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Resumo 

 
 

A hipertensão pulmonar (HP), é uma doença multifactorial e progressiva, 
caracterizada pela vasoconstrição, remodelação vascular pulmonar e trombose 
in situ, com consequente aumento da pressão arterial pulmonar e da 
resistência vascular pulmonar, frequentemente culminando na insuficiência 
cardíaca direita e morte. A remodelação vascular pulmonar, um dos principais 
contribuintes para o desenvolvimento e progressão da HP, é caracterizada por 
uma proliferação celular excessiva e uma reduzida apoptose. No entanto, 
pouco se sabe sobre os mecanismos moleculares subjacentes a este 
desequilíbrio. Assim, o presente trabalho teve como objetivo principal a 
avaliação da contribuição da apoptose na patogénese da HAP, através da 
análise da expressão cardíaca e pulmonar da survivina e do Smac/DIABLO e a 
sua associação às alterações hemodinâmicas e morfométricas. Para o efeito 
utilizou-se um modelo animal de HAP induzida por administração de 
monocrotalina (MCT). Os resultados demonstraram que os cardiomiócitos se 
encontravam hipertrofiados 7 dias após a injeção de MCT o que precedeu as 
alterações hemodinâmicas que se verificaram apenas ao dia 21. Sete dias 
após a administração de MCT observou-se sobreexpressão de survivina nos 
ventrículos, tendo esta aumentado progressivamente com a doença. A nível 
pulmonar, embora sobreexpressa ao dia 7, a expressão de survivin diminuiu 
com o desenvolvimento da doença. Apesar de sobreexpressa nos ventrículos 
e no pulmão 7 dias após injeção de MCT, a expressão do Smac/DIABLO 
diminuiu progressivamente com a HAP. Em conclusão, os resultados sugerem 
que a desregulação das vias de sinalização nas quais intervêm a survivina e o 
Smac/DIABLO está relacionada com a remodelação vascular pulmonar e a 
hipertrofia dos cardiomiócitos em resposta a estímulos apoptóticos. 
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Abstract 

 
Pulmonary hypertension (PH) is a multifactorial, progressive disease, 
characterized by vasoconstriction, pulmonary vascular remodelling and 
thrombosis in situ, which lead to augmentation of pulmonary arterial pressure 
and pulmonary vascular resistance, culminating in right heart failure and 
ultimately in dead. Pulmonary vascular remodelling, which is one of the major 
contributors to the development and progression of PH, is characterized by 
excessive cellular proliferation and reduced apoptosis. However, little is known 
about the molecular mechanisms underlying this imbalance. So, the present 
work aimed to study the contribution of apoptosis to the pathogenesis of PAH, 
through the analysis of cardiac and pulmonary expression of survivin and 
Smac/DIABLO along hemodynamic and morphometric alterations in an animal 
model of monocrotaline (MCT)-induced PAH. Results showed that 
cardiomyocytes were hypertrophied 7 days after MCT injection, preceeding 
hemodynamic alterations which were only present at day 21. Seven days after 
MCT administration, survivin overexpression was notorious in the ventricles 
and progressively increased throughout the development of MCT-induced PAH. 
On the other hand, although increased 7 days after MCT injection, lung survivin 
expression progressively decreased between the two days. The upregulation of 
Smac/DIABLO observed in lung, right and left ventricles 7 days after MCT 
administration, progressively decreased with the disease progression. In 
conclusion, data suggest that a deregulation in the balance between survivin 
and smac/DIABLO might be related with pulmonary vascular remodelling and 
cardiomyocytes hypertrophy in response to apoptotic stimuli. 
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Figure 5 | Pulmonary arterial and right ventricular cardiomyocyte hypertrophy. A 

and C: Histological appearance of small pulmonary arteries and right ventricular 

cardiomyocytes, respectively, stained with hematoxylin and eosin of Sham and MCT 

groups 7 and 21 days after injection. B: Medial layer thickness expressed as percentage 

of all thickness. D: Right ventricular cardiomyocytes hypertrophy expressed as 

cardiomyocytes cross-sectional area (µm
2
). Data are present as mean ± SEM. Sham, 

Sham group; MCT, monocrotaline group. 
*
p < 0.05 vs Sham of the same day; 

a 
p < 0.05 

vs D7 of the same treatment group. ................................................................................ 45 

Figure 6 | Right Ventricle survivin expression, evaluated through 

immunohistochemistry and western blot. A: Representative image of 

immunohistochemistry for survivin expression in the right ventricle of Sham and MCT 

groups 7 and 21 days after injection. B: Survivin expression in right ventricle expressed 

as percentage of stained cardiomyocytes in immunohistochemistry. C: Right ventricle 

survivin expression evaluated through western blot with a representative image of the 

results. Data are present as mean ± SEM. Sham, Sham group; MCT, monocrotaline 

group; RV, right ventricle. 
*
p < 0.05 vs Sham of the same day; 

a 
p < 0.05 vs D7 of the 
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Figure 7 | Smac/DIABLO expression in right ventricle, evaluated through 

immunohistochemistry and western blot. A: Representative image of 

immunohistochemistry for Smac/DIABLO expression in the right ventricle of Sham and 

MCT groups 7 and 21 days after injection. B: Smac/DIABLO expression in right 

ventricle expressed as percentage of stained cardiomyocytes in immunohistochemistry. 

C: Right ventricle Smac/DIABLO expression evaluated through western blot with a 

representative image of the results. Data are present as mean ± SEM. Sham, Sham 

group; MCT, monocrotaline group; RV, right ventricule. 
*
p < 0.05 vs Sham of the same 

day; 
a 
p < 0.05 vs D7 of the same treatment group. ........................................................ 47 

Figure 8 | Survivin (A) and Smac/DIABLO (B) expression in left ventricle, 

evaluated through western blot of Sham and MCT groups 7 and 21 days after injection, 

with respective representative images. Data are present as mean ± SEM. Sham, Sham 

group; MCT, monocrotaline group. 
*
p < 0.05 vs Sham of the same day; 

a 
p < 0.05 vs D7 

of the same treatment group. .......................................................................................... 48 

Figure 9 | Lung survivin (A) and Smac/DIABLO (B) expression, evaluated through 

western blot of Sham and MCT groups, 7 and 21 days after injection, with respective 

file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917819
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917819
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917819
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917819
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917819
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917819
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917819
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917819
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917820
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917820
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917820
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917820
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917820
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917820
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917820
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917820
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917820
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917821
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917821
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917821
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917821
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917821
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917821
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917821
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917821
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917821
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917822
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917822
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917822
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917822
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917822
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917823
file:///C:/Users/user/Documents/Universidade/Mestrado/Tese/Tese%20Definitiva/Survivin%20and%20smac-DIABLO%20-%20role%20of%20apoptosis%20in%20experimental%20PAH___Thesis__Joana%20Justino.docx%23_Toc359917823


 

xvii 
 

representative images. Data are present as mean ± SEM. Sham, Sham group; MCT, 

monocrotaline group. 
*
p < 0.05 vs Sham of the same day; 

a 
p < 0.05 vs D7 of the same 

treatment group. .............................................................................................................. 48 

 

 



 

 

 

 

 



 

 

Abbreviations 

 

[Ca
2+

]i Intracellular calcium concentration 

5-HT Serotonin 

ADM Adrenomedulin 

AIF Apoptosis-inducing factor 

ALK Activin receptor-like 

Ang-1 Angiopoietin-1 

ANP Atrial natriuretic peptide 

Apaf-1 Apoptotic protease activating factor-1 

ATII Angiotensin II 

BMP Bone morphogenetic protein 

BMPR Bone morphogenetic protein receptor 

BNP Brain natriuretic peptide 

BW Body weight 

CaM Calmodulin 

cAMP Cyclic adenosine monophosphate 

CCB Calcium channel blockers 

CD Cluster of differentiation  

cGMP  Cyclic guanosine monophosphate 

CPI-17 C-kinase potentiated protein phosphatase-1 inhibitor 

CREB cAMP response element-binding protein 

CTEPH Chronic thromboembolic pulmonary hypertension 

cyt c Cytochrome C 

EC Endothelial cell 

ECM Extracellular matrix 

Em membrane potential 

ERK Extracellular-signal-regulated kinase 

ET-1 Endothelin-1 

G Gastrocnemius 

GDF Growth and differentiation factors 

HF Heart failure 

HIV Human immunodeficiency virus 

HR Heart rate 

HW Heart weight 

IAP Inhibitors of apoptosis proteins 

IP3 Inositol 1,4,5-triphosphate 

iPAH Idiopathic pulmonary arterial hypertension 

JNK c-Jun N-terminal kinase 

KV Voltage-gated potassium channels 

L  Lung 

LV Left ventricle 

MAPK Mitogenic-activated protein kinase 
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MCT Monocrotaline 

MCTP Monocrotaline pyrrole or dehydromonocrotaline 

MLC Myosin light chain 

MLCK Myosin light chain kinase 

MLCP Myosin light chain phosphatase 

NF-AT Nuclear factor of activated T cells 

NF-kB Nuclear factor kappa B 

NO Nitric oxide 

NYHA New York Heart Associaction 

PA Pulmonary artery 

PAEC Pulmonary artery endothelial cell 

PAH Pulmonary arterial hypertension 

PAP Pulmonary arterial pressure 

PASMC Pulmonary artery smooth muscle cell 

PCH Pulmonary capillary hemangiomatosis 

PDGF Platelet-derived growth factor 

PGI2 Prostacyclin 

PH Pulmonary hypertension 

PK Protein kinase 

PLC Phospholipase C 

Pmax.  Peak systolic pressure 

PPH Primary pulmonary hypertension 

PVOD Pulmonary veno-occlusive disease 

PVR Pulmonary vascular resistance 

ROC Receptor-operated calcium channel 

ROS Reactive oxygen species 

RV Right ventricle 

RVH Right ventricle/ventricular hypertrophy 

S Septum 

SC Subcutaneous injection 

SERT  Serotonin transporter 

SMC Smooth muscle cell 

SOC Store-operated calcium channel 

SPAP Systolic pulmonary artery pressure 

TGF Transforming growth factor 

Tib Tibia 

TNF Tumor necrosis factor 

TRAIL TNF-related apoptosis-inducing ligand 

TRP Transient receptor potential 

TXA2 Thromboxane A2 

VDCC Voltage-dependent calcium channel 

VEGF Vascular endothelial growth factor 

VIP Vasoactive intestinal peptide 

WHO World Health Organization 
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Pulmonary hypertension (PH) has been defined as a sustained elevation of the 

pulmonary arterial pressure (PAP) to more than 25 mmHg at rest or greater than 30 

mmHg with exercise [1]. This is a multifactorial, progressive disease, with substantial 

mortality and morbidity. Besides elevated PAP, PH is characterized by: (i) increased 

pulmonary vascular resistance (PVR); (ii) alterations in the extracellular matrix (ECM); 

(iii) pulmonary vascular remodelling due to proliferation and migration of endothelial 

cells (ECs) and vascular smooth cells; (iv) progressive pulmonary vascular obliteration; 

(v) thrombosis and (vi) fibrosis, frequently leading to right-sided heart failure (HF) and 

death [2]. Untreated patients have a median survival time of 2.8 years [3]. Although it is 

found in both sexes at all ages, it has a higher incidence in women than men (2:1) and 

the average age of presentation is 36 years old [4].  

Over the years the cellular and molecular mechanisms underlying the PH have been 

studied, not only to better understand these alterations, but also to develop therapies that 

may lead to a better prognosis. The therapies implemented at this moment are not 

entirely efficient because although they increase patients’ survival, they do not lead to a 

cure. Therefore, the study of these mechanisms remains essential to better understand 

the development and progression of the disease and to plan a targeted and personalized 

therapy. For that reason, using a monocrotaline (MCT) animal model we studied the 

contribution of apoptosis to the pathogenesis of pulmonary arterial hypertension (PAH), 

through the analysis of the apoptotic proteins survivin and Smac/DIABLO. 
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1. Pulmonary Hypertension: Classification, Risk Factors and Diagnosis 

In 1891, during an autopsy, the German physician Ernst von Romberg observed 

pulmonary vascular lesions without a known cause, which he named “pulmonary 

vascular sclerosis”, a classical description of PH (reviewed in [5]). The term primary 

pulmonary hypertension (PPH) was first used in 1951 after Dresdale and his associates 

reported data on 39 patients with unexplained PH (reviewed in [6]). Due to the rising 

incidence of PH in Europe, in 1973 at an international conference on PPH, World 

Health Organization (WHO) proposed a classification for PH that included two groups: 

PPH, a rare disorder that occurred without a known underlying cause, or secondary PH, 

a disease that developed in the presence of an underlying cause or in the presence of risk 

factors [6]. Later in 1998, this classification was reviewed at the Second World 

Symposium on PAH (Evian, France). In the “Evian Classification” PH was divided into 

five major groups based on pathobiologic and clinical features as well as therapeutic 

options [7]. During this Symposium, different risk factors for PAH: (i) drugs, toxins and 

chemicals (e.g. aminorex, meta-amphetamines, benfluores, cocaine, chemotherapeutic 

agents), (ii) demographic and medical conditions (e.g. gender, pregnancy, obesity), and 

(iii) diseases (HIV infection, thyroid disorders, collagen vascular disease) were 

categorized as definitive, very likely, possible or unlikely according to the strength of 

their association with PH and their probable casual role [7].  

The classification was modified once more in 2003 at the Third World Symposium 

(Venice, Italy). The nomenclature “idiopathic pulmonary arterial hypertension” (iPAH) 

was adopted instead of PPH. In 2008 at the Fourth World Symposium on PH (Dana 

Point, California) (Table 1) the classification of PH was updated, and the term “non-

PAH” was approved for other categories than PAH [8]. Additionally, left-heart disease 

PH was subdivided in systolic HF, diastolic HF and valvular heart disease and 

schistosomiasis was included as a new class of disease-associated PAH [8]. More 

recently, in March of 2013 the Fifth World Symposium was realized in Nice (France), 

however the new guidelines have not been published yet. 

So, nowadays PH is classified in: (i) PAH; (ii) pulmonary veno-occlusive disease 

(PVOD) and/or pulmonary capillary hemangiomatosis (PCH); (iii) PH associated with 

left heart disease; (iv) PH associated with lung disease and/or hypoxia; (v) chronic 
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thromboembolic PH (CTEPH) and (vi) PH with unclear or multifactorial mechanisms 

(Table 1). 

Table 1 | Clinical Classification of Pulmonary Hypertension, from the 4th World Symposium on 

Pulmonary Hypertension (Dana Point, 2008) (adapted from [8]). 

Pulmonary Arterial Hypertension  

Group 1: Pulmonary Arterial Hypertension  

1.1 Idiopathic 

1.2 Familial/Heritable (BMPR2, ALK1, endoglin, unknown) 

1.3 Drugs and toxin-induced 

1.4 Associated with: 

      1.4.1 Connective tissue disease 

      1.4.2 HIV infection 

      1.4.3 Portal hypertension 

      1.4.4 Schistosomiasis 

      1.4.5 Congenital heart disease 

      1.4.6 Chronic haemolytic anaemia 

       1.4.7 Others 

1.5 Persistent pulmonary hypertension of the newborn 

Group 1': Sub-class of Pulmonary Arterial Hypertension 

1'. Pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis 

Non-Pulmonary Arterial Hypertension 

Group 2: Pulmonary Hypertension associated with left heart disease 

2.1 Systolic dysfunction 

2.2 Diastolic dysfunction 

2.3 Valvular disease 

Group 3: Pulmonary Hypertension associated with lung disease and/or hypoxia 

3.1 Chronic obstructive pulmonary disease 

3.2 Interstitial lung disease 

3.3 Sleep-disordered breathing 

3.4 Chronic exposure to high altitude 

3.5 Alveolar hypoventilation disorders 

3.6 Developmental abnormalities 

Group 4: Chronic Thromboembolic Pulmonary Hypertension  

Group 5: Pulmonary Hypertension with unclear or multifactorial mechanisms 

5.1 Hematologic disorders (e.g. Myeloproliferative disorders) 

5.2 Systemic disorders (e.g. vasculalitis, sarcoidosis, neurofibromatosis) 

5.3 Metabolic disorders (e.g. glycogen storage disease, thyroid disorders) 

5.4 Congenital heart disease (other than systemic-pulmonary shunt) 

5.5 Others 

Legend: BMPR2 – bone morphogenetic protein receptor-II; ALK1 – activin receptor-like kinase 1; HIV – human 

immunodeficiency virus 

 

Besides the classification based on pathobiologic and clinic features, patients with PH 

can also be classified according to their functional capacity (Table 2). This classification 

has been adopted from the New York Heart Association (NYHA) for left heart disease 

[9]. Both clinical and functional classifications are useful for diagnosis, prognosis and 

therapy guidance of PH. 
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S 
Table 2 | Functional classification of Pulmonary Arterial Hypertension (adapted from [9]). 

Class I: 

Patients with pulmonary hypertension without resulting in limitation of physical activity. 

 

Normal physical activity does not cause undue dyspnoea or fatigue, chest pain or near 

syncope. 

Class II: 

Patients with pulmonary hypertension resulting in slight limitation of physical activity. 

 

They are comfortable at rest, but normal physical activity causes undue dyspnoea or fatigue, 

chest pain or near syncope. 

Class III: 

Patients with pulmonary hypertension resulting in marked limitation of physical activity. 

 

The patient is comfortable at rest, but less than normal physical activity causes undue 

dyspnoea or fatigue, chest pain or near syncope. 

Class IV: 

Patients with pulmonary hypertension with inability to carry out any physical activity 

without symptoms. 

 

These patient manifest signs of right heart failure. Dyspnoea and/or fatigue may even be 

present at rest. Discomfort is increased by any physical activity. 

 

 

In advanced disease the patient may present non specific symptoms such as: chest pain, 

breathlessness, fatigue, weakness, palpitations, oedema, ascites and syncope [10, 11]. 

After careful examination, the clinician can also found: (i) hepatomegaly, (ii) right 

ventricular hypertrophy (RVH) and right atrial dilation on the electrocardiogram and 

(iii) increased systolic pulmonary artery pressure (SPAP) on the echocardiography [10-

12]. For a differential diagnosis and assessment of disease severity it may be required: 

(i) antinuclear antibodies, (ii) autoimmune disease markers, (iii) HIV and viral hepatitis 

screening, (iv) coagulation disorder markers (e.g. protein S and C, von Willebrand 

factor) and (v) cardiac deterioration markers (e.g. cardiac troponin T, B-type natriuretic 

peptide (BNP)) [11, 12]. 

 

2. Pulmonary Vascular Morphology in Pulmonary Hypertension 

In order to maintain its main function – gas exchange – pulmonary circulation is a low-

pressure, high-flow and low-resistance system. Therefore the walls of the pulmonary 

arteries (PAs) are relatively thin [13]. The pulmonary vascular wall has 3 layers: (i) an 

outer adventitia containing fibroblasts, (ii) a media, composed of smooth muscle cells 

(SMCs) and an elastic lamina (the internal and external, separating the three layers), and 

(iii) an intima, with a single layer of ECs and a basement of connective tissue (Figure 1) 

[13, 14]. 
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Figure 1 | Pulmonary Vascular Morphology. A) The pulmonary vascular wall has 3 layers: an outer 

adventitia, a media and an intima; B) In PH, vascular remodelling is characterized the thickening of all 

three layers of pulmonary vessel wall. 

Pathological changes underlying PH involves vascular remodelling, which is 

characterized by the thickening of all three layers of pulmonary vessel wall due to the 

hypertrophy or hyperplasia of one or more cell types as well as increased deposition of 

ECM components (example: collagens) (Figure 1) [13, 15, 16]. The thickening of media 

(proliferation and hypertrophy of medial smooth muscle) and/or intima (EC 

hypertrophy and hyperplasia, oedema and thickening of the endothelial basement 

membrane) leads to narrowing and occlusion of pulmonary artery, increasing PVR and 

PAP [13, 15, 16]. In the adventia layer is also seen the proliferation of fibroblasts and 

the deposition of collagen [16]. 

 

 

 

 

In severe stages of PH occurs the formation of a layer of ECM and cells (SMCs or 

myofibroblasts embedded in mucopolysaccharide) between the internal elastic lamina 

and the endothelium – neointima – which also contribute to the elevation of PVR [13, 

17]. These myofibroblasts express markers such as α-smooth muscle actin and vimentin 

but there is no expression of smooth muscle myosin (characteristic marker of highly 

differentiated SMCs), cluster of differentiation 31 (CD31), CD34 or factor VIII (ECs 

markers) [17]. Plexiform lesions, another form of vascular remodelling, also 

predominates in severe stages of PH. They occur due to the disorganised proliferation of 

ECs supported by a myofibroblast stroma, contributing to the elevation of PVR [13, 18]. 

These ECs express angiogenic markers such as vascular endothelial growth factor 

(VEGF) and its receptors [19, 20]. In some forms of PH the release of reactive oxygen 

species (ROS), growth factors, cytokines and angiogenic factors from the abundant mast 

cells, T and B lymphocytes and macrophages that surround PAs and arterioles may play 

a role in vascular remodelling [18]. With time, all of these vascular remodelling events 

lead to the reduction of PAs’ lumen due to its obliteration, resulting in PVR rise and 

PAP elevation. The augmentation of the PVR results in an overwork of the heart 

especially of the right ventricle (RV) inducing RVH [21]. Muscle mass accumulates in 

the RV (through the enhancement of protein synthesis and myocyte hypertrophy) 
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increasing wall thickness, and it assumes a more rounded shape compressing the left 

ventricle (LV) [21, 22]. Although in an initial phase the overwork of the RV can 

maintain the cardiac output, the persistent elevated resistance leads to a progressive 

dysfunction that frequently culminate in right heart failure [21]. 

 

3. Pathobiology of Pulmonary Hypertension 

3.1. Genetic Associations 

Mutations in bone morphogenetic protein (BMP) receptor 2 (BMPRII), and single 

nucleotide polymorphisms of KV (voltage-gated K
+
 channels) 1.5, transient receptor 

potential (TRP) channels and serotonin transporters (SERT) have been implicated in the 

development of PH. 

Bone morphogenetic proteins (BMPs) are multi-functional growth factors that belong to 

the transforming growth factor (TGF) superfamily. They have multiple important roles 

in vascular remodelling, including inhibition of apoptosis and SMC proliferation, 

regulation of vasoactive peptides and growth factors, and modulation of immune cell 

function [23]. Signalling pathways involving BMPs involve the formation of hetero-

complexes between one of type-I receptors and one of type-II receptors [24]. The TGF-

β superfamily type II receptors are constitutively active serine/tyrosine kinases that 

initiate intracellular signalling in response to specific ligands [24]. After BMP binding, 

type-II receptor phosphorylates type-I receptor, activating its kinase domain [24, 25]. In 

turn, activated type-I receptor phosphorylates the cytoplasmic signalling proteins 

responsible for TGF-β superfamily signal transduction – Smad – that translocates to the 

nucleus where interacts with various transcription factors, regulating gene transcription 

(e.g. Bcl-2 and K
+
) [24, 25]. There is evidence that MAPKs (mitogenic-activated 

protein kinase), including ERKs (extracellular-signal-regulated kinase), p38, and JNKs 

(c-Jun N-terminal kinases) might also be activated via TGF-β and BMPs [24-26]. 

Mutations in the gene coding for BMPRII (locus in chromosome 2q31-32) have been 

found in more than 70% of familiar PAH, and 10% to 40% in iPAH [27]. In spite of the 

autosomal dominant inheritance of BMPRII gene mutations, this disease has a low 

penetrance since only approximately 20% of individuals carrying the mutation will 

develop PAH [27]. One hundred and forty four mutations in BMPRII have been 
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reported until now, particularly missense mutations that lead to substitution of cysteine 

residues in the ligand-binding and/or kinase domain of BMPRII, which culminate in the 

traffic disruption of the mutant BMPRII to the cell surface retaining the receptor in the 

cytoplasm [28, 29]. On the other hand, in non-cysteine missense mutations in the kinase 

domain, BMPRII mutants reach the cell surface but fail to activate Smad either by 

disruption of its serine-threonine kinase activity or the inability to complex with type I 

receptors [28]. In addition, missense mutations in the cytoplasmic domain attained the 

cell surface and retained the ability to activate Smad signalling [28]. All these mutations 

will result in a common feature – gain of function ligand-independent activation of p38 

pro-proliferative pathways, inhibiting Smad-dependent signalling with the consequent 

vascular remodelling observed in familial PAH [28, 30, 31]. Indeed, the decline of 

BMPRII function in the endothelium might lead to increased apoptosis favouring the 

development of apoptosis-resistant clones of ECs resulting in the formation of 

plexiform lesion in PH patients [32]. In addition, mice with BMPRII mutations showed 

that loss of BMPRII signalling might induce and/or predispose PH with elevation of 

PAP, wall thickness, pulmonary arterial musculatization and RVH [33, 34].  

In addition, serotonin (5-HT) pathway, which has been related with PASMCs 

hyperplasia, also plays an important role in the development and progression of PH. 

Serotonin transporter is highly expressed in the PASMCs and have been implicated in 

vascular remodelling, since patients with iPAH have increased expression of SERT in 

lung tissues especially in the media of thickened PAs [35]. Furthermore, mice with 

SERT gene knockout developed less severe hypoxia PH than wild-type control and 

selective SERT inhibitors attenuate hypoxia- and MCT-induced PH [36-38]. On the 

other hand, elevated expression of SERT is related with increased severity of PH and 

transgenic mice selectively overexpressing SERT gene in SMCs developed 

spontaneously PH in absence of hypoxia, and overstated PH after exposure to hypoxia 

[39, 40]. Finally, SERT is encoded by a single gene on chromosome 17q11.2 and 

variants in upstream promoter region have been described. The polymorphism consists 

in the insertion or deletion of 44pb, designated the long (L) and the short (S) allele, 

respectively, affecting SERT expression and function. The L-allele induces 2- to 3-fold 

greater level of SERT gene transcription than S-allele [35, 41]. The L/L genotype might 

confer genetic susceptibility to iPAH because this homozygous form is much more 

frequent in these patients (65%) compared with healthy individuals (27%) [35]. 
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Intracellular Ca
2+

 concentration ([Ca
2+

]i) also has been related with pulmonary 

vasoconstriction as well as pulmonary vascular wall thickening and remodelling 

underlying PH. Calcium influx through membrane is controlled by multiple ion 

channels including: i) voltage-dependent Ca
2+

 channel (VDCC) that is regulated through 

changes in membrane potential (Em); ii) receptor-operated Ca
2+

 channels (ROC) which 

is activated by the interaction agonist-membrane receptor; and iii) store-operated Ca
2+

 

channels (SOC) that is activated by depletion of Ca
2+

 from intracellular stores [42]. In 

turn, SOC and ROC function is dependent on the expression of TRP channel genes. 

TRP genes, such as TRPC1, TRPC4, TRPC5, TPRC6 and TPRC7 are expressed in 

human PASMCs, and TRPC1, TRPC3 and TRPC4 are present in PAECs [43, 44]. 

Additionally, TRPCs seems to play a role in PH, since PASMCs of iPAH overexpressed 

TRPC3 and TRPC6 mRNA and protein compared to normal individuals, enhancing cell 

growth and proliferation [43]. Furthermore, it has been reported that a single-nucleotide 

polymorphism in the TRPC6 gene promoter is associated with elevation of [Ca
2+

]i and 

proliferation of PASMCs in 12% of iPAH patients’, predisposing to the disease [45]. 

 

3.2. Neurohumoral Mechanisms 

The primary function of the pulmonary endothelium is to maintain a low PVR through 

the balance between: (i) vasodilators and vasoconstrictors, (ii) mitogens (proliferation) 

and growth inhibitors (apoptosis) and (iii) antithrombotic and prothrombotic 

determinants [46, 47]. In patients with PH, pulmonary endothelial dysfunction appears 

to play an important role in the changes of pulmonary vasculature [48]. Besides 

disorganized proliferation of ECs that lead to the formation of plexiform lesions, these 

cells have an altered production of vasoactive mediators (such as prostacyclin (PGI2), 

nitric oxide (NO), endothelin-1 (ET-1), serotonin (5-HT) and thromboxane (TXA2)) 

affecting vascular tone and SMCs growth which may facilitate the pulmonary vascular 

hypertrophy and structural remodelling (Table 3) [47, 48]. In addition, endothelial 

dysfunction might affect the production of anticoagulant factors altering the balance 

between prothrombotic and antithrombotic determinants, impairing vascular 

homeostasis that can lead to thrombosis and fibrosis [48]. 



 

 

 

 

 

 

 

Table 3 | Neurohumoral alterations described in the pathobiology of PH 

Mediators 

Physiological Effects Levels in PH 

References Vascular 

Dilatation 

Cell 

Proliferation 

Platelet 

Aggregation 
Apoptosis Serum Lungs 

PGI2      ↓ [49-51] 

TXA2       [49, 50, 52] 

NO      ↓↑ [46, 53, 54] 

ET-1     ↑ ↑ [55-59] 

5-HT     ↑ ↑ [35, 39, 60-62] 

VIP     ↓ ↓ [63-65] 

ADM     ↑  [66, 67] 

ATII      ↑ [68-70] 

Ang-1      ↑ [71, 72] 

VEGF      ↑↓ [73-77] 

PDGF      ↑↓ [78, 79] 

ANP, BNP      ↑ [80-83] 

Apelin      ↓ [84, 85] 

Ghrelin       [86-88] 

Legend: 5-HT, Serotonin; ADM, Adrenomedulin; Ang-1, Angiopoiein-1; ANP, Atrial Natriuretic Peptide; ATII, Angiotensin II; BNP, Brain Natriuretic Peptide ET-1, Endothelin-1; NO, Nitric 

Oxide; PDGF, Platelet-Derived Growth Factor; PGI2, Prostacyclin; TXA2, Thromboxane A2; VEGF, Vascular Endothelial Growth Factor; VIP, Vasoactive Intestinal Peptide;    , no;   , yes; 

↓, decrease; ↑, increase 
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Contraction and relaxation as well as SMCs proliferation and apoptosis are also 

controlled by multiple protein kinases (PKs) (e.g. PKC, Rho kinase) and cyclic 

nucleotides (e.g. 3’-5’-cyclic adenosine monophosphate (cAMP) and 3’-5’-cyclic 

guanosine monophosphate (cGMP)). Indeed, PKA, that can be trigger by PGI2, activates 

KV channels in vascular SMCs promoting vasodilatation [89]. On the contrary, PKC, 

which can be trigger by ATII, ET-1 and TXA2, is able to adjust [Ca
2+

]i mediating 

contraction through activation of Ca
2+

 channels and inhibition of K
+
 channels [90]. PKC 

is also capable to intervene in contraction through phosphorylation of CPI-17 (C-kinase 

potentiated Protein phosphatase-1 Inhibitor) which in turn inhibits myosin light chain 

(MLC) phosphatase (MLCP) increasing MLC phosphorylation [90, 91]. Inhibition of 

MLCP and CPI-17 phosphorylation is also achieved by Rho kinase, also promoting 

smooth muscle contraction [92]. Regarding cAMP role, it is hypothesize that vascular 

relaxation is accomplish by (i) lowering [Ca
2+

] through inhibition of inositol 1,4,5-

triphosphate (IP3) formation due to phospholipase C (PLC) inhibition, (ii) inhibition of 

Ca
2+

 release from sarcoplasmic reticulum, (iii) stimulation of Ca
2+

 uptake and/or 

extrusion, and (iv) inhibition of Ca
2+

 entry [90]. In addition, cAMP through increasing 

MLCP activity and reducing MLC kinase (MLCK), p42/44, MAPK and Rho kinase 

activities can regulate vascular tone [91]. 

Furthermore, [Ca
2+

]i determines smooth muscle contraction, and its rise is the main 

trigger of pulmonary vasoconstriction as well as SMC migration and proliferation, 

leading to pulmonary vascular wall thickening and remodelling. Indeed, [Ca
2+

]i is an 

important second messenger for PASMC migration and proliferation, once some signal 

transduction proteins involved in cellular proliferation are Ca
2+

 dependent (e.g. 

mitogen-activated protein II kinase) [93, 94]. The fact that resting [Ca
2+

]i in 

proliferating PASMC is greater than in growth-arrested cells supports the role of 

enhanced Ca
2+ 

influx into the cytoplasmic space is also essential for cell growth and 

proliferation [95]. Moreover, resting [Ca
2+

]i is higher in PASMCs of iPAH patients than 

in cells of normal individuals, demonstrating once more the role of [Ca
2+

]i in PH [96]. 

In addition, augmentation in [Ca
2+

]i leads to elevation of nuclear Ca
2+

 concentration 

which is essential for cell cycle progression, since at least four steps are sensitive to 

Ca
2+

/CaM (calmodulin) complex activation [97-99]. Additionally, Ca
2+ 

influx via 

VDCC (voltage-dependent Ca
2+

 channels) activates several transcription factors, such as 

CREB (cAMP response element-binding protein), NF-AT (nuclear factor of activated T 
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cells) and NF-κB (nuclear factor kappa B) that are involved in cell proliferation, protein 

synthesis and inflammation [42]. 

 

3.3. Role of Apoptosis 

Although recent therapies target specific cellular and molecular pathways involved in 

the pathogenesis of PAH, they are essentially vasodilators, contributing to symptoms 

relief and improvement but not leading to a better prognosis. So, in the last years 

investigations have been redirected towards a better understanding of the cellular and 

molecular mechanisms underlying vascular remodelling, including the role of apoptosis 

in PH pathogenesis. Indeed, it has been described an imbalance between mitogens and 

growth inhibitors in PH that along with plexiform lesions and neointima formation 

highlight a deregulated apoptosis and cell proliferation in the disease. 

Apoptosis, or programmed cell death, is important for maintenance of tissue 

homeostasis through the elimination of harmful cells. In the vasculature, apoptosis 

modulators are multiple and complex, and might include ROS, NO and ATII systems 

[100-102]. Apoptosis is characterized by cell shrinkage, extensive protein cross-linking 

and chromatin condensation (pyknosis) and migration to nuclear membrane [103-105]. 

In a later stage, although cell membrane remains intact, there is DNA fragmentation 

(karyorrhexis) into 180 to 200 base pairs promoted by Ca
2+

 - and Mg
2+

-dependent 

endonucleases and formation of apoptotic bodies that are quickly removed via 

phagocytosis by surrounding cells [105, 106]. Neither the process of apoptosis nor 

removal of apoptotic bodies is associated with an inflammatory reaction [107, 108]. 

Apoptosis can occur mainly via two main pathways: intrinsic (or mitochondrial) and 

extrinsic (or death receptor) ones (Figure 2). Both pathways converge to the same 

execution pathway that is initiated by the cleavage and activation of execution/effector 

caspases (cysteinyl aspartic acid-proteases) – caspase-3, caspase-6 and caspase-7 – 

resulting in the characteristic alterations previously mentioned [109]. 
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The extrinsic pathway involves the activation of transmembrane death receptors which 

belongs to the TNF (Tumor Necrosis Factor) receptor gene superfamily. These family 

of receptors is characterized for having a similar cysteine-rich extracellular domain and 

a cytoplasmic domain called “death domain” [110]. The best-characterized death 

receptors and corresponding ligands include: i) FasL/FasR, ii) TNF-α/TNFR1, iii) 

Apo3L/DR3, iv) Apo2L (or TRAIL)/DR4 and v) Apo2L (or TRAIL)/DR5 [111]. After 

the ligand bind the death receptor, an adaptor protein (FADD for FasL and TRADD for 

TNF-α) binds through its own death domain to the clustered receptor death domain 

Figure 2 | Apoptosis signalling pathway. Apoptosis can occur mainly via two pathways: intrinsic and 

extrinsic ones. In the extrinsic pathway activation of death receptors activates initiator caspase 8 initiating 

the caspase cascade culminating in apoptosis. The intrinsic pathway is determined by mitochondrial 

permeability which is regulated through the balance between pro-apoptotic and anti-apoptotic mediators. 

Activation of pro-apoptotic ones lead to the release of cytochrome c (cyt c), Smac and Omi promoting 

apoptosis through apoptosome formation and neutralization of inhibitors of apoptosis proteins (IAPs). A 

crosstalk between these two pathways has been described involving, for instance, Bid cleavage by 

caspase 8, releasing cyt c from the mitochondria. 
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[112, 113]. This adaptor protein also has a “death effector domain” that will associate 

with an initiator caspase, such as caspase-8 and caspase-10, through dimerization of the 

death effector domain, activating it by self-cleavage [114, 115]. Then, the initiator 

caspase (caspase-8) trigger execution pathway through activation of downstream 

effector caspase, including caspase-3, culminating in apoptosis [115]. This extrinsic 

pathway can be inhibited trough a protein that binds both initiator caspase and/or 

adaptor protein, such as c-FLIP which can associate with both FADD and caspase-8 

inhibiting apoptosis [116, 117]. 

The intrinsic pathway is determined by mitochondrial permeability which is regulated 

through the balance between pro-apoptotic (Bcl-10, Bak, Bax, Bid, Bad Bim, Bik and 

Blk) and anti-apoptotic (Bcl-2, Bcl-XL, Bcl-XS, Bcl-W and BAG) mediators [109]. 

When the cell is exposed to some stimuli, such as depravation of growth factors, 

exposition to agents that damage DNA or accumulation of unacceptable amounts of 

misfolded proteins, there is the activation of pro-apoptotic mediators (Bax and Bak), 

which translocate into the mitochondria and form channels through which cytochrome c 

(cyt c), Smac/DIABLO, serine protease HtrA2/Omi and other proteins escape to the 

cytosol [118-120]. Released cyt c activates Apaf-1 (apoptotic protease activating factor-

1) and procaspase-9, forming the apoptosome (cyt c/Apaf-1) which is responsible for 

the activation of initiator caspase 9, culminating in the activation of execution pathway, 

via activation of caspase-3 [109, 115]. In addition, it was recently demonstrated that 

besides activating caspases, cyt c can also activate K
+
 channels [121]. Smac/DIABLO 

and HtrA2/Omi have been described to promote apoptosis through the inhibition of IAP 

(inhibitors of apoptosis proteins) activity, such as XIAP [119, 120, 122]. In addition, 

alterations in mitochondrial permeability during apoptosis also lead to the release of 

AIF (apoptosis-inducing factor) and endonuclease G that induce chromatin 

condensation and DNA fragmentation through a caspase-independent cell death [120]. 

A crosstalk between these two pathways was already described involving, for instance, 

Bid cleavage through caspase 8 (Figure 2). Truncanted Bid translocates to the 

mitochondria and causes cyt c release through the homo-oligorization of Bak and/or 

Bax [123-125]. Recently, it was suggested that apoptosis induced by TRAIL (TNF-

related apoptosis-inducing ligand) appears to require the release of mitochondrial 

Smac/DIABLO [126]. TRAIL induces apoptosis through activation of it death 

receptors, DR4 and DR5; only, TRAIL-induced apoptosis requires Bax translocation 
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from the cytosol to the mitochondria. In addition, this translocation of Bax depends on 

the caspase 8 activation and in turn activated caspase 8 cleave Bid, which translocate to 

mitochondria releasing Smac/DIABLO [126]. Considering recent works [127, 128] 

describing TRAIL as a potential therapeutic target in PH, it would be interesting to 

investigate TRAIL in the development of PH and if its administration can also attenuate 

or even reverse vascular remodelling seen in PH. 

Additionally, maintenance of high concentrations of intracellular K
+
 ([K

+
]i) is important 

to the regulation of normal cell volume and suppression of caspases and nucleases [129, 

130]. Therefore, [K
+
]i and K

+
 channels seems to be important in apoptosis modulation. 

Indeed, elevated K
+
 loss or K

+
 efflux through K

+
 channels (via their activation) results 

in reduction of [K
+
]i inducing apoptotic volume decrease and activation of caspases and 

endonucleases that will trigger apoptosis [130, 131]. On the contrary, inhibition of K
+
 

channels maintain sufficient [K
+
]i attenuating apoptotic volume decrease and inhibiting 

apoptosis [131]. Moreover, overexpression of Bcl-2 in rat PASMCs leads to reduction 

of KV channels subunits inhibiting apoptosis [94]. Overexpression of Bcl-2 was also 

found in the lungs of iPAH patients, which might contribute to the downregulation of 

KV channels in these patients [132]. 

In PH, the resistance to apoptosis observed in PASMCs seems to result, in part, from 

the diminished expression of KV channels, since PASMCs from iPAH patients’ present 

reduced mRNA expression of KV channels subunits, probably due to defects in their 

gene transcription [133, 134]. Remillard and colleagues [135] also demonstrated that 

KV1.5 (an α subunit of KV channels) encoding gene of iPAH have multiple single 

nucleotide polymorphisms which probably contributes to altered function and/or 

expression of this channels in PASMCs of patients. Additionally, it is believed that 

certain appetite suppressants (such as aminorex, fenfluramine and dexfenfluramine) are 

associated with an increased risk of PAH, and they appear to contribute to KV channels 

downregulation, leading to PH [136, 137]. In SMCs, BMP inhibits proliferation and 

induces apoptosis, on the other hand in ECs it is responsible for cell survival 

(proliferation) [138, 139]. However, studies had suggested that alterations in BMP axis 

induce PAECs apoptosis [139]. Besides the genetic susceptibility associated to PH due 

to mutation in BMP signalling, initial environmental injuries, such as hypoxia, increase 

flow, inflammation, infections, drugs or toxins, might lead to ECs apoptosis [140-142]. 

Apoptosis of ECs impairs endothelial function providing conditions for an increased 
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proliferation of the remaining endothelium and favouring the emergence of apoptosis-

resistance and hyperproliferative ECs, that are characteristics of PH later stage [140, 

141, 143]. Beyond the release of growth factors and other mediators, the initial 

apoptosis of ECs leaves SMCs more susceptible to these factors that stimulates 

proliferation and inhibits apoptosis of SMCs (Figure 3) [144]. 

 

(adapted from [142]) 

 

3.3.1. Survivin and Smac/DIABLO 

Survivin is the smallest element of the inhibitor of apoptosis protein (IAP) family [145]. 

Along with survivin, seven more IAP proteins were identified in humans: XIAP/hILP 

Figure 3 | Apoptotic-based theory for the development of PH. Although the mechanisms underlying 

PH need to be better characterized, at the moment an apoptotic-based theory for the development of PH 

is one of the most accepted in the scientific community. In addition to the genetic susceptibility 

associated to PH due to mutation in BMP signalling initial environmental factors, such as hypoxia, 

inflammation or drugs, might lead to PAECs apoptosis. The apoptosis of ECs leads to an endothelial 

dysfunction providing conditions that increase proliferation of the remaining endothelium and favouring 

the emergence of apoptosis-resistance, hyperproliferative ECs, expressing survivin, and vasoconstriction, 

that are characteristic of later stage of PH. In addition, beyond induces the release of growth factors and 

other mediators the initial apoptosis of ECs leaves SMCs more susceptible to those factors and all this 

stimulates proliferation and inhibits apoptosis in SMCS. Consequently, the apoptosis resistance and 

proliferation of both PAECs and PASMCs leads to narrowing and occlusion of pulmonary artery 

increasing PVR and PAP, frequently culminating in right-sided heart failure and death. 
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(X-chromosome-linked IAP), C-IAP1/HIAP-2 (cellular inhibitor of apoptosis 1), C-

IAP2/HIAP-1 (cellular inhibitor of apoptosis 2), ILP2 (IAP-like protein 2), MLIAP 

(livin), NAIP (neuronal apoptosis inhibitor protein) and BRUCE [146]. IAP family 

members are characterized by the presence of two to three baculoviral IAP repeat (BIR) 

domains, which can bind and inactivate caspases and prevent caspase-induced 

apoptosis; however, survivin only contains a BIR domain [145, 146]. 

Survivin plays an important role in apoptosis. In response to cell death stimuli, 

mitochondrial survivin is released to the cytosol, inhibiting apoptosis by either directly 

or indirectly interfering with caspase function (Figure 2) [147]. Indeed, it was reported 

that overexpression of survivin suppress apoptosis induced by multiple stimuli 

including TNF and Fas [148-150]. Some authors refer that survivin can directly bind 

and inhibit caspase-3, -7 and -9 activity, since survivin co-immunoprecipitated with 

these, and since apoptosis was suppressed with co-expression of survivin and 

overexpression of caspase-3, -7 and -9 [150]. On the other hand, others demonstrated 

that survivin inhibits apoptosis through the interaction with Smac/DIABLO, which is 

pro-apoptotic factor that promotes caspase activation, binding and inhibiting other IAPs 

activity [151]. By binding with Smac/DIABLO, survivin delays the release of 

Smac/DIABLO into the cytoplasm and increases its cytosolic stability, which results in 

prolonged cell survival [152]. Indeed, Song and colleagues [153] proposed that survivin 

binds Smac/DIABLO released from the mitochondria, decreasing antagonism of 

Smac/DIABLO to XIAP, and therefore the free XIAP directly inhibits caspase and 

consequently apoptosis. Survivin also blocks apoptosis downstream pro-apoptotic 

mediators Bax, Bik, Bak, and cyt c [148, 150]. Furthermore, it was suggested that under 

apoptotic stimuli involving mitochondria, survivin is also able to forms a complex with 

XIAP, enhancing its stability and inhibiting caspases-9 activation [154]. 

Apart from its role in apoptosis, survivin also regulates cell division and viability. 

Survivin seems to have a cell-cycle dependent expression in mitosis, being upregulated 

during G2/M phase of the cell cycle [155]. It was demonstrated to be essential in 

karyokinesis and cytokinesis through the formation of chromosomal passenger complex 

along with Aurora B kinase, INCENP and Borealin [156]. Indeed, survivin is necessary 

in multiple points of mitosis through the regulation of spindle assembly checkpoint, 

metaphase spindle formation and microtubule stability [155, 157, 158]. Therefore, 

inhibition of survivin expression/function results in multiple mitotic defects due to cell 
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cycle arrest, formation of aberrant multipolar spindles, absence of cytokinesis and 

development of multinucleated polyploidy cells [155, 157, 159]. 

BIRC5, the gene that encodes survivin, produces five major isoforms of the transcript 

through alternative splicing of survivin pre-mRNA: survivin (wild type), survivin-2B, 

survivin-ΔEx3, survivin-3B and survivin-2α. Survivin-2α seems to support the 

induction of apoptosis, while survivin (wild type), survivin-3B and survivin-ΔEx3 seem 

to be cytoprotective [160-163]. Some isoforms, such as survivin-3B, appears to also be 

implicated in cell cycle regulation [163]. It has been hypothesised that the dual role of 

survivin might be related with its different compartimentalization. Although nuclear 

survivin is associated to the regulation of cell division, mitochondrial survivin is linked 

to the inhibition of apoptosis, preventing the  activation of effectors caspases which 

confers resistance to apoptosis [147, 154, 164]. On the contrary, survivin released to the 

cytoplasm after apoptosis initiation, loses its protective ability against apoptosis, 

probably due to posttranslational modifications [154, 165]. In a study [166] realized in 

HeLa cells it was demonstrated that differential ablation of survivin through RNA 

interference influences cell death. Partial reduction of the cytosolic pool of survivin 

through RNA interference in association to UVB irradiation resulted in the increased 

catalytic activity of caspases-3/-7 as well as in the proteolytic cleavage of caspase-9. On 

the other hand, loss of mitochondrial membrane permeability and spontaneous apoptosis 

were observed after complete removal of cytosolic survivin. In the same study [166] it 

was verified that preferential suppression of the nuclear pool of survivin culminated in 

cell arrest followed by re-entry into the cell cycle and polyploidy along with other 

mitotic defects. 

In the last years, PAH has been considered a cancer like disease since almost 

characteristics that defines cancer, such as deregulation of growth pathways, 

angiogenesis, dysfunctional KV channels, loss of expression of PGI2 synthase gene 

(anti-proliferative) and augmentation of survivin expression have been associated in the 

disease [167-170]. Indeed, survivin is practically undetectable in differentiated adult 

tissues, but is highly expressed is the most common human cancers, thus making it an 

interesting tumor marker [171]. However, little is known about it expression and role in 

PAH. Until now, it was reported that in an animal model of MCT-induced PH with 

vascular remodelling and PAs of patients with PH survivin was found overexpressed 

and was related with the inhibition of apoptosis and stimulation of PASMCs 
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proliferation [121]. Moreover, lung transfer of survivin gene in experimental animals 

resulted in pulmonary vascular remodelling while adenoviral gene therapy with a 

mutant survivin reversed MCT-induced PH through the activation of KV channels, 

induction of apoptosis and suppression of proliferation [121]. Therefore a better 

characterization of survivin involvement in the development and progression of PAH 

will potentially open new perspectives on the treatment of PAH. 

 

4. Animal Models for the Study of PAH 

Animal models have allowed the study of the pathogenesis and therapeutic strategies of 

multiple diseases, including PAH [172]. Although an animal model should mimic the 

combine characteristics of human disease, including relevant clinical, hemodymanic, 

biochemical and histopathological features, until now no model is able to mimic all 

features of the PAH [173]. Different animal models have been used to study the distinct 

features of PAH, namely the various underlying genetic and environmental causes.MCT 

and chronic hypoxia are the most frequently used animal models in the study of PH 

[172]. In addition, transgenic and knockout models have been used to evaluate altered 

expression of specific genes in the development and/or progression of PH [174, 175]. 

MCT model has been used for over than 50 years, however the molecular mechanisms 

underlying MCT-induced PH need to be better clarified [176]. 

 

4.1. Monocrotaline Animal Model of PAH 

Monocrotaline (MCT) (or 12β,13β,-dehydroxy-12α,13α,14α-trmethylcrotal-1-enine) is 

an 11-membered macrocyclic pyrrolizidine alkaloid derived from the stems, leaves and 

seeds of the Crotalaria spectabilis  that can be administrated by intraperitoneal (60 

mg/kg), subcutaneous (60 mg/kg) or intravenous injection (1-5mg/kg). Although when 

topically or injected applied it does not cause localized toxicity, MCT is known for its 

hepatic and cardiopulmonary toxicity, causing lesions in multiple organs after 

absorption and hepatic bioactivation [15, 177]. In fact, it was described that in chronic 

exposure or single high doses injections of MCT causes periacinar hepatic necrosis, 

hepatocyte necrosis, hepatocellular megalocytosis and hepatic fibrosis [178]. However, 

a single lower-dose injection does not cause hepatic pathology but results in PH after 
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hepatic bioactivation [178, 179]. In the liver, MCT is activated and converted to reactive 

metabolites by cytochrome P450 3A, including dehydromonocrotaline also called 

monocrotaline pyrrole (MCTP) [179]. It is considered that MCTP metabolite is 

responsible for the toxicity and injuries associated to MCT, since intravenous 

administration of chemically synthesized MCTP results in lung and/or liver lesions 

similar to those caused by MCT [15, 179, 180]. 

It is believed that pulmonary vascular endothelium is the early target of MCT injury 

probably due to circulatory proximity to the liver and because lungs are the major 

vascular bed after the liver [179, 181]. In fact, within 7-14 days it was verified increased 

DNA synthesis and hypertrophy of ECs that occurs after an initial induction of ECs 

apoptosis within 4 days pos-injection of MCT [181-184]. As early as 4h after injection 

platelet thrombi can be detected in small arteries, and 4 days pos-injection there is an 

augmentation in the number of swollen mitochondria as well as ROS generation, which 

might be endothelial-toxic [184-186]. At day 7, it has been described an early 

perivascular mononuclear inflammation in MCT-treated rats, mainly due to 

accumulation of macrophages in the adventitia [187, 188]. MCT treatment also causes 

the augmentation of extracellular space in the adventitia, probably due to accumulation 

of oedema fluid from altered microvascular EC permeability [178]. By 8 days after 

MCT injection there is extension of SMCs into peripheral normally non-muscular small 

PAs [189]. By 12 days it was described medial hypertrophy of small arteries with a 

concomitant increase in PAP and resistance [185, 190]. Only after 21 days of MCT 

injection RVH and dysfunction has been described [190, 191]. Unfortunately, there is 

evidence that MCT treatment causes myocarditis affecting both right and left ventricles, 

which will complicate the study of RVH/failure frequently associated with severe PH 

[192]. In addition, MCT treated rats do not developed plexiform lesions, a characteristic 

of later stages of human PH [193]. However, combined treatment of MCT with 

pneumonectomy revealed the development of plexiform lesions [194]. 

Finally, MCT is also able to induce multiple cellular and molecular alterations at all 

layers of pulmonary vessels. Lungs of rats exposed to MCT present increased 

expression of multiple pro-inflammatory cytokines [195-197]. In addition, after MCT 

treatment it was described an increase of medial SERT and survivin expression, 

whereas KV channels expression, including KV 1.5 and KV 2.1, were diminished [37, 

121, 198]. BMPRII expression along with its signalling pathway is reduced in MCT-
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treated rats, however its restoration does not improve PH [199, 200]. At intima level, 

MCT cause an augmentation in endothelial expression of ET-1 with a downregulation 

of ETB (endothelin receptor type B) and eNOS (endothelial nitric oxide synthase) 

expression [201, 202]. In the adventitial layer there is an enhancement of ECM 

glycoproteins production, such as elastin, fibronectin, collagen and tenascin-C [203, 

204]. 

Taken together, MCT-induced PH differs in some aspects of human PAH, but mimics 

several of its features, such as hemodynamic repercussions, histological alterations and 

high mortality. In comparison with other models of PH, MCT model offers technical 

simplicity, reproducibility and low cost, reasons that justify its general use in the 

investigation of PH [205]. 

5. Treatment 

Until approximately 25 years ago, PAH was considered a fatal disease with poor 

survival, being its treatment only palliative [4]. The therapies were based on 

symptomatic relief and were adapted from other pulmonary and cardiac diseases and 

included oxygen supplementation, anticoagulants, diuretics, digoxin, inotropes and 

calcium-channel blockers (CCB) (Table 4) [206]. However, the intense research 

dedicated to the pathobiology of PAH has been helpful for the development of several 

disease-specific therapies. In fact, treatments targeting specific cellular and molecular 

pathways involved in the pathogenesis of PAH have being implemented and they 

allowed symptoms improvement and increased survival (Table 4) [207]. Despite 

slowing the progression of the disease, treatments do not lead to a cure but diminished 

the need of surgical procedures (e.g. heart/lung transplantation and atrial septostomy), 

performed in patients who fail to respond to the pharmacologic therapy [208-211]. As 

summarized in Table 4, current treatments include: i) supportive therapies, ii) calcium-

channel blockers, iii) synthetic prostacyclin and prostacyclin analogues, iv) endothelin-1 

receptor antagonists, v) type 5 phosphodiesterase inhibitors and vi) interventional 

procedures. 
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Table 4 | Current therapies for PAH 

Drug Route 
Comments and 

recommendations 

Adverse effects and 

contradictions 
References 

Supportive therapies 

Anticoagulants O 
Improved survival in small 

retrospective studies 

Bleeding [206, 207, 

212] 

Diuretics O 

Used to reduce fluid retention, 

indicated for RV volume 

overload 

Hypotension 

Oxygen In Useful in patients with hypoxia  

Digoxin O 
Used for RV failure with benefit 

on RV function 

Vomiting, arrhythmias 

Inotropes IV 
Mostly applied for end-stage 

RV failure 

Tachycardia 

Calcium-channel blockers 

Nifedipine O Helpful as long term in patients 

with acute vasodilator 

responsiveness 

Peripheral oedema, 

hypotension 

[206, 213] 

Diltiazem O 

Amlodipine O 

Synthetic prostacyclin and prostacyclin analogues 

Epoprostenol cIV 

Can have beneficial effects for 

years, used in combination 

therapy 

Nausea, diarrhoea, 

headache, jaw pain, 

flushing, catheter-

related 

sepsis/thrombosis 

[207, 214-

220] 

Treprostinil 
SC, O, 

IV, In 

Used when oral therapy has 

failed; short-term benefits 

Nausea, diarrhoea, 

rash, headache, 

infusion site pain 

Berapost O 
Short-term benefits; used in 

combination therapy 
Flushing, headache 

Iloprost In, IV 
Short-term benefits; used in 

combination therapy 

Headache, jaw pain, 

cough, flushing 

Endothelin-1 receptor antagonists 

Bosetan O 

Dual ETA/ETB antagonist, used 

as a fist-line drug; short-term 

benefits,; used in combination 

therapy 

Headache, anaemia, 

oedema, hepatotoxicity 

[207, 221, 

222] 

Sitaxsentan O 
Selective ETA receptor 

antagonists 

Flushing, 

hepatotoxicity, INR 

augmentation, warfarin 

interaction 

Ambrisentan O 
Flushing, 

hepatotoxicity 

Type 5 phosphodiesterase inhibitors 

Sildenafil O 
Used as an initial agent and in 

combination therapy 

Headache, visual 

disturbances, nasal 

congestion 

[207, 223, 

224] 

Tadafil O  
Nausea, headache, 

dyspnea 

Interventional procedures 

Atrial 

septostomy 
 

Decompresses right heart, 

improves systemic output 
 

[206, 207, 

211] 

Lung 

transplantation 
 

Improves survival and quality of 

life 
 

Legend: cIV, continuous intravenous; In, inhaled; INR, international normalized ratio; IV, intravenous; O, oral; RV, 

right ventricle; SC, subcutaneous. 
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In addition to monotherapy, combination therapy has been an attractive option since it 

permits to target more than one pathophysiological mechanisms of PAH, allowing the 

improvement of clinical efficiency and minimizing side-effects [225, 226]. The main 

clinical combination therapy being considered includes: i) prostanoids and endothelin-1 

receptor antagonist (e.g. bosentan + iloprost, bosentan + beraprost, bosentan + 

epoprostenol), ii) prostanoids and type 5 phosphodiesterase inhibitors (e.g. sildenafil + 

epoprostenol, sildenafil + iloprost, sildenafil + berapost, sildenafil + treprostinil) and iii) 

type 5 phosphodiesterase inhibitors and endothelin-1 receptors antagonists (e.g. 

bosentan + sildenafil, bosentan + tadafil) [227-233]. Finally, with increasing studies on 

the pathobiology of PAH multiple potential therapeutic targets have been suggested: i) 

Rho kinases inhibitors (fasudil), ii) tyrosine kinase inhibitors (imatinib), iii) stimulators 

and activators of soluble guanylate cyclase (riociguat), iv) VIP, v) ADM, vi) HMG-CoA 

reductase inhibitors (statins such as simvastatin) and vii) angiotensin II type 1 receptor 

antagonists (losartan)) [66, 234-243] . These potential therapeutic targets were or are 

being studied in patients with PAH and/or experimental models of the disease. 
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Vascular remodelling is an important event in the progression of PAH, characterized by 

an excessive cellular proliferation and a reduced apoptosis; however, little is known 

about the molecular events underlying the imbalance between cellular proliferation and 

apoptosis. So, the aim of the present work was to study the contribution of apoptosis to 

the pathogenesis of PAH, through the analysis of the apoptotic proteins survivin and 

Smac/DIABLO, in an animal model of MCT-induced PAH. To achieve this goal, 

morphometric analysis of heart and lungs of controls and animals with MCT-induced 

PAH was related with the pulmonary and cardiac expression of survivin and 

Smac/DIABLO, evaluated by immunohistochemistry and western blot. 
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1. Experimental Design 

In order to study the contribution of apoptosis to the pathogenesis of PAH, an 

experimental protocol was designed and is summarized in Figure 4. 

 

 

 

 

Figure 4 | Experimental protocol design (sc, subcutaneous injection) 
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2. Animal Protocol 

Animal experiments were performed according to the Portuguese law for animal 

welfare (DL 129/92, DL 197/96; P 1131/97) and conform to the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals (NIH Pub. No. 85-23, 

Revised 1996). Male Wistar rats (Charles River Laboratories, Barcelona, Spain) 

weighing 180-200g were housed in groups of 5 rats/cage, in a controlled environment 

under a 12:12-h light-dark cycle at room temperature of 22ºC, with free supply of food 

and water. Rats randomly received a subcutaneous injection of MCT (60 mg/kg, Sigma-

Aldrich, Barcelona, Spain) (MCT group, n=10 per time point) or an equal volume of 

vehicle (1 mL/kg of saline) (Sham group, n=10 per time point). 

 

 

3. Hemodynamic Analysis 

In order to evaluate and confirm the presence and progression of the disease, 

hemodynamic assessment was performed 7 and 21 days after MCT/vehicle injection. 

The rats were anesthetized by inhalation of a mixture of sevoflurane (4%) and oxygen, 

intubated for mechanical ventilation (Dual Mode, Kent Scientific, Connecticut, USA) 

and placed over a heating pad (body temperature is maintained at 37°C). Under 

binocular surgical microscopy (Wild M651.MS-D, Leica; Herbrugg, Switzerlad), the 

right jugular vein was cannulated for fluid administration (prewarmed 0.9% NaCl 

solution) to compensate for perioperative losses. The heart was exposed by a median 

sternotomy and the pericardium was widely opened. Right ventricular hemodynamic 

function was measured with pressure-volume (PV) catheter (PVR-1045, Millar 

instruments, Houston, USA). Data was continually acquired (MPVS 300, Millar 

Instruments, Houston, USA) and digitally recorded at 1000Hz (ML880 PowerLab 

16/30, Millar TM instruments, Houston, USA). After complete instrumentation, the 

animal preparation was allowed to stabilize for 15 minutes. Hemodynamic recording 

were made under basal with respiration suspended at end-expiration. Heart rate (HR) 

and RV peak systolic pressure (Pmax) were obtained and analysed using PVAN 3.5 

(Millar Instruments, Houston, USA). 
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4. Tissue Preparation for Morphometric, Immunohistochemistry and 

Molecular Analysis 

The heart, lungs and right gastrocnemius muscle were excised and weighted. The right 

tibia was also excised and its length was measured with a millimetric ruler. Under 

binocular magnification (3.5), the RV free wall was dissected from the left ventricle 

(LV) + septum (S) and weighted separately. Heart, lungs, RV and LV + S weights were 

normalized to body weight (BW) and gastrocnemius weight was normalized to tibia 

length. Samples from RV, LV and lung were fixed and included in paraffin for light 

microscopy, or frozen with liquid nitrogen for molecular studies. 

 

5. Morphometric Analysis 

Samples of RV, LV (midway between the apex and base) and lung were fixed in 4% 

(v/v) buffered paraformaldehyde followed by dehydration with graded ethanol, 

diaphanization with xylene and included in paraffin blocks. Serial sections (4 µm of 

thickness) of paraffin blocks were cut by a microtome (RM2125RTS, Leica, Nussloch, 

Germany) and mounted on silane-coated slides. The slides were dewaxed in xylene and 

hydrated through graded alcohols. Sections were stained for haematoxylin-eosin by 

immersing slides in Mayer’s haematoxylin solution for 5 minutes followed by 

immersion in aqueous eosin solution for 5 minutes. Slides were still submitted to graded 

alcohols and xylene and mounted with Entellan. Studied samples were observed at light 

microscopy (Dialux 20, Leitz, Wetzlar, Germany), photographed with a digital camera 

(XC30, Olympus, California, USA) and measured with a digital image analyzer (cell^B 

life science basic imaging software, Olympus, California, USA). Five images with 

random microscopic fields (magnification of 400) were obtained from each section to 

compensate for variations within sections. Only round to ovoid muscle fibbers with a 

nuclear profile were counted to measure the cardiomyocytes surface area (CSA). 

Around 500 cardiomyocytes per group per time point were analyzed. On pulmonary 

specimens, external diameter and medial wall thickness in muscular arteries (20-25 

arteries/lung) were analyzed. Orthogonal intercepts were used to generate eight random 

measurements of external diameter (distance between the external lamina) and sixteen 

random measurements of medial thickness (distance between the internal and external 

lamina). For each artery medial hypertrophy was expressed as follows: % wall thickness 

= [(medial thickness   2) / (external diameter)]   100. 
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6. Immunohistochemistry 

Immunohistochemistry was performed to determine survivin and Smac/DIABLO 

expression in the RV. Sections (4 µm) were placed on SuperFrost®Plus slides (Thermo 

Scientific, Massachusetts, USA). After deparaffinization and rehydration, slides were 

subjected to heat induced antigen retrieval by immersion in 10 mM sodium citrate 

buffer (pH 6.0) in the microwave for 30 minutes. Peroxidase activity was blocked by 

3% hydrogen peroxide for 10 minutes. Blockage of non-specific binding was performed 

with 5% normal goat serum (G9023-10mL, Sigma-Aldrich, Barcelona, Spain) in TBS-T 

(100 mM Tris, 1.5 mM NaCl, pH 8.0; 0.1% Tween-20) for 1 hour at room temperature 

flowed by 15 minutes of washes in TBS-T. Sections were encircled with a pap pen 

(Vector Laboratories, California, USA) to prevent splitting leakage of the flowing 

incubation solutions. Endogenous avidin-biotin expression was blocked using an 

endogenous avidin + biotin blocking system (ab3387, abcam, Cambridge, UK) 

according to manufacturer’s instructions, being  followed by incubation with the 

primary antibodies (1:500 dilution; rabbit anti-Survivin (ab469, abcam, Cambridge, 

UK) or dilution 1:250; rabbit anti-Smac/DIABLO (ab8115, abcam, Cambridge, UK)) 

overnight at 4°C. After incubation with primary antibodies, slides were washed 3 times, 

5 minutes each with TBS-T and incubated with goat anti-rabbit IgG secondary antibody 

(1:250 dilution; ab6720, abcam, Cambridge, UK) for 2 hours at room temperature. 

Slides were submitted to another 3 washes in TBS-T prior being incubated with 

Streptavidin protein, HRP (1:1000 dilution; ab7403, abcam, Cambridge, UK). To 

visualize the peroxidase activities in sections 3,3-diaminobenzidine (DAB, ab94665, 

abcam, Cambridge, UK) was used. Finally, slides were counterstained with Mayer’s 

haematoxylin, submitted to graded alcohols and xylene and mounted with Entellan. 

Negative control reactions included omission of the primary antibody. The slides were 

observed and photographed with a microscope (Dialux 20, Leitz, Wetzlar, Germany) 

under 400 magnification. Survivin and Smac/DIABLO expression was qualitatively 

determined as positive (cytoplasmatic staining) or negative in around 500 

cardiomyocyte per group per time point. 
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7. Western Blot 

RV, LV and lung samples (n=6 per group per time point) previously frozen with liquid 

nitrogen were homogenised in phosphate buffer (13 mM KH2PO4, 54mM NaHPO4, pH 

7.4) (in the proportion of 1:20) with a Bio-Gen PRO200 homogeniser (Pro 200, Pro 

Scientific, Connecticut, USA). Total protein concentration was spectrophotometrically 

determined with the colorimetric method RC-DC protein assay (Bio-Rad, California, 

USA). The optic density was determined at 750nm in a microplate reader (UVM340, 

Asys, Cambridge, UK). Simultaneously, a calibration curve was performed using 

different concentrations of bovine serum albumin (BSA). 

Equivalent amounts of total protein from the homogenised RV, LV and lung of each 

group were electrophoresed on a 12.5 % SDS-PAGE at 200 V at room temperature as 

described by Laemmli [244]. Proteins were electrotransfered to a nitrocellulose 

membrane (0,2 µm, Bio-Rad, California, USA) in 25 mM Tris, 192 mM and 20 % 

methanol at 200 mA. Successful transfer was confirmed by staining the membranes 

with Ponceau S. Nonspecific binding sites were blocked with 5 % (w/v) dry non-fat 

milk in TBS-T (100 mM Tris, 1.5 mM NaCl, pH 8.0 (TBS) and 0.5 % Tween 20). 

Membranes were incubated with primary antibody (rabbit anti-Survivin (ab469, abcam, 

Cambridge, UK), 1:1000 dilution or rabbit anti-Smac/DIABLO (ab8115, abcam, 

Cambridge, UK), 1:500 dilution) overnight at 4°C with agitation. Afterwards, blots 

were washed in TBS-T, incubated with a secondary antibody (LI-COR IRDye® 

800CW, Nebraska, USA) and washed in TBS-T. Immunoreactive bands were observed 

under fluorescence using an Odyssey system (LI-COR Odyssey, Nebraska, USA) and 

the results were analysed with Quantity One software v. 4.6.3 (Bio-Rad, California, 

USA) 

 

8. Statistical Analysis 

Statistical analysis was performed using GraphPad Prism software v. 5.0 (GraphPad 

Software, California, USA). All data are presented as mean ± SEM and were compared 

using Two Way ANOVA. When treatments were significantly different, Students-

Newman Keuls post-hoc test was selected to perform pairwise multiple comparisons. 

Results were considered significantly different when p<0.05. 
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1. Hemodynamic Evaluation and Morphometric Analysis 

In order to confirm and evaluate RV dysfunction and the development of PAH through 

MCT injection, hemodynamic evaluation and morphometric analysis were performed 7 

and 21 days after MCT injection. As represented in Table 5, at D7 no significant 

hemodynamic alterations were noted. However, at D21, RV peak systolic pressure in 

the MCT treated group was significantly enhanced when compared with Sham group. 

 

 

Table 5 | Hemodynamic evaluation of MCT-induced PAH. 

 D7 D21 

Sham MCT Sham MCT 

Heart rate (bpm) 349 ± 22 357 ± 10 340 ± 14 376 ± 23 

RV Pmax (mmHg) 27.3 ± 2.2 31.5 ± 1.5 26.3 ± 1.2 38.9 ± 2.7 
* 

Data are present as mean ± SEM. Sham, sham group; MCT, monocrotaline group; Pmax, peak systolic 

pressure; RV, right ventricle. 
*
p < 0.05 vs Sham of the same day 

 

 

 

Table 6 | Morphometric alterations in MCT-induced PAH 

 
D7  D21 

Sham MCT  Sham MCT 

Body weight (g) 230.4 ± 8.2 214.6 ± 3.2  290.6 ± 4.5 
a 

260 ± 4.9 
*, a 

HW/BW (g/Kg) 3.031 ± 0.079 3.129 ± 0.061  2.794 ± 0.069 3.282 ± 0.113 
* 

RV/(LV+S) (g/g) 0.282 ± 0.017 0.332 ± 0.021  0.302 ± 0.012 0.467 ± 0.049 
*, a 

RV/BW (g/Kg) 0.583 ± 0.038 0.332 ± 0.021  0.584 ± 0.013 0.911 ± 0.095 
*, a 

(LV+S)/BW (g/Kg) 2.070 ± 0.058 2.011 ± 0.047  1.957 ± 0.060 1.956 ± 0.042 

L/BW (g/Kg) 5.436 ± 0.307 5.896 ± 0.400  4.782 ± 0.323 7.241 ± 0.464 
*, a 

G/tib (g/cm) 0.382 ± 0.012 0.374 ± 0.004  0.440 ± 0.016 0.430 ± 0.008
 

Data are present as mean ± SEM. Sham, Sham group; MCT, monocrotaline group; HW, heart weight; 

BW, body weight; RV, right ventricle; LV+S, left ventricle plus septum; L, lungs; G, gastrocnemius; tib, 

tibia. 
*
p < 0.05 vs Sham of the same day; 

a 
p < 0.05 vs D7 of the same treatment group. 
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The morphometric alterations registered in MCT-induced PAH are summarized in Table 

6. At day 21, animals from the MCT group evidenced a significant body weight loss in 

comparison to the Sham group. There was a significant augmentation of body weight in 

both groups between days 7 and 21. In addition, there were no significant alterations in 

the ratio G/tib. 

In MCT treated animals, lung weight increased between time-points, and was 

significantly higher in MCT group than in Sham group. As expressed in Figure 5, at 

D21 media of pulmonary artery is significantly hypertrophied in MCT-treated animals 

comparing with Sham group.  

The ratio HW/BW was significantly higher in MCT-treated animals compared to Sham 

on day 21 after injection. Moreover, RV/(LV+S) and RV/BW indexes were both 

significantly increased on day 21 in MCT-treated animals, indicating that these ones 

developed RV hypertrophy. Also, as expressed in Figure 5, MCT-treated animals 

developed cardiomyocytes hypertrophy since D7. The RV hypertrophy increased with 

the progression of the disease since RV cardiomyocytes cross sectional area was 

significantly higher on day 21 than on day 7. There were no differences in the 

(LV+S)/BW parameter in both MCT and Sham groups. 
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Figure 5 | Pulmonary arterial and right ventricular cardiomyocyte hypertrophy. A and C: 

Histological appearance of small pulmonary arteries and right ventricular cardiomyocytes, respectively, 

stained with hematoxylin and eosin of Sham and MCT groups 7 and 21 days after injection. B: Medial 

layer thickness expressed as percentage of all thickness. D: Right ventricular cardiomyocytes 

hypertrophy expressed as cardiomyocytes cross-sectional area (µm
2
). Data are present as mean ± SEM. 

Sham, Sham group; MCT, monocrotaline group. 
*
p < 0.05 vs Sham of the same day; 

a 
p < 0.05 vs D7 of 

the same treatment group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.  Survivin and Smac/DIABLO Expression 

With the aim to study the role of apoptosis in PAH, the expression of survivin and 

Smac/DIABLO were analysed in RV, LV and lungs. 

Survivin and Smac/DIABLO expression in RV were analysed through 

immunohistochemistry and western blot, and the results are shown in Figure 6 and 

Figure 7, respectively. MCT treatment significantly raised survivin expression in both 

day 7 and 21 after injection as compared with Sham group. Sham groups did not present 
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any alterations in survivin expression. Contrarily, MCT treatment significantly 

decreased Smac/DIABLO expression in comparison with Sham groups. As present in 

Figure 8, MCT treatment has induced an increase in survivin levels ans a decresed in 

Smac/DIABLO levels in LV, in a similar way of those noted in RV. 
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Figure 6 | Right Ventricle survivin expression, evaluated through immunohistochemistry and western 

blot. A: Representative image of immunohistochemistry for survivin expression in the right ventricle of 

Sham and MCT groups 7 and 21 days after injection. B: Survivin expression in right ventricle expressed as 

percentage of stained cardiomyocytes in immunohistochemistry. C: Right ventricle survivin expression 

evaluated through western blot with a representative image of the results. Data are present as mean ± SEM. 

Sham, Sham group; MCT, monocrotaline group; RV, right ventricle. 
*
p < 0.05 vs Sham of the same day; 

a 
p 

< 0.05 vs D7 of the same treatment group.  
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Figure 7 | Smac/DIABLO expression in right ventricle, evaluated through immunohistochemistry and 

western blot. A: Representative image of immunohistochemistry for Smac/DIABLO expression in the right 

ventricle of Sham and MCT groups 7 and 21 days after injection. B: Smac/DIABLO expression in right 

ventricle expressed as percentage of stained cardiomyocytes in immunohistochemistry. C: Right ventricle 

Smac/DIABLO expression evaluated through western blot with a representative image of the results. Data 

are present as mean ± SEM. Sham, Sham group; MCT, monocrotaline group; RV, right ventricule. 
*
p < 

0.05 vs Sham of the same day; 
a 
p < 0.05 vs D7 of the same treatment group. 
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Figure 8 | Survivin (A) and Smac/DIABLO (B) expression in left ventricle, evaluated through western 

blot of Sham and MCT groups 7 and 21 days after injection, with respective representative images. Data 

are present as mean ± SEM. Sham, Sham group; MCT, monocrotaline group. 
*
p < 0.05 vs Sham of the 

same day; 
a 
p < 0.05 vs D7 of the same treatment group. 

Figure 9 | Lung survivin (A) and Smac/DIABLO (B) expression, evaluated through western blot of 

Sham and MCT groups, 7 and 21 days after injection, with respective representative images. Data are 

present as mean ± SEM. Sham, Sham group; MCT, monocrotaline group. 
*
p < 0.05 vs Sham of the same 

day; 
a 
p < 0.05 vs D7 of the same treatment group. 
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In respect to lung (Figure 9), survivin expression was significantly augmented in MCT 

groups. However, in MCT-treated animals, between day 7 and 21 after injection, there 

was a significant reduction of survivin expression, while no differences were noted 

between Sham groups. In contrast, pulmonary Smac/DIABLO expression significantly 

lowered with MCT treatment in both time-points in comparison with Sham groups. 
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PAH is a multifactorial, progressive disease with substantial mortality and morbidity. 

Over the years, cellular and molecular mechanisms underlying PAH have been studied 

in order to better understand PAH pathogenesis as well as to develop therapies that 

might lead to a better prognosis. Thus, studies focusing the development, progression 

and treatment of PAH are still essential. Most of the research performed with animal 

models of this disease has been focused on advanced stages of the disease (25-35 days 

after MCT injection), being scarce the ones conducted in the early phases, probably 

reflecting the fact that most patients with PAH are usually diagnosed at advance stages. 

We believe that the study of PAH in early stages will allow a better understanding of 

pathophysiologic pathways that might be therapeutically modulated aiming to cure 

PAH. For that reason, the present study analysed the role of apoptosis in two time-

points of disease progression in a well characterized animal model of MCT-induced 

PAH.  

MCT administration affects mainly hepatic and cardiopulmonary systems, promoting 

vasoconstriction, ECs hypertrophy, SMCs hypertrophy and hyperplasia and 

inflammation at lung level and also RV hypertrophy [15, 182, 193]. Several studies 

reported that, in rats, the severity of these lesions depends on MCT dose, administration 

route and the animal age at the time of treatment [180, 245]. Although, not all the 

typical findings of human PAH are mimicked by this animal model (such as plexiform 

lesions present in human PAH and absent in the experimental model), it has identical 

hemodynamic and some morphological features, like pulmonary artery medial layer 

remodelling and RV hypertrophy, which are the focus of our study [15, 193]. Our 

results, showed that MCT treatment, after 21 days, induced an augmentation of RV 

peak systolic pressure (Table 5) in association with increased RV mass (Table 6) and 

cardiomyocyte hypertrophy (Figure 5), confirming the previous studies. Also, as 

described before, our results demonstrated that MCT injection promoted pulmonary 

arterial wall thickness (Figure 5), which is the primary cause of pressure overload, 

leading to the increase of PVR and PAP and consequently RV hypertrophy. Therefore, 

RV hypertrophy seems to reflect a compensatory response in which RV adapts to the 

sustained afterload elevation [21, 246]. Interestingly, although there were no 

hemodynamic neither morphological alterations (Table 5 and Table 6, respectively) at 

RV, our results demonstrated for the first time that cardiomyocytes were hypertrophied 

at day 7 after MCT injection (Figure 5). These results suggest that besides heart 
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overwork due to pulmonary hypertrophy and PVR, other mechanisms, such as 

neurohumoral ones, might lead to RV hypertrophy. 

In the last years, angiogenesis, dysfunctional KV channels, loss expression of 

prostacyclin synthase gene (anti-proliferative), deregulation of growth signalling 

pathways and augmentation of survivin expression (anti-apoptotic) have been observed 

in the development and/or progression of PAH [167-170]. In order to evaluate the 

contribution of survivin pathway to PAH pathogenesis, we evaluated the cardiac and 

pulmonary expression of this anti-apoptotic protein as well as of its antagonist, 

Smac/DIABLO. In 2008, a study carried out by Levkau and colleagues [159] revealed 

several key features of survivin in the heart. They demonstrated that in the neonatal 

period, mice deficient for cardiac survivin presented a decrease number of total 

cardiomyocytes and a marked cardiomyocytes polyploidy due to multiple rounds of 

DNA replication without cytokinesis. This altered phenotype led to progressive heart 

failure and ultimately to death. In the same study survivin overexpression was 

associated with the induction of cell division and the protection of cardiomyocytes from 

doxorubicin-induced apoptosis. Moreover, they found only residual levels of survivin in 

normal human heart, but these were extraordinarily increased in the heart of patients 

with end-stage of heart failure. Interestingly, hemodynamic support with LVAD (left 

ventricular assist device) resulted in a marked reduction of expression of cardiomyocyte 

survivin, raising the hypothesis that cardiac survivin expression is load-dependent 

[159]. Wohlschlaeger and colleagues [247] also described that survivin was 

overexpressed in congestive heart failure but decreased after unloading. They also 

demonstrated a positive correlation between cardiomyocytes survivin expression and 

cardiac hypertrophy and DNA content. In the present study, survivin was significantly 

enhanced at day 7 after MCT injection and progressively increased throughout the 

development of MCT-induced PAH (Figure 6). Moreover, cardiomyocyte hypertrophy 

(Figure 5) was accompanied by increased expression of survivin (Figure 6) both of 

which progressively increased until day 21. LV expression of survivin had a similar 

pattern to RV (Figure 8). These results suggest that survivin might be involved in the 

cardiac remodelling process underlying PAH. Previously, McMurtry and colleagues 

[121] also demonstrated that lung survivin overexpression preceded hemodynamic 

alterations verified in the disease. Our results (Table 5 and Figure 9) corroborate 

McMurtry findings. Therefore, taking into consideration: i) the overexpression of RV, 
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LV and lung survivin at day 7 after MCT injection, ii) the similar survivin expression 

profile between LV and RV, and iii) the occurrence of survivin overexpression before 

hemodynamic alterations, makes us believe that besides pulmonary arterial hypertrophy 

other mechanisms, perhaps neurohumoral ones, are involved in RV hypertrophy. In 

particularly, we hypothesised that pulmonary vascular remodelling phenomena may be 

signalized to RV, possibly through neurohumoral mediators, such as ET-1, ATII, PDGF 

and catecholamines, inducing survivin overexpression and cardiomyocytes hypertrophy, 

a favourable cardiac remodelling response to the disease, as previously suggested [21, 

248]. 

The expression of Smac/DIABLO was the reverse of survivin expression with 

decreasing levels noticed from day 7 to day 21 after MCT administration, in both RV 

and LV as well as in lung (Figure 6, Figure 8 and Figure 9, respectively). Data suggest 

that expression of Smac/DIABLO decreases with the progression of PAH. 

Smac/DIABLO is known for its pro-apoptotic properties through its interaction with 

IAP proteins, including survivin, eliminating their inhibitory effect on caspases [119, 

151, 249]. On the other hand, survivin expression is also able to delay the release of 

smac/DIABLO from the mitochondria, preventing its pro-apoptotic function [152]. 

Several studies also revealed a reciprocal expression of survivin and Smac/DIABLO in 

different types of cancers [250-253]. So, we believe that deregulation in the balance 

between survivin and Smac/DIABLO might be related with pulmonary vascular 

remodelling and cardiomyocytes hypertrophy in response to apoptotic stimuli. 
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Aiming to evaluate the contribution of apoptosis to the pathogenesis of PAH, MCT 

animal model was used to analyse pulmonary and cardiac expression of survivin and 

Smac/DIABLO. Data allowed us to conclude that: 

i) cardiomyocytes hypertrophy was present 7 days after MCT injection, proceeding 

hemodynamic alterations; 

ii) RV and LV survivin overexpression was demonstrated 7 days after MCT injection 

and progressively increased throughout the development of MCT-induced PAH; 

iii) although increased 7 days after MCT injection, lung survivin expression 

progressively decreased between time-points; 

iv) RV, LV and lung Smac/DIABLO expression was upregulated 7 days after MCT 

injection but progressively decreased throughout the development of MCT-induced 

PAH. 

Taken together, data suggest that a deregulation in the balance between survivin and 

Smac/DIABLO might be related with pulmonary vascular remodelling and 

cardiomyocytes hypertrophy in response to apoptotic stimuli. Therefore, we consider 

that a therapy targeting survivin and/or Smac/DIABLO might be a future option for the 

treatment of PAH. 

In the future, we intend to study survivin expression in cellular fractions (nuclear, 

cytoplasmic and mitochondrial) as well as the existence of possible posttranslational 

modifications that regulate cellular location of this protein and, consequently, its 

activity. Data obtained in the present study also leads us to therapeutically target the 

balance between survivin and Smac/DIABLO using terameprocol which is a drug 

widely used in cancers therapeutics. 
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