][CF3SO3] ionic liquid. The continuous application of vacuum in the 

downstream circuit might force its partial penetration into the pores of the polypropylene 

membrane, reducing the mass transfer rate. 

Taking this result into consideration, it was decided to evaluate the removal of the 

mercaptan compound from the ionic liquid phase by applying a sweep gas stream, 

avoiding the displacement of the ionic liquid to the pores of the membrane. 

 

Figure 7.3 1-hexanethiol experimental concentration profile in the n-dodecane and ionic 

liquid phases (filled and empty symbols, respectively), for the extraction/vacuum 

stripping configuration, at 298.2 K and atmospheric pressure. Extraction module: shell 

side – jet-fuel model stream (1-hexanethiol + n-dodecane); lumen side – ionic liquid 

([C2mim][CF3SO3]). Regeneration module: shell side – vacuum; lumen side – ionic liquid 

([C2mim][CF3SO3]). 

 

7.5.2.2. Sweep-gas based regeneration 

As an alternative to vacuum regeneration, a sweep gas stream of compressed air was 

used in the downstream circuit of the second membrane contactor, aiming an efficient 

cleaning of the ionic liquid. This unit worked under gentle conditions of temperature and 

pressure, avoiding the permeation of the ionic liquid through the membrane. 

Three sweep gas flow-rates were tested with linear velocities from 1.23 cm.s-1 to 19.30 

cm.s-1 and their impact on the mercaptan extraction is shown in Figure 7.4. Comparing 

the results obtained, it is possible to observe that the use of sweep gas allows 

overcoming the unfavorable low thermodynamic equilibrium observed in the single 

extraction (Figure 7.2), since it was possible to reduce the mercaptan concentration in 

the feed stream to values very close to zero, i.e. lower than 2 ppm, as targeted by the 
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legislation. This result proves the high potential of this integrated process as an 

alternative method to the deep-desulfurization process. This process not only allows the 

production of ultra-low sulfur fuels, but also allows reducing the operating costs due to 

the mild conditions of temperature and pressures applied. 

In what concerns the mass transfer occurring in these processes, a significant variation 

of the mercaptan concentration in the ionic liquid phase is observed for different 

experiments. It is shown that the increase of the sweep gas flow rate leads to a more 

efficient removal of mercaptan from the ionic liquid and to a consequent improvement of 

the extraction of the mercaptan from the feed stream. This increase of the gas velocity in 

the shell side of the module reduces the residence time of the gas inside the membrane 

contactor, which increases the driving force for mass transfer by lowering the 

concentration of this solute in the gaseous phase.  

The effect of increasing the velocity of the sweep gas on the extraction process is 

important up to a point where a complete re-extraction of the mercaptan from the ionic 

liquid is achieved. For higher sweep gas flow-rates (lower residence time), at which the 

regeneration is complete, the integrated process becomes controlled by the extraction of 

the mercaptan from the feed phase. 

  



Integrated extraction/regeneration process for mercaptans desulfurization 

191 

 

 

Figure 7.4 1-hexanethiol experimental concentration profile in the n-dodecane and ionic 

liquid phases (filled and empty symbols, respectively) and data fitting (lines), for the 

extraction/sweep gas stripping configurations, at 298.2 K and atmospheric pressure, with 

a) sweep gas velocity of 1.23 cm.s-1 (square symbols and dot-dashed lines), b) sweep 

gas velocity of 7.84 cm.s-1 (triangle symbols and dotted lines) and c) sweep gas velocity 

of 19.30 cm.s-1 (diamond symbols and dashed lines). And d) comparison between the 

single extraction (solid line) and the three extraction/sweep gas stripping systems 

studied (dodecane phase). Extraction module: shell side – jet-fuel model (1-hexanethiol 

+ n-dodecane); lumen side – ionic liquid ([C2mim][CF3SO3]). Regeneration module: shell 

side – sweep gas; lumen side – ionic liquid ([C2mim][CF3SO3]).  

 

Mass transfer kinetics 

For the case of the lower sweep gas flow rate (   = 1.23 cm.s-1), where the mercaptan 

concentration in the ionic liquid stream remains considerable along time, the overall 

mass transfer coefficient was calculated by fitting the experimental mercaptan 

concentration profile with equations 7.3, 7.4, 7.6 and 7.7. 
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The extraction and regeneration mass transfer coefficients determined were 4.90 ± 1.49 

× 10-8 m.s-1 and 1.06 ± 0.20 × 10-8 m.s-1, respectively. Knowing that the dominant 

resistance in each module is the transport of the mercaptan in the ionic liquid phase, 

these values should be equal if the fluid dynamics of the ionic liquid phase in both 

modules were identical. The difference observed results from the different ionic liquid 

stream velocity rates: 1.01 cm.s-1 in the extraction module and 0.248 cm.s-1 in the 

regeneration module. 

For the experiments with    = 7.84 cm.s-1 and    = 19.30 cm.s-1, the mercaptan 

concentration remaining in the ionic liquid phase was extremely low, practically zero 

(0.04 mol.m-3 and below the detection threshold, respectively), due to a very efficient 

stripping of the ionic liquid. For these experiments, the differential mass balance 

described in equation 7.5, with   
  = 0, can be used to determine the extraction overall 

mass transfer. The values obtained for the overall mass transfer coefficient were 3.59 ± 

0.11 × 10-8 m.s-1 and 5.24 ± 0.21 × 10-8 m.s-1, respectively. Although slightly different, 

these values of the same magnitude as the overall mass transfer coefficient determined 

for the single extraction process (7.88 ± 0.35 × 10-8 m.s-1). Having in mind that the 

transport of the mercaptan in the ionic liquid phase is the limiting step in each module, 

the overall mass transfer coefficient for the regeneration module can be assumed as 

equal to the value determined for the regeneration mass transfer coefficient for the case 

with lower sweep gas velocity. 

 

Simulation of mercaptan transport  

As aforementioned, considering a complete regeneration of the ionic liquid, the mass 

transfer performance in the integrated process is controlled by the 1-hexanethiol 

transport in the ionic liquid phase, in the extraction module. Therefore, the overall mass 

transfer coefficient is directly affected by the operating conditions of the ionic liquid 

stream in the extraction membrane contactor. Aiming at understanding the effect of the 

ionic liquid fluid dynamics on the extraction process, the impact of increasing the ionic 

liquid linear velocities in the extraction contactor was evaluated by simulation, using the 

mass transfer model previously discussed. Additionally, the impact of operating at higher 

extraction temperature was also evaluated. 

 

The ionic liquid velocities tested, 5 cm.s-1 and 10 cm.s-1, at a temperature of 298.2 K, 

were chosen having in mind the limiting pressure drop allowed inside the module, 
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considering the critical breakthrough pressure (3.85 bar at 298.2 K). For each velocity, 

the pressure drop between the inlet and the outlet of the module was estimated, by using 

the Hagen-Poiseuille equation 8,    
          

   
       bar, where the     is the ionic 

liquid viscosity (Pa.s) at the operating temperature, the    is the fiber length (m) and the 

    is the fiber internal diameter (m).  

The pressure drop estimated for each tested velocity was of 1.8 bar and 3.6 bar, 

respectively, which do not exceed the critical breakthrough pressure. 

 Using the mass transfer relation 
          

  
 (

             

     
)
    

, 36 the ionic liquid mass 

transfer coefficients increased significantly from 4.90 × 10-8 m.s-1 at 1 cm.s-1, to 2.46 × 

10-7 m.s-1 at 5 cm.s-1, and 4.96 × 10-7 m.s-1 at 10 cm.s-1. This effect is shown in Figure 7.5 

a). The increase of the ionic liquid velocity allows for enhancing the extraction 

performance due to its direct impact on the mass transfer coefficient increase, with a 

decreasing resistance to the mercaptan transport in the ionic liquid boundary layer. 

 

A temperature increase leads to an improvement of the mass transfer (Figure 7.5 b)) by 

reducing the viscosity and density of the ionic liquid (reducing the ionic liquid boundary 

layer thickness) and increasing of the diffusion coefficient. The effect of temperature was 

simulated taking into consideration its various impacts on these properties, and also 

respecting the temperature restrictions of the hollow fiber membrane contactor of Liqui-

Cel®, indicated by the manufacturer. Simulations for temperatures of 313.2 K and 333.2 

K led to a the viscosity reduction of [C2mim][CF3SO3] from 41 mPa.s at 298.2 K to 26.8 

mPa.s 37 and 14.7 mPa.s 37, and the density from 1379.1 kg.m-3 to 1371.5 kg.m-3 and 

1354.9 kg.m-3, respectively. The diffusion coefficient, estimated by the Wilke-Chang 

correlation 38, increases from 4.12 × 10-11 m2.s-1 to 6.79 × 10-11 m2.s-1 and 1.28 × 10-10 

m2.s-1, respectively.  

Estimating the mass transfer coefficient using the relation 
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, 36 the benefit in the mass transfer coefficient can be 

observed in Figure 7.5 c). The corresponding overall mass transfer coefficients are 5.51 

× 10-8 m.s-1 and 6.54 × 10-8 m.s-1. 
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As observed, the extraction process can be remarkably improved if optimal operating 

conditions are employed. By the combination of the ionic liquid fluid dynamics and the 

operating temperature, the mercaptan extraction performance is significantly improved. 

When increasing the temperature, the pressure drop associated with the ionic liquid flow 

inside the fibers is also reduced. Therefore, higher ionic liquid velocities can be applied 

without exceeding the critical breakthrough pressure at the operating temperature. Due 

to the lack of data for estimation of the critical breakthrough pressure at the operating 

temperature of 333.2 K, the ionic liquid velocity selected for simulation, at 333.2 K, was 

choose to cause a pressure drop lower than 2 bar. A pressure drop of 1.96 bar is 

estimated for an ionic liquid velocity of 15 cm.s-1. Figure 7.5 c) shows the overall 

improvement when increasing the ionic liquid velocity and temperature. The estimated 

extraction mass transfer coefficient for these conditions is 1.0 × 10-6 m.s-1, which allows 

reducing drastically the mercaptan extraction time from 50h to only 3.5h. These results 

were not validated due to experimental restrictions. 

 

Still, the results presented attest the remarkable potential for an effective mercaptan 

removal from a jet-fuel feed phase using an ionic liquid as a solvent in an integrated 

extraction/stripping process carried out in hollow fiber membrane contactors. 
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Figure 7.5 Simulated 1-hexanethiol concentration profile varying a) the ionic liquid 

velocity and b) the operating temperature. In c) the simulation is obtained combining both 

parameters studied in a) and b). 
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7.6. Conclusions 

A new methodology for the desulfurization of “jet-fuel” streams, using a mixture of 1-

hexanethiol and n-dodecane as a model system, was proposed in this work. It consisted 

in a liquid extraction of the mercaptan using as an ionic liquid as the extracting solvent 

(1-ethyl-3-methylimidazolium triflate [C2mim][CF3SO3]), followed by its integrated 

regeneration. The separation process was carried out in hollow fiber membrane 

contactor in counter-current mode, which allowed for reducing the extraction time due to 

its high interfacial area (3335 m2/m3). This equipment also requires a low volume of ionic 

liquid than that required in conventional processes, which is particular important 

considering the relatively low distribution ratio towards the target solute. 

Simultaneously to the extraction, the ionic liquid was regenerated in an integrated 

system. Two regeneration methods were tested: vacuum stripping and a sweep gas 

stream in the downstream side of the membrane. In the vacuum stripping process, the 

ionic liquid partially filled the fiber pores which add a second significant resistance to the 

mercaptan transport. This method was considered unfeasible for the re-extraction of 

mercaptans. Using a sweep gas stripping, a complete regeneration of the ionic liquid 

was possible, allowing for an improvement of the extraction performance as a result of 

the maximization of the concentration gradient, reducing the constrains related with the 

low distribution ratio of the system under study. A complete extraction of the mercaptan 

from the “jet-fuel” model stream was achieved, producing an ultra-low sulfur jet-fuel with 

sulfur content lower than 2 ppm, as envisaging by legislation for the use of ultra-low 

sulfur jet-fuel (< 10 ppm S). 

In an efficient integrated regeneration of the ionic liquid, the controlling step becomes the 

extraction of mercaptan from the feed phase to the ionic liquid phase. Simulations 

showed that the increase of the ionic liquid velocity and operating temperature can lead 

to a high decrease of the extraction time, i.e. from 50h to 3.5h. 

These results prove the potential of the integrated extraction/sweep gas stripping 

process using ionic liquid as solvent in hollow fiber membrane contactors for the removal 

of mercaptans from “jet-fuel” streams, where the ionic liquid used can be continuously 

regenerated and reused. 

After this successful proof of principle, the development of a full-scale unit to fulfill the 

need of ultra-low sulfur fuels from real fuel streams requires a continued research effort 

aiming at assessing the feasibility of this process, followed by pilot-plant test with real 

fuel streams. 
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8.1. General conclusions 

The present work aimed at developing an alternative desulfurization process for the 

removal of aliphatic sulfur compounds, known as mercaptans, from jet-fuel streams. 

Envisaging the fulfillment of environmental concerns and legislation requisites, jet-fuel 

streams with sulfur content lower than 10 ppm in elemental sulfur should be produced. 

To achieve this goal, a model feed of 1-hexanethiol and n-dodecane, representing the 

mercaptan solute target and aliphatic compounds of the jet-fuel, respectively, was 

selected to carry out all the studies and experimental work required. 

The work developed can be divided into two different parts. The first stage attempted the 

selection of the most suitable ionic liquid to be used as a mercaptan extractant, and the 

second part explored the more appropriate separation process to carry out the 

desulfurization process. 

For the selection of the ionic liquid two requirements needed to be satisfied:  

1. The aliphatic and the aromatic compounds of the jet-fuel should not dissolve into 

the ionic liquid selected, neither the ionic liquid into the jet-fuel compounds. 

These demands intend to avoid the contamination of the jet-fuel and the loss of 

fuel compounds to the extracting solvent. 

2. The ionic liquid selected should have a high affinity with the mercaptan species, 

being able to extract them selectively from the jet-fuel feed stream. 

The solubility behavior of the ionic liquid and the jet-fuel hydrocarbons was studied using 

the extensive literature available and predicted results, using the completely predictive 

thermodynamic model COSMO-RS, on binary and ternary systems along with other 

estimated behaviors for non-tested systems. This allowed an understanding of the 

interactions and molecular structural impacts occurring between the ionic liquid and the 

hydrocarbons. It was also possible to conclude that for the desulfurization of jet-fuel, the 

ionic liquid with cations with shorter alkyl chains from the imidazolium, pyridine and 

pyrrolidinium families promoted higher selectivities. 

Considering the systems with mercaptans, no phase diagrams with ionic liquids were 

found in literature, at the time of this work. Therefore, based on the pre-screening 

performed, various ionic liquids were experimentally investigated. It was found that these 

systems show very high selectivities due to the very low mutual solubility between the 

ionic liquids and the n-dodecane (practically immiscible systems). The distribution ratio 

values determined were, however, not very favorable (<< 1) for the extraction of 

mercaptans using ionic liquids, as a result of the low intermolecular interactions 
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occurring between the ionic liquid and the mercaptan. Given the good ability of COSMO-

RS in the description of these systems, other ionic liquid cations and anions were 

studied. It was found that, when the distribution ratio is enhanced, the selectivity of the 

system is reduced, jeopardizing the extraction process due to a possible co-extraction of 

other jet-fuel constituents. Taking into account the necessary balance between the 

selectivity and distribution ratio of the mercaptan towards the ionic liquid, the ionic liquid 

selection must be done prudently and, therefore, the shorter alkyl chain imidazolium-

based ionic liquids were considered an acceptable choice, as mentioned before, 

additionally to their commercial availability and cost, comparing with other ionic liquids. 

Having studied and selected the ionic liquids with the expected best potential and 

performance, the separation process technology was assessed.  

Considering that the distribution ratios of the mercaptan towards the selected ionic 

liquids were low, the conventional liquid-liquid extraction processing was discarded since 

the volume of ionic liquids required to perform the extraction would be extremely large. 

Therefore, separation techniques controlled by the solute transport kinetics were studied. 

Moreover, this concept deals with the ionic liquid regeneration after mercaptan 

“contamination” due to the extraction process.  he first studies considered the use of 

supported ionic liquid membranes (SILMs), applying vacuum in the downstream side of 

the system, allowing for a simultaneous and in-situ extraction of the mercaptan from the 

feed phase to the ionic liquid and stripping of the ionic liquid immobilized on the pores of 

the membrane support. This process was shown to be unfeasible for the system studied 

due to the permeation of the n-dodecane through the material of the supporting 

membrane of the SILM . 

Based on the negligible solubility of the n-dodecane in the ionic liquid, the ionic liquid 

was then used as a receiving phase in a hollow fibre membrane contactor and no 

dodecane was detected in the ionic liquid phase, solving the problem related with the 

fuel losses. The extraction process was here carried out in a hollow fibre membrane 

contactor since it provides an extremely high interfacial area and requires a lower ionic 

liquid volume than conventional equipment.  

In order to reduce the limitations imposed by thermodynamic equilibrium and low 

distribution ratio, a regeneration process for the mercaptan re-extraction from the ionic 

liquid was integrated into the extraction process. Among the several processes available, 

two methods were tested: vacuum stripping and a sweep gas stripping using a air stream 

in the downstream side of the membrane. It was found that stripping with a sweep gas 
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allows for a complete regeneration of the ionic liquid which permits a maximization of the 

concentration gradient and an improvement of the extraction process. 

The mercaptan extraction achieved with this new methodology was complete and a jet-

fuel model with sulfur content lower than 2 ppm of S was produced. 

Additionally, the effect of increasing the fluid velocity and operating temperature of the 

ionic liquid stream in this separation process was estimated and the simulations show 

that it is possible to improve the separation performance with a significant reduction of 

the extraction time. 

These results are extremely promising, proving that the integrated 

extraction/regeneration in hollow fibre membrane contactors using ionic liquid as 

extractant has a high potential for development of ultra-deep desulfurization process 

application. 

 

8.2. Future work 

Aiming an improvement of the desulfurization process developed in this work and in view 

of a potential industrial application further work, complementary to the presented here,  

must be developed.  

Regarding the operating conditions for the system tested in this work, there is an 

opportunity for significant improvements. Therefore, experimental investigation of the 

estimated effects of ionic liquid stream velocity and temperature should be performed. 

These studies will help understanding the real limitation of the operating conditions and 

extend the process to optimal conditions of operation. 

The next step should consider the use of a more complex jet-fuel feed, taking into 

account the aromatic compounds, which are in a lower concentration, around 10 – 

20%wt, compared with the aliphatic compounds, in order to understand their impact on 

the extraction process viability. Moreover, aromatic sulfur species can be also added to 

the system and their removal, using the proposed extraction/stripping process, should be 

evaluated. In terms of feed composition, validation experiments should address the use 

of real jet-fuel stream and the desulfurization yield and efficiency in real situation should 

be evaluated. 

Given that a successful separation process was achieved after various attempts and that 

the extraction process becomes controlling in the presence of an effective regeneration 

process, the affinity of ionic liquid, used as extractant, for the target mercaptan could be 
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improved in order to increase the mass transfer from the feed phase to the ionic liquid 

phase. The ionic liquids suggested in Chapter 5, as promising candidates for the 

extraction process, could be tested in the integrated extraction/stripping process. Along 

with this study, other ionic liquids with higher distribution ratio to the mercaptan species 

can also be tested and the co-extraction of jet-fuel compounds must be analyzed and 

evaluated. The physical properties of the ionic liquids tested should be taken into 

account in order to adapt the operating conditions accordingly. 

Analogous to several research works developed for the aromatic sulfur compounds 

extraction with ionic liquids1-2, oxidative extraction of mercaptan compounds could be 

tested. The oxidant agent could be solubilized in the ionic liquid, and the oxidized sulfur 

species in the extraction/oxidation contactor would be easily separated from the ionic 

liquid/oxidant agent in the regeneration contactor. Various oxidation processes for 

mercaptans desulfurization have been reported in literature.3-7 

More recently, the reactive extraction of mercaptans using functionalized ionic liquids 

was suggested.8 This approach uses ionic liquids that react with mercaptans through 

reversible sulfur-bound, in a ‘mole per mole’ reaction. These ionic liquids would increase 

the interaction with the mercaptan compounds in the jet-fuel feed, compared to the ionic 

liquids studied, only capable of physisorption. This type of reactive ionic liquids applied in 

the integrated extraction/regeneration process would drastically increase the partition of 

the mercaptans in the extraction contactor and the regeneration of the ionic liquid would 

also be possible, allowing for its recycle and reuse. 

For an industrial practice, an assessment of the practical viability and feasibility of this 

process is essential for its acceptance by the industrial community, along with pilot-scale 

experiments using real jet-fuel streams and validation studies. 
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Table A1 Abbreviations and chemical structures of the ionic liquids cations. 

abbreviation description chemical structure 

[C1im]
+
 1-methylimidazolium 

 

[C1mim]
+
 1,3-dimethylimidazolium 

 

[C2mim]
+
 1-ethyl-3-methylimidazolium 

 

[C4mim]
+
 1-butyl-3-methylimidazolium 

 

[C6mim]
+
 1-hexyl-3-methylimidazolium 

 

[C8mim]
+
 1-methyl-3-octylimidazolium 

 

[C2C2im]
+
 1,3-diethylimidazolium 

 

[C4C4im]
+
 1,3-dibutylimidazolium 

 

[C2C1mim]
+
 1-ethyl-2,3-dimethylimidazolium 

 

[C3C1mim]
+
 1-propyl-2,3-dimethylimidazolium 

 

[C4C1mim]
+
 1-butyl-2,3-dimethylimidazolium 

 

[amim]
+
 1-allyl-3-methylimidazolium 

 

[C6H13OCH2mim]
+
 

1-hexyloxymethyl-3-
methylimidazolium 

 

[(C6H13OCH2)2im]
+
 1,3-dihexyloxymethyl-imidazolium 

 

[C2py]
+
 1-ethylpyridinium 
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[C4py]
+
 1-butylpyridinium 

 

[C6py]
+
 1-hexylpyridinium 

 

[C2mpy]
+ 

[1,2C2mpy]
+
 

1-ethyl-3-methylpyridinium 

 

[1,3C2mpy]
 +

 1-ethyl-3-methylpyridinium 

 

[1,4C2mpy]
+
 1-ethyl-4-methylpyridinium 

 

[1,2C4mpy]
+
 1-butyl-2-methylpyridinium 

 

[1,3C4mpy]
+
 1-butyl-3-methylpyridinium 

 

[1,4C4mpy]
+
 1-butyl-4-methylpyridinium 

 

[C2mpyr]
+
 1-ethyl-3-methylpyrrolidinium 

 

[1,3C4mpy]
+
 1-butyl-3-methylpyridinium 

 

[1,4C4mpy]
+
 1-butyl-4-methylpyridinium 

 

[C4mpyr]
+
 1-butyl-1-methylpyrrolidinium 

 

[C4iQuin]
+
 N-butyl-isoquinolinium 

 

[C4TZO]
+
 3-butyl-4-methylthiazolium 

 

[N1(2OH)11]
+
 

methyl(2-
hydroxyethyl)dimethylammonium 

 

[Ch]
+ 

[N22(OH)11]
+
 

ethyl(2-
hydroxyethyl)dimethylammonium 

(cholinium)  

[N4(2OH)11]
+
 

butyl(2-
hydroxyethyl)dimethylammonium 
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[N6(2OH)11]
+
 

hexyl(2-
hydroxyethyl)dimethylammonium 

 

[N101011]
+
 didecyldimethylammonium 

 

[Gu]
+
 guanidinium 

 

[(C1)6Gu]
+
 hexamethylguanidinium 

 

[Pi(444)1]
+
 tri-iso-butyl(methyl)phosphonium 

 

[P666(14)]
+
 trihexyl(tetradecyl)phosphonium 

 

[OC2(C1)4iU]
+
 

O-ethyl-N,N,N,N-
tetramethylisothiouronium 

 

[SC2(C1)4iU]
+
 

S-ethyl-N,N,N,N-
tetramethylisothiouronium 
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Table A2 Abbreviations and chemical structures of the ionic liquids anions. 

abbreviation description chemical structure 

[MeSO4]
-
 methylsulfate 

 

[EtSO4]
-
 ethylsulfate 

 

[BuSO4]
-
 butylsulfate 

 

[OcSO4]
-
 octylsulfate 

 

[MDEGSO4]
 -
 2-(2-methoxyethoxy)ethylsulfate 

 

[CH3SO3]
-
 methylsulfonate 

 

[CF3SO3]
-
 trifluoromethanesulfonate 

 

[(PFBu)SO3]
-
 perfluorobutanesulfonate 

 

[CHF2CF2SO3]
-
 

1,1,2,2-
tetrafluoroethanesulfonate 

 

[CH3CO2]
-
 acetate 

 

[NTf2]
-
 bis[(trifluoromethyl)sulfonyl]imide 

 

[PF6]
-
 hexafluorophosphate 
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[BF4]
-
 tetrafluoroborate 

 

[SCN] - thiocyanate  

[N(CN)2]
- 

[DCA]
-
 

dicyanamide 

 

[C(CN)3]
-
 tricyanomethane 

 

[B(CN)4]
-
 tetracyanoborate  

 

[TOS]
-
 tosylate 

 

[DEP]
-
 diethylphosphate 

 

[DBP]
-
 dibutylphosphate 

 

[NO3]
-
 nitrate 

 

[FeCl4]
-
 tetrachloroferrate 

 

Cl- chloride  

I3
- triiodide 
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[P1]
- methylphosphonate 

 

[P11]
-
 dimethylphosphate 

 

[P22]
-
 diethylphosphate 

 

[P44]
-
 dibutylphosphate 
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Table B1 Published LLE experimental data, measurement technique used, and composition and temperature range, of ILs + n-alkanes binary 

systems. 

 Ionic liquid n-alkane 
Experimental measurement 

technique 
Composition range (xIL) Temperature range (K) References 

1  

[C1mim][MeSO4] 

Pentane 
33

 Visual cloud point detection 
33

 0.8619-0.7814 
33

 288.21 - 306.32 
33

 
33

 

2  Hexane 
33

 Visual cloud point detection 
33

 0.9731-0.6977 
33

 295.87 – 341.49 
33

 
33

 

3  Heptane 
33

 Visual cloud point detection 
33

 0.9666-0.7020 
33

 313.07-367.52 
33

 
33

 

4  Octane 
33

 Visual cloud point detection 
33

 0.9595-0.5462 
33

 319.32-396.20 
33

 
33

 

5  Decane 
33

 Visual cloud point detection 
33

 1.0000-0.5381 
33

 308.30-442.81 
33

 
33

 

6  

[C2mim][EtSO4] 

Hexane 
31, 34-

35
 

Visual cloud point detection 
31, 34

 

Volumetric method 
35

 

0.8552-0.6772 
34

 

0.8552 -0.6772 
31

 

0.9913-0.9901 
35

 

301.2-339.2 
34

 

301.21-339.18 
31

 

293.2 - 333.1 
35

 

31, 34-35
 

7  Heptane 
30, 35

 
Volumetric method 

30
 

Volumetric method 
35

 

0.0038-0.0095/0.9968-
0.9942

30
 

0.9956-0.9927 
35

 

239.15-333.15 
30

 

293.3- 333.1 
35

 

30, 35
 

8  Octane 
31

 Volumetric method 
31

 0.9871-0.8184 
31

 317.15-368.97 
31

 
31

 

9  

[C4mim][MeSO4] 

Pentane 
33

 Visual cloud point detection 
33

 0.9522-0.8640 
33

 288.48-325.00 
33

 
33

 

10  Hexane 
33, 35

 
Visual cloud point detection 

33
 

Volumetric method 
35

 

0.9770-0.8048 
33

 

0.9849-0.9710 
35

 

302.52-346.77 
33

 

293.3-332.8 
35

 

33, 35
 

11  Heptane 
33, 35

 
Visual cloud point detection 

33
 

Volumetric method 
35

 

0.9883-0.4433 
33

 

0.9927-0.9866 
35

 

299.85-442.73 
33

 

293.2-333.0 
35

 

33, 35
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12  Octane 
33

 Visual cloud point detection 
33

 0.9655-0.6109 
33

 319.49-401.69 
33

 
33

 

13  Decane 
33

 Visual cloud point detection 
33

 0.9912-0.5612 
33

 320.76-445.70 
33

 
33

 

14  

[C4mim][OcSO4] 

Hexane 
37

 Visual cloud point detection 
37

 0.394-0.472 
37

 421.4-303.2 
37

 
37

 

15  Heptane 
37

 Visual cloud point detection 
37

 0.462-0.487 
37

 483.0-300.0 
37

 
37

 

16  Octane 
37

 Visual cloud point detection 
37

 0.516-0.649 
37

 473.1-292.3 
37

 
37

 

17  Decane 
37

 Visual cloud point detection 
37

 0.776-0.807 
37

 454.2-304.8 
37

 
37

 

18  

[C4mim][PF6] 

Pentane 
51

 Visual cloud point detection 
51

 0.8595-0.9477 
51

 308.7-293.5 
51

 
51

 

19  Hexane 
51

 Visual cloud point detection 
51

 0.8467-0.9416 
51

 342.0-314.4 
51

 
51

 

20  Heptane 
51

 Visual cloud point detection 
51

 0.8714-0.9551 
51

 371.1-341.0 
51

 
51

 

21  Octane 
51

 Visual cloud point detection 
51

 0.8818-0.9740 
51

 394.2-347.5 
51

 
51

 

22  [C4mim][TOS] Hexane 
36

 Visual cloud point detection 
36

 0.9128-0.9684 
36

 329.48-335.76 
36

 
36

 

23  

[C4mim][SCN] 

Hexane 
32

 Visual cloud point detection 
32

 
0.000017-0.000035 

32
 

0.9305-0.9840 
32

 

298.15-328.15 
32

 

364.38-253.15 
32

 

32
 

24  Heptane 
32

 Visual cloud point detection 
32

 0.9594-0.9939 
32

 364.18-248.09 
32

 
32

 

25  Octane 
32

 Visual cloud point detection 
32

 0.9631-0.9958 
32

 387.84-297.70 
32

 
32

 

26  Nonane 
32

 Visual cloud point detection 
32

 0.9713-0.9987 
32

 422.97-288.15 
32

 
32

 

27  Decane 
32

 Visual cloud point detection 
32

 0.9831-0.9986 
32

 432.49-314.41 
32

 
32

 

28  
[C4mim][CF3SO3] 

Hexane 
50

 Visual cloud point detection 
50

 0.9678-0.9382 
50

 291.5-339.4 
50

 
50

 

29  Heptane 
50

 Visual cloud point detection 
50

 0.9811-0.9528 
50

 299.5-370.6 
50

 
50
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30  [C4mim][MDEGSO4] Hexane 
39

 Visual cloud point detection 
39

 0.9220-0.9631 
39

 341.95-310.25 
39

 
39

 

31  

[C6mim][SCN] 

Hexane 
38

 Visual cloud point detection 
38

 0.9755-0.8962 
38

 286.6-367.3 
38

 
38

 

32  Heptane 
38

 Visual cloud point detection 
38

 0.9839-0.9012 
38

 282.6-408.8 
38

 
38

 

33  Octane 
38

 Visual cloud point detection 
38

 0.9906-0.9402 
38

 284.7-402.3 
38

 
38

 

34  Nonane 
38

 Visual cloud point detection 
38

 0.9901-0.9613 
38

 312.15-416.8 
38

 
38

 

35  Decane 
38

 Visual cloud point detection 
38

 0.9941-0.9740 
38

 310.4-410.6 
38

 
38

 

36  

[C8mim][PF6] 

Hexane 
40

 Density + correlation  
40

 
0.0001-0.0002/0.8852-

0.8615 
40

 
278.15-328.15 

40
 

40
 

37  Heptane 
40

 Density + correlation  
40

 
0.0001-0.0002/0.9124-

0.8915 
40

 
278.15-343.15 

40
 

40
 

38  
[C6H13OCH2mim][NTf2] 

Hexane 
41

 Visual cloud point detection 
41

 0.6823-0.7819 
41

 341.45-299.95 
41

 
41

 

39  Heptane 
41

 Visual cloud point detection 
41

 0.7368-0.8274 
41

 368.95-303.25 
41

 
41

 

40  

[C6H13OCH2mim][BF4] 

Pentane 
41

 Visual cloud point detection 
41

 0.7427-0.8153 
41

 309.05-299.05 
41

 
41

 

41  Hexane 
41

 Visual cloud point detection 
41

 0.7862-0.8443 
41

 341.32-307.65 
41

 
41

 

42  Heptane 
41

 Visual cloud point detection 
41

 0.8387-0.8945 
41

 366.55-306.75 
41

 
41

 

43  Octane 
41

 Visual cloud point detection 
41

 0.8508-0.9319 
41

 396.95-308.95 
41

 
41

 

44  [(C6H13OCH2)2im][NTf2] Hexane 
42

 Visual cloud point detection 
42

 0.5012-0.4430 
42

 300.05-341.25 
42

 
42

 

45  
[1,3C4mpy][CF3SO3] 

Hexane 
50

 Visual cloud point detection 
50

 0.9549-0.9327 
50

 303.0-339.9 
50

 
50

 

46  Heptane 
50

 Visual cloud point detection 
50

 0.9660-0.9404 
50

 301.8-359.2 
50

 
50

 

47  [1,4C4mpy][NTf2] Hexane 
54

  Visual cloud point detection 
54

 0.8812- 0.8266 
54

 294.2-347.0 
54

 
54
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48  Heptane
54

 Visual cloud point detection 
54

 0.9300-0.8666 
54

 292.3-346.0 
54

 
54

 

49  Octane 
54

 Visual cloud point detection 
54

 0.9413-0.9151 
54

 302.7-347.6 
54

 
54

 

50  

[1,4C4mpy][TOS] 

Hexane 
49

 Visual cloud point detection 
49

 
0.000017-0.000051 

49
 

0.8054-0.8930 
49

 

318.15-333.15 
49

 

384.68-336.44 
49

 

49
 

51  Heptane 
49

 Visual cloud point detection 
49

 0.8631-0.9481 
49

 386.98-329.06 
49

 
49

 

52  Octane 
49

 Visual cloud point detection 
49

 0.9335-0.9751 
49

 387.07-328.40 
49

 
49

 

53  
[C4mpyr][CF3SO3] 

Hexane 
50

 Visual cloud point detection 
50

 0.9641-0.9357 
50

 292.7-340.2 
50

 
50

 

54  Heptane 
50

 Visual cloud point detection 
50

 0.9791-0.9495 
50

 294.7-366.2 
50

 
50

 

55  

[P i (444)1][TOS] 

Hexane 
47

 Visual cloud point detection 
47

 0.7556-0.5578 
47

 308.40-338.12 
47

 
47

 

56  Heptane 
47

 Visual cloud point detection 
47

 0.8195-0.5536 
47

 315.86-353.78 
47

 
47

 

57  Octane 
47

 Visual cloud point detection 
47

 0.8840-0.5801 
47

 317.79-360.10 
47

 
47

 

58  Nonane 
47

 Visual cloud point detection 
47

 0.9605-0.6836 
47

 320.04-361.51 
47

 
47

 

59  Decane 
47

 Visual cloud point detection 
47

 0.8641-0.8108 
47

 347.02-356.40 
47

 
47

 

60  

[P666 14][Ac]  

Hexane 
66

 
Visual cloud point detection 

66
 

0.005-0.121 
66

 283.5-247.8 
66

 
66

 

61  Decane 
66

 
Visual cloud point detection 

66
 

0.002-0.146 
66

 277.9-287.0 
66

 
66

 

62  
Tetradecane 

66
. 

Visual cloud point detection 
66

 
0.008-0.173 

66
 320.7-319.0 

66
 

66
. 

63  [P666 14][CF3SO3] Hexane 
66

 Visual cloud point detection 
66

 0.002-0.141 
66

 287.4-303.4 
66

 
66

 

64  [P666 14][DCA] Hexane 
66

 Visual cloud point detection 
66

 0.273-0.224 
66

 289.2-350.8 
66

 
66
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65  
[P666 14][NTf2] 

Hexane 
66

 Visual cloud point detection 
66

 0.002-0.13 
66

 296.6- 261.1 
66

 
66

 

66  Octane 
66

 Visual cloud point detection 
66

 0.008-0.223 
66

 350.6-250.6 
66

 
66

 

67  
[N22(OH)11][NTf2] 

Hexane 
45

 Visual cloud point detection 
45

 0.9717-0.2806 
45

 283.36-441.31
45

 
45

 

68  Octane 
45

 Visual cloud point detection 
45

 0.9846-0.5850 
45

 303.50-428.91
45

 
45

 

69  [N62(OH)11][BF4] Hexane 
34

 Visual cloud point detection 
34

 0.3265-0.9780
34

 427.0-352.0
34

 
34

 

70  

[N101011][NO3] 

Hexane 
44

 Visual cloud point detection 
44

 0.3445-0.4868 323.3-303.7 
44

 
44

 

71  
Hexadecane 

44
 

Visual cloud point detection 
44

 
0.0006-0.6807 

44
 

0.7705-0.9918 
44

 

>433.1 
44

 

424.3-393.7 
44

 

44
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Table B2 Published LLE experimental data, measurement technique used, and composition and temperature range, of ILs + aromatics binary 

systems. 

 Ionic liquid Aromatic 
Experimental measurement 

technique 
Composition range (xIL) Temperature range (K) References 

1  

[C1mim][MeSO4] 

Benzene 
33

 Visual cloud point detection 
33

 0.7437-0.5186 
33

 301.92-354.99 
33

 
33

 

2  Toluene 
33

 Visual cloud point detection 
33

 1.0000-0.6319 
33

 305.65-383.03 
33

 
33

 

3  Ethylbenzene 
33

 Visual cloud point detection 
33

 0.9207-0.8222 
33

 301.88-408.78 
33

 
33

 

4  Propylbenzene 
33

 Visual cloud point detection 
33

 0.9261-0.8570 
33

 312.17-428.26 
33

 
33

 

5  o-xylene 
33

 Visual cloud point detection 
33

 0.9527-0.6231 
33

 311.42-410.68 
33

  
33

 

6  m-xylene 
33

 Visual cloud point detection 
33

 0.9436-0.6238 
33

 306.34-415.97 
33

 
33

 

7  p-xylene 
33

 Visual cloud point detection 
33

 0.9602-0.6397 
33

 309.56-411.50 
33

 
33

 

8  

[C2mim][EtSO4] 

Benzene 
31, 34-35

 
Visual cloud point detection 

31, 34
 

Volumetric method 
35

 

0.4883-0.2445 
31

 

0.4881-0.2451 
34

 

0.5683-0.5517 
35

 

288.00-346.31 
31

 

288.0- 346.3 
34

 

293.1- 333.1 
35

 

31, 34-35
 

9  Toluene 
30-31, 35

 

Volumetric method 
30

 

Visual volumetric detection 
31

 

Volumetric method 
35

 

0.0061-0.0046/0.7588-
0.7594

30
 

0.7246-0.6351 
31

 

0.7583-0.6757 
35

 

293.15-323.15 
30

 

311.75-359.15 
31

  

293.3-332.8 
35

 

30-31, 35
 

10  Ethylbenzene 
31

 Volumetric method 
31

 0.8890-0.7500 
31

 297.12-375.15 
31

 
31

 

11  o-xylene 
35

 Volumetric method 
35

 0.8528-0.8413 
35

 293.4-332.7 
35

  
35

 

12  m-xylene 
35

 Volumetric method 
35

 0.9014-0.8835 
35

 293.3-332.7 
35

  
35
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13  p-xylene 
35

 Volumetric method 
35

 0.8971-0.8653 
35

 293.5-332.7 
35

  
35

 

14  

[C2mim][PF6] 

Benzene 
51

 Visual cloud point detection 
51

 0.4307-0.4500 
51

 348.1-327.0 
51

 
51

 

15  Toluene 
51

 Visual cloud point detection 
51

 0.5990-0.6880 
51

 378.1-327.0
51

 
51

 

16  Ethylbenzene 
51

 Visual cloud point detection 
51

 0.7043-0.8423 
51

 405.6-332.6 
51

 
51

 

17  o-xylene 
51

 Visual cloud point detection 
51

 0.6975-0.8473 
51

 413.6-327.4
51

 
51

 

18  m-xylene 
51

 Visual cloud point detection 
51

 0.7571-0.8277 
51

 394.7-346.1
51

 
51

 

19  p-xylene 
51

 Visual cloud point detection 
51

 0.7270-0.8367 
51

 398.3-330.6 
51

 
51

 

20  

[C2mim][NTf2] 

Benzene 
46

 Visual cloud point detection 
46

 0.22927-0.24222 
46

 300.58-360.91 
46

 
46

 

21  Toluene 
46, 67

 
Visual cloud point detection 

46
 

Mass–volume technique
 67

 

0.3376-0.3513 
46

 

0.344-0.369
 67

 

302.25-323.65 
46

 

297.7-372.9
 67

 

46, 67
 

22  Ethylbenzene 
67

 Mass–volume technique
 67

 0.485-0.502 
67

 293.4-373.0 
67

 
67

 

23  Propylbenzene 
67

 Mass–volume technique
 67

 0.639-0.632 
67

 293.1-373.0 
67

 
67

 

24  o-xylene 
67

 Mass–volume technique
 67

 0.444-0.461 
67

 297.7-372.9 
67

  
67

 

25  m-xylene 
67

 Mass–volume technique
 67

 0.498-0.519 
67

 297.7-372.9 
67

 
67

 

26  p-xylene 
67

 Mass–volume technique
 67

 0.509-0.525 
67

 297.7-372.9 
67

 
67

 

27  

[C4mim][MeSO4] 

Benzene 
33, 35

 
Visual cloud point detection 

33
 

Volumetric method 
35

 

0.4533-0.2767 
33

 

0.4910-0.4615 
35

 

303.12-348.37 
33

 

293.2-332.7 
35

 

33, 35
 

28  Toluene 
33, 35

 
Visual cloud point detection 

33
 

Volumetric method 
35

 

0.6740-0.4153 
33

 

0.6749-0.5831 
35

 

295.76-381.40 
33

 

293.2-332.7 
35

 

33, 35
 

29  Ethylbenzene 
33

 Visual cloud point detection 
33

 0.6664-0.5038 
33

 317.19-408.81 
33

 
33
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30  Propylbenzene 
33

 Visual cloud point detection 
33

 0.9278-0.6457 
33

 275.50-430.20 
33

 
33

 

31  o-xylene 
33, 35

 
Visual cloud point detection 

33
 

Volumetric method 
35

 

0.8094-0.5870 
33

 

0.7953-0.7617 
35

 

307.93-412.47 
33

 

293.3-332.6 
35

 
 
33, 35

 

32  m-xylene 
33, 35

 
Visual cloud point detection 

33
 

Volumetric method 
35

 

0.8322-0.6075 
33

 

0.8490-0.8311 
35

 

305.77-410.08 
33

 

293.2-333.6 
35

 

33, 35
 

33  p-xylene 
33, 35

 
Visual cloud point detection 

33
 

Volumetric method 
35

 

0.8218-0.5750 
33

 

0.8524-0.8180 
35

 

302.37-411.18 
33

 

293.4-332.6 
35

 

33, 35
 

34  

[C4mim][PF6] 

Benzene 
51

 Visual cloud point detection 
51

 0.3411-0.3471 
51

 353.2-293.1 
51

 
51

 

35  Toluene 
51

 Visual cloud point detection 
51

 0.5639-0.5680 
51

 383.7-293.1 
51

 
51

 

36  Ethylbenzene 
51

 Visual cloud point detection 
51

 0.6548-0.7459 
51

 401.1-294.1 
51

 
51

 

37  o-xylene 
51

  Visual cloud point detection 
51

 0.6441-0.7400 
51

 401.1-293.1 
51

 
51

  

38  m-xylene 
51

  Visual cloud point detection 
51

 0.6937-0.7325 
51

 391.1-294.1 
51

 
51

  

39  p-xylene 
51

  Visual cloud point detection 
51

 0.6905-0.7386 
51

 393.1-297.1 
51

 
51

  

40  

[C4mim][BF4]
 

Benzene 
63

 Visual cloud point detection 
63

 
0.00016-0.00095 

63
 

0.9993-0.9946 
63

 

298.47-343.96 
63 

298.21-343.53 
63

 

63
 

41  Toluene 
63

 Visual cloud point detection 
63

 
0.0003-0.0015 

63
 

0.9989-0.9946 
63

 

301.47-353.41 
63 

298.55-353.15 
63

 

63
 

42  o-xylene 
63

 Visual cloud point detection 
63

 0.9995-0.9909 
63

 298.63-353.35
 63

 
63

 

43  m-xylene 
63

 Visual cloud point detection 
63

 0.9992-0.9934 
63

 298.65-352.49 
63

 
63

 

44  p-xylene 
63

 Visual cloud point detection 
63

 0.9994-0.9930 
63

 298.28-353.65 
63

 
63

 

45  [C4mim][NTf2] Benzene 
46

 Visual cloud point detection 
46

 0.17802-0.19727 
46

 335.55-459.42 
46

 
46
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46  Toluene 
46

 Visual cloud point detection 
46

 0.2591 
46

 298.5 
46

 
46

 

47  

[C4mim][TOS] 

Benzene
 36

  Visual cloud point detection
 36

 0.3114-0.3270 
36

 345.48-300.01
 36

 
36

  

48  Toluene
 36

  Visual cloud point detection
 36

 0.4195-0.4608 
36

 352.36-310.73 
36

 
36

  

49  Ethylbenzene 
36

   Visual cloud point detection
 36

 0.4781-0.5675 
36

 358.87-320.46
 36

 
36

   

50  Propylbenzene 
36

   Visual cloud point detection
 36

 0.7409-0.7559 
36

 357.96-331.33 
36

 
36

   

51  

[C4mim][SCN] 

Benzene 
32

 Visual cloud point detection 
32

 
0.00167-0.00223 

32
 

0.3765-0.4166 
32

 

313.15-293.15 
32

 

281.07-346.99 
32

 

32
 

52  Toluene 
32

 Visual cloud point detection 
32

 0.6175-0.6290 
32

 281.28-345.18 
32

 
32

 

53  Ethylbenzene 
32

 Visual cloud point detection 
32

 0.7500-0.7604 
32

 280.06-335.46 
32

 
32

 

54  
[C4mim][CF3SO3] 

Benzene 
50

 Visual cloud point detection 
50

 0.2745-0.2921 
50

 296.7-352.2 
50

 
50

 

55  Toluene 
50

 Visual cloud point detection 
50

 0.4403-0.4630 
50

 301.4-370.9 
50

 
50

 

56  [C4mim][MDEGSO4] Benzene 
39

 Visual cloud point detection 
39

 0.3555-0.3969 
39

 326.55-293.25 
39

 
39

 

57  
[C6mim][NTf2] 

Benzene 
46

 Visual cloud point detection 
46

 
0.00356-0.00631 

46
 

0.10540-0.12080 
46

 

390.55-484.38 
46

 

297.71-482.63 
46

 

46
 

58  Toluene 
46

 Visual cloud point detection 
46

 0.1798 
46

 298.52 
46

 
46

 

59  

[C6mim][SCN] 

Benzene 
38

 Visual cloud point detection 
38

 0.2824-0.2598 
38

 346.3-279.2 
38

 
38

 

60  Toluene 
38

  Visual cloud point detection 
38

 0.4356-0.3509 
38

 355.7-221.8 
38

 
38

  

61  Ethylbenzene 
38

  Visual cloud point detection 
38

 0.5835-0.4305 
38

 359.0-211.7 
38

 
38

  

62  [C8mim][NTf2] Benzene 
46

 Visual cloud point detection 
46

 
0.00171-0.02833 

46
 

0.03379-0.08667 
46

 

300.32-374.31 
46

 

373.93-300.32 
46

 

46
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63  Toluene 
46

 Visual cloud point detection 
46

 0.1127-0.1217 
46

 317.75-286.65 
46

 
46

 

64  

[C10mim][NTf2] 

Benzene 
46

 Visual cloud point detection 
46

 
0.00337-0.01790 

46
 

0.01874-0.04729 
46

 

300.84-318.58 
46

 

318.27-300.60 
46

 

46
 

65  Toluene 
46

 Visual cloud point detection 
46

 
0.00192-0.01667 

46
 

0.01713-0.08282 
46

 

282.75-340.25 
46

 

339.35-276.65 
46

 

46
 

66  

[C6H13OCH2mim][BF4] 

Benzene 
41

 Visual cloud point detection 
41

 
0.0023-0.0010/0.1870-0.1991 

41
 

351.25-292.65 
41

 
41

 

67  Toluene 
41

 Visual cloud point detection 
41

 0.3137-0.3530 
41

 382.95-288.15 
41

 
41

 

68  Ethylbenzene 
41

 Visual cloud point detection 
41

 0.4348-0.4937 
41

 408.35-306.85 
41

 
41

 

69  o-xylene 
41

 Visual cloud point detection 
41

 0.3785-0.4895 
41

 416.05-294.75 
41

  
41

 

70  m-xylene 
41

 Visual cloud point detection 
41

 0.4496-0.5148 
41

 408.35-310.85 
41

  
41

 

71  p-xylene 
41

 Visual cloud point detection 
41

 0.4335-0.5084 
41

 410.95-298.55 
41

 
41

 

72  

[C6H13OCH2mim][NTf2] 

Benzene 
41

 Visual cloud point detection 
41

 
0.0201-0.0800/0.0189-0.0019 

41
 

351.70-298.45 
41

 
41

 

73  Toluene 
41

 Visual cloud point detection 
41

 
0.0116-0.1374/0.0835-0.0016 

41
 

383.42-298.13 
41

 
41

 

74  Ethylbenzene Visual cloud point detection 
41

 
0.1136-0.1950/0.0095-0.0013 

41
 

407.35-299.95 
41

 
41

 

75  o-xylene 
41

 Visual cloud point detection 
41

 
0.1435-0.2018/0.0099-0.0018 

41
 

416.89-295.58 
41

  
41

 

76  m-xylene 
41

 Visual cloud point detection 
41

 
0.1500-0.2007/0.0094-0.0021 

41
 

411.15-301.95
41

  
41

 

77  p-xylene 
41

 Visual cloud point detection 
41

 0.1613-0.2023/0.0071-0.0014 411.55-295.25 
41

  
41
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41
 

78  [C4py][BF4] Toluene 
68

 Direct analytical method 
68

  
1.0×10

-5
-1.5×10

-5
 
68

 

0.680-0.676 
68

 
298.15-338.15 

68
 

68
 

79  [C6py][BF4] Toluene 
68

 Direct analytical method 
68

  
2.8×10

-5
-1.3×10

-5
 
68

 

0.421-0.453 
68

 
298.15-338.15 

68
 

68
 

80  [1,2C4mpy][BF4] Toluene 
68

 Direct analytical method 
68

  
1.6×10

-5
-3.5×10

-5
 
68

 

0.628-0.661 
68

 
298.15-338.15 

68
 

68
 

81  
[1,3C4mpy][CF3SO3] 

Benzene 
50

 Visual cloud point detection 
50

 0.2276-0.2467 
50

 282.9-348.4 
50

 
50

 

82  Toluene 
50

 Visual cloud point detection 
50

 0.3601-0.3781 
50

 285.9-360.2 
50

 
50

 

83  [1,4C4mpy][BF4] Toluene 
68

 Direct analytical method 
68

  
4.1×10

-5
-5.2 ×10

-5
 
68

 

0.525-0.554 
68

 
298.15-338.15 

68
 

68
 

84  

[1,4C4mpy][NTf2] 

Benzene 
54

  Visual cloud point detection 
54

 0.1578-0.1467 
54

 285.4-344.9 
54

 
54

 

85  Toluene 
54

 Visual cloud point detection 
54

 0.1983-0.1941 
54

 299.8-253.5 
54

 
54

 

86  Ethylbenzene 
54

 Visual cloud point detection 
54

 0.2860-0.2638 
54

 317.6-257.4 
54

 
54

 

87  Propylbenzene 
54

 Visual cloud point detection 
54

 0.3623-0.3376 
54

 303.2-265.1 
54

 
54

 

88  

[1,4C4mpy][TOS] 

Benzene 
49

 Visual cloud point detection 
49

 0.2334-0.2539 
49

 336.72-280.94 
49

 
49

 

89  Toluene 
49

 Visual cloud point detection 
49

 0.4031-0.4448 
49

 368.82-304.93 
49

 
49

 

90  Ethylbenzene 
49

  Visual cloud point detection 
49

 0.5276-0.5826 
49

 378.51-316.22 
49

 
49

  

91  Propylbenzene 
49

  Visual cloud point detection 
49

 0.6526-0.6937 
49

 390.40-329.49 
49

 
49

  

92  [C4mpyr][CF3SO3] Benzene 
50

 Visual cloud point detection 
50

 0.2703-0.2876 
50

 289.4-353.0 
50

 
50
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93  Toluene 
50

 Visual cloud point detection 
50

 0.4179-0.4421 
50

 286.0-365.3 
50

 
50

 

94  

[P i (444)1][TOS]
 

Toluene 
47

 Visual cloud point detection 
47

 0.1287-0.0111 
47

 320.93-333.68 
47

 
47

 

95  Ethylbenzene 
47

 Visual cloud point detection 
47

 0.0064-0.2146 
47

 320.38-359.39 
47

 
47

 

96  Propylbenzene 
47

 Visual cloud point detection 
47

 0.40.89-0.0056 
47

 304.23-362.43 
47

 
47

 

97  Butylbenzene 
47

 Visual cloud point detection 
47

 0.5277-0.0016 
47

 303.89-340.52 
47

 
47

 

98  
[N22(OH)11][NTf2] 

Benzene 
45

 Visual cloud point detection 
45

 0.3668-0.1822 
45

 283.33-423.81
45

 
45

 

99  Toluene 
45

 Visual cloud point detection 
45

 0.5793-0.4056 
45

 300.56-431.30 
45

 
45

 

100  [N62(OH)11][Br] Benzene 
34

 Visual cloud point detection 
34

 0.6893-0.3378 
34

 364.5- 398.0
34

 
34
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Table B3 Published LLE experimental data, measurement technique used and composition and temperature range of ILs + cycloalkanes 

binary systems. 

 Ionic liquid Cycloalkane  
Experimental measurement 

technique 
Composition range (xIL) Temperature range (K) References  

1  
[C1mim][MeSO4] 

Cyclohexane 
33

 Visual cloud point detection 
33

 0.9531-0.7404 
33

 316.90-348.12 
33

 
33

 

2  Cycloheptane 
33

 Visual cloud point detection 
33

 0.9571-0.6145 
33

 313.98-362.50 
33

 
33

 

3  [C2mim][EtSO4] 
Methylcyclohexane 

30
 

Volumetric method 
30

 
0.0145-0.0063/0.9792-

0.9600 
30

 
293.15-333.15 

30
 

30
 

4  [C2mim][TOS] Cycloheptane 
34

 Visual cloud point detection 
34

 0.5854-0.8981 
34

 363.6-342.6 
34

 
34

 

5  
[C4mim][MeSO4] 

Cyclohexane 
33

 Visual cloud point detection 
33

 0.9136-0.6627 
33

 296.25-353.35 
33

 
33

 

6  Cycloheptane 
33

 Visual cloud point detection 
33

 0.9416-0.7342 
33

 318.11-406.33 
33

 
33

 

7  
[C4mim][PF6] 

Cyclopentane 
51

 Visual cloud point detection 
51

 0.7974-0.9633 
51

 322.8-293.1 
51

 
51

 

8  Cyclohexane 
51

 Visual cloud point detection 
51

 0.7605-0.9471 
51

 352.7-302.1 
51

 
51

 

9  
[C4mim][SCN] 

Cyclohexane 
32

 Visual cloud point detection 
32

 
0.0000212-0.0000435 

32
 

0.9023-0.9860 
32

 

303.15-343.15 
32

 

381.99-292.61 
32

 

32
 

10  Cycloheptane 
32

 Visual cloud point detection 
32

 0.9277-0.9890 
32

 416.32-290.91 
32

 
32

 

11  [C4mim][CF3SO3] Cyclohexane 
50

 Visual cloud point detection 
50

 0.9423-0.8925 
50

 295.1-352.6 
50

 
50

 

12  [C4mim][MDEGSO4] Cyclohexane 
39

 Visual cloud point detection 
39

 0.8418-0.9054 
39

 346.05-303.75 
39

 
39

 

13  
[C6mim][SCN] 

Cyclohexane 
38

 Visual cloud point detection 
38

 0.9727-0.7613 
38

 289.1-407.8 
38

 
38

 

14  Cycloheptane 
38

  Visual cloud point detection 
38

 0.9698-0.8640 
38

 279.6-411.1 
38

 
38
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15  [C6H13OCH2mim][BF4] Cyclohexane 
41

 Visual cloud point detection 
41

 0.6609-0.7187 
41

 353.20-300.38 
41

 
41

 

16  [C6H13OCH2mim][NTf2] Cyclohexane 
41

 Visual cloud point detection 
41

 0.5105-0.6279 
41

 352.65-305.75 
41

 
41

 

17  [(C6H13OCH2)2im][NTf2] Cyclohexane 
42

 Visual cloud point detection 
42

 0.3704-0.2605 
42

 300.65-352.75 
42

 
42

 

18  [1,3C4mpy][CF3SO3] Cyclohexane 
50

 Visual cloud point detection 
50

 0.9044-0.8701 
50

 304.4-351.0 
50

 
50

 

19  [1,4C4mpy][NTf2] Cyclohexane 
54

  Visual cloud point detection 
54

 0.8163-0.6938 
54

 300.5-353.0 
54

 
54

  

20  [C4mpyr][CF3SO3] Cyclohexane 
50

 Visual cloud point detection 
50

 0.9307-0.8841 
50

 302.0-353.7 
50

 
50

 

 

 

 



Appendix B 

233 

  

Figure B1 Liquid–liquid phase diagram for [C1mim][MeSO4] n-hexane 33 ( ) ( ), 

benzene 33  ( ) ( ) and cyclohexane 33  ( ) ( ) . The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

 

Figure B2 Liquid–liquid phase diagram for [C2mim][EtSO4] with n-hexane 31 ( ) ( ) 

and benzene 31 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 
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Figure B3 Liquid–liquid phase diagram for [C2mim][EtSO4] with n-hexane 35  ( ) ( ) 

and benzene 35 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

 

  

Figure B4 Liquid–liquid phase diagram for [C4mim][MeSO4] with n-hexane 35  ( ) (

) and benzene 35 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 
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Figure B5 Liquid–liquid phase diagram for [C4mim][SCN] with n-hexane 32 ( ) ( ), 

benzene 32 ( ) ( ) and cyclohexane 32 ( ) ( ). The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

  

Figure B6 Liquid–liquid phase diagram for [C4mim][CF3SO3] with n- hexane 50 ( ) (

), benzene 50 ( ) ( ) and cyclohexane 50 ( ) ( ).The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

290

312

334

356

378

400

0.00 0.02 0.04 0.06 0.08

T/
K

xIL

290

312

334

356

378

400

0.2 0.4 0.6 0.8 1.0

T/
K

xIL

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.0 0.2 0.4 0.6 0.8 1.0

T/
K

xIL

hex_exp

hep_exp

pent_exp

pent_cosmo_il

hex_cosmo_il

hep_cosmo_il

pent_cosmo_ar

hex_cosmo_ar

hep_cosmo_ar

290

312

334

356

378

400

0.0 0.2 0.4 0.6 0.8 1.0

T/
K

xIL

hex_exp

hep_exp

pent_exp

pent_cosmo_il

hex_cosmo_il

hep_cosmo_il

pent_cosmo_ar

hex_cosmo_ar

hep_cosmo_ar

290

312

334

356

378

400

0.00 0.01 0.02 0.03 0.04 0.05

T/
K

xIL

290

312

334

356

378

400

0.2 0.4 0.6 0.8 1.0

T/
K

xIL

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.0 0.2 0.4 0.6 0.8 1.0

T/
K

xIL

hex_exp

hep_exp

pent_exp

pent_cosmo_il

hex_cosmo_il

hep_cosmo_il

pent_cosmo_ar

hex_cosmo_ar

hep_cosmo_ar

290

312

334

356

378

400

0.0 0.2 0.4 0.6 0.8 1.0

T/
K

xIL

hex_exp

hep_exp

pent_exp

pent_cosmo_il

hex_cosmo_il

hep_cosmo_il

pent_cosmo_ar

hex_cosmo_ar

hep_cosmo_ar



Appendix B 

236 

  

Figure B7 Liquid–liquid phase diagram for [C4mim][MDEGSO4] with n-hexane 39 ( ) (

), benzene 39 ( ) ( ) and cyclohexane 39 ( ) ( ).The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

  

Figure B8 Liquid–liquid phase diagram for [C6H13OCH2mim][BF4] with n-hexane 41 ( ) (

), benzene 41 ( ) ( ) and cyclohexane 41 ( ) ( ). The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 
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Figure B9 Liquid–liquid phase diagram for [C6H13OCH2mim][NTf2] with n-hexane 41 ( ) 

( ), benzene 41 ( ) ( ) and cyclohexane 41 ( ) ( ). The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

  

Figure B10 Liquid–liquid phase diagram for [(C6H13OCH2)2im][NTf2] with n-hexane ( ) 

( ) and cyclohexane ( ) ( ).The symbols and the lines represent respectively 

the experimental data and the COSMO-RS prediction calculations. 
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Figure B11 Liquid–liquid phase diagram for [1,3C4mpy][CF3SO3] with n-hexane 50 ( ) (

), benzene 50 ( ) ( ) and cyclohexane 50 ( ) ( ).The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

 

Figure B12 Liquid–liquid phase diagram for [1,4C4mpy][TOS] with n-hexane 49  ( ) (

) and benzene 49 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 
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Figure B13 Liquid–liquid phase diagram for [C4mpyr][CF3SO3] with n-hexane 50 ( ) (

), benzene 50 ( ) ( ) and cyclohexane 50 ( ) ( ).The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

 

Figure B14 Liquid–liquid phase diagram for [C4mim][TOS] with n-hexane 36  ( ) ( ) 

and benzene 36 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 
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Figure B15 Liquid–liquid phase diagram for [Pi(444)1][TOS] with n-heptane 47 ( ) ( ) 

and toluene 47 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B16 Liquid–liquid phase diagram for [N2OH211][NTf2] with n-hexane 45 ( ) ( ) 

and benzene 31, 35, 45 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 
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Figure B17 Liquid–liquid phase diagram for [C1mim][MeSO4] with n-pentane 33 ( ) (

), n-hexane 33 ( ) ( ), n-heptane 33 ( ) ( ), n-octane 33 ( ) ( ) and n-

decane 33 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

 

  

Figure B18 Liquid–liquid phase diagram for [C2mim][EtSO4] with n-hexane 35 ( ) (

) and n-heptane 35 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

290

312

334

356

378

400

0.0000 0.0001 0.0002 0.0003 0.0004

T/
K

xIL

290

312

334

356

378

400

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T
/

K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T
/

K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T
/

K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

T/
K

xIL

290

312

334

356

378

400

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il

290

312

334

356

378

400

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T/
K

xIL

non_exp dec_exp dodec_exp non_cosmo_il

dec_cosmo_il dodec_cosmo_il hex_exp hep_exp

pent_exp oct_exp pent_cosmo_il hex_cosmo_il

hep_cosmo_il oct_cosmo_il hexadec_exp hexadec_cosmo_il



Appendix B 

242 

 

Figure B19 Liquid–liquid phase diagram for [C2mim][EtSO4] with n-hexane 35 ( ) (

) and n-heptane 30 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

 

  

Figure B20 Liquid–liquid phase diagram for [C2mim][EtSO4] with n-hexane 31 ( ) (

) and n-octane 31 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 
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Figure B21 Liquid–liquid phase diagram for [C4mim][MeSO4] with n-hexane 35 ( ) (

) and n-heptane 35 ( ) ( ). The symbols and the lines represent respectively 

the experimental data and the COSMO-RS prediction calculations. 

 

 

  

Figure B22 Liquid–liquid phase diagram for [C4mim][MeSO4] with n-pentane 33 ( ) (

), n-hexane 33 ( ) ( ), n- heptane 33 ( ) ( ), n-octane 33 ( ) ( ) and n-

decane 33 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 
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Figure B23 Liquid–liquid phase diagram for [C4mim][PF6] with n-pentane 51 ( ) ( ), 

n-hexane 51 ( ) ( ), n-heptane 51 ( ) ( ) and n-octane 51 ( ) ( ). The symbols 

and the lines represent respectively the experimental data and the COSMO-RS 

prediction calculations. 

 

 

  

Figure B24 Liquid–liquid phase diagram for [C4mim][CF3SO3] with n-hexane 50 ( ) (

) and n-heptane 50 ( ) ( ). The symbols and the lines represent respectively 

the experimental data and the COSMO-RS prediction calculations. 
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Figure B25 Liquid–liquid phase diagram for [C6mim][SCN] with n-hexane 38 ( ) ( ), 

n-heptane 38 ( ) ( ), n-octane 38 ( ) ( ), n-nonane 38 ( ) ( ) and n-decane 38 (

) ( ). The symbols and the lines represent respectively the experimental data and 

the COSMO-RS prediction calculations. 

 

 

  

Figure B26 Liquid–liquid phase diagram for [C8mim][PF6] with n-hexane 40 ( ) ( ) 

and n- heptane 40 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 
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Figure B27 Liquid–liquid phase diagram for [C6H13OCH2mim][BF4] with n-pentane 41 (

) ( ), n-hexane 41 ( ) ( ), n-heptane 41 ( ) ( ), and n-octane 41 ( ) ( ). The 

symbols and the lines represent respectively the experimental data and the COSMO-

RS prediction calculations. 

 

 

 

Figure B28 Liquid–liquid phase diagram for [C6H13OCH2mim][NTf2] with n-hexane 41 (

) ( ) and n-heptane 41 ( ) ( ). The symbols and the lines represent respectively 

the experimental data and the COSMO-RS prediction calculations. 
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Figure B29 Liquid–liquid phase diagram for [1,3C4mpy][CF3SO3] with n-hexane 50 ( ) (

) and n-heptane 50 ( ) ( ). The symbols and the lines represent respectively 

the experimental data and the COSMO-RS prediction calculations. 

 

 

  

Figure B30 Liquid–liquid phase diagram for [1,4C4mpy][TOS] with n-hexane 49 ( ) (

), n-heptane 49 ( ) ( ) and n-octane 49 ( ) ( ). The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 
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Figure B31 Liquid–liquid phase diagram for [C4mpyr][CF3SO3] with n-hexane 50 ( ) (

) and n- heptane 50 ( ) ( ). The symbols and the lines represent respectively 

the experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B32 Liquid–liquid phase diagram for [Pi(444)1][TOS] with n-hexane 47 ( ) ( ), 

n-heptane 47 ( ) ( ), n-octane 47 ( ) ( ), n-nonane 47 ( ) ( ) and n-decane 47 (

) ( ). The symbols and the lines represent respectively the experimental data and 

the COSMO-RS prediction calculations. 
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Figure B33 Liquid–liquid phase diagram for [N2OH211][NTf2] with n-hexane 45 ( ) ( ) 

and n-octane 45 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B34 Liquid–liquid phase diagram for [N101011][NO3] with n-hexane 44 ( ) ( ) 

and n-hexadecane 44 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 
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Figure B35 Liquid–liquid phase diagram for [C4mim][CF3SO3] 
50 ( ) ( ), 

[C4mpyr][CF3SO3] 
50 ( ) ( ) and [1,3-C4mpy][CF3SO3] 

50 ( ) ( ) with n-hexane. 

The symbols and the lines represent respectively the experimental data and the 

COSMO-RS prediction calculations. 

 

 

 

Figure B36 Liquid–liquid phase diagram for [C4mim][CF3SO3] 
50 ( ) ( ), 

[C4mpyr][CF3SO3] 
50 ( ) ( ) and [1,3C4mpy][CF3SO3] 

50 ( ) ( ) with n-heptane. 

The symbols and the lines represent respectively the experimental data and the 

COSMO-RS prediction calculations. 
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Figure B37 Liquid–liquid phase diagram for [C4mim][TOS] 36 ( ) ( ), 

[1,4C4mpy][TOS] 49 ( ) ( )  and [Pi(444)1][TOS] 47 ( ) ( ) with n-hexane. The 

symbols and the lines represent respectively the experimental data and the COSMO-

RS prediction calculations. 

 

 

 

Figure B38 Liquid–liquid phase diagram for [N2OH211][NTf2] 
45 ( ) ( ) and 

[C6H13OCH2mim][NTf2] 
41 ( ) ( ) with n-hexane. The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 
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Figure B39 Liquid–liquid phase diagram for [N6OH211][BF4] 
34 ( ) ( ) and 

[C6H13OCH2mim][BF4] 
41 ( ) ( ) with n-hexane. The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

  

Figure B40 Liquid–liquid phase diagram for [C1mim][MeSO4] 
33 ( ) ( ) and 

[C4mim][MeSO4] 
33 ( ) ( ) with n-hexane. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B41 Liquid–liquid phase diagram for [C1mim][MeSO4] 
33 ( ) ( ) and 

[C4mim][MeSO4] 
35 ( ) ( ) with n-hexane. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B42 Liquid–liquid phase diagram for [C4mim][SCN] 32 ( ) ( ) and 

[C6mim][SCN] 38 ( ) ( ) with n-hexane. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B43 Liquid–liquid phase diagram for [C4mim][PF6] 
51 ( ) ( ) and 

[C8mim][PF6] 
40 ( ) ( ) with n-hexane. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

 

  

Figure B44 Liquid–liquid phase diagram for [C6H13OCH2mim][NTf2] 
41 ( ) ( ) and 

[(C6H13OCH2)2im][NTf2] 
42 ( ) ( ) with n-hexane. The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 
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Figure B45 Liquid–liquid phase diagram for [C4mim][MeSO4] 
35 ( ) ( ), 

[C4mim][PF6] 
51 ( ) ( ), [C4mim][SCN] 32 ( ) ( ), [C4mim][TOS] 36 ( ) ( ), 

[C4mim][CF3SO3] 
50 ( ) ( ) and [C4mim][MDEGSO4] 

39 ( ) ( ) with n-

hexane. The symbols and the lines represent respectively the experimental data and 

the COSMO-RS prediction calculations. 

 

 

 

Figure B46 Liquid–liquid phase diagram for [C6H13OCH2mim][BF4] 
41 ( ) ( ) and 

[C6H13OCH2mim][NTf2] 
41 ( ) ( ) with n-hexane. The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations.  
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Figure B47 Liquid–liquid phase diagram for [C4mim][MeSO4] 
35 ( ) ( ) and 

[C4mim][MDEGSO4] 
39 ( ) ( ) with n-hexane. The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

 

Figure B48 Liquid–liquid phase diagram for [C4mim][MeSO4] 
35 ( ) ( ) and 

[C4mim][OcSO4] 
37 ( ) ( ) with n-hexane. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B49 Liquid–liquid phase diagram for [C4mim][MeSO4] 
35 ( ) ( ), 

[C4mim][OcSO4] 
37 ( ) ( ) and [C4mim][MDEGSO4] 

39 ( ) ( ) with n-

hexane. The symbols and the lines represent respectively the experimental data and 

the COSMO-RS prediction calculations. 

 

 

 

Figure B50 Liquid–liquid phase diagram for [C1mim][MeSO4] with benzene 33 ( ) (

), toluene 33 ( ) ( ), ethylbenzene 33 ( ) ( ), propylbenzene 33 ( ) ( ), o-xylene 

33 ( ) ( ) , m-xylene 33 ( ) ( ) and p-xylene 33 ( ) ( ). The symbols and the 

lines represent respectively the experimental data and the COSMO-RS prediction 

calculations. 
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Figure B51 Liquid–liquid phase diagram for [C1mim][MeSO4] with benzene 33 ( ) (

), toluene 33 ( ) ( ), ethylbenzene 33 ( ) ( ) and propylbenzene 33 ( ) ( ). The 

symbols and the lines represent respectively the experimental data and the COSMO-

RS prediction calculations. 

 

 

 

Figure B52 Liquid–liquid phase diagram for [C1mim][MeSO4] with o-xylene 33 ( ) ( ) 

, m-xylene 33 ( ) ( ) and p-xylene 33 ( ) ( ). The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B53 Liquid–liquid phase diagram for [C2mim][EtSO4] with benzene 31 ( ) ( ), 

toluene 31 ( ) ( ) and ethylbenzene 31 ( ) ( ). The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

  

Figure B54 Liquid–liquid phase diagram for [C2mim][EtSO4] with benzene 35 ( ) ( ), 

toluene 35 ( ) ( ), o-xylene 35 ( ) ( ) , m-xylene 35 ( ) ( ) and p-xylene 35 ( ) (

). The symbols and the lines represent respectively the experimental data and the 

COSMO-RS prediction calculations. 
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Figure B55 Liquid–liquid phase diagram for [C2mim][EtSO4] with benzene 31, 35 ( ) (

) and toluene 35 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

 

  

Figure B56 Liquid–liquid phase diagram for [C2mim][EtSO4] with o-xylene 35 ( ) ( ) , 

m-xylene 35 ( ) ( ) and p-xylene 35 ( ) ( ). The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B57 Liquid–liquid phase diagram for [C2mim][PF6] with benzene 51 ( ) ( ), 

toluene 51 ( ) ( ), ethylbenzene 51 ( ) ( ), o-xylene 51 ( ) ( ) , m-xylene  51 ( ) 

( ) and p-xylene  51 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B58 Liquid–liquid phase diagram for [C2mim][PF6] with benzene 51 ( ) ( ), 

toluene 51 ( ) ( ) and ethylbenzene 51 ( ) ( ). The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 
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Figure B59 Liquid–liquid phase diagram for [C2mim][PF6] with o-xylene 51 ( ) ( ), m-

xylene 51 ( ) ( ) and p-xylene 51 ( ) ( ). The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

 

  

Figure B60 Liquid–liquid phase diagram for [C2mim][NTf2] with benzene  46 ( ) ( ) 

and toluene 46 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 
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Figure B61 Liquid–liquid phase diagram for [C4mim][MeSO4] with benzene 35 ( ) (

), toluene 35 ( ) ( ), o-xylene 35 ( ) ( ), m-xylene 35 ( ) ( ) and p-xylene 35 ( ) 

( ). The symbols and the lines represent respectively the experimental data and the 

COSMO-RS prediction calculations. 

 

 

 

Figure B62 Liquid–liquid phase diagram for [C4mim][MeSO4] with benzene 35 ( ) (

) and toluene 35 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 
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Figure B63 Liquid–liquid phase diagram for [C4mim][MeSO4] with o-xylene 35 ( ) (

), m-xylene 35 ( ) ( ) and p-xylene 35 ( ) ( ). The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

 

  

Figure B64 Liquid–liquid phase diagram for [C4mim][MeSO4] with benzene 33 ( ) (

), toluene 33 ( ) ( ), ethylbenzene 33 ( ) ( ), propylbenzene 33 ( ) ( ), o-xylene 

33 ( ) ( ) , m-xylene 33 ( ) ( ) and p-xylene 33 ( ) ( ). The symbols and the 

lines represent respectively the experimental data and the COSMO-RS prediction 

calculations. 
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Figure B65 Liquid–liquid phase diagram for [C4mim][MeSO4] with benzene 33 ( ) (

), toluene 33 ( ) ( ), ethylbenzene 33 ( ) ( ) and propylbenzene 33 ( ) ( ). The 

symbols and the lines represent respectively the experimental data and the COSMO-

RS prediction calculations. 

 

 

  

Figure B66 Liquid–liquid phase diagram for [C4mim][MeSO4] with o-xylene 33 ( ) ( ) 

, m-xylene 33 ( ) ( ) and p-xylene 33 ( ) ( ). The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B67 Liquid–liquid phase diagram for [C4mim][PF6] with benzene 51 ( ) ( ), 

toluene 33 ( ) ( ), ethylbenzene 51 ( ) ( ), o-xylene 51 ( ) ( ) , m-xylene 33 ( ) 

( ) and p-xylene 51  ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B68 Liquid–liquid phase diagram for [C4mim][PF6] with benzene 51 ( ) ( ), 

toluene 33 ( ) ( ) and ethylbenzene 51 ( ) ( ). The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

290

312

334

356

378

400

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

T/
K

xIL

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T/
K

xIL

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
/

K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar
290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.00 0.02 0.04 0.06 0.08 0.10

T/
K

xIL

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T/
K

xIL

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar

290

312

334

356

378

400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T/
K

xIL

o-xyl_exp m-xyl_exp p-xyl_exp

o-xyl_cosmo_il m-xyl_cosmo_il p-xyl_cosmo_il

tol_exp ethyl_exp ben_exp

propyl_exp ben_cosmo_il tol_cosmo_il

ethyl_cosmo_il propyl_cosmo_il o-xyl_cosmo_ar

m-xyl_cosmo_ar p-xyl_cosmo_ar ben_cosmo_ar

tol_cosmo_ar ethyl_cosmo_ar propyl_cosmo_ar



Appendix B 

267 

  

Figure B69 Liquid–liquid phase diagram for [C4mim][PF6] with o-xylene 51 ( ) ( ), m-

xylene 51 ( ) ( ) and p-xylene 51  ( ) ( ). The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B70 Liquid–liquid phase diagram for [C4mim][BF4] with benzene 63 ( ) ( ), 

toluene 63 ( ) ( ), o-xylene 63 ( ) ( ), m-xylene 63 ( ) ( ) and p-xylene 63 ( ) (

). The symbols and the lines represent respectively the experimental data and the 

COSMO-RS prediction calculations. 
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Figure B71 Liquid–liquid phase diagram for [C4mim][BF4] with benzene 63 ( ) ( ) 

and toluene 63 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

 

  

Figure B72 Liquid–liquid phase diagram for [C4mim][BF4] with o-xylene 63 ( ) ( ), m-

xylene 63 ( ) ( ) and p-xylene 63 ( ) ( ). The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B73 Liquid–liquid phase diagram for [C4mim][NTf2]with benzene 46  ( ) ( ) 

and toluene 46 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B74 Liquid–liquid phase diagram for [C4mim][TOS] with benzene 36 ( ) ( ), 

toluene 36 ( ) ( ), ethylbenzene 36 ( ) ( ) and propylbenzene 36 ( ) ( ). The 

symbols and the lines represent respectively the experimental data and the COSMO-

RS prediction calculations. 
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Figure B75 Liquid–liquid phase diagram for [C4mim][SCN] with benzene 32 ( ) ( ), 

toluene 32 ( ) ( ) and ethylbenzene 32 ( ) ( ). The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

  

Figure B76 Liquid–liquid phase diagram for [C4mim][CF3SO3] with benzene 50 ( ) (

) and toluene 50 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 
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Figure B77 Liquid–liquid phase diagram for [C6mim][NTf2]with benzene 46 ( ) ( ) 

and toluene 46 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B78 Liquid–liquid phase diagram for [C6mim][SCN] with benzene 38 ( ) ( ), 

toluene 38 ( ) ( ) and ethylbenzene 38 ( ) ( ). The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 
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Figure B79 Liquid–liquid phase diagram for [C8mim][NTf2] with benzene 46 ( ) ( ) 

and toluene 46 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B80 Liquid–liquid phase diagram for [C10mim][NTf2]with benzene 46 ( ) ( ) 

and toluene 46 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 
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Figure B81 Liquid–liquid phase diagram for [C6H13OCH2mim][BF4] with benzene 41 ( ) 

( ), toluene 41 ( ) ( ), ethylbenzene 41 ( ) ( ), o-xylene 41 ( ) ( ) , m-xylene  

41 ( ) ( ) and p-xylene  41 ( ) ( ). The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B82 Liquid–liquid phase diagram for [C6H13OCH2mim][BF4] with benzene 41 ( ) 

( ), toluene 41 ( ) ( ) and ethylbenzene 41 ( ) ( ). The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 
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Figure B83 Liquid–liquid phase diagram for [C6H13OCH2mim][BF4] with o-xylene 41 ( ) 

( ), m-xylene 41 ( ) ( ) and p-xylene  41 ( ) ( ). The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

 

Figure B84 Liquid–liquid phase diagram for [C6H13OCH2mim][NTf2] with benzene 41 ( ) 

( ), toluene 41 ( ) ( ), ethylbenzene 41 ( ) ( ), o-xylene 41 ( ) ( ) , m-xylene  

41 ( ) ( ) and p-xylene  41 ( ) ( ). The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B85 Liquid–liquid phase diagram for [C6H13OCH2mim][NTf2] with benzene 41 ( ) 

( ), toluene 41 ( ) ( ) and ethylbenzene 41 ( ) ( ). The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

 

Figure B86 Liquid–liquid phase diagram for [C6H13OCH2mim][NTf2] with o-xylene 41 ( ) 

( ), m-xylene  41 ( ) ( ) and p-xylene 41 ( ) ( ). The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 
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Figure B87 Liquid–liquid phase diagram for [1,4C4mpy][TOS] with benzene 49 ( ) (

), toluene 49 ( ) ( ), ethylbenzene 49 ( ) ( ) and propylbenzene 49 ( ) ( ). The 

symbols and the lines represent respectively the experimental data and the COSMO-

RS prediction calculations. 

 

 

 

Figure B88 Liquid–liquid phase diagram for [1,3C4mpy][CF3SO3] with benzene 50 ( ) (

) and toluene 50 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 
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Figure B89 Liquid–liquid phase diagram for [C4mpyr][CF3SO3] with benzene 50 ( ) (

) and toluene 50 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B90 Liquid–liquid phase diagram for [(i-b)3mP][TOS] with toluene 47 ( ) ( ), 

ethylbenzene 47 ( ) ( ), propylbenzene 47 ( ) ( ) and butylbenzene 47. The 

symbols and the lines represent respectively the experimental data and the COSMO-

RS prediction calculations. 
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Figure B91 Liquid–liquid phase diagram for [N2OH211][NTf2] with benzene 45 ( ) ( ) 

and toluene 45 ( ) ( ). The symbols and the lines represent respectively the 

experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B92 Liquid–liquid phase diagram for [C4mim][CF3SO3] 
50 ( ) ( ), 

[C4mpyr][CF3SO3] 
50 ( ) ( ) and [1,3-C4mpy][CF3SO3] 

50 ( ) ( ) with benzene. 

The symbols and the lines represent respectively the experimental data and the 

COSMO-RS prediction calculations. 
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Figure B93 Liquid–liquid phase diagram for [C4mim][CF3SO3] 
50 ( ) ( ), 

[C4mpyr][CF3SO3] 
50 ( ) ( ) and [1,3-C4mpy][CF3SO3] 

50 ( ) ( ) with toluene. 

The symbols and the lines represent respectively the experimental data and the 

COSMO-RS prediction calculations.  

 

 

 

Figure B94 Liquid–liquid phase diagram for [C6mim][NTf2] 
46 ( ) ( ) and 

[N2OH211][NTf2] 
45 ( ) ( ) with benzene. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B95 Liquid–liquid phase diagram for [N2OH211][NTf2] 
45 ( ) ( ) and 

[C6H13OCH2mim][NTf2] 
41 ( ) ( ) with benzene. The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

  

Figure B96 Liquid–liquid phase diagram for [C4mim][BF4] 
63 ( ) ( ) and 

[C6H13OCH2mim][BF4] 
41 ( ) ( ) with benzene. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B97  Liquid–liquid phase diagram for [C1mim][MeSO4] 
33 ( ) ( ) and 

[C4mim][MeSO4] 
35 ( ) ( ) with benzene. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B98 Liquid–liquid phase diagram for [C2mim][PF6] 
51 ( ) ( ) and 

[C4mim][PF6] 
51 ( ) ( ) with benzene. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B99 Liquid–liquid phase diagram for [C4mim][SCN] 32 ( ) ( ) and 

[C6mim][SCN] 38 ( ) ( ) with benzene. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B100 Liquid–liquid phase diagram for [C2mim][NTf2] 
46 ( ) ( ), 

[C4mim][NTf2] 
46 ( ) ( ), [C6mim][NTf2] 

46 ( ) ( ), [C8mim][NTf2] 
46 ( ) ( ) 

and [C10mim][NTf2] 
46 ( ) ( ) with toluene. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B101 Liquid–liquid phase diagram for [C1mim][MeSO4] 
33 ( ) ( ) and 

[C4mim][MeSO4] 
33 ( ) ( ) with benzene. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

 

  

Figure B102 Liquid–liquid phase diagram for [C1mim][MeSO4] 
33 ( ) ( ) and 

[C4mim][MeSO4] 
35 ( ) ( ) with toluene. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B103 Liquid–liquid phase diagram for [C1mim][MeSO4] 
33 ( ) ( ) and 

[C4mim][MeSO4] 
33 ( ) ( ) with toluene. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B104 Liquid–liquid phase diagram for [C8mim][NTf2] 
46 ( ) ( ) and 

[C6H13OCH2mim][NTf2] 
41 ( ) ( ) with benzene. The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 
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Figure B105 Liquid–liquid phase diagram for [C4mim][MeSO4] 
35 ( ) ( ), 

[C4mim][PF6] 
51 ( ) ( ), [C4mim][BF4] 

63 ( ) ( ), [C4mim][NTf2] 
46 ( ) ( ), 

[C4mim][SCN] 32 ( ) ( ), [C4mim][TOS] 36 ( ) ( ), [C4mim][CF3SO3] 
50 ( ) (

) and [C4mim][MDEGSO4] 
39 ( ) ( ) with benzene. The symbols and the 

lines represent respectively the experimental data and the COSMO-RS prediction 

calculations.  

 

 

 

Figure B106 Liquid–liquid phase diagram for [C2mim][EtSO4] 
35 ( ) ( ), 

[C2mim][PF6] 
51 ( ) ( ), and and [C2mim][NTf2] 

46 ( ) ( ) with benzene. The 

symbols and the lines represent respectively the experimental data and the COSMO-

RS prediction calculations. 
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Figure B107 Liquid–liquid phase diagram for [C4mim][MeSO4] 
35 ( ) ( ) and 

[C4mim][MDEGSO4] 
39 ( ) ( ) with benzene. The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

 

Figure B108 Liquid–liquid phase diagram for  [C4mim][NTf2] 
46 ( ) ( ) and 

[C4mim][SCN] 32 ( ) ( ) with benzene. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B109 Liquid–liquid phase diagram for [C6H13OCH2mim][BF4] 
41 ( ) ( ) and 

[C6H13OCH2mim][NTf2] 
41 ( ) ( ) with benzene. The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

 

Figure B110 Liquid–liquid phase diagram for [C6mim][SCN] with cyclohexane 38 ( ) (

) and cycloheptane 38 ( ) ( ). The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B111 Liquid–liquid phase diagram for [C1mim][MeSO4] with cyclohexane 33 ( ) 

( ) and cycloheptane 33 ( ) ( ). The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

 

  

Figure B112 Liquid–liquid phase diagram for [C4mim][MeSO4] with cyclohexane 33 ( ) 

( ) and cycloheptane 33 ( ) ( ). The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B113 Liquid–liquid phase diagram for [C4mim][PF6] with cyclopentane 51 ( ) (

) and cyclohexane 51 ( ) ( ). The symbols and the lines represent respectively 

the experimental data and the COSMO-RS prediction calculations. 

 

 

 

Figure B114 Liquid–liquid phase diagram for [C4mim][SCN] with cyclohexane 32 ( ) (

) and cycloheptane 32 ( ) ( ). The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B115 Liquid–liquid phase diagram for [C4mim][CF3SO3] 
50 ( ) ( ), 

[C4mpyr][CF3SO3] 
50 ( ) ( ) and [1,3C4mpy][CF3SO3] 

50 ( ) ( ) with 

cyclohexane. The symbols and the lines represent respectively the experimental data 

and the COSMO-RS prediction calculations. 

 

 

 

Figure B116 Liquid–liquid phase diagram for [C4mim][SCN] 32 ( ) ( ) and 

[C6mim][SCN] 38 ( )( ) with cyclohexane. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 
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Figure B117 Liquid–liquid phase diagram for [C1mim][MeSO4] 
33 ( ) ( ) and 

[C4mim][MeSO4] 
33 ( ) ( ) with cyclohexane. The symbols and the lines represent 

respectively the experimental data and the COSMO-RS prediction calculations. 

 

 

  

Figure B118 Liquid–liquid phase diagram for [C6H13OCH2mim][NTf2] 
41 ( ) ( ) and 

[(C6H13OCH2)2im][NTf2] 
42 ( ) ( )with cyclohexane. The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 
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Figure B119 Liquid–liquid phase diagram for [C4mim][PF6] 
51 ( ) ( ), 

[C4mim][SCN] 32 ( ) ( ), [C4mim][CF3SO3] 
50 ( ) ( ) and 

[C4mim][MDEGSO4] 
39 ( ) ( ) with cyclohexane. The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 

 

 

 

Figure B120 Liquid–liquid phase diagram for  [C6H13OCH2mim][BF4] 
41 ( ) ( ) and 

[C6H13OCH2mim][NTf2] 
41 ( ) ( ) with cyclohexane. The symbols and the lines 

represent respectively the experimental data and the COSMO-RS prediction 

calculations. 
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Table C1 Published LLE experimental data for systems composed of n-alkane + aromatic hydrocarbon + ionic liquid, measurement technique, 

and models already applied. 

Nº Ionic liquid n-alkane Aromatic Experimental procedure Temperature / K Model 

1.  
[C1mim][MeSO4] 

40 n-heptane toluene 
Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 40 

313.2 40 
NRTL 40 

2.  348.2 40 

3.  [C1mim][NTf2] 
23 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 23 

313.2 23 NRTL 23 

4.  [C1mim][BF4] 
52 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + GC 
+ density correlation 52 

298.15 52 
NRTL 52 

UNIQUAC 52 

5.  [C1mim][P1] 
52 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + GC 
+ density correlation 52 

298.15 52 
NRTL 52 

UNIQUAC 52 

6.  
[C2mim][NTf2] 

3, 28 n-hexane benzene 
Tie-lines: thermodynamic equilibrium + 

NMR 3, 28 

298.15 3, 28, 54, 82 

NRTL 28, 54 

UNIQUAC 54 

NRTL-SAC 
82 

7.  313.15 28 NRTL 28, 54 

8.  [C2mim][NTf2] 
1 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR 1 

298.15 1 NRTL 1 

9.  [C2mim][NTf2] 
23 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 23 

313.2 23 NRTL 23 

10.  [C2mim][NTf2] 
1 n-octane ethylbenzene 

Tie-lines: thermodynamic equilibrium + 
NMR 1 

298.15 1 NRTL 1 

11.  [C2mim][NTf2] 
8 n-octane o-xylene 

Tie-lines: thermodynamic equilibrium + 
NMR 8 

298.15 8 NRTL 8 

12.  [C2mim][NTf2] 
8 n-octane m-xylene Tie-lines: thermodynamic equilibrium + 298.15 8 NRTL 8 
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NMR 8 

13.  [C2mim][NTf2] 
8 n-octane p-xylene 

Tie-lines: thermodynamic equilibrium + 
NMR 8 

298.15 8 NRTL 8 

14.  

[C2mim][EtSO4] 
13 n-hexane benzene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 13 

298.2 13 
NRTL 13 

UNIQUAC 13 
15.  313.2 13 

16.  328.2 13 

17.  [C2mim][EtSO4] 
32 n-hexane benzene 

Binodal data: Cloud point method 32 

Tie-lines: thermodynamic equilibrium + 
density correlation 32 

298.15 32 
NRTL 32 

UNIQUAC 32 

18.  [C2mim][EtSO4] 
7 n-hexane toluene 

Binodal data: Cloud point method 7 

Tie-lines: thermodynamic equilibrium + 
density correlation 7 

298.15 7 
NRTL 7 

UNIQUAC 7 

19.  [C2mim][EtSO4] 
36 n-hexane o-xylene 

Binodal data: Cloud point method36 

Tie-lines: thermodynamic equilibrium + 
density correlation36 

298.1536 
NRTL36 

UNIQUAC36 

20.  [C2mim][EtSO4] 
36 n-hexane p-xylene 

Binodal data: Cloud point method36 

Tie-lines: thermodynamic equilibrium + 
density correlation36 

298.1536 
NRTL36 

UNIQUAC36 

21.  [C2mim][EtSO4] 
36 n-hexane m-xylene 

Binodal data: Cloud point method36 

Tie-lines: thermodynamic equilibrium + 
density correlation36 

298.1536 
NRTL36 

UNIQUAC36 

22.  [C2mim][EtSO4] 
32 n-heptane benzene 

Binodal data: Cloud point method 32 

Tie-lines: thermodynamic equilibrium + 
density correlation 32 

298.15 32 
NRTL 32 

UNIQUAC 32 

23.  [C2mim][EtSO4] 
7 n-heptane toluene 

Binodal data: Cloud point method 7 

Tie-lines: thermodynamic equilibrium + 
density correlation 7 

298.15 7 
NRTL 7 

UNIQUAC 7 
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24.  
[C2mim][EtSO4] 

40 n-heptane toluene 
Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 40 

313.2 40 
NRTL 40 

25.  348.2 40 

26.  [C2mim][EtSO4] 
32 n-octane benzene 

Binodal data: Cloud point method 32 

Tie-lines: thermodynamic equilibrium + 
density correlation 32 

298.15 32 
NRTL 32 

UNIQUAC 32 

27.  [C2mim][EtSO4] 
7 n-octane toluene 

Binodal data: Cloud point method 7 

Tie-lines: thermodynamic equilibrium + 
density correlation 7 

298.15 7 
NRTL 7 

UNIQUAC 7 

28.  [C2mim][EtSO4] 
32 n-nonane benzene 

Binodal data: Cloud point method 32 

Tie-lines: thermodynamic equilibrium + 
density correlation 32 

298.15 32 
NRTL 32 

UNIQUAC 32 

29.  [C2mim][EtSO4] 
7 n-nonane toluene 

Binodal data: Cloud point method 7 

Tie-lines: thermodynamic equilibrium + 
density correlation 7 

298.15 7 
NRTL 7 

UNIQUAC 7 

30.  [C2mim][OcSO4] 
15 n-heptane benzene 

Binodal data: Cloud point method 15 

Tie-lines: thermodynamic equilibrium + 
refractive index correlation 15 

298.2 15 ---- 

31.  [C2mim][OcSO4] 
15 

n-
hexadecane 

benzene 

Binodal data: Cloud point method 15 

Tie-lines: thermodynamic equilibrium + 
refractive index correlation 15 

298.2 15 ---- 

32.  [C2mim][CH3SO3] 
51 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR 51 

313.2 51 NRTL 51 

33.  [C2mim][CF3SO3] 
51 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR 51 

313.2 51 NRTL 51 

34.  
[C2mim][CHF2CF2SO3] 

51 
n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR 51 

313.2 51 NRTL 51 

35.  [C2mim][I3] 
18 n-heptane toluene Tie-lines: thermodynamic equilibrium + 318.2 18 NRTL 18 
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NMR, GC and overall mass balance 18 

36.  [C4mim][NTf2] 
29 n-hexane benzene 

Tie-lines: thermodynamic equilibrium + 
NMR 29 

298.15 29 ---- 

37.  [C4mim][NTf2] 
23 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 23 

313.2 23 NRTL 23 

38.  

[C4mim][MeSO4] 
42 n-hexane benzene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance  42 

298.2 42 
NRTL 42 

UNIQUAC 42 
39.  313.2 42 

40.  328.2 42 

41.  
[C4mim][MeSO4]

 40 n-heptane toluene 
Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 40 

303.2 40 
NRTL 40 

42.  328.2 40 

43.  
[C4mim][DCA] 17 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + GC 
and mass balance 17 

303.15 17 
NRTL 17 

44.  328.15 17 

45.  [C4mim][SCN] 52 n-heptane benzene 
Tie-lines: thermodynamic equilibrium + GC 

+ density correlation 52 
298.15 52 

NRTL 52 

UNIQUAC 52 

46.  
[C4mim][SCN] 17 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + GC 
and mass balance 17 

303.15 17 
NRTL 17 

47.  328.15 17 

48.  [C4mim][PF6] 
21 n-nonane benzene 

Binodal data: Cloud point method 21 

Tie-lines: thermodynamic equilibrium + 
density correlation and UV  

spectrophotometry  21 

298.15 21, 55 
NRTL 21 

UNIQUAC 55 

49.  [C4mim][PF6] 
21 n-nonane toluene 

Binodal data: Cloud point method 21 

Tie-lines: thermodynamic equilibrium + 
density correlation and UV  

spectrophotometry  21 

298.15 21, 55-56 

NRTL 21 

ASOG 56 

UNIQUAC 55 

50.  [C4mim][PF6] 
21 n-nonane m-xylene 

Binodal data: Cloud point method 21 

Tie-lines: thermodynamic equilibrium + 
298.15  21, 55-56 

NRTL 21 

ASOG 56 
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density correlation and UV  
spectrophotometry  21 

UNIQUAC 55 

51.  [C4mim][PF6] 
21 n-undecane benzene 

Binodal data: Cloud point method 21 

Tie-lines: thermodynamic equilibrium + 
density correlation and UV  

spectrophotometry  21 

298.1521, 55 
NRTL 21 

UNIQUAC 55 

52.  [C4mim][PF6] 
21 n-undecane toluene 

Binodal data: Cloud point method 21 

Tie-lines: thermodynamic equilibrium + 
density correlation and UV  

spectrophotometry  21 

298.15 21, 55-56 

NRTL 21 

ASOG 56 

UNIQUAC 55 

53.  [C4mim][PF6] 
21 n-undecane m-xylene 

Binodal data: Cloud point method 21 

Tie-lines: thermodynamic equilibrium + 
density correlation and UV  

spectrophotometry  21 

298.15 21, 55 
NRTL 21 

UNIQUAC 55 

54.  [C4mim][BF4] 
52 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + GC 
+ density correlation 52 

298.15 52 
NRTL 52 

UNIQUAC 52 

55.  [C4mim][I3] 
18 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 18 

318.2 18 NRTL 18 

56.  [C6mim][NTf2] 
23 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 23 

313.2 23 NRTL 23 

57.  [C6mim][BF4] 
37 n-heptane benzene 

Binodal data: Cloud point method 37 

Tie-lines: thermodynamic equilibrium + 
density correlation 37 

298.2 37, 55, 57 

NRTL 37 

UNIQUAC 55 

ASOG 57 

58.  [C6mim][BF4] 
37 n-dodecane benzene 

Binodal data: Cloud point method 37 

Tie-lines: thermodynamic equilibrium + 
density correlation 37 

298.2 37, 55, 57 

NRTL 37 

UNIQUAC 55 

ASOG 57 

59.  [C6mim][BF4] 
37 

n-
hexadecane 

benzene 
Binodal data: Cloud point method 37 

Tie-lines: thermodynamic equilibrium + 
298.2  37, 55, 57 

NRTL 37 

UNIQUAC 55 
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density correlation 37 ASOG 57 

60.  [C6mim][PF6] 
37 n-heptane benzene 

Binodal data: Cloud point method 37 

Tie-lines: thermodynamic equilibrium + 
density correlation 37 

298.2 37, 55-56 

NRTL 37 

UNIQUAC 

UNIQUAC 55 

ASOG 56 

61.  [C6mim][PF6] 
37 n-dodecane benzene 

Binodal data: Cloud point method 37 

Tie-lines: thermodynamic equilibrium + 
density correlation 37 

298.2 37, 55-56 

NRTL 37 

ASOG 56 

UNIQUAC 55 

62.  [C6mim][PF6] 
37 

n-
hexadecane 

benzene 

Binodal data: Cloud point method 37 

Tie-lines: thermodynamic equilibrium + 
density correlation 37 

298.2 37, 56 
NRTL 37 

ASOG 56 

63.  [C8mim][NTf2] 
29 n-hexane benzene Tie-lines: NMR for both phases 29 298.15 29 ---- 

64.  [C8mim][PF6] 
22 n-nonane benzene 

Binodal data: Cloud point method 22 

Tie-lines: thermodynamic equilibrium + 
density correlation and UV 

spectrophotometry 22 

298.15 22 NRTL22 

65.  [C8mim][PF6] 
22 n-nonane toluene 

Binodal data: Cloud point method22 

Tie-lines: thermodynamic equilibrium + 
density correlation and UV 

spectrophotometry 22 

298.15 22 NRTL22 

66.  [C8mim][PF6] 
22 n-nonane m-xylene 

Binodal data: Cloud point method22 

Tie-lines: thermodynamic equilibrium + 
density correlation and UV 

spectrophotometry 22 

298.15 22 NRTL22 

67.  [C8mim][PF6] 
22 n-undecane benzene 

Binodal data: Cloud point method22 

Tie-lines: thermodynamic equilibrium + 
density correlation and UV 

spectrophotometry 22 

298.15 22 NRTL22 
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68.  [C8mim][PF6] 
22 n-undecane toluene 

Binodal data: Cloud point method22 

Tie-lines: thermodynamic equilibrium + 
density correlation and UV 

spectrophotometry 22 

298.15 22 NRTL22 

69.  [C8mim][PF6] 
22 n-undecane m-xylene 

Binodal data: Cloud point method22 

Tie-lines: thermodynamic equilibrium + 
density correlation and UV 

spectrophotometry 22 

298.15 22 NRTL22 

70.  [C8mim][Cl] 38 n-heptane benzene 

Binodal data: Cloud point method + 
density correlation 38 

Tie-lines: thermodynamic equilibrium + 
density correlation 38 

298.2 38, 55 
NRTL 38 

UNIQUAC 55 

71.  [C8mim][Cl] 38 n-dodecane benzene 

Binodal data: Cloud point method + 
density correlation 38 

Tie-lines: thermodynamic equilibrium + 
density correlation 38 

298.2 38, 55 
NRTL 38 

UNIQUAC 55 

72.  [C8mim][Cl] 38 
n-

hexadecane 
benzene 

Binodal data: Cloud point method + 
density correlation 38 

Tie-lines: thermodynamic equilibrium + 
density correlation 38 

298.2 38, 55 
NRTL 38 

UNIQUAC 55 

73.  [C8mim][MDEGSO4] 
15 n-heptane benzene 

Binodal data: Cloud point method 15 

Tie-lines: thermodynamic equilibrium + 
refractive index correlation 15 

298.2 15  

74.  [C8mim][MDEGSO4] 
15 

n-
hexadecane 

benzene 

Binodal data: Cloud point method 15 

Tie-lines: thermodynamic equilibrium + 
refractive index correlation 15 

298.2 15  

75.  [C10mim][NTf2] 
29 n-hexane benzene 

Tie-lines: thermodynamic equilibrium + 
NMR 29 

298.15 29, 54 
NRTL 54 

UNIQUAC 54 

76.  [C12mim][NTf2] 
29 n-hexane benzene Tie-lines: thermodynamic equilibrium + 298.15 29 ---- 
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NMR 29 

77.  [C2C1mim][NTf2] 
53 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 53 

313.2 53 NRTL 53 

78.  [C3C1mim][NTf2] 
53 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 53 

313.2 53 NRTL 53 

79.  [C4C1mim][NTf2] 
53 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance53 

313.2 53 NRTL 53 

80.  [amim][NTf2] 
12 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 12 

313.2 12 NRTL 12 

81.  [(C6H13OCH2)2im][BF4] 
5 n-hexane p-xylene 

Tie-lines: thermodynamic equilibrium + 
NMR 5 

298.15 5 NRTL 5 

82.  

[C2py][EtSO4] 
30 n-hexane benzene 

Binodal data: Cloud point method 30 

Tie-lines: thermodynamic equilibrium + 
density correlation 30 

283.15 30 
NRTL 30 

83.  298.15 30 

84.  
[C2py][EtSO4] 

30 n-heptane benzene 

Binodal data: Cloud point method 30 

Tie-lines: thermodynamic equilibrium + 
density correlation 30 

283.15 30 
NRTL 30 

85.  298.15 30 

86.  
[C2py][EtSO4] 

19 n-octane benzene 

Binodal data: Cloud point method 19 

Tie-lines: thermodynamic equilibrium + 
density correlation 19 

283.15 19 
NRTL 19 

87.  298.15 19 

88.  
[C2py][EtSO4] 

19 n-nonane benzene 

Binodal data: Cloud point method 19 

Tie-lines: thermodynamic equilibrium + 
density correlation 19 

283.15 19 
NRTL 19 

89.  298.15 19 

90.  [C2py][NTf2]
4 n-hexane benzene 

Tie-lines: thermodynamic equilibrium + 
NMR 4 

313.15 4 NRTL 4 

91.  [C2py][NTf2] 
35 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 35 

313.2 35 NRTL 35 
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92.  [C4py][NTf2] 
25 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 25 

313.2 25 NRTL 25 

93.  [C4py][BF4] 
16 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 16 

313.2 16 NRTL 16 

94.  [C6py][BF4] 
16 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 16 

313.2 16 NRTL 16 

95.  [1,2C2mpy][NTf2] 
35 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 35 

313.2 35 NRTL 35 

96.  

[1,3C2mpy][EtSO4] 
10 n-hexane benzene 

Tie-lines: thermodynamic equilibrium + 
density and refractive index correlations 10 

283.15 10 

NRTL 10 
97.  293.15 10 

98.  298.15 10 

99.  303.1510 

100.  [1,3C2mpy][EtSO4] 
20 n-hexane toluene 

Binodal data: Cloud point method 

Tie-lines: thermodynamic equilibrium + 
density correlation 20 

298.15 20 NRTL 20 

101.  [1,3C2mpy][EtSO4] 
20 n-hexane ethylbenzene 

Binodal data: Cloud point method 

Tie-lines: thermodynamic equilibrium + 
density correlation 20 

298.15 20 NRTL 20 

102.  [1,3C2mpy][EtSO4] 
2 n-hexane o-xylene 

Binodal data: Cloud point method 

Tie-lines: thermodynamic equilibrium + 
density correlation 2 

298.15 2 NRTL 2 

103.  [1,3C2mpy][EtSO4] 
2 n-hexane m-xylene 

Binodal data: Cloud point method 

Tie-lines: thermodynamic equilibrium + 
density correlation 2 

298.15 2 NRTL 2 

104.  [1,3C2mpy][EtSO4] 
2 n-hexane p-xylene 

Binodal data: Cloud point method 

Tie-lines: thermodynamic equilibrium + 
density correlation 2 

298.15 2 NRTL 2 
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105.  

[1,3C2mpy][EtSO4] 
10, 46 n-heptane benzene 

Tie-lines: thermodynamic equilibrium + 
density and refractive index correlations 10 

Tie-lines: thermodynamic equilibrium + 
NMR77 

283.15 10 

NRTL 10 

106.  298.15 10, 46 

107.  [1,3C2mpy][EtSO4] 
34, 46 n-heptane toluene 

Binodal data: Cloud point method 

Tie-lines: thermodynamic equilibrium + 
density correlation 34 

Tie-lines: thermodynamic equilibrium + 
NMR77 

298.15 34, 46 NRTL 34 

108.  

[1,3C2mpy][EtSO4] 
31 n-octane benzene 

Binodal data: Cloud point method 31 

Tie-lines: thermodynamic equilibrium + 
density correlation 31 

283.15 31 
NRTL 31 

109.  298.15 31 

110.  [1,3C2mpy][EtSO4] 
34 n-octane toluene 

Binodal data: Cloud point method 

Tie-lines: thermodynamic equilibrium + 
density correlation 34 

298.15 34 NRTL 34 

111.  
[1,3C2mpy][EtSO4] 

31 n-nonane benzene 

Binodal data: Cloud point method 31 

Tie-lines: thermodynamic equilibrium + 
density correlation 31 

283.15 31 
NRTL 31 

112.  298.15 31 

113.  [1,3C2mpy][EtSO4] 
34 n-nonane toluene 

Binodal data: Cloud point method 

Tie-lines: thermodynamic equilibrium + 
density correlation 34 

298.15 34 NRTL 34 

114.  [1,3C2mpy][NTf2] 
35 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 35 

313.2 35 NRTL 35 

115.  [1,4C2mpy][NTf2] 
35 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 35 

313.2 35 NRTL 35 

116.  [1,3C1C3py][NTf2] 
12 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 12 

313.2 12 NRTL 12 
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117.  [1,2C4mpy][NTf2] 
25 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 25 

313.2 25 NRTL 25 

118.  [1,2C4mpy][BF4] 
33 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 33 

313.2 33 NRTL 33 

119.  [1,3C4mpy][NTf2] 
25 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 25 

313.2 25 NRTL 25 

120.  

[1,3C4mpy][BF4] 
33, 40 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 33, 40 

313.2 33, 40, 55, 57 

NRTL 33, 40 

UNIQUAC 55 

ASOG 57 

121.  348.2 40, 55, 57 

NRTL 33, 40 

UNIQUAC 55 

ASOG 57 

122.  
[1,3C4mpy][DCA] 24 n-hexane benzene 

Tie-lines: thermodynamic equilibrium + GC 
and mass balance 24 

303.15 24 
NRTL 24 

123.  328.15 24 

124.  
[1,3C4mpy][DCA] 24 n-hexane p-xylene 

Tie-lines: thermodynamic equilibrium + GC 
and mass balance 24 

303.15 24 
NRTL 24 

125.  328.15 24 

126.  
[1,3C4mpy][DCA] 17 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + GC 
and mass balance 17 

303.15 17 
NRTL 17 

127.  328.15 17 

128.  
[1,3C4mpy][TCB] 26 n-hexane benzene 

Tie-lines: thermodynamic equilibrium + GC 
and overall mass balance 26 

303.2 26 
NRTL26 

129.  328.2 26 

130.  
[1,3C4mpy][TCB] 26 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + GC 
and overall mass balance 26 

303.2 26 
NRTL26 

131.  328.2 26 

132.  
[1,3C4mpy][TCB] 26 n- octane p-xylene 

Tie-lines: thermodynamic equilibrium + GC 
and overall mass balance 26 

303.2 26 
NRTL26 

133.  328.2 26 
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134.  [1,4C4mpy][NTf2] 
25 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 25 

313.2 25 NRTL 25 

135.  

[1,4C4mpy][BF4] 
39 n-hexane benzene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 39 

313.2 39, 55, 57 NRTL 39 

UNIQUAC 55 

ASOG 57 136.  333.2 39, 55, 57 

137.  [1,4C4mpy][BF4] 
33 n-heptane toluene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 33 

313.2  33 NRTL 33 

138.  

[1,4C4mpy][BF4] 
39 n-octane ethylbenzene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 39 

313.2 39, 55, 57 NRTL 39 

UNIQUAC 55 

ASOG 57 
139.  348.2 39, 55, 57 

140.  

[1,4C4mpy][BF4] 
39 n-octane m-xylene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 39 

313.2 39, 55, 57 NRTL 39 

UNIQUAC 55 

ASOG 57 141.  348.2 39, 55, 57 

142.  

[1,4C4mpy][BF4] 
6 n-dodecane propylbenzene 

Tie-lines: thermodynamic equilibrium + GC 
and overall mass balance 6 

313 6 
NRTL 84 

UNIQUAC 84 
143.  323 6 

144.  333 6 

145.  

[1,4C4mpy][BF4] 
6 n-dodecane butylbenzene 

Tie-lines: thermodynamic equilibrium + GC 
and overall mass balance 6 

313 6 
NRTL 84 

UNIQUAC 84 
146.  323 6 

147.  333 6 

148.  [N1(2OH)11][NTf2] 
4 n-hexane benzene 

Tie-lines: thermodynamic equilibrium + 
NMR 4 

313.15 4 NRTL 4 

149.  [N2(2OH)11][NTf2] 
27 n-hexane benzene 

Tie-lines: thermodynamic equilibrium + 
NMR 27 

298.15 27 NRTL 27 

150.  [N2(2OH)11][NTf2] 
27 n-hexane p-xylene 

Tie-lines: thermodynamic equilibrium + 
NMR 27 

298.15 27 NRTL 27 

151.  [N2(2OH)11][NTf2] 
27 n-hexane m-xylene Tie-lines: thermodynamic equilibrium + 298.15 27 NRTL 27 
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NMR 27 

152.  [N2(2OH)11][NTf2] 
27 n-octane m-xylene 

Tie-lines: thermodynamic equilibrium + 
NMR 27 

298.15 27 NRTL 27 

153.  [ N4(2OH)11][BF4] 
5 n-hexane p-xylene 

Tie-lines: thermodynamic equilibrium + 
NMR 5 

298.15 5 NRTL 5 

154.  [ N6(2OH)11][BF4] 
5 n-hexane p-xylene 

Tie-lines: thermodynamic equilibrium + 
NMR 5 

298.15 5 NRTL 5 

155.  [P666 14][NTf2] 
3 n-hexane benzene 

Tie-lines: thermodynamic equilibrium + 
NMR 3 

298.15 3 ---- 
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Table C2 Published LLE experimental data for systems composed of cycloalkane + aromatic hydrocarbon + ionic liquid, measurement 

technique, and models already applied. 

Nº Ionic liquid cycloalkane Aromatic Experimental procedure Temperature / K Model 

1.  [C1im][P44] 
41 cyclohexane benzene 

Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 41 

298.2 41  

2.  
[C1mim][P11] 

14 cyclohexane benzene 
Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 14 

298.2 14 
NRTL 14 

3.  313.2 14 

4.  
[C1mim][P22] 

14 cyclohexane benzene 
Tie-lines: thermodynamic equilibrium + 
NMR, GC and overall mass balance 14 

298.2 14 
NRTL 14 

5.  313.2 14 

6.  [C2mim][EtSO4] 
9 cyclohexane benzene 

Binodal data: Cloud point method 9 

Tie-lines: thermodynamic equilibrium + 
density correlation 9 

298.15 9 
NRTL 9 

UNIQUAC 9 

7.  [C2mim][EtSO4] 
11 cyclohexane 

ethylbenzen
e 

Binodal data: Cloud point method 11 

Tie-lines: thermodynamic equilibrium + 
density correlation 11 

298.15 11 
NRTL 11 

UNIQUAC 11 

8.  [C2mim][EtSO4] 
9 methylcyclohexane benzene 

Binodal data: Cloud point method 9 

Tie-lines: thermodynamic equilibrium + 
density correlation 9 

298.15 9 
NRTL 9 

UNIQUAC 9 

9.  [C2mim][EtSO4] 
9 methylcyclohexane 

ethylbenzen
e 

Binodal data: Cloud point method 9 

Tie-lines: thermodynamic equilibrium + 
density correlation 9 

298.15 9 
NRTL 9 

UNIQUAC 9 

10.  [C2mim][EtSO4] 
9 cyclooctane benzene 

Binodal data: Cloud point method 9 

Tie-lines: thermodynamic equilibrium + 
density correlation 9 

298.15 9 
NRTL 9 

UNIQUAC 9 

11.  [C2mim][EtSO4] cyclooctane 
ethylbenzen

e 
Binodal data: Cloud point method 

Tie-lines: thermodynamic equilibrium + 
298.15 

NRTL 

UNIQUAC 
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density correlation 

12.  [C4mim][MeSO4] 
50 cyclohexane toluene 

Binodal data: Cloud point method50 

Tie-lines: thermodynamic equilibrium + 
density correlation50 

298.1550 
NRTL50 

UNIQUAC50 

13.  [C4mim][MeSO4] 
50 methylcyclohexane toluene 

Binodal data: Cloud point method50 

Tie-lines: thermodynamic equilibrium + 
density correlation50 

298.1550 
NRTL50 

UNIQUAC50 

14.  [C4mim][MeSO4] 
50 cyclooctane toluene 

Binodal data: Cloud point method50 

Tie-lines: thermodynamic equilibrium + 
density correlation50 

298.1550 
NRTL50 

UNIQUAC50 

15.  

[C4mim][TCB] 43 methylcyclohexane toluene 
Tie-lines: thermodynamic equilibrium + 

GC and overall mass balance 43 

293.15 43 
NRTL43 

UNIQUAC43 
16.  313.15 43 

17.  333.15 43 

18.  

[C6mim][TCB] 43 methylcyclohexane toluene 
Tie-lines: thermodynamic equilibrium + 

GC and overall mass balance 43 

293.15 43 
NRTL 43 

UNIQUAC 43 
19.  313.15 43 

20.  333.15 43 

21.  [1,3C2mpy][EtSO4] 
47 cyclohexane benzene 

Binodal data: Cloud point method 47 

Tie-lines: thermodynamic equilibrium + 
density correlation 47 

298.15 47 NRTL 47 

22.  [1,3C2mpy][EtSO4] 
47 cyclohexane toluene 

Binodal data: Cloud point method 47 

Tie-lines: thermodynamic equilibrium + 
density correlation 47 

298.15 47 NRTL 47 

23.  [1,3C2mpy][EtSO4] 
47 cyclohexane 

ethylbenzen
e 

Binodal data: Cloud point method 47 

Tie-lines: thermodynamic equilibrium + 
density correlation 47 

298.15 47 NRTL 47 

24.  [1,3C2mpy][EtSO4] 
49 cyclooctane benzene Binodal data: Cloud point method 49 298.15 49 NRTL 49 
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Tie-lines: thermodynamic equilibrium 49 

25.  [1,3C2mpy][EtSO4] 
49 cyclooctane toluene 

Binodal data: Cloud point method 49 

Tie-lines: thermodynamic equilibrium 49 
298.15 49 NRTL 49 

26.  [1,3C2mpy][EtSO4] 
49 cyclooctane 

ethylbenzen
e 

Binodal data: Cloud point method 49 

Tie-lines: thermodynamic equilibrium 49 
298.15 49 NRTL 49 

27.  [1,3C2mpy][EtSO4] 
44 methylcyclohexane benzene 

Binodal data: Cloud point method 44 

Tie-lines: thermodynamic equilibrium + 
density correlation 44 

298.15 44 NRTL 44 

28.  [1,3C2mpy][EtSO4] 
44 methylcyclohexane toluene 

Binodal data: Cloud point method 44 

Tie-lines: thermodynamic equilibrium + 
density correlation 44 

298.15 44 NRTL 44 

29.  [1,3C2mpy][EtSO4] 
44 methylcyclohexane 

ethylbenzen
e 

Binodal data: Cloud point method 44 

Tie-lines: thermodynamic equilibrium + 
density correlation 44 

298.15 44 NRTL 44 

30.  [1,4C4mpy][BF4] 
48 cyclohexane benzene 

Tie-lines: thermodynamic equilibrium + 
GC density correlation 48 

303.15 48 ---- 

31.  [1,4C4mpy][BF4] 
48 cyclohexane toluene 

Tie-lines: thermodynamic equilibrium + 
GC density correlation 48 

303.15 48 ---- 

32.  [1,4C4mpy][BF4] 
48 cyclohexane 

ethylbenzen
e 

Tie-lines: thermodynamic equilibrium + 
GC density correlation 48 

303.15 48 ---- 

33.  [1,4C4mpy][BF4] 
48 cyclohexane o-xylene 

Tie-lines: thermodynamic equilibrium + 
GC density correlation 48 

303.15 48 ---- 
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Table C3 Root mean square deviation (RMSD) between the compositions predicted by 

the COSMO-RS model and the experimental data for the ternary phase diagrams 

studied. 

system aliphatic + aromatic + ionic liquid  RMSD  

n-hexane + benzene + [C2mim][EtSO4] at 298.15K
32

 1.4 

cyclohexane + benzene + [C2mim][EtSO4] at 298.15K 
9
 1.9 

n-heptane + benzene + [C2mim][EtSO4] at 298.15K 
32

 1.2 

n-octane + benzene + [C2mim][EtSO4] at 298.15K
32

 1.5 

n-nonane + benzene + [C2mim][EtSO4] at 298.15K 
32

 1.4 

n-hexane + benzene + [1,3C2mpy][EtSO4] at 293.15K 
10

 1.8 

n-hexane + toluene + [1,3C2mpy][EtSO4] at 293.15K 
20

 3.0 

n-hexane + ethylbenzene + [1,3C2mpy][EtSO4] at 293.15K 
20

 
3.8 

n-hexane + o-xylene + [1,3C2mpy][EtSO4] at 293.15K
2
 2.8 

n-hexane + m-xylene + [1,3C2mpy][EtSO4] at 293.15K 
2
 3.1 

n-hexane + p-xylene + [1,3C2mpy][EtSO4] at 293.15K 
2
 3.0 

n-hexane + benzene + [1,3C2mpy][EtSO4] at 283.15K 
10

 1.3 

n-hexane + benzene + [1,3C2mpy][EtSO4] at 298.15K 
10

 1.4 

n-hexane + benzene + [1,3C2mpy][EtSO4] at 303.15K 
10

 1.7 

n-hexane + benzene +[C2mim][NTf2] at 298.15K 
3
 4.6 

n-hexane + benzene + [N2(2OH)11][NTf2] at 298.15K 
27

 5.1 

n-heptane + toluene + [1,2C4mpy][BF4] at 313.2K 
33

 2.4 

n-heptane + toluene + [1,3C4mpy][BF4] at 313.2K 
33

 4.6 

n-heptane + toluene + [1,4C4mpy][BF4] at 313.2K 
33

 6.4 

n-hexane + benzene + [C4mim][NTf2] at 298.15K 
29

 5.4 

n-hexane + benzene + [C8mim][NTf2] at 298.15K 
29

 33.5 

n-hexane + benzene + [C10mim][NTf2] at 298.15K 
29

 33.2 

n-hexane +benzene + [C12mim][NTf2] at 298.15K 
29

 27.9 

n-heptane + toluene + [C4mim][SCN] at 303.15K  
17

 4.3 

n-heptane + toluene + [C4mim][DCA] at 303.15K  
17

 5.8 

n-heptane + toluene + [C4mim][MeSO4] at 313.15K 
40

 1.2 

n-heptane + toluene + [C6mim][PF6] at 298.15K
37

 4.5 

n-heptane + toluene + [C6mim][BF4] at 298.15K 
37

 6.7 
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n-hexane + benzene + [C2mim][OcSO4] at 298.15K
15

 5.6 
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a) 

 

b) c) 

  

Figure C1 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-octane + benzene + 

[1,3C2mpy][EtSO4] 
31 (yellow circles, solid line and yellow dotted circles, dot dashed line), 

and cyclooctane + benzene + [1,3C2mpy][EtSO4] 
9 (dark yellow squares, solid line and 

dark yellow crossed squares, dot-dot dotted line) at 298.15K. 
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a) 

 
b) c) 

 
Figure C2 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + 

[1,3C2mpy][EtSO4] 
10 (blue diamonds, solid line and blue crossed diamonds, dotted line), 

n-heptane + benzene + [1,3C2mpy][EtSO4] (green triangles, solid line and green crossed 

triangles, dotted line), n-octane + benzene + [1,3C2mpy][EtSO4] (yellow circles, solid line 

and yellow crossed circles, dot dashed line) and n-nonane + benzene + 

[1,3C2mpy][EtSO4] (red squares, solid line and red crossed squares, dot-dot dashed line) 

at 298.15K.  

[1,3C
2
mpy][EtSO

4
]0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

benzene

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n-alkane

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

20

40

60

80

100

120

140

160

0.0 0.2 0.4 0.6 0.8 1.0

Se
le

ct
iv

it
y

x benzene, hydrocarbon phase

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.2 0.4 0.6 0.8 1.0

D
is

tr
ib

u
ti

o
n

 r
at

io

x benzene, hydrocarbon phase



Appendix C 

315 

a) 

 

b) c) 

 

Figure C3 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + toluene + 

[1,3C2mpy][EtSO4] 
10 (blue diamonds, solid line and blue crossed diamonds, dotted line), 

n-heptane + toluene + [1,3C2mpy][EtSO4] 
10 (green triangles, solid line and green 

crossed triangles, dotted line), n-octane + toluene + [1,3C2mpy][EtSO4] 
10 (yellow circles, 

solid line and yellow crossed circles, dot dashed line), and n-nonane + toluene + 

[1,3C2mpy][EtSO4] 
10 (red squares, solid line and red crossed squares, dot-dot dashed 

line) at 298.15K.  
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a) 

 

b) c) 

 

Figure C4 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + [C2py][EtSO4] 

30 (blue diamonds, solid line and blue crossed diamonds, dotted line), n-heptane + 

benzene + [C2py][EtSO4] 
30 (green triangles, solid line and green crossed triangles, 

dotted line), n-octane + benzene + [C2py][EtSO4] 
19 (yellow circles, solid line and yellow 

crossed circles, dot dashed line) and n-nonane + benzene + [C2py][EtSO4] 
19 (red 

squares, solid line and red crossed squares, dot-dot dashed line) at 283.15K. 
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a) 

 

b) c) 

 

Figure C5 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-heptane + benzene + [C6mim][BF4] 

37 (green triangle, solid line and green dotted triangle, dotted line), n-dodecane + 

benzene + [C6mim][BF4] 
37 (pink hexagon, solid line and pink dotted hexagon , dashed 

line), and n-hexadecane + benzene + [C6mim][BF4] 
37 (grey square, solid line and grey 

dotted square, dot-dot dashed line) at 283.15K.  
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a) 

 
 b) c) 

 

Figure C6 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-heptane + benzene + 

[C2mim][OcSO4] 
15 (green triangle, solid line and green dotted triangle, dotted line), and 

n-hexadecane + benzene + [C2mim][OcSO4] 
15 (grey square, solid line and grey dotted 

square, dot-dot dashed line) at 298.15K. 

[C
2
mim][OcSO

4
]0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

benzene

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n-alkane

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

50

100

150

200

250

300

350

400

0.0 0.2 0.4 0.6 0.8 1.0

Se
le

ct
iv

it
y

x benzene, hydrocarbon phase

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0

D
is

tr
ib

u
ti

o
n

 r
at

io

x benzene, hydrocarbon phase



Appendix C 

319 
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Figure C7 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-heptane + benzene + 

[C8mim][MDEGSO4] 
15 (green triangle, solid line and green dotted triangle, dotted line), 

and n-hexadecane + benzene + [C8mim][MDEGSO4] 
15 (grey square, solid line and grey 

dotted square, dot-dot dashed line) at 298.15K. 
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Figure C8 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-nonane + benzene + [C8mim][PF6] 

22 (red squares, solid line and red crossed squares, dot-dot dashed line) and n-undecane 

+benzene + [C8mim][PF6] 
22 (dark cyan circles, solid line and dark cyan crossed circles, 

dotted line) at 298.15K.  
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Figure C9 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + m-xylene + 

[N2(2OH)11][NTf2] 
27 (blue diamonds, solid line and blue crossed diamonds, dotted line) and 

n-octane + m-xylene + [N2(2OH)11][NTf2] 
27 (yellow circles, solid line and yellow crossed 

circles, dot dashed line) at 298.15K. 
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Figure C10 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems cyclohexane + benzene + 

[C2mpy][EtSO4] 
47 (blue diamonds, solid line and blue crossed diamonds, dotted line) and 

cyclooctane + benzene + [C2mpy][EtSO4] 
47 (yellow circles, solid line and yellow crossed 

circles, dot dashed line) at 298.15K. 
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Figure C11 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems cyclohexane + benzene + 

[C2mim][EtSO4] 
9 (blue diamonds, solid line and blue crossed diamonds, dotted line) and 

cyclooctane + benzene + [C2mim][EtSO4] 
9 (yellow circles, solid line and yellow crossed 

circles, dot dashed line) at 298.15K. 
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Figure C12 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems cyclooctane + benzene + 

[1,3C2mpy][EtSO4] 
49 (dark yellow squares, solid line and dark yellow crossed squares, 

dot-dot dotted line), and methylcyclooctane + benzene + [1,3C2mpy][EtSO4] 
44 (dark pink 

diamonds, solid line and dark pink crossed diamonds, dotted line), at 298.15K. 
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Figure C13 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-octane + o-xylene + [C2mim][NTf2] 
8 

(red squares, solid line and red dotted squares, dot-dot dashed line), n-octane + m-

xylene + [C2mim][NTf2] 
8 (blue diamonds, solid line and blue dotted diamonds, dotted 

line), and n-octane + p-xylene + [C2mim][NTf2] 
8 (green triangles, solid line and green 

dotted triangles, dotted line) at 298.15K. 
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Figure C14 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-nonane +benzene + [C8mim][PF6] 
22 

(red triangles, solid line and red dotted triangles, long dashed line), n-nonane + toluene + 

[C8mim][PF6] 
22 (yellow squares, solid line and yellow semi-filled squares, dotted line), 

and n-nonane + m-xylene + [C8mim][PF6] 
22 (blue diamonds, solid line and blue dotted 

diamonds, short dashed line), at 298.15K. 

[C
8
mim][PF

6
]0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

aromatic

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n-nonane

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

5

10

15

20

25

30

35

40

45

50

0.0 0.2 0.4 0.6 0.8 1.0

Se
le

ct
iv

it
y

x aromatic, hydrocarbon phase

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0

D
is

tr
ib

u
ti

o
n

 r
at

io

x aromatic, hydrocarbon phase



Appendix C 

327 
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Figure C15 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + 

[1,3C2mpy][EtSO4] 
10 (dark red triangles, solid line and dark red dotted triangles, dashed 

line), n-hexane + toluene + [1,3C2mpy][EtSO4] 
20 (yellow squares, solid line and yellow 

semi-filled squares, dotted line), n-hexane + ethylbenzene + [1,3C2mpy][EtSO4] 
20 (dark 

green diamonds, solid line and dark green semi-filled diamonds, dot dashed line), n-

hexane + o-xylene + [1,3C2mpy][EtSO4] 
2 (light red squares, solid line and light red 

dotted squares, dot-dot dashed line), n-hexane + m-xylene + [1,3C2mpy][EtSO4] 
2 (blue 

diamonds, solid line and blue dotted diamonds, dotted line), and n-hexane + p-xylene + 

[1,3C2mpy][EtSO4] 
2 (light green triangles, solid line and light green dotted triangles, 

dotted line) at 298.15K. 
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Figure C16 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + 

[1,3C4mpy][DCA] 24 (red triangles, solid line and red dotted triangles, dashed line), and n-

hexane + p-xylene + [1,3C4mpy][DCA] 24 (green triangles, solid line and green dotted 

triangles, dotted line) at 303.15K. 
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Figure C17 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + 

[1,3C4mpy][DCA] 24 (red triangles, solid line and red dotted triangles, dashed line), and n-

hexane + p-xylene + [1,3C4mpy][DCA] 24 (green triangles, solid line and green dotted 

triangles, dotted line) at 328.15K. 
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Figure C18 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + 

[N2(2OH)11][NTf2] 
27 (red triangles, solid line and red dotted triangles, dashed line), n-

hexane + m-xylene + [N2(2OH)11][NTf2] 
27 (blue diamonds, solid line and blue dotted 

diamonds, dotted line), and n-hexane + p-xylene + [N2(2OH)11][NTf2] 
27 (green triangles, 

solid line and green dotted triangles, dotted line) at 298.15K. 
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Figure C19 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems cyclooctane + benzene + 

[1,3C2mpy][EtSO4] 
49 (red triangles, solid line and red dotted triangles, dashed line), 

cyclooctane + toluene + [1,3C2mpy][EtSO4] 
49 (yellow squares, solid line and yellow 

semi-filled squares, dotted line), cyclooctane + ethylbenzene + [1,3C2mpy][EtSO4] 
49 

(green diamonds, solid line and green semi-filled diamonds, dot dashed line), at 

298.15K.  
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5  

Figure C20 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems cyclohexane + benzene + 

[1,4C4mpy][BF4] 
48 (red triangles, solid line and red dotted triangles, dashed line), 

cyclohexane + toluene + [1,4C4mpy][BF4] 
48 (yellow squares, solid line and yellow semi-

filled squares, dotted line), cyclohexane + ethylbenzene + [1,4C4mpy][BF4] 
48 (green 

diamonds, solid line and green semi-filled diamonds, dot dashed line), and cyclohexane 

+ o-xylene + [1,4C4mpy][BF4] 
48 (red squares, solid line and red dotted squares, dot-dot 

dashed line) at 298.15K.  
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Figure C21 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems cyclohexane +benzene + 

[C2mim][EtSO4] 
9 (light purple center square, solid line and dark purple center square, dot 

dashed line) and cyclohexane +benzene + [C2mpy][EtSO4] 
47 (light pink center diamonds, 

solid line and dark pink center diamonds, long dashed line) at 298.15K. 
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a) 

 

b) c) 

 

Figure C22 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-heptane + toluene + 

[1,2C2mpy][NTf2] 
35 (red squares, solid line and red dotted squares, dot-dot dashed line), 

n-heptane + toluene + [1,3C2mpy][NTf2] 
35 (blue diamonds, solid line and blue dotted 

diamonds, dashed line), and n-heptane + toluene + [1,4C2mpy][NTf2] 
35 (green triangles, 

solid line and green dotted triangles, dotted line) at 313.2K. 
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a) 

b) c) 

 

Figure C23 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-heptane + toluene + 

[C1mim][MeSO4] 
40 (blue circles, solid line and blue hourglass circles, long dashed line) 

and n-heptane + toluene + [C4mim][MeSO4] 
42 (purple squares, solid line and purple 

hourglass squares, dot dashed line) at 313.2K. 
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a) 

 

b) c) 

 

Figure C24 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-heptane + toluene + [C4py][BF4] 
83 

(purple squares, solid line and purple hourglass squares, dot dashed line) n-heptane + 

toluene + [C6py][BF4] 
83 (pink circles, solid line and pink hourglass circles, dashed line), 

at 313.2K. 
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a) 

 

b) c) 

 

Figure C25 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + 

[N1(2OH)11][NTf2] 
4 (blue circles, solid line and blue hourglass circles, long dashed line) at 

313.2K and n-hexane + benzene + [N2(2OH)11][NTf2] 
27 (red circles, solid line and red 

hourglass circles, long dashed line) at 298.15K. 
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a) 

 

b) c) 

 

Figure C26 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-heptane + toluene + [C2py][NTf2] 
35 

(red circles, solid line and red hourglass circles, long dashed line) and n-heptane + 

toluene + [C2mpy][NTf2] 
35 (green squares, solid line and green hourglass squares, short 

dashed line) at 313.2K. 
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a) 

 

b) c) 

 

Figure C27 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-heptane + toluene + [C4mim][SCN] 

17 (green squares, solid line and green dotted squares, dotted line), and n-heptane + 

toluene + [C4mim][DCA] 17 (red triangles, solid line and red dotted triangles, long dashed 

line) at 303.15K. 
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a) 

 

b) c) 

 

Figure C28 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-heptane + toluene + [C4py][NTf2] 
25 

(orange circles, solid line and dark orange dotted circles, long dashed line) and n-

heptane + toluene + [C4py][BF4] 
83 (purple squares, solid line and purple dotted squares, 

dot-dot dashed line) at 313.2K. 
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a) 

 
b) c) 

 
Figure C29 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + 

[C4mim][MeSO4] at temperatures 303.15K (light yellow squares, solid line and dark 

yellow squares, dot dashed line), 313.15K (light orange diamonds, solid line and dark 

orange diamonds, dotted line), and 328.15K (light red triangles, solid line and dark red 

triangles, long dashed line). 
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a) 

 

b) c) 

 

Figure C30 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-octane + benzene + [C2py][EtSO4] 

at the temperatures 283.15K 19 (light blue triangles, solid line and dark blue triangles, 

long dashed line) and 298.15K 19 (light yellow squares, solid line and dark yellow 

squares, dot dashed line). 
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a) 

 

b) c) 

 

Figure C31 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-nonane + benzene + [C2py][EtSO4] 

at the temperatures 283.15K 19 (light blue triangles, solid line and dark blue triangles, 

long dashed line) and 298.15K 19 (light yellow squares, solid line and dark yellow 

squares, dot dashed line). 
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a) 

 

b) c) 

 

Figure C32 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-octane + benzene + 

[1,3C2mpy][EtSO4] at the temperatures 283.15K 31 (light blue triangles, solid line and 

dark blue triangles, long dashed line) and 298.15K 31 (light yellow squares, solid line and 

dark yellow squares, dot dashed line). 
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a) 

 

b) c) 

 

Figure C33 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-nonane + benzene + 

[1,3C2mpy][EtSO4] at the temperatures 283.15K 31 (light blue triangles, solid line and 

dark blue triangles, long dashed line) and 298.15K 31 (light yellow squares, solid line and 

dark yellow squares, dot dashed line). 
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a) 

 

b) c) 

 

Figure C34 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + benzene + 

[1,3C4mpy][DCA] at the temperatures 303.15K 24 (light orange diamonds, solid line and 

dark orange diamonds, dotted line) and 328.15K 24 (light red triangles, solid line and dark 

red triangles, long dashed line). 
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a) 

 

b) c) 

 

Figure C35 a) Experimental and COSMO-RS predicted tie-lines, b) selectivity and c) 

distribution ratio for the LLE of the ternary systems n-hexane + p-xylene + 

[1,3C4mpy][DCA] at the temperatures 303.15K 24 (light orange diamonds, solid line and 

dark orange diamonds, dotted line) and 328.15K 24 (light red triangles, solid line and dark 

red triangles, long dashed line). 
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Table D1 Experimental liquid-liquid equilibrium data for the ternary systems composed 

of ionic liquid (IL) + 1-hexanethiol (RSH) + n-dodecane (HC), and respective standard 

deviation (ST). 

Initial composition n-dodecane-rich-phase Ionic-liquid-rich phase  

ILx  RSHx  I

ILx  
I

RSHx  ST 
II

ILx  
II

RSHx  ST Distribution ratio 

[C2mim][MeSO4] (130.1 ppm H2O) at 298.2 K 

0.5623 0.0089 0.0000 0.0212 0.0002 0.9994 0.0006 0.0001 0.03 

0.5577 0.0247 0.0000 0.0529 0.0006 0.9987 0.0013 0.0001 0.02 

0.5557 0.0453 0.0000 0.0989 0.0017 0.9985 0.0015 0.0001 0.02 

[C2mim][CH3SO3] (405.2 ppm H2O) at 298.2 K 

0.5790 0.0069 0.0000 0.0157 0.0003 0.9989 0.0011 0.0002 0.07 

0.5765 0.0134 0.0000 0.0291 0.0008 0.9990 0.0010 0.0003 0.03 

0.5698 0.0219 0.0000 0.0477 0.0005 0.9984 0.0016 0.0003 0.03 

[C2mim][CF3SO3] (305.4 ppm H2O) at 298.2 K 

0.5367 0.0138 0.0000 0.0144 0.0005 0.9987 0.0013 0.0001 0.09 

0.5371 0.0232 0.0000 0.0283 0.0031 0.9979 0.0021 0.0003 0.07 

0.5492 0.0072 0.0000 0.0459 0.0006 0.9970 0.0030 0.0002 0.06 

[C2mim][NTf2] (315.2 ppm H2O) at 298.2 K 

0.4777 0.0091 0.0000 0.0166 0.0008 0.9978 0.0022 0.0002 0.13 

0.4741 0.0157 0.0000 0.0267 0.0018 0.9953 0.0047 0.0006 0.18 

0.4669 0.0268 0.0000 0.0456 0.0006 0.9934 0.0066 0.0006 0.15 

[C2mim][BF4] (523.9 ppm H2O) at 298.2 K 

0.5931 0.0066 0.0000 0.0168 0.0006 >0.999 <0.0001  0.00 

0.5998 0.0127 0.0000 0.0316 0.0012 >0.999 <0.0001  0.00 

0.5948 0.0207 0.0000 0.0510 0.0008 >0.999 <0.0001  0.00 

[C4mim][MeSO4] (80.4 ppm H2O) at 298.2 K 

0.5231 0.0094 0.0000 0.0198 0.0003 0.9988 0.0012 0.0001 0.06 

0.5227 0.0156 0.0000 0.0337 0.0015 0.9986 0.0014 0.0002 0.04 

0.5234 0.0251 0.0000 0.0545 0.0008 0.9973 0.0027 0.0002 0.05 

[C4mim][CF3SO3] (528.5 ppm H2O) at 298.2 K 

0.5241 0.0094 0.0000 0.0194 0.003 0.9972 0.0028 0.0003 0.14 

0.5318 0.0153 0.0000 0.0309 0.0014 0.9957 0.0043 0.0002 0.14 

0.5334 0.0245 0.0000 0.0503 0.0011 0.9938 0.0062 0.0001 0.12 

[C4mim][NTf2] (245.7 ppm H2O) at 298.2 K 

0.4277 0.0113 0.0000 0.0175 0.0003 0.9957 0.0043 0.0001 0.25 
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0.4870 0.0168 0.0000 0.0279 0.0004 0.9934 0.0066 0.0001 0.24 

0.4595 0.0284 0.0000 0.0475 0.0003 0.9895 0.0105 0.0005 0.22 

[C2mim][CH3SO3] (141 ppm H2O) at 313.2 K 

0.5813 0.0083 0.0000 0.0194 0.0002 >0.9999 <0.0003   

0.5673 0.0144 0.0000 0.0336 0.0009 0.9985 0.0015 0.0004 0.05 

[C2mim][CF3SO3] (31.1 ppm H2O) at 313.2 K 

0.5417 0.0101 0.0000 0.0211 0.0014 0.9981 0.0019 0.0003 0.09 

0.5545 0.0148 0.0000 0.0306 0.0001 0.9972 0.0028 0.0001 0.09 

[C2mpy][CH3SO3] (174.8 ppm H2O) at 298.2 K 

0.5700 0.0073 0.0000 0.0178 0.0002 0.9987 0.0013 0.0003 0.07 

0.5611 0.0140 0.0000 0.0308 0.0006 0.9985 0.0015 0.0002 0.05 

0.5686 0.0211 0.0000 0.0474 0.0006 0.9978 0.0022 0.0003 0.05 

[C2mpy][NTf2] (183.9 ppm H2O) at 298.2 K 

0.4486 0.0095 0.0000 0.0168 0.0004 0.9964 0.0036 0.0003 0.21 

0.4490 0.0172 0.0000 0.0268 0.0004 0.9939 0.0061 0.0001 0.23 

0.4528 0.0285 0.0000 0.0441 0.0007 0.9915 0.0085 0.0001 0.19 

[C2mpy][CF3SO3] (482.7 ppm H2O) at 313.2 K 

0.5329 0.0094 0.0000 0.0180 0.0007 0.9984 0.0016 0.000 0.09 

0.5346 0.0150 0.0000 0.0291 0.0005 0.9966 0.0034 0.0003 0.12 

[C2mim][MeSO4] (6840.2 ppm H2O) at 298.2 K 

0.5717 0.0071 0.0000 0.0164 0.0006 0.9987 0.0013 0.0002 0.08 

0.5615 0.0139 0.0000 0.0303 0.0006 0.9990 0.0010 0.0001 0.03 

[C2mim][CF3SO3] (6583.1 ppm H2O) at 298.2 K 

0.5468 0.0075 0.0000 0.0150 0.0004 0.9894 0.0016 0.0001 0.10 

0.5408 0.0146 0.0000 0.0283 0.0014 0.9803 0.0027 0.0003 0.10 
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Table D2 COSMO-RS predictive distribution ratio values for the ternary systems constituted by ionic liquid + 1-hexanethiol + n-dodecane, with a mole 

fraction of 1-hexanethiol circa to 0.1 in the n-dodecane-rich phase. 

Cation 
Anion 

[C2mim]
+
 [C4mim]

+
 [C6mim]

+
 [C8mim]

+
 [C2C2im]

+
 [C4C4im]

+
 [C2mpy]

+
 [C2mpyr]

+
 [C4iQuin]

+
 [C4TZO]

+
 [Ch]

 +
 [Gu]

 +
 [(C1)6Gu]

+
 [P666(14)]

 +
 [OC2(C1)4iU]

+
 [SC2(C1)4iU]

+
 

[MeSO4]
-
 0.05 0.07 0.11 0.17 0.07 0.18 0.10 0.16 0.15 0.11 0.01 IP 0.81 0.69 0.42 0.47 

[EtSO4]
-
 0.15 0.10 0.15 NP 0.09 0.22 0.11 0.16 0.19 0.14 0.01 IP 0.82 0.68 0.44 0.51 

[BuSO4]
-
 0.24 0.15 0.21 NP 0.13 0.31 0.16 0.19 0.26 0.21 0.02 IP 0.82 0.69 0.49 0.56 

[OcSO4]
-
 0.19 0.29 0.38 NP 0.26 0.49 0.30 0.32 0.45 0.38 0.06 0.01 0.99 TMP 0.69 0.77 

[CH3SO3]
-
 0.12 0.12 0.14 0.18 0.14 0.20 0.20 0.43 0.18 0.17 0.07 1.14 1.28 1.52 0.72 0.82 

[CF3SO3]
-
 0.03 0.09 0.16 0.26 0.06 0.25 0.07 0.08 0.19 0.11 IP 0.00 0.52 TMP 0.30 0.32 

[(PFBu)SO3]
-
 0.12 0.23 0.35 NP 0.18 0.48 0.19 0.21 0.39 0.24 0.03 IP 0.71 TMP 0.50 0.50 

[CH3CO2]
-
 0.09 0.19 0.21 NP 0.22 0.27 0.32 0.64 0.27 0.26 0.15 IP 1.77 1.67 1.01 1.18 

[NTf2]
-
 0.12 0.25 0.39 0.54 0.19 0.53 0.19 0.19 0.41 0.26 0.03 0.01 0.58 TMP 0.45 0.44 

[PF6]
-
 0.01 0.07 0.16 NP 0.04 0.28 0.04 0.03 0.18 0.07 IP 0.07 0.25 TMP 0.15 0.16 

[BF4]
-
 0.01 0.04 0.08 NP 0.03 0.15 0.04 0.06 0.10 0.05 IP IP 0.42 TMP 0.20 0.22 

[N(CN)2]
-
 0.15 0.03 0.07 NP 0.03 0.12 0.03 0.08 0.08 0.05 IP IP 0.47 TMP 0.22 0.25 

[C(CN)3]
-
 0.01 0.04 0.08 NP 0.03 0.14 0.03 0.05 0.09 0.05 IP IP 0.30 TMP 0.16 0.19 

[B(CN)4]
-
 0.01 0.04 0.09 NP 0.03 0.16 0.02 0.05 0.09 0.06 IP IP 0.23 TMP 0.13 0.15 

Obs.: NP – not predicted; TMP – total miscibility predicted; IP – immiscibility predicted. 
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Table D2 (continuation) 

Cation 
Anion 

[C2mim]
+
 [C4mim]

+
 [C6mim]

+
 [C8mim]

+
 [C2C2im]

+
 [C4C4im]

+
 [C2mpy]

+
 [C2mpyr]

+
 [C4iQuin]

+
 [C4TZO]

+
 [Ch]

 +
 [Gu]

 +
 [(C1)6Gu]

+
 [P666(14)]

 +
 [OC2(C1)4iU]

+
 [SC2(C1)4iU]

+
 

[TOS]
-
 0.09 0.14 0.20 NP 0.13 0.29 0.16 0.21 0.25 0.20 0.02 IP 0.85 0.64 0.50 0.57 

[DEP]
-
 0.06 0.21 0.26 NP 0.20 0.35 0.24 0.34 0.32 0.29 0.05 IP 1.30 0.60 0.76 0.88 

[DBP]
-
 0.01 0.33 0.40 NP 0.31 0.51 0.36 0.42 0.48 0.44 0.09 0.01 1.35 0.60 0.88 1.00 

[NO3]
-
 0.04 0.05 0.08 NP 0.05 0.13 0.08 0.23 0.10 0.08 0.02 IP 0.94 0.70 0.45 0.51 

[FeCl4]
-
 0.15 0.34 0.57 NP 0.24 0.76 0.21 0.17 0.55 0.30 0.05 1.14 0.45 TMP 0.38 0.37 

Obs.: NP – not predicted; TMP – total miscibility predicted; IP – immiscibility predicted. 
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Table D3 COSMO-RS selectivity values for the ternary systems constituted by ionic liquid + 1-hexanethiol + n-dodecane, with a mole fraction of 1-

hexanethiol circa to 0.1 in the n-dodecane-rich phase. 

Cation 
Anion 

[C2mim]
+
 [C4mim]

+
 [C6mim]

+
 [C8mim]

+
 [C2C2im]

+
 [C4C4im]

+
 [C2mpy]

+
 [C2mpyr]

+
 [C4iQuin]

+
 [C4TZO]

+
 [Ch]

+
 [Gu]

+
 [(C1)6Gu]

+
 [P666(14)]

+
 [OC2(C1)4iU]

+
 [SC2(C1)4iU]

+
 

[MeSO4]
-
 252 168 114 77 174 66 151 97 103 140 644 IP 32 0 - TMP 44 52 

[EtSO4]
-
 381 131 90 NP 142 53 129 96 82 111 608 IP 31 0- TMP 41 47 

[BuSO4]
-
 48 88 61 NP 99 38 96 85 57 76 436 IP 28 0- TMP 34 40 

[OcSO4]
-
 68 44 33 NP 50 22 50 49 32 40 156 312 19 TMP 21 25 

[CH3SO3]
-
 94 98 84 66 85 54 71 41 77 88 116 794 24 6 29 34 

[CF3SO3]
-
 579 213 113 67 287 59 290 258 107 192 3231 IP 51 TMP 68 83 

[(PFBu)SO3]
-
 238 110 66 NP 143 37 150 144 65 109 772 2320 41 TMP 46 59 

[CH3CO2]
-
 148 52 46 NP 46 32 41 28 44 50 58 IP 21 6 22 27 

[NTf2]
-
 255 108 62 39 146 33 153 149 60 103 916 2936 38 TMP 43 55 

[PF6]
-
 1923 418 169 NP 681 75 699 704 154 366 IP 7024 82 TMP 115 134 

[BF4]
-
 1097 431 212 NP 527 100 445 275 185 344 IP IP 51 TMP 82 94 

[N(CN)2]
-
 78 221 124 NP 257 65 236 155 114 179 2068 IP 37 TMP 55 63 

[C(CN)3]
-
 652 221 113 NP 299 58 307 233 108 178 IP IP 46 TMP 65 74 

[B(CN)4]
-
 656 208 103 NP 297 54 325 228 106 169 2624 IP 48 TMP 65 73 

Obs.: NP – not predicted; TMP – total miscibility predicted; IP – immiscibility predicted. 
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Table D3 (continuation) 

Cation 
Anion 

[C2mim]
+
 [C4mim]

+
 [C6mim]

+
 [C8mim]

+
 [C2C2im]

+
 [C4C4im]

+
 [C2mpy]

+
 [C2mpyr]

+
 [C4iQuin]

+
 [C4TZO]

+
 [Ch]

 +
 [Gu]

 +
 [(C1)6Gu]

+
 [P666(14)]

 +
 [OC2(C1)4iU]

+
 [SC2(C1)4iU]

+
 

[TOS]
-
 146 93 67 NP 102 42 98 84 63 83 374 IP 31 0- TMP 38 44 

[DEP]
-
 210 57 45 ---- 60 30 58 50 43 52 165 IP 23 0- TMP 27 31 

[DBP]
-
 483 35 28 ---- 38 20 38 38 27 33 92 157 18 0- TMP 20 23 

[NO3]
-
 233 198 138 ---- 184 75 147 66 125 165 281 IP 29 0- TMP 40 48 

[FeCl4]
-
 381 124 59 ---- 192 26 210 231 58 127 1627 794 46  TMP 51 66 

Obs.: NP – not predicted; TMP – total miscibility predicted; IP – immiscibility predicted. 



Appendix D 

 

357 

 

 

Distribution ratio

0.0 0.2 0.4 0.6 0.8 1.0

S
e
le

c
ti
v
it
y

0

50

100

150

200

250

300

Distribution ratio

0.0 0.2 0.4 0.6 0.8 1.0

S
e
le

c
ti
v
it
y

0

100

200

300

400

500

Distribution ratio

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

S
e
le

c
ti
v
it
y

0

20

40

60

80

100

Distribution ratio

0.0 0.1 0.2 0.3 0.4 0.5 0.6

S
e
le

c
ti
v
it
y

0

100

200

300

400

500

600

700

a) [MeSO4]
- b) [EtSO4]

- 

c) [CH3SO3]
- d) [CF3SO3]

- 



Appendix D 

358 

 

 

Distribution ratio

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

S
e

le
c
ti
v
it
y

0

20

40

60

80

100

120

140

160

Distribution ratio

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
e
le

c
ti
v
it
y

0

50

100

150

200

250

300

Distribution ratio

0.00 0.05 0.10 0.15 0.20 0.25 0.30

S
e

le
c
ti
v
it
y

0

500

1000

1500

2000

2500

Distribution ratio

0.0 0.1 0.2 0.3 0.4 0.5
S

e
le

c
ti
v
it
y

0

200

400

600

800

1000

1200

e) [CH3SO2]
- f) [NTf2]

- 

g) [PF6]
- h) [BF4]

- 



Appendix D 

 

359 

 

Distribution ratio

0.0 0.2 0.4 0.6 0.8 1.0

S
e
le

c
ti
v
it
y

0

20

40

60

80

100

120

140

160

Distribution ratio

0.0 0.1 0.2 0.3 0.4 0.5

S
e
le

c
ti
v
it
y

0

50

100

150

200

250

Distribution ratio

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

S
e
le

c
ti
v
it
y

0

100

200

300

400

500

600

700

Distribution ratio

0.00 0.05 0.10 0.15 0.20 0.25

S
e
le

c
ti
v
it
y

0

100

200

300

400

500

600

700

j) [DCA]- i) [TOS]- 

k) [C(CN)3]
- l) [B(CN)4]

- 



Appendix D 

360 

Symbols: 

 

 

Figure D1 Selectivity versus distribution ratio of 1-hexanethiol in the ternary systems composed of ionic liquids + 1-hexanethiol + n-dodecane, at 298.2 K and 

atmospheric pressure. 
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Symbols: 

 

 

     

Figure D2 Selectivity versus distribution ratio of 1-hexanethiol in the ternary systems composed of ionic liquids + 1-hexanethiol + n-dodecane, at 298.2 K and 

atmospheric pressure.  
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Symbols: 

 

 

Figure D3 Selectivity versus distribution ratio of 1-hexanethiol in the ternary systems composed of [Cnmim]-based ionic liquids + 1-hexanethiol + n-dodecane, 

at 298.2 K and atmospheric pressure. 
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Figure D4 Selectivity versus distribution ratio of 1-hexanethiol in the ternary systems composed of [RSO4]-based ionic liquids + 1-hexanethiol + n-dodecane, 

at 298.2 K and atmospheric pressure. 
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Figure D5 COSMO-RS σ-profiles for the compounds: 1-hexanethiol (solid line), n-

dodecane (dashed line) and [P666(14)]
+ (dot dashed line). 

 

   

Figure D6 COSMO-RS σ-profiles for the compounds: 1-hexanethiol (solid line), n-

dodecane (dashed line), and for the ionic liquid cations [OC2(C1)4iU]+ (dotted line), 

[SC2(C1)4iU]+ (dot-dot dashed line) and [(C1)6Gu]+ (dot dashed line). 
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Figure D7 COSMO-RS σ-profiles for the compounds: 1-hexanethiol (solid line), n-

dodecane (dashed line) and for the ionic liquid cations [Ch]+ (dotted line), [Gu]+ (dot-dot 

dashed line) and [(C1)6Gu]+ (dot dashed line). 

 

 

Figure D8 COSMO-RS σ-profiles for the compounds: 1-hexanethiol (solid line), n-

dodecane (dashed line) and for the ionic liquid cations [C2mim]+ (dotted line), [C2mpy]+ 

(dot-dot dashed line), [C2mpyr]+ (dot dashed line), [C4iQuin]+ (thin solid line), and 

[C4TZO]+ (short dashed line). 
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Figure D9 COSMO-RS σ-profiles for the compounds: 1-hexanethiol (solid line), n-

dodecane (long dashed line), and for the ionic liquid anions [PF6]
- (short dashed line) 

and [BF4]
- (dot-dot dashed line). 

 

   

Figure D10 COSMO-RS σ-profiles for the compounds: 1-hexanethiol (solid line), n-

dodecane (long dashed line) and for the ionic liquid anions [MeSO4]
- (dotted line), 

[CH3SO3]
- (short dashed line), [CF3SO3]

- (dot dashed line) and [(PFBu)SO3]
- (dot-dot 

dashed line). 
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Figure D11 COSMO-RS σ-profiles for the compounds: 1-hexanethiol (solid line), n-

dodecane (long dashed line) and for the ionic liquid anion [CH3CO2]
- (thin solid line). 

 

 

Figure D12 COSMO-RS σ-profiles for the compounds: 1-hexanethiol (solid line), n-

dodecane (long dashed line), and for the ionic liquid anions [N(CN)2]
- (dotted line), 

[C(CN)3]
- (short dashed line) and [B(CN)4]

- (thin solid line). 
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Figure D13 COSMO-RS σ-profiles for the compounds: 1-hexanethiol (solid line), n-

dodecane (long dashed line), and for the ionic liquid anions [DEP]- (dotted line), [DBP]- 

(short dashed line), [NTf2]
- (dot dashed line), [TOS]- (dot-dot dashed line) and [FeCl4]

- 

(thin solid line). 

 

 

Figure D14 COSMO-RS σ-profiles for the compounds: 1-hexanethiol (solid line), n-

dodecane (long dashed line), and for the ionic liquid cations [C2mim]+ (dotted line), 

[C4mim]+ (short dashed line), [C6mim]+ (dot dashed line) and [C8mim]+ (dot-dot dashed 

line). 
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Figure D15 COSMO-RS σ-profiles for the compounds: 1-hexanethiol (solid line), n-

dodecane (long dashed line), and for the ionic liquid anions [MeSO4]
- (dotted line), 

[EtSO4]
- (short dashed line), [BuSO4]

- (dot dashed line) and [OcSO4]
- (dot-dot dashed 

line). 

 

 

Figure D16 COSMO-RS σ-profiles for the compounds: 1-hexanethiol (solid line), n-

dodecane (long dashed line), and for the ionic liquid cations [C2mim]+ (dotted line), 

[C2C2im]+ (dot dashed line), [C4mim]+ (short dashed line), and [C4C4mim]+ (dot-dot 

dashed line). 
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Table D4 COSMO-RS misfit, hydrogen-bonding and van der Waals energies for the compounds 1-hexanethiol and n-dodecane, in the feed model (n-

dodecane with 2 mol/mol% of 1-hexanethiol) at 298.2 K. 

  1-hexanethiol + n-dodecane 

1
-h

e
x
a
n

e
th

io
l EMF (kcal/mol) 1.38795 

EHB (kcal/mol) -0.00127 

EVdW (kcal/mol) -9.29809 

n
-d

o
d

e
c
a
n

e
 EMF (kcal/mol) 0.42834 

EHB (kcal/mol) 0.00000 

EVdW (kcal/mol) -13.60151 
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Table D5 a) COSMO-RS misfit, hydrogen-bonding and van der Waals energies for the compounds 1-hexanethiol, n-dodecane, and for several [C2mim]-based 

ionic liquids combinations in the respective ternary systems at 298.2 K. 

  [C2mim]
+
 

  [MeSO4]
-
 [CH3SO3]

-
 [CF3SO3]

-
 [(PFBu)SO3]

-
 [CH3CO2]

-
 [NTf2]

-
 [PF6]

-
 [BF4]

-
 [N(CN)2]

-
 [C(CN)3]

-
 [B(CN)4]

-
 [TOS]

-
 [DEP]

-
 [DBP]

-
 [NO3]

-
 [FeCl4]

-
 

1
-h

e
x
a
n

e
th

io
l EMF (kcal/mol) 2.55782 2.62863 2.37574 2.26979 2.49283 2.23088 2.42214 2.53459 2.43132 2.38446 2.34889 2.5371 2.51547 2.44307 2.53253 2.23601 

EHB (kcal/mol) -0.16521 -0.21289 -0.13241 -0.1208 -0.27182 -0.09534 -0.06567 -0.09694 -0.15492 -0.12675 -0.10757 -0.18288 -0.23678 -0.22839 -0.17492 -0.05987 

EVdW (kcal/mol) -9.17135 -9.19509 -9.0175 -8.83901 -9.22304 -8.85883 -8.9486 -9.05003 -9.10367 -9.07321 -9.03186 -9.18405 -9.19876 -9.20498 -9.14774 -9.47591 

n
-d

o
d

e
c
a
n

e
 EMF (kcal/mol) 2.81076 2.76034 2.56757 2.36496 2.29493 2.39933 2.80083 2.90318 2.5901 2.58977 2.58188 2.687 2.48027 2.34346 2.72623 2.50145 

EHB (kcal/mol) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

EVdW (kcal/mol) -13.4215 -13.4625 -13.128 -12.7696 -13.4977 -12.8315 -13.0471 -13.2337 -13.376 -13.3183 -13.2504 -13.4307 -13.4628 -13.4769 -13.3946 -13.7419 

a
n

io
n

 

EMF (kcal/mol) 4.71847 5.38773 3.79905 4.40561 5.14893 4.06777 3.53234 3.68243 3.90759 3.98311 4.14625 6.02923 6.31224 6.98955 3.96031 3.5101 

EHB (kcal/mol) -2.14734 -3.02229 -1.61431 -1.46247 -4.47742 -0.85255 -0.21034 -0.81124 -2.23068 -1.53068 -1.06666 -2.62202 -3.63538 -3.55814 -2.40153 -0.06841 

EVdW (kcal/mol) -5.06159 -4.64505 -4.74573 -7.35743 -3.95801 -7.36985 -3.80062 -3.12607 -4.22021 -5.72723 -7.26993 -8.39657 -8.38115 -12.2913 -3.00072 -8.44304 

c
a
ti

o
n

 

EMF (kcal/mol) 4.07879 4.65995 3.79906 3.76384 5.77313 3.6272 3.63173 3.76317 4.17465 3.89098 3.77035 4.32811 4.9162 4.82531 4.20821 3.59525 

EHB (kcal/mol) -2.14433 -2.99947 -1.61484 -1.46366 -4.48319 -0.85337 -0.21174 -0.8119 -2.23493 -1.5336 -1.07004 -2.61921 -3.63699 -3.5599 -2.40136 -0.07027 

EVdW (kcal/mol) -7.427 -7.42934 -7.2923 -7.14139 -7.4704 -7.19208 -7.10358 -7.1735 -7.41464 -7.5087 -7.59999 -7.46009 -7.44199 -7.45221 -7.40665 -8.08254 
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Table D4 b) COSMO-RS misfit, hydrogen-bonding and van der Waals energies for the compounds 1-hexanethiol, n-dodecane and for several [C4mim]-based 

ionic liquids combinations in the respective ternary systems at 298.2 K. 

  [C4mim]
+
 

  [MeSO4]
-
 [CH3SO3]

-
 [CF3SO3]

-
 [(PFBu)SO3]

-
 [CH3CO2]

-
 [NTf2]

-
 [PF6]

-
 [BF4]

-
 [N(CN)2]

-
 [C(CN)3]

-
 [B(CN)4]

-
 [TOS]

-
 [DEP]

-
 [DBP]

-
 [NO3]

-
 [FeCl4]

-
 

1
-h

e
x
a
n

e
th

io
l EMF (kcal/mol) 2.51208 2.588 2.33285 2.23333 2.46653 2.19154 2.36801 2.48014 2.39182 2.34307 2.30617 2.49856 2.48521 2.41763 2.48736 2.18937 

EHB (kcal/mol) -0.16242 -0.21078 -0.12963 -0.11826 -0.27278 -0.09268 -0.06327 -0.09406 -0.15278 -0.12399 -0.10462 -0.18087 -0.23581 -0.22754 -0.17229 -0.0576 

EVdW (kcal/mol) -9.17364 -9.19611 -9.02775 -8.85659 -9.2232 -8.87549 -8.96126 -9.05714 -9.1068 -9.07848 -9.03973 -9.18589 -9.19975 -9.20567 -9.15104 -9.46854 

n
-d

o
d

e
c
a
n

e
 EMF (kcal/mol) 2.70504 2.66528 2.46408 2.2752 2.21657 2.30129 2.67197 2.77777 2.491 2.48784 2.47715 2.59596 2.40296 2.27688 2.62013 2.38456 

EHB (kcal/mol) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

EVdW (kcal/mol) -13.4288 -13.4681 -13.1498 -12.8058 -13.5027 -12.8649 -13.0708 -13.248 -13.3844 -13.3295 -13.265 -13.4376 -13.4683 -13.4813 -13.4033 -13.738 

a
n

io
n

 

EMF (kcal/mol) 4.84949 5.53721 3.88622 4.45355 5.27732 4.09585 3.60067 3.79832 4.02411 4.07399 4.04746 6.14014 6.43104 7.08628 4.10001 3.51222 

EHB (kcal/mol) -2.08715 -2.95026 -1.56629 -1.41869 -4.40016 -0.82233 -0.20101 -0.78122 -2.18093 -1.48881 -1.6695 -2.55791 -3.55925 -3.48366 -2.34012 -0.06508 

EVdW (kcal/mol) -5.06376 -4.64673 -4.74576 -7.35766 -3.95905 -7.36589 -3.7972 -3.12315 -4.18251 -5.67929 -5.69764 -8.39809 -8.38407 -12.2953 -2.99884 -8.43639 

c
a
ti

o
n

 

EMF (kcal/mol) 4.42239 4.97945 4.10907 4.04193 6.00182 3.916 3.98804 4.13128 4.47457 4.20138 4.08731 4.6466 5.19227 5.08333 4.53298 3.90103 

EHB (kcal/mol) -2.08339 -2.92537 -1.56612 -1.41922 -4.40324 -0.82281 -0.20229 -0.78161 -2.18403 -1.49103 -1.03586 -2.55365 -3.55906 -3.48362 -2.33895 -0.06685 

EVdW (kcal/mol) -9.39476 -9.40153 -9.22464 -9.02727 -9.44438 -9.08215 -9.03087 -9.12255 -9.34315 -9.42323 -9.49652 -9.42616 -9.41337 -9.42538 -9.36948 -10.0695 
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Table D4 c) COSMO-RS misfit, hydrogen-bonding and van der Waals energies for the compounds 1-hexanethiol, n-dodecane and for several [C2C2mim]-

based ionic liquids combinations in the respective ternary systems at 298.2 K. 

  [C2C2im]
+
 

  [MeSO4]
-
 [CH3SO3]

-
 [CF3SO3]

-
 [(PFBu)SO3]

-
 [CH3CO2]

-
 [NTf2]

-
 [PF6]

-
 [BF4]

-
 [N(CN)2]

-
 [C(CN)3]

-
 [B(CN)4]

-
 [TOS]

-
 [DEP]

-
 [DBP]

-
 [NO3]

-
 [FeCl4]

-
 

1
-h

e
x
a
n

e
th

io
l EMF (kcal/mol) 2.5362 2.6166 2.3513 2.2480 2.4961 2.2047 2.3863 2.5020 2.4142 2.3625 2.3238 2.5216 2.5107 2.4400 2.5124 2.2026 

EHB (kcal/mol) -0.1643 -0.2135 -0.1310 -0.1194 -0.2777 -0.0935 -0.0636 -0.0949 -0.1548 -0.1253 -0.1056 -0.1831 -0.2392 -0.2306 -0.1745 -0.0579 

EVdW (kcal/mol) -9.1695 -9.1923 -9.0201 -8.8456 -9.2197 -8.8650 -8.9524 -9.0503 -9.1009 -9.0723 -9.0328 -9.1822 -9.1962 -9.2025 -9.1461 -9.4715 

n
-d

o
d

e
c
a
n

e
 EMF (kcal/mol) 2.7454 2.7084 2.4963 2.3005 2.2525 2.3264 2.7076 2.8175 2.5285 2.5230 2.5104 2.6318 2.4383 2.3078 2.6608 2.4119 

EHB (kcal/mol) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

EVdW (kcal/mol) -13.4212 -13.4611 -13.1355 -12.7849 -13.4965 -12.8454 -13.0552 -13.2362 -13.3755 -13.3198 -13.2542 -13.4306 -13.4620 -13.4758 -13.3947 -13.7384 

a
n

io
n

 

EMF (kcal/mol) -2.2798 5.5689 3.8852 4.4594 5.3126 4.0926 3.5800 3.7855 4.0388 4.0819 4.2144 6.1709 6.4797 7.1435 4.1068 3.4953 

EHB (kcal/mol) 4.8618 -2.9437 -1.5676 -1.4207 -4.4096 -0.8231 -0.2004 -0.7792 -2.1926 -1.4955 -1.0373 -2.5552 -3.5568 -3.4817 -2.3397 -0.0648 

EVdW (kcal/mol) -2.0818 -4.6431 -4.7439 -7.3558 -3.9559 -7.3628 -3.7971 -3.1228 -4.1739 -5.6777 -7.2143 -8.3918 -8.3789 -12.2891 -2.9977 -8.4394 

c
a
ti

o
n

 

EMF (kcal/mol) -6.1848 4.7963 3.9021 3.8394 5.8348 3.7034 3.7507 3.9093 4.2933 4.0104 3.8874 4.4528 5.0168 4.9091 4.3389 3.6640 

EHB (kcal/mol) 4.2231 -2.9154 -1.5655 -1.4193 -4.4083 -0.8224 -0.2014 -0.7787 -2.1929 -1.4955 -1.0386 -2.5482 -3.5533 -3.4782 -2.3358 -0.0665 

EVdW (kcal/mol) -2.0766 -8.3366 -8.1788 -8.0058 -8.3774 -8.0550 -7.9879 -8.0697 -8.2753 -8.3628 -8.4466 -8.3622 -8.3490 -8.3607 -8.3085 -8.9936 
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Table D4 d) COSMO-RS misfit, hydrogen-bonding and van der Waals energies for the compounds 1-hexanethiol, n-dodecane and for several [C2mpy]-based 

ionic liquids combinations in the respective ternary systems at 298.2 K. 

  [C2mpy]
+
 

  [MeSO4]
-
 [CH3SO3]

-
 [CF3SO3]

-
 [(PFBu)SO3]

-
 [CH3CO2]

-
 [NTf2]

-
 [PF6]

-
 [BF4]

-
 [N(CN)2]

-
 [C(CN)3]

-
 [B(CN)4]

-
 [TOS]

-
 [DEP]

-
 [DBP]

-
 [NO3]

-
 [FeCl4]

-
 

1
-h

e
x
a
n
e
th

io
l EMF (kcal/mol) 2.56812 2.65707 2.37812 2.27097 2.55431 2.21691 2.39196 2.51908 2.44317 2.38078 2.3344 2.55795 2.55595 2.48246 2.5502 2.20209 

EHB (kcal/mol) -0.16344 -0.21567 -0.12813 -0.11603 -0.28901 -0.08603 -0.05244 -0.08779 -0.15402 -0.1207 -0.09822 -0.18446 -0.24467 -0.23608 -0.17539 -0.04464 

EVdW (kcal/mol) -9.16669 -9.18943 -9.01686 -8.84193 -9.21686 -8.86191 -8.94995 -9.04734 -9.09758 -9.06993 -9.03126 -9.17939 -9.1935 -9.19991 -9.14332 -9.47292 

n
-d

o
d
e
c
a
n
e

 EMF (kcal/mol) 2.80692 2.78081 2.54957 2.34638 2.33271 2.3523 2.7199 2.85287 2.58245 2.55948 2.53238 2.69813 2.5115 2.37568 2.73003 2.41079 

EHB (kcal/mol) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

EVdW (kcal/mol) -13.412 -13.4522 -13.1255 -12.7742 -13.4879 -12.8352 -13.0453 -13.2259 -13.3672 -13.3121 -13.2472 -13.4221 -13.4539 -13.4683 -13.3854 -13.7337 

a
n
io

n
 

EMF (kcal/mol) 4.95965 5.72623 3.95908 4.54439 5.56662 4.10607 3.54458 3.79552 4.14131 4.12636 4.21426 6.3304 6.70673 6.77531 4.21987 3.438 

EHB (kcal/mol) -1.62391 -2.31592 -1.2012 -1.07929 -3.46007 -0.62749 -0.16012 -0.61329 -1.62997 -1.10806 -0.76848 -1.98067 -2.77996 -2.75936 -1.81316 -0.05246 

EVdW (kcal/mol) -5.05175 -4.63606 -4.73955 -7.35285 -3.95058 -7.37388 -3.80316 -3.12874 -4.29837 -5.80806 -7.35597 -8.38186 -8.36953 -8.37635 -2.99643 -8.44461 

c
a
ti
o

n
 

EMF (kcal/mol) 4.31367 4.94171 3.95532 3.88182 6.06621 3.68146 3.68195 3.91314 4.40497 4.05382 3.87319 4.57345 5.18871 5.07715 4.44881 3.55254 

EHB (kcal/mol) -1.61858 -2.28887 -1.19882 -1.07767 -3.45629 -0.6266 -0.16084 -0.61229 -1.62973 -1.10777 -0.76903 -1.97347 -2.77457 -2.70644 -1.8088 -0.05373 

EVdW (kcal/mol) -8.03839 -8.04329 -7.89196 -7.72752 -8.0821 -7.78944 -7.71033 -7.79156 -8.11416 -8.20729 -8.30148 -8.07004 -8.05519 -8.06748 -8.01939 -8.70494 
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Table D4 e) COSMO-RS misfit, hydrogen-bonding and van der Waals energies for the compounds 1-hexanethiol, n-dodecane and for several [C2mpyr]-based 

ionic liquids combinations in the respective ternary systems at 298.2 K. 

  [C2mpyr]
+
 

  [MeSO4]
-
 [CH3SO3]

-
 [CF3SO3]

-
 [(PFBu)SO3]

-
 [CH3CO2]

-
 [NTf2]

-
 [PF6]

-
 [BF4]

-
 [N(CN)2]

-
 [C(CN)3]

-
 [B(CN)4]

-
 [TOS]

-
 [DEP]

-
 [DBP]

-
 [NO3]

-
 [FeCl4]

-
 

1
-h

e
x
a
n
e
th

io
l EMF (kcal/mol) 2.64449 2.75561 2.44175 2.32538 2.71243 2.25579 2.42236 2.56943 2.56452 2.47103 2.40346 2.64382 2.66771 2.5874 2.63961 2.22082 

EHB (kcal/mol) -0.16024 -0.21771 -0.12185 -0.10915 -0.31245 -0.07462 -0.03674 -0.07637 -0.15644 -0.11516 -0.08793 -0.18521 -0.25388 -0.24518 -0.17501 -0.02707 

EVdW (kcal/mol) -9.16928 -9.19201 -9.01771 -8.84106 -9.21835 -8.86127 -8.95141 -9.04877 -9.08816 -9.06228 -9.02451 -9.18117 -9.19497 -9.20072 -9.1455 -9.4829 

n
-d

o
d
e
c
a
n
e

 EMF (kcal/mol) 2.96025 2.96755 2.67897 2.45692 2.57036 2.43288 2.78279 2.9575 2.80404 2.73448 2.67085 2.86227 2.70416 2.55542 2.90311 2.44777 

EHB (kcal/mol) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

EVdW (kcal/mol) -13.4416 -13.483 -13.1509 -12.7939 -13.5202 -12.8552 -13.0698 -13.2525 -13.3869 -13.3303 -13.2639 -13.4492 -13.4818 -13.4934 -13.4161 -13.7679 

a
n
io

n
 

EMF (kcal/mol) 5.13228 6.02818 4.09309 4.70333 6.13348 4.15531 3.49652 3.81179 4.42536 4.33175 4.36603 6.63787 7.17664 7.92015 4.42629 3.37082 

EHB (kcal/mol) -0.88656 -1.26141 -0.64229 -0.56952 -1.78661 -0.34784 -0.09845 -0.35759 -0.83622 -0.58471 -0.41519 -1.04557 -1.45781 -1.40992 -0.96952 -0.03336 

EVdW (kcal/mol) -5.05776 -4.64115 -4.73585 -7.33966 -3.95416 -7.33623 -3.78278 -3.11178 -4.06117 -5.52631 -7.00584 -8.38163 -8.38091 -12.2973 -2.98095 -8.43112 

c
a
ti
o

n
 

EMF (kcal/mol) 4.51679 5.27876 4.08397 3.99521 6.62522 3.67941 3.59569 3.93919 4.57602 4.13131 3.89463 4.8479 5.58978 5.47074 4.70112 3.41421 

EHB (kcal/mol) -0.88421 -1.23471 -0.64151 -0.56915 -1.7898 -0.34732 -0.09883 -0.35676 -0.83744 -0.58494 -0.41535 -1.04178 -1.45763 -1.41009 -0.9682 -0.03409 

EVdW (kcal/mol) -7.60087 -7.60689 -7.44978 -7.28307 -7.6434 -7.31765 -7.25035 -7.33646 -7.45128 -7.49029 -7.50838 -7.62433 -7.6195 -7.63455 -7.56392 -8.2199 

 

  



Appendix D 

378 

Table D4 f) COSMO-RS misfit, hydrogen-bonding and van der Waals energies for the compounds 1-hexanethiol, n-dodecane, and several [C4iQuin]-based 

ionic liquids combinations in the respective ternary systems at 298.2 K. 

  [C4iQuin]
+
 

  [MeSO4]
-
 [CH3SO3]

-
 [CF3SO3]

-
 [(PFBu)SO3]

-
 [CH3CO2]

-
 [NTf2]

-
 [PF6]

-
 [BF4]

-
 [N(CN)2]

-
 [C(CN)3]

-
 [B(CN)4]

-
 [TOS]

-
 [DEP]

-
 [DBP]

-
 [NO3]

-
 [FeCl4]

-
 

1
-h

e
x
a
n
e
th

io
l EMF (kcal/mol) 2.49524 2.58395 2.31434 2.21808 2.49526 2.16492 2.32125 2.44153 2.37962 2.31895 2.27463 2.49308 2.49648 2.43094 2.47615 2.14573 

EHB (kcal/mol) -0.15844 -0.20994 -0.12406 -0.11259 -0.28312 -0.08376 -0.05184 -0.08518 -0.14925 -0.1167 -0.09511 -0.1796 -0.23903 -0.23084 -0.16989 -0.04475 

EVdW (kcal/mol) -9.16226 -9.183 -9.02464 -8.86168 -9.20874 -8.8802 -8.96162 -9.05079 -9.09637 -9.07213 -9.03766 -9.17474 -9.1877 -9.19435 -9.14037 -9.45082 

n
-d

o
d
e
c
a
n
e

 EMF (kcal/mol) 2.65523 2.63608 2.40857 2.22724 2.21662 2.22921 2.55779 2.68482 2.44493 2.42236 2.39685 2.56495 2.39396 2.27327 2.57676 2.27243 

EHB (kcal/mol) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

EVdW (kcal/mol) -13.3985 -13.4355 -13.1349 -12.8081 -13.4694 -12.8649 -13.0586 -13.2243 -13.3566 -13.3069 -13.2485 -13.4095 -13.4391 -13.4539 -13.3734 -13.702 

a
n
io

n
 

EMF (kcal/mol) 5.06798 5.82944 4.03804 4.57305 5.64017 4.14149 3.64161 3.9259 4.28379 4.24756 4.31248 6.39647 6.75648 7.40978 4.3378 3.4697 

EHB (kcal/mol) -1.64761 -2.3566 -1.22026 -1.09856 -3.54018 -0.63417 -0.15903 -0.61539 -1.67486 -1.13108 -0.77993 -2.01861 -2.84051 -2.77375 -1.84659 -0.05178 

EVdW (kcal/mol) -5.05324 -4.63722 -4.74351 -7.36266 -3.95067 -7.37938 -3.80343 -3.12733 -4.26256 -5.78223 -7.3442 -8.38216 -8.36723 -12.271 -3.00338 -8.43935 

c
a
ti
o

n
 

EMF (kcal/mol) 4.88936 5.47712 4.5043 4.39531 6.48152 4.23172 4.3216 4.54512 5.0064 4.68805 4.52918 5.12042 5.67199 5.54209 4.99597 4.14417 

EHB (kcal/mol) -1.64572 -2.33229 -1.21939 -1.09825 -3.5421 -0.634 -0.15992 -0.61519 -1.67657 -1.1321 -0.78147 -2.01671 -2.83954 -2.77294 -1.84479 -0.05311 

EVdW (kcal/mol) -11.2855 -11.296 -11.0924 -10.8654 -11.3393 -10.936 -10.9022 -11.0109 -11.3209 -11.4226 -11.5327 -11.3187 -11.3081 -11.3215 -11.2674 -12.0022 
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Table D4 g) COSMO-RS misfit, hydrogen-bonding and van der Waals energies for the compounds 1-hexanethiol, n-dodecane and several [C4TZO]-based 

ionic liquids combinations in the respective ternary systems at 298.2 K. 

  [C4TZO]
+
 

  [MeSO4]
-
 [CH3SO3]

-
 [CF3SO3]

-
 [(PFBu)SO3]

-
 [CH3CO2]

-
 [NTf2]

-
 [PF6]

-
 [BF4]

-
 [N(CN)2]

-
 [C(CN)3]

-
 [B(CN)4]

-
 [TOS]

-
 [DEP]

-
 [DBP]

-
 [NO3]

-
 [FeCl4]

-
 

1
-h

e
x
a
n
e
th

io
l EMF (kcal/mol) 2.51948 2.61493 2.33007 2.22888 2.52753 2.17975 2.34457 2.45981 2.38649 2.32948 2.28846 2.51494 2.52183 2.45148 2.49877 2.16922 

EHB (kcal/mol) -0.15837 -0.21001 -0.12453 -0.11339 -0.2829 -0.08755 -0.05871 -0.08806 -0.14755 -0.1178 -0.09863 -0.17897 -0.23855 -0.23006 -0.16877 -0.05408 

EVdW (kcal/mol) -9.2535 -9.27635 -9.10846 -8.93131 -9.3055 -8.95061 -9.04289 -9.13983 -9.18665 -9.15669 -9.11618 -9.25971 -9.27353 -9.27371 -9.23526 -9.54272 

n
-d

o
d
e
c
a
n
e

 EMF (kcal/mol) 2.69709 2.68342 2.43777 2.24703 2.25982 2.26084 2.60702 2.71956 2.45389 2.43924 2.42221 2.59996 2.43165 2.30329 2.61561 2.32617 

EHB (kcal/mol) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

EVdW (kcal/mol) -13.5289 -13.5699 -13.2512 -12.9005 -13.6083 -12.9592 -13.1731 -13.3513 -13.4844 -13.4261 -13.3587 -13.5306 -13.5619 -13.5671 -13.5088 -13.8298 

a
n
io

n
 

EMF (kcal/mol) 5.00505 5.74648 3.98252 4.53477 5.4751 4.14245 3.62223 3.86723 4.10297 4.13227 4.25574 6.31751 6.65403 7.31215 4.25165 3.50017 

EHB (kcal/mol) -1.84166 -2.59387 -1.41562 -1.29327 -3.96493 -0.74268 -0.1713 -0.6775 -2.02181 -1.37784 -0.95414 -2.278 -3.17119 -3.11395 -2.10047 -0.0547 

EVdW (kcal/mol) -5.13223 -4.70864 -4.8718 -7.55529 -4.01486 -7.54461 -4.02453 -3.32005 -4.31849 -5.80628 -7.32005 -8.48928 -8.46564 -12.3963 -3.04598 -8.67605 

c
a
ti
o

n
 

EMF (kcal/mol) 4.42465 4.97708 4.06815 3.98046 5.91507 3.85813 3.9478 4.11831 4.38258 4.11507 4.00357 4.62637 5.15366 5.03148 4.51991 3.83612 

EHB (kcal/mol) -1.83201 -2.55871 -1.40751 -1.28635 -3.94741 -0.73906 -0.17166 -0.67476 -2.01277 -1.37181 -0.95171 -2.26543 -3.15528 -3.09811 -2.08826 -0.05611 

EVdW (kcal/mol) -9.95109 -9.96147 -9.81672 -9.65174 -10.0066 -9.69 -9.70918 -9.79168 -9.96287 -10.0167 -10.0641 -9.98396 -9.96684 -9.97448 -9.92003 -10.7586 
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Table D4 h) COSMO-RS misfit, hydrogen-bonding and van der Waals energies for the compounds 1-hexanethiol, n-dodecane, and several [Ch]-based ionic 

liquids combinations in the respective ternary systems at 298.2 K. 

  [Ch]
+
 

  [MeSO4]
-
 [CH3SO3]

-
 [CF3SO3]

-
 [(PFBu)SO3]

-
 [CH3CO2]

-
 [NTf2]

-
 [PF6]

-
 [BF4]

-
 [N(CN)2]

-
 [C(CN)3]

-
 [B(CN)4]

-
 [TOS]

-
 [DEP]

-
 [DBP]

-
 [NO3]

-
 [FeCl4]

-
 

1
-h

e
x
a
n
e
th

io
l EMF (kcal/mol) 2.60191 2.63885 2.43659 2.32733 2.46746 2.30929 2.52881 2.62099 2.5051 2.46997 2.442 2.56009 2.50572 2.43039 2.57084 2.34173 

EHB (kcal/mol) -0.17205 -0.20837 -0.14636 -0.13613 -0.23904 -0.12801 -0.13104 -0.13415 -0.16043 -0.14264 -0.1337 -0.18162 -0.22161 -0.21381 -0.17633 -0.13691 

EVdW (kcal/mol) -9.16076 -9.18607 -9.00065 -8.81862 -9.21273 -8.83815 -8.93019 -9.03878 -9.09479 -9.06127 -9.01705 -9.17432 -9.18981 -9.19676 -9.1359 -9.46119 

n
-d

o
d
e
c
a
n
e

 EMF (kcal/mol) 2.97175 2.88787 2.7544 2.53985 2.45067 2.6084 3.07088 3.13268 2.81949 2.82544 2.82678 2.82131 2.59286 2.4421 2.89407 2.77235 

EHB (kcal/mol) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

EVdW (kcal/mol) -13.4232 -13.4653 -13.1189 -12.7514 -13.4978 -12.8139 -13.039 -13.2367 -13.3745 -13.3143 -13.2433 -13.4313 -13.4637 -13.4777 -13.3952 -13.7401 

a
n
io

n
 

EMF (kcal/mol) 4.18135 4.69793 3.44853 4.135 4.48896 3.95479 3.42478 3.37919 3.50259 3.72216 4.01903 5.4476 5.60866 6.3138 3.39891 3.56844 

EHB (kcal/mol) -4.45574 -6.0507 -3.48859 -3.22344 -9.00948 -1.91184 -0.37381 -1.5848 -5.08434 -3.63147 -2.59954 -5.43475 -7.38076 -7.27049 -5.13534 -0.11563 

EVdW (kcal/mol) -5.05258 -4.64084 -4.73346 -7.33922 -3.95386 -7.29903 -3.77953 -3.10668 -3.85495 -5.32629 -6.82688 -8.37748 -8.37525 -12.2876 -2.97785 -8.42279 

c
a
ti
o

n
 

EMF (kcal/mol) 4.17859 4.79151 3.99038 4.02714 6.05831 3.87855 3.81648 3.87085 4.31769 4.06136 3.98168 4.50159 5.13873 5.10275 4.33413 3.89132 

EHB (kcal/mol) -4.91718 -6.3428 -4.15354 -3.93408 -9.25309 -3.07177 -2.19587 -2.80049 -5.54106 -4.33612 -3.60406 -5.77267 -7.62477 -7.50621 -5.54742 -2.16454 

EVdW (kcal/mol) -6.75697 -6.76227 -6.64448 -6.51865 -6.81512 -6.51242 -6.44719 -6.49378 -6.39994 -6.46689 -6.52313 -6.7857 -6.78155 -6.79658 -6.72613 -7.41486 
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Table D4 i) COSMO-RS misfit, hydrogen-bonding and van der Waals energies for the compounds 1-hexanethiol, n-dodecane and for several [Gu]-based ionic 

liquids combinations in the respective ternary systems at 298.2 K. 

  [Gu]
+
 

  [MeSO4]
-
 [CH3SO3]

-
 [CF3SO3]

-
 [(PFBu)SO3]

-
 [CH3CO2]

-
 [NTf2]

-
 [PF6]

-
 [BF4]

-
 [N(CN)2]

-
 [C(CN)3]

-
 [B(CN)4]

-
 [TOS]

-
 [DEP]

-
 [DBP]

-
 [NO3]

-
 [FeCl4]

-
 

1
-h

e
x
a
n
e
th

io
l EMF (kcal/mol) 2.11639 2.03394 2.02978 1.97457 1.75147 2.1123 2.51084 2.37507 2.02325 2.12377 2.22384 2.03068 1.8985 1.85998 2.02988 2.45655 

EHB (kcal/mol) -0.2088 -0.18883 -0.23784 -0.23732 -0.151 -0.28907 -0.33901 -0.27532 -0.22075 -0.25767 -0.29305 -0.18086 -0.16972 -0.16343 -0.20927 -0.37897 

EVdW (kcal/mol) -9.20553 -9.23391 -9.02508 -8.82395 -9.26126 -8.84204 -8.93574 -9.07072 -9.15098 -9.09837 -9.03289 -9.21882 -9.23433 -9.24033 -9.17547 -9.47976 

n
-d

o
d
e
c
a
n
e

 EMF (kcal/mol) 1.96436 1.72415 1.88208 1.77452 1.29612 2.11115 2.89086 2.527 1.85845 2.07085 2.29888 1.7875 1.5007 1.4159 1.80516 2.85151 

EHB (kcal/mol) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

EVdW (kcal/mol) -13.5121 -13.5551 -13.1723 -12.7661 -13.5863 -12.8329 -13.08 -13.3161 -13.4568 -13.3783 -13.2811 -13.5124 -13.5447 -13.5559 -13.4789 -13.8042 

a
n
io

n
 

EMF (kcal/mol) 3.02908 2.63351 2.69364 3.22275 1.51663 4.0995 4.40852 3.56108 2.3975 3.27781 4.15679 3.40877 2.85096 3.23987 2.12964 5.03898 

EHB (kcal/mol) -11.9346 -15.9356 -9.46581 -8.85181 -20.9829 -5.46498 -1.2023 -4.69198 -13.2642 -9.76455 -7.12996 -14.4911 -18.5269 -18.3262 -12.8471 -0.37916 

EVdW (kcal/mol) -5.27047 -4.82748 -4.88677 -7.48302 -4.10268 -7.38413 -3.7772 -3.09324 -3.26253 -4.69912 -6.15252 -8.69384 -8.58738 -12.4979 -3.1378 -8.4176 

c
a
ti
o

n
 

EMF (kcal/mol) 1.61001 1.41351 2.15617 2.38968 2.19348 3.16882 3.74574 2.55695 2.01309 2.47084 3.07087 1.51141 1.60899 1.62588 1.64639 4.74028 

EHB (kcal/mol) -11.9273 -15.9173 -9.4717 -8.85947 -20.9852 -5.4701 -1.20691 -4.6944 -13.2682 -9.76978 -7.13501 -14.4886 -18.521 -18.3211 -12.8433 -0.38703 

EVdW (kcal/mol) -4.44248 -4.40938 -4.34991 -4.27084 -4.4567 -4.19419 -4.01518 -3.98321 -3.27436 -3.32847 -3.35514 -4.53953 -4.44303 -4.42998 -4.39135 -4.91719 
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Table D4 j) COSMO-RS misfit, hydrogen-bonding and van der Waals energies for the compounds 1-hexanethiol, n-dodecane and for several [(C1)6Gu]-based 

ionic liquids combinations in the respective ternary systems at 298.2 K. 

  [(C1)6Gu]
+
 

  [MeSO4]
-
 [CH3SO3]

-
 [CF3SO3]

-
 [(PFBu)SO3]

-
 [CH3CO2]

-
 [NTf2]

-
 [PF6]

-
 [BF4]

-
 [N(CN)2]

-
 [C(CN)3]

-
 [B(CN)4]

-
 [TOS]

-
 [DEP]

-
 [DBP]

-
 [NO3]

-
 [FeCl4]

-
 

1
-h

e
x
a
n
e
th

io
l EMF (kcal/mol) 2.66467 2.85199 2.43041 2.3095 3.02102 2.20147 2.33509 2.51325 2.5852 2.43912 2.3441 2.70424 2.82566 2.73696 2.68741 2.12964 

EHB (kcal/mol) -0.15406 -0.22262 -0.11159 -0.09859 -0.36834 -0.05807 -0.01638 -0.05866 -0.1531 -0.10202 -0.07065 -0.18712 -0.27458 -0.26518 -0.17432 -0.00618 

EVdW (kcal/mol) -9.15763 -9.1759 -9.01714 -8.84966 -9.19624 -8.87054 -8.95611 -9.04303 -9.07068 -9.05385 -9.02291 -9.16877 -9.17854 -9.18507 -9.13333 -9.47716 

n
-d

o
d
e
c
a
n
e

 EMF (kcal/mol) 2.92044 3.0384 2.58094 2.35483 2.83183 2.25858 2.5387 2.77902 2.74104 2.59216 2.47996 2.88252 2.84318 2.68957 2.89623 2.19047 

EHB (kcal/mol) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

EVdW (kcal/mol) -13.4239 -13.4615 -13.1515 -12.8118 -13.4971 -12.8714 -13.073 -13.24 -13.3686 -13.3197 -13.2605 -13.4327 -13.4623 -13.4747 -13.3982 -13.7555 

a
n
io

n
 

EMF (kcal/mol) 5.885 7.12321 4.57203 5.09473 7.65404 4.28397 3.595 4.18802 5.08762 4.72429 4.56106 7.56441 8.50295 9.26401 5.2445 3.24328 

EHB (kcal/mol) -0.03559 -0.07636 -0.02526 -0.02217 -0.0702 -0.014 -0.00427 -0.01485 -0.03133 -0.0223 -0.01615 -0.04459 -0.056 -0.05369 -0.03818 -0.0015 

EVdW (kcal/mol) -5.04763 -4.62884 -4.73056 -7.33616 -3.94515 -7.35147 -3.78867 -3.118 -4.25934 -5.7134 -7.18486 -8.36692 -8.36323 -12.2754 -2.97799 -8.43282 

c
a
ti
o

n
 

EMF (kcal/mol) 5.13394 6.05626 4.4459 4.23245 7.44166 3.77316 3.73027 4.32088 5.07197 4.44554 4.06602 5.4653 6.31009 6.10339 5.33481 3.31743 

EHB (kcal/mol) -0.02438 -0.03303 -0.01758 -0.0154 -0.04596 -0.00995 -0.00317 -0.01074 -0.02101 -0.01533 -0.01129 -0.02737 -0.03762 -0.03594 -0.02629 -0.00114 

EVdW (kcal/mol) -9.23126 -9.24707 -9.04156 -8.83454 -9.28339 -8.89148 -8.84606 -8.96444 -9.28816 -9.2995 -9.30055 -9.25971 -9.26047 -9.27783 -9.1942 -9.84777 
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Table D4 k) COSMO-RS misfit, hydrogen-bonding and van der Waals energies for the compounds 1-hexanethiol, n-dodecane and several [P666(14)]-based 

ionic liquids combinations in the respective ternary systems at 298.2 K. 

  [P666(14)]
+
 

  [MeSO4]
-
 [CH3SO3]

-
 [CF3SO3]

-
 [(PFBu)SO3]

-
 [CH3CO2]

-
 [NTf2]

-
 [PF6]

-
 [BF4]

-
 [N(CN)2]

-
 [C(CN)3]

-
 [B(CN)4]

-
 [TOS]

-
 [DEP]

-
 [DBP]

-
 [NO3]

-
 [FeCl4]

-
 

1
-h

e
x
a
n
e
th

io
l 

EMF (kcal/mol) 2.23742 2.37768 2.07014 2.00389 2.48142 1.92597 1.99655 2.11878 2.19643 2.09512 2.02923 2.28911 2.3773 2.3326 2.23935 1.86288 

EHB (kcal/mol) -0.13083 -0.1907 -0.0949 -0.08485 -0.31212 -0.05272 -0.02133 -0.05314 -0.13128 -0.08862 -0.06323 -0.16072 -0.23584 -0.22839 -0.14663 -0.01405 

EVdW (kcal/mol) -9.1956 -9.20692 -9.10588 -8.99 -9.22259 -9.00392 -9.06269 -9.11808 -9.13043 -9.12225 -9.1045 -9.20235 -9.20859 -9.21229 -9.18001 -9.41987 

n
-d

o
d
e
c
a
n
e
 EMF (kcal/mol) 2.07607 2.16258 1.83085 1.71049 1.96739 1.63971 1.78742 1.95321 1.96531 1.87101 1.79798 2.0875 2.05077 1.97625 2.02831 1.56141 

EHB (kcal/mol) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

EVdW (kcal/mol) -13.4896 -13.515 -13.3133 -13.0782 -13.5425 -13.1183 -13.2552 -13.3644 -13.4509 -13.4191 -13.3816 -13.4943 -13.5147 -13.5211 -13.4744 -13.7189 

a
n
io

n
 

EMF (kcal/mol) 6.30635 7.43769 4.90321 5.17618 7.59966 4.44326 4.07991 4.78172 5.54096 5.1305 4.91842 7.70539 8.38889 8.9249 5.71435 3.46928 

EHB (kcal/mol) -0.4772 -0.72307 -0.33468 -0.29639 -1.13151 -0.17229 -0.04634 -0.17679 -0.45927 -0.3033 -0.20752 -0.58909 -0.86386 -0.83547 -0.53125 -0.01535 

EVdW (kcal/mol) -5.07174 -4.65242 -4.73748 -7.34889 -3.95986 -7.33053 -3.77122 -3.10113 -3.91858 -5.33292 -6.72086 -8.39816 -8.39948 -12.3222 -2.97427 -8.38614 

c
a
ti
o

n
 

EMF (kcal/mol) 7.69739 8.46707 6.86191 6.54618 9.23997 6.15264 6.38563 6.98535 7.47933 6.94632 6.62113 7.99526 8.54737 8.31623 7.73904 5.77737 

EHB (kcal/mol) -0.47149 -0.69526 -0.3309 -0.29312 -1.12041 -0.1704 -0.04618 -0.17495 -0.4546 -0.30011 -0.20547 -0.58032 -0.85483 -0.82664 -0.52528 -0.01559 

EVdW (kcal/mol) -32.3951 -32.4382 -31.9752 -31.4213 -32.501 -31.5082 -31.7385 -31.9897 -32.0897 -32.0553 -31.9808 -32.4091 -32.4418 -32.4638 -32.3354 -33.2166 
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Table D4 l) COSMO-RS misfit, hydrogen-bonding and van der Waals energies for the compounds 1-hexanethiol, n-dodecane, and several [OC2(C1)4iU]-based 

ionic liquids combinations in the respective ternary systems at 298.2 K. 

  [OC2(C1)4iU]
+
 

  [MeSO4]
-
 [CH3SO3]

-
 [CF3SO3]

-
 [(PFBu)SO3]

-
 [CH3CO2]

-
 [NTf2]

-
 [PF6]

-
 [BF4]

-
 [N(CN)2]

-
 [C(CN)3]

-
 [B(CN)4]

-
 [TOS]

-
 [DEP]

-
 [DBP]

-
 [NO3]

-
 [FeCl4]

-
 

1
-h

e
x
a
n
e
th

io
l EMF (kcal/mol) 2.6571 2.81769 2.43524 2.31715 2.90898 2.22089 2.36146 2.5276 2.56377 2.43863 2.35502 2.68324 2.77072 2.68573 2.67001 2.16058 

EHB (kcal/mol) -0.15273 -0.21756 -0.11168 -0.09903 -0.34667 -0.06045 -0.02027 -0.06131 -0.14868 -0.10167 -0.07225 -0.18336 -0.26459 -0.25561 -0.17098 -0.0103 

EVdW (kcal/mol) -9.14816 -9.16747 -9.00671 -8.8396 -9.18967 -8.86001 -8.94571 -9.03406 -9.06703 -9.04798 -9.01579 -9.16041 -9.17146 -9.1787 -9.12406 -9.46179 

n
-d

o
d
e
c
a
n
e
 EMF (kcal/mol) 2.94665 3.02824 2.62857 2.40528 2.75371 2.32951 2.62501 2.84286 2.75211 2.63162 2.53711 2.88893 2.81076 2.65936 2.91175 2.28622 

EHB (kcal/mol) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

EVdW (kcal/mol) -13.4024 -13.4405 -13.129 -12.7905 -13.4763 -12.8496 -13.0519 -13.2203 -13.351 -13.3013 -13.2417 -13.4128 -13.4432 -13.4572 -13.3763 -13.7288 

a
n
io

n
 

EMF (kcal/mol) 5.60779 6.73437 4.39772 4.95786 7.12453 4.228 3.54052 4.03607 4.82362 4.54898 4.45304 7.23599 8.04123 8.80236 4.94634 3.27356 

EHB (kcal/mol) -0.18995 -0.28802 -0.13654 -0.12012 -0.37218 -0.07558 -0.0229 -0.08009 -0.16615 -0.11892 -0.08631 -0.21963 -0.30248 -0.29033 -0.20572 -0.00796 

EVdW (kcal/mol) -5.03883 -4.62233 -4.72591 -7.33424 -3.94053 -7.35362 -3.79354 -3.12204 -4.32247 -5.78056 -7.26401 -8.35931 -8.35222 -12.2595 -2.97606 -8.431 

c
a
ti
o

n
 

EMF (kcal/mol) 5.10225 5.9833 4.49725 4.32749 7.37051 3.90711 3.85287 4.36563 5.09122 4.517 4.17741 5.44492 6.26549 6.09113 5.29566 3.51562 

EHB (kcal/mol) -0.18267 -0.25123 -0.13186 -0.11607 -0.35811 -0.07343 -0.02316 -0.07789 -0.16027 -0.11505 -0.08383 -0.20926 -0.29096 -0.2792 -0.19816 -0.00884 

EVdW (kcal/mol) -9.23088 -9.24511 -9.05048 -8.85335 -9.28413 -8.91448 -8.86214 -8.97337 -9.35507 -9.37977 -9.39968 -9.2645 -9.26006 -9.2779 -9.19722 -9.87774 
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Table D4 m) COSMO-RS misfit, hydrogen-bonding and van der Waals energies for the compounds 1-hexanethiol, n-dodecane and several [SC2(C1)4iU]-

based ionic liquids combinations in the respective ternary systems at 298.2 K. 

  [SC2(C1)4iU]
+
 

  [MeSO4]
-
 [CH3SO3]

-
 [CF3SO3]

-
 [(PFBu)SO3]

-
 [CH3CO2]

-
 [NTf2]

-
 [PF6]

-
 [BF4]

-
 [N(CN)2]

-
 [C(CN)3]

-
 [B(CN)4]

-
 [TOS]

-
 [DEP]

-
 [DBP]

-
 [NO3]

-
 [FeCl4]

-
 

1
-h

e
x
a
n
e
th

io
l EMF (kcal/mol) 2.639 2.80081 2.41858 2.30282 2.89798 2.20619 2.34197 2.50739 2.55184 2.42562 2.34146 2.66769 2.75817 2.67462 2.65242 2.14343 

EHB (kcal/mol) -0.15277 -0.21785 -0.11168 -0.09905 -0.34807 -0.06039 -0.02017 -0.06113 -0.14948 -0.10203 -0.07239 -0.18357 -0.26525 -0.25624 -0.17117 -0.01022 

EVdW (kcal/mol) -9.20896 -9.2287 -9.06785 -8.89665 -9.25151 -8.91729 -9.00769 -9.09694 -9.12712 -9.10631 -9.07249 -9.21657 -9.2275 -9.23035 -9.18782 -9.51594 

n
-d

o
d
e
c
a
n
e
 EMF (kcal/mol) 2.90451 2.98836 2.58822 2.36997 2.7203 2.29289 2.57839 2.79583 2.71961 2.59803 2.50287 2.8519 2.77806 2.62992 2.86978 2.24359 

EHB (kcal/mol) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

EVdW (kcal/mol) -13.4888 -13.5276 -13.2167 -12.8735 -13.5643 -12.9324 -13.1403 -13.3097 -13.4365 -13.384 -13.3218 -13.4927 -13.5229 -13.5305 -13.4668 -13.8062 

a
n
io

n
 

EMF (kcal/mol) 5.65259 6.78247 4.42838 4.97106 7.17332 4.23855 3.56735 4.07859 4.8694 4.58275 4.47642 7.27118 8.08333 8.83508 4.9973 3.27767 

EHB (kcal/mol) -0.20331 -0.30664 -0.14435 -0.12699 -0.39082 -0.08015 -0.02434 -0.08492 -0.17577 -0.12606 -0.0916 -0.23625 -0.3185 -0.30559 -0.21724 -0.00847 

EVdW (kcal/mol) -5.07189 -4.65004 -4.78561 -7.4414 -3.96253 -7.44687 -3.86273 -3.17121 -4.3036 -5.76839 -7.25074 -8.41097 -8.40111 -12.3254 -2.99171 -8.52321 

c
a
ti
o

n
 

EMF (kcal/mol) 5.14423 6.01708 4.53064 4.34913 7.38522 3.93238 3.90041 4.41779 5.12012 4.54381 4.20158 5.47898 6.29053 6.11074 5.33427 3.54779 

EHB (kcal/mol) -0.19557 -0.26943 -0.14088 -0.12397 -0.38502 -0.07805 -0.02381 -0.08266 -0.17216 -0.12317 -0.08939 -0.22425 -0.31246 -0.29983 -0.21229 -0.00843 

EVdW (kcal/mol) -9.97984 -9.99383 -9.80976 -9.61913 -10.0321 -9.67134 -9.63218 -9.73934 -10.0526 -10.0718 -10.0798 -10.0083 -10.0021 -10.0139 -9.94389 -10.6708 

 

 

 


