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O desenvolvimento de materiais inovadores baseados em biomassa tem 

ganho uma atenção considerável durantes  as últimas décadas devido à 

crescente consciencialização da sociedade em relação às questões 

ambientais e de desenvolvimento sustentável. A celulose é o polímero 

natural mais abundante e, por conseguinte, representa uma das 

matérias primas provenientes de fontes renováveis mais relevantes. Por 

exemplo, a combinação de polímeros naturais, como a celulose, com 

compostos inorgânicos com propriedades específicas é uma estratégia 

interessante e versátil para a criação de novos materiais funcionais. 

Neste contexto, o objetivo deste trabalho foi preparar e caracterizar 

novos filmes híbridos orgânico-inorgânicos luminescentes obtidos pela 

combinação de acetato de celulose (preparado por acetilação completa 

de nanofibrilas de celulose bacteriana) e um complexo ß-dicetona de 

lantanídeo (Tb(acac)3). Todos os filmes obtidos eram bastantes 

homogéneos e transparentes e demonstraram propriedades mecânicas 

e térmicas melhoradas, em comparação com os filmes de acetato de 

celulose não dopados. A análise de fotoluminescência confirmou a 

elevada capacidade dos lantanídeos para proporcionar propriedades de 

luminescência quando combinados com outros materiais. Finalmente, a 

adição de nanofibrilas  de celulose bacteriana parcialmente acetiladas 

aos filmes melhorou as suas propriedades mecânicas sem afectar 

extensivamente a sua transparência e luminescência. 
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The development of innovative bio-based materials has gained 

considerable attention during the last decades because of the increasing 

society awareness regarding environmental issues and sustainable 

development. Cellulose is the most abundant natural polymer and 

therefore represents one of the most relevant raw materials from 

renewable resources.  For example, the combination of natural polymers, 

as cellulose, with inorganic compounds with specific properties is a quite 

interesting and versatile strategy for the design of novel functional 

materials. 

In this context, the aim of this work was to prepare and characterize 

novel luminescent organic-inorganic hybrid films obtained by 

combination of cellulose acetate (prepared by almost complete 

acetylation bacterial cellulose nanofibrils) and a lanthanide ß-diketone 

complex (Tb(acac)3). All the obtained films were very homogeneous and 

transparent and displayed improved thermal and mechanical properties, 

in comparison with the undoped cellulose acetate films. The 

photoluminescence analysis confirmed the high ability of lanthanides to 

provide luminescence properties to different materials. Finally, the 

addition of partially acetylated bacterial cellulose nanofibrils to the films 

improved the mechanical properties without affecting the transparency 

and luminescence in a great extent. 
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1. The context 

 

The interest on cellulose, as the basis for the development of new sustainable materials, 

increased dramatically during the last few years due to its natural abundance, with about 

1,5×1012 tons produced each year, renewability and specific properties.[1][2] 

Apart from plant cellulose, other cellulose forms, specifically bacterial cellulose (BC) 

produced by several bacteria of the genus Gluconacetobacter, Agrobacter etc., had 

attracted considerable attention because of its unique properties such as, high 

mechanical performance, high purity, crystallinity and water holding capacity.[3][4] 

The incorporation of inorganic nanoparticles with specific optical, electronic or 

magnetic properties into biopolymer matrices, as cellulose, represents a very interesting 

and promising strategy for the development of innovative biobased materials. For 

example, lanthanides (Ln) have been extensively used in high-performance luminescent 

devices, magnets, catalysts, and other functional materials because of their electronic, 

optical, and chemical characteristics resulting from the 4f electronic shells.[5][6][7]  

The unique ability of lanthanide ions to emit luminescence has provided for their 

extensive application in laser techniques as transformers of light energy, phosphors, etc. 

For more than three decades, lanthanide complex compounds have also been used for 

the express and sensitive determination of elements in various materials, namely as shift 

reagents in NMR spectroscopy, for luminescence labels in immunofluorescence assays, 

etc.[8]  

 

Cellulose acetate (CA) is one of the most relevant cellulose derivatives and its main 

applications are in the production of membranes, films, fibers, plastics and filters.[9] 

Only a few reports were found in the literature about the combination of cellulose 

acetate with luminescent compounds and were used as hydrogel film sensors or for 

production of nanofibers for inclusion of drugs and biomolecules modulating their 

fluorescence and extending their applications to biosensing, imaging and drug delivery, 

for instance.[10][11] 

 

In this context, the aim of the present work is to prepare and characterize luminescent 

transparent films based on bacterial cellulose acetates and the lanthanide complex, 

terbium acetylacetonate hydrate (Tb(acac)3·3H2O). The work involved the 
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homogeneous (and partial) acetylation of BC nanofibrils, the preparation of the doped 

films by solvent casting and their characterization in terms of structure, morphology, 

mechanical properties, thermal stability and luminescent properties. 
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2. Introduction 

2.1. Cellulose 

 

Humans started to employ cellulose based materials for tools, for example, in 

Palaeolithic era for primitive utensils and in Neolithic era for light ploughs without 

wheels, and of course for buildings, bridges, ships, paper and much more. Moreover, for 

more than 1000 years, flax and cotton, where cotton is almost pure cellulose, have been 

used as textile fibers.[12]  

 

However, only in the second quarter of the 19th century, cellulose became recognized as 

a chemical compound. In 1830, the French chemist Anselme Payen has isolated this 

compound from plant matter and named it as cellulose. It took some time (until the 

1930s) before the molecular structure of cellulose was first established.[12][13] 

 

2.1.1. Cellulose structure and composition 

 

Cellulose is the main component of most plants accounting for 40-60% of dry wood, 

70-80% of flax and more than 90% of raw cotton (99.9% of purified cotton).  Plants 

such as forest trees and cotton plants synthesize cellulose from glucose produced in the 

cells by photosynthesis. However, some algae, bacteria and protozoans are also able to 

produce cellulose.[13][14][15]   

 

Cellulose is a linear homopolymer composed of 1à4 linked β-D-anhydro-

glucopyranose units (AGU); the anhydro term arises from the elimination of a water 

molecule upon formation of the glycosidic bond. A typical plant cellulose chain is 

composed of 13000 to 14000 anhydroglucose units.[16][17] 

 

There are three free hydroxyl groups located in the 2, 3 and 6 positions of each 

anhydroglucose unit, which are able to undergo the typical reactions of hydroxyl 

groups, for instance esterification, etherification or oxidation. These groups are 

therefore responsible for the chemical reactivity of cellulose. In other words, as a 
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carbohydrate, the chemistry of cellulose is primarily the chemistry of alcohols and it 

forms many of the their common derivatives.[18][19] 

The anhydroglucopyranose units are in the 4C1 chair conformation, which means that 

the –CH2OH and –OH groups as well as glycosidic bonds are all in equatorial position, 

with respect to the mean plane of each ring (Figure 1).[15][20]  

 

Figure 1. Molecular structure of cellulose, showing the reducing and non-reducing 
ends.[15] 
 

Cellulose shows a strong tendency to form intra- and intermolecular hydrogen bonds. 

Intramolecular hydrogen bonding between adjacent anhydroglucose units enhances the 

linear integrity of the polymer chain and affects the reactivity of the hydroxyl groups, 

particularly of those at the C3 positions, which hydrogen bonds strongly to the pyranic 

oxygen of the adjacent anhydroglucose unit. The intermolecular hydrogen bonding in 

cellulose is responsible for the sheet-like nature of the native polymer and its 

insolubility in common organic solvents and infusibility (degrades before melting).  

 

2.1.2. Cellulose fibers 

 

The elementary structures of cellulose fibers are called elementary fibrils. These contain 

36 elementary cellulose chains bound together by hydrogen bonds and that further 

aggregate to form microfibrils, long threadlike bundles of molecules joined by hydrogen 

bonds. Microfibrils aggregate further to form cellulose fibres (Figure 2).[21] 
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Figure 2. Cellulose structure from plant cell to molecular structure.[22] 

 

The formation of intra- and intermolecular hydrogen bonds results in a highly 

crystalline structure of cellulose, with 55-70% crystalline regions, commonly designated 

as the degree of crystallinity, in most plants. The degree of crystallinity plays an 

important role in the chemical reactivity of cellulose and on its mechanical performance 

and chemical stability, and strongly depends on the origin and processing of the 

materials. In addition to the crystalline phases, native fibres contain also disordered 

amorphous domains (Figure 3).[20][23][24]  

         
Figure 3. Crystalline and amorphous regions of cellulose microfibrils.[25] 

 

 

Plant cellulose microfibrils can be regarded as innovative bio-based fibers with uniform 

widths, high crystallinity and high aspect ratios, originally present in the plant cell 

walls.  Many researchers have been extensively studying the extraction of nanofibers 
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from wood and other plant fibers. These plant-based cellulose nanofibres, have a high 

reinforcing potential in composite materials because of their high tensile strength, high 

stiffness and high flexibility and good dynamic mechanical, electrical and thermal 

properties; but also because of their sustainability, easy availability as compared with 

other commercial fibres. However, the characteristics of cellulose fibers are altered by 

ageing and degradation, which is manifested in many different ways; for example, 

fibres are more vulnerable to light, and can weaken and change colour.[26][27] 

 

2.1.3. Bacterial cellulose 

 

Bacterial cellulose (BC) has attracted considerable attention in recent years because of 

its unique physical properties. BC is produced by several bacteria of the genus 

Gluconacetobacter (formerly Acetobacter), Rhizobium, Sarcina, Agrobacterium, 

Alcaligenes, etc. However, Gluconacetobacter xylinus (also called as Acetobacter 

xylinum) is the most studied strain, because of its efficiency to produce cellulose.[3][28]  

 

Brown reported the production of cellulose from Gluconacetobacter xylinum for the 

first time[29]. He observed that the resting cells of G. xylinum produced cellulose in the 

presence of oxygen and glucose. These microorganisms are usually found in fruit, 

vegetables, vinegar and alcoholic beverages. They convert various carbon sources, such 

as hexoses, glycerol, dihydroxyacetone, pyruvate, and dicarboxylic acids, into cellulose, 

with about 50 % efficiency.[3][30] 

 

Research on BC revealed that it is chemically identical to plant cellulose, but its 

morphology and properties differ from the latter. Bacterial cellulose presents a unique 

3D nanofibrilar structure (Figure 4) that is responsible for most of its properties, such as 

high water holding capacity, porosity and remarkable mechanical properties, in both dry 

and wet states, for example its Young’s modulus is 138 GPa, (cottons Young’s modulus 

is between 5,5-12,6 GPa) and its tensile strength is estimated to be at least 2 GPa, 

(while for cotton it is around 0,3–0,6 GPa). Bacterial cellulose shows also good 

moldability, biodegradability and excellent biological affinity. BC has normally high 

degree of polymerization, but some researchers have demonstrated that different carbon 

sources could influence the degree of polymerization (DP), usually between 2000 and 
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6000, but in some cases reaching even 16000 or 20000, whereas the average DP of plant 

cellulose varies from 13000 to 14000.[3][30][17][31][32][33] 

 

Figure 4. 3D Nano and microfibrillar structure of bacterial cellulose produced by G. 
xylinum.[3] 
 

Bacterial cellulose is a natural hydrogel, whose properties are better than those of many 

hydrogels produced from synthetic polymers; for example, it displays high water 

content (98–99), purity and mechanical strength that are important properties for 

pharmaceutical and biomedical applications. Upon complete removal of water by air-

drying, bacterial cellulose will only rehydrate up to 6%, because of the collapse of its 

tridimensional structure and establishment of strong hydrogen bonds. Through a 

stepwise exchange of water by other solvents, it is possible to replace water by 

methanol, acetone, or n-hexane, for example, while maintaining the hollow space and 

network structure.[34][35] 

 

Bacterial cellulose has long been produced and used as nata de coco, a chewy, 

translucent, jelly-like food original from Philippines and produced by the fermentation 

of coconut water (Figure 5a). However, over the past few years, there has been an 

increased interest in commercial applications of bacterial cellulose. Important examples 

include, papermaking, electronic paper and optical and transparent nanocomposites. For 

example, BC based nanocomposites are not only highly transparent, but also exhibit a 

low thermal expansion coefficient comparable to the silicon crystal, and the mechanical 

strength is five times that of engineered plastics. BC has also been extensively explored 

in the biomedical field, such as medical pads and artificial skin (used in the therapy of 
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burns, ulcers as temporary artificial skin (Figure 5b); line of products like Biofill®, 

Bioprocess®, and Gengiflex®). For example, Biofill® is used in cases of second and 

third degree burns and ulcers and its efficacy has been proven in over 300 cases. 

Biofill® allows the use of antibiotic, reduces the risk of infection and the high 

absorption by the patient prevents dehydration, the main risk for burns. Gengiflex® was 

developed for recovering periodontal tissues.[34][36][37] 

 

All these activities are also accompanied by the isolation of new bacterial strains, 

genetic modifications, and a wide variation of all laboratory culture parameters.[3]  

 

Figure 5. a) Nata de coco calorie-free food. b) BC dressing applied on a wounded hand. 

 

2.1.4. Cellulose acetate 

 

Paul Schützenberger prepared the first cellulose acetate in 1865 [38]. It took another 29 

years before Charles Cross and Edward Bevan patented a process for its manufacture. In 

1904 George Miles found that partially hydrolysed cellulose acetate dissolve in acetone. 

Brothers Henry and Camille Dreyfus exploited this fact to make cellulose acetate films 

and lacquers in 1910. During the first World War, this technology was used for 

waterproofing and stiffening the fabrics covering the aeroplane wings.[39]  
 

Cellulose triacetate is manufactured by three processes among which the solution 

process is the most common. In this method, CA is obtained by reaction of cellulose 

with acetic anhydride and acetic acid in the presence of sulphuric acid. The reaction is 

allowed to proceed for the time needed to esterify almost all the hydroxyl groups 

(Figure 6). The solvent process is the second most common process, in which acetic 

a) b) 
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acid is partially or totally replaced by dichloromethane that serves as solvent for the 

triacetate formed. The heterogeneous process is the third method, where instead of a 

solvent, a non-solvent for triacetate, for instance a hydrocarbon, is added to the reaction 

media. When added in the correct amount, the non-solvent will prevent the dissolution 

of the cellulose ester and, at the end of the acetylation the cellulose derivative is found 

in fibrous form.[40] 

 

The solubility of cellulose acetates depends, among other variables, on the degree of 

substitution; a cellulose acetate with DS of 2 – 2.5 is soluble e.g. in acetone, dioxane 

and methyl acetate and derivatives with higher DS are soluble in 

dichloromethane.[22][41] 

 

Figure 6. The structure of cellulose triacetate.[42] 

 

 

The term cellulose triacetate (CTA), or simply triacetate, may be used as a generic 

description when at least 92% of the hydroxyl groups are acetylated. The secondary 

cellulose acetate, also known as diacetate or simply acetate, is readily soluble in 

acetone. Cellulose triacetates and diacetates can be easily converted into fibres and 

films with several applications.[15][41]  For example, cellulose diacetate fibers are used 

in different kind of clothing, home furnishing or in high absorbency products, for 

example, feminine hygiene products, surgical products and filters. Triacetate films, 

instead, are used, for example, as polarizer films for LCD screens, specialized overhead 

projector transparencies and photographic films, motion picture films for production of 

animation celluloids, and packaging. As a curiosity, it is know that in cigarette filters, 

cellulose acetate filters are the unique which meet the requirements of filtering 

efficiency and taste quality and that the original Lego bricks were made of cellulose 

acetate.[15] 
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In what concerns the material properties, CTA exhibits good mechanical properties (for 

instance, better thermal stability and tensile strength than cellulose diacetate (62 MPa of 

tensile strength and 4% elongation, in front of 88 MPa of tensile strength and 10% 

elongation of CTA)) and stability under atmospheric conditions, such as water 

resistance. CTA is a hydrophilic polymer; it can absorb water strongly at ambient 

temperature. Even if CTA has been kept in vacuum for a long time, some residual water 

is still captured tightly by the hydroxyl groups.[43][44] 

 

The degree of substitution of cellulose acetates plays also an important role on their 

biodegradability profile.  The time necessary to biodegrade a cellulose acetate increases 

with the DS.  In fact, it seems that the DS value is the predominant factor that controls 

the biodegradability of cellulose acetates, rather than the crystallinity.[45][46][47] 
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2.2. Lanthanides 

2.2.1. Physical and chemical properties 

 

The 4f-block elements are also called lanthanides, lathanones or rare earths. As defined 

by IUPAC, rare earth elements are the fifteen lanthanides plus scandium and yttrium. 

These last two elements are considered rare earth elements since they tend to occur in 

the same mineral deposits as the lanthanides and exhibit similar chemical properties. 

The name rare earth was given to them because they were originally extracted from 

oxides for which ancient name was earth and which were considered to be rare. The 

name lanthanide has been derived from lanthanum, which is the prototype of 

lanthanides.[48][49]  

 

The neutral lanthanides possess the common features of a xenon structure of electrons 

(1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 5s2 5p6) with two or more outer electrons (6s2 or 5d 6s2) 

besides 4f electrons. Lanthanides find a strong dominance of the +3 oxidation state, but 

other oxidation states are known, although they are less stable than the +3 state. The 

existence of the oxidation state of +2 and +4 can be understood from the added stability 

associated with and empty, half-filled or filled f shell. [50] 

 

With the exception of La3+ and Lu3+, all Ln3+ ions are luminescent and their f-f emission 

lines cover entire spectrum, from UV (Gd3+) to visible (Pr3+, Sm3+, Eu3+, Tb3+, Dy3+, 

Tm3+) and near-infrared (Pr3+, Nd3+, Ho3+, Er3+, Yb3+) ranges. Some ions are fluorescent 

(ΔS=0), others are phosphorescent (ΔS≠0), and some are both. The transitions between 

the energy levels of the 4f orbital are responsible for the interesting photophysical 

properties of the lanthanide ions, such as the long-lived luminescence  (excited state 

lifetime in the micro to millisecond range) (Figure 7) and the atomic-like absorption and 

emission lines. The 4f electrons are indeed inner electrons and the 4f orbital is shielded 

from the interaction with the surroundings (called Ligand-field interaction) by the filled 

5s2 and 5p6 orbitals. Although weak, the influence of the host on the optical transitions 

within the 4fn configuration is essential to explain those interesting spectroscopic 

features.[48][51][52] 
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Despite lanthanide complexes being characterized by highly efficient light emission 

under UV excitation (some of them even exhibit laser action in solution), their low 

thermal and photochemical stability and the poor mechanical properties are important 

disadvantages concerning their technological applicability as tuneable solid-state lasers 

or phosphor devices. Moreover, most of these complexes are usually isolated as 

hydrates in which two or three water molecules are included in the first coordination 

sphere of the central ion, which quenches emission due to activation of nonradiative 

decay path. [51] 

Figure 7. Emission spectra of luminescent lanthanide complexes and the colour 
observed of selected lanthanide (III) complexes, excited at 355 nm.[7]  
 

If one succeeds in introducing lanthanide ions into a particular material, be it a crystal, a 

glass, a liquid, or a molecular material such as polymers, this material will become 

luminescent. A lot of work on luminescent materials based on lanthanide ions has been 

developed aiming to find ways to introduce lanthanides into different materials while 

keeping the ions brightly luminescent and the materials intact. [53] 

With a simple incorporation of lanthanide ions in silica-based matrices, the obtained 

organic-inorganic hybrids exhibit improved luminescence properties, compared to the 

isolated metal salts or complexes, essentially due to the following factors: 

 

-Better dispersion of the incorporated lanthanide ions within the matrix avoiding 

clustering and allowing larger concentrations of emitting centers. 

-The protection from quenching effects cased by residual water, silanol groups 

and dopant clustering, thus decreasing the nonradiative decay pathway.[54] 
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Table 1. Emission characteristics of various lanthanide and their chelates.[55]  
Lanthanide Principal emission 

band (nm) 

Transition Typical lifetime Detectability 

(mol/L) 

Samarium(III) 643/598 5G5/2 à 6H7/2,6H9/2 50-100µs 250·10-15 

Europium(III) 613 5D0 à 7F2 0,5-1ms 30·10-15 

Terbium(III) 545 5D4 à 7F5 0,1-2ms 25·10-15 

Dysprosium(III) 573 4F9/2 à
 6H13/2 Below 10µs 750·10-15 

 

Lanthanide ions can form soluble complexes with organic ligands and such complexes 

hold the promise that for some photonic applications they may provide low-cost 

alternatives to inorganic materials.[53] 

 
The fascination for lanthanide optical spectroscopy dates back to the 1880s, when some 

scientists, for instance, Sir William Crookes, LeCoq de Boisbaudran, Eugène Demarçay 

or George Unbain, were using luminescence as an analytical tool to study crystallization 

processes and to identify potential new elements. After the exploratory period, 

lanthanide unique optical properties were taken advantage in optical glasses, filters, and 

lasers. In the middle of 1970s, E. Soini and I. Hemmiliä proposed lanthanide 

luminescent probes for time-resolved immunoassays and this has been the starting point 

for the present numerous bio-applications based on the optical properties of 

lanthanides.[56] 
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2.3. Organic-inorganic hybrid materials 

 
Hybrid materials can be broadly defined as synthetic materials containing intimately 

mixed organic and inorganic components. This mixture yields a synergy that imparts 

these materials with unique features and an array of unprecedented properties 

(mechanical, optical, electronic, chemical, and thermal, among others) just by careful 

selection of the organic and inorganic components and the appropriate choice of 

conditions for their joint processing.[49] In addition, the term nanocomposite is used 

when one of the structural units, either the organic or inorganic, is in a defined size 

range of 1-100 nm.  

 

Hybrid materials or even nanotechnology is not an invention of the last decade but was 

developed a long time ago. In ancient times, the production of bright and colourful paint 

was the driving force to consistently try novel mixtures of dyes or inorganic pigments 

and other inorganic and organic components to form paints that were used thousands of 

years ago. However, it was only at the end of the 20th and the beginning of the 21st 

century that it was realized by scientists and nanoscience opened many perspectives for 

approaches to new materials. The combination of different analytical techniques gave 

rise to novel insights into hybrid materials and made it clear that bottom-up strategies 

from the molecular level towards materials design will lead to novel properties in this 

class of materials. Organic–inorganic hybrids (OIH) can be applied in many branches of 

materials chemistry because they are simple to process and are amenable to design on 

the molecular scale.[7] [56] 

 

All the new hybrid materials have the common characteristic that they are prepared at 

moderate temperatures, lower than 100ºC. Such processes give materials where the 

organic matter remains associated with an inorganic skeleton, being homogeneously 

distributed among the whole material. However, there are significant peculiarities from 

one type of hybrid to another, peculiarities that depend both on the different association 

energy between the organic and the inorganic fractions, and on the different 

microstructural composition of the two parts. In consequence, the associated physical 

and chemical properties of different types of materials can also be quite different.[56] 
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Many natural materials consist of inorganic and organic building blocks distributed on 

the (macro)molecular or nanoscale. In most cases the inorganic part provides 

mechanical strength and a complete structure to the natural objects while the organic 

part delivers bonding between the inorganic building blocks and the soft network. 

Typical examples of such materials are bone, or nacre. 

 

Organic-inorganic hybrids can be applied in many branches of materials chemistry 

because they are simple to process and are adaptable to design on the molecular scale. 

Currently there are four major topics in the synthesis of organic-inorganic materials:  

 

 - Their molecular engineering 

 - Their nanometer and micrometer-sized organization 

 - The transition from functional to multifunctional hybrids 

 - Their combination with bioactive components 

 

Some examples of hybrid materials include the incorporation of inorganic nanoparticles, 

with specific optical properties, into organic matrices for high-tech applications and of 

magnetic inorganic compounds in organic polymeric matrices or the increment of the 

mechanical strength of polymers by using inorganic structural hybrid materials ( for 

example scratch-resistant coatings for plastic glasses).[7][49][56] 
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2.4. Luminescent materials 

 
In recent years, lanthanide-doped luminescent materials have received extensive 

attention for their potential applications such as phosphors and solar cells (Figure 9), 

flat-panel displays, solid state lasers, optical telecommunications, medical diagnostics 

and various other fields. Currently, the most important commercialised use of 

luminescent lanthanide complexes is in medical diagnostics, where they are used to 

detect small amounts of biomolecules that can tell about the physical condition of a 

patient.[53][52]  

 

Lanthanide ions exhibit unique luminescent properties, including the ability to convert 

near infrared long-wavelength excitation radiation into shorter visible wavelengths 

through a process known as photon upconversion (UC).  

Upconversion (UC) is a type of nonlinear process, capable of converting a lower energy 

excitation light into a higher energy emission. To understand this phenomenon, one 

must know the differences between a nonlinear process and the typical single photon 

excitation fluorescence and how UC compares with the other common nonlinear 

processes. In Figure 8, typical fluorophores exhibit the phenomenon of Stokes shift, in 

which the emission light is of a longer wavelength (λ) than the excitation source (i.e., 

λex < λem). In terms of energy, this implies that the emission energy (Eem) is lower the 

excitation energy (Eex). Additionally, since only one photon is involved in the 

excitation, the process can be termed as single photon (linear) excitation fluorescence. 

Hence, an obvious difference between this and the nonlinear processes is the number of 

photons involved. Nonlinear processes will involve more than one photon (illustrated as 

two photons in Figure 8b, but can actually involve more than two). Then, as a 

consequence of this multiphoton excitation, Eex for the nonlinear processes is 

correspondingly lower than that of the emission. Correspondingly, the excitation light 

has a longer wavelength than the emission light.[57][58] 
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Figure 8. The main differences between a) single photon excitation fluorescence 
(linear) and b) nonlinear processes. 
 

Another important component of UC nanoparticles is the host materials, which 

determines the optical properties and emission efficiency. The desired host materials 

should have close lattice matches with the dopant ions and low lattice phonon energies 

to minimize energy losses and maximize radiative emissions. Many host materials, as 

well as lanthanide dopant ions, have been used to produce UC nanoparticles with 

different emissions by varying host-dopant combinations. Among these lanthanide-

doped UC nanoparticles, NaYF4 co-doped with Yb3+/Er3+ or Yb3+/Tm3+ nanoparticles 

have been reported as the materials with the highest UC efficiency. [57] 

 

In recent years lanthanide-doped upconversion nanocrystals have been developed as a 

new class of luminescent optical brighteners in paints, papers, clothing or detergent, in 

pharmaceuticals fields like protection products, quantum dots for applications in 

biological assays and medical imaging in diagnostics or photodynamic therapies. 

Another application areas are in emergency exit lighting, discharge lamps, in cosmetics 

(dental ceramics, tanning lamps), photocopiers etc. (Figure 9).[58] 
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Figure 9. Organic solar concentrators collected and focused in different colours of 

sunlight. [59] 

 

Terbium (Tb3+) is an interesting candidate for green light emission due to the strongest 

luminescence at 545 nm among the 5D4 à 7FJ  (J = 3,4,5,6) transitions ranging from 380 

to 630 nm resolved over the temperature range of 10-300 K in ion implanted solids, 

colloidal nanoparticles, xerogel films, or other hosts.[60] 

 

Cerium (Ce3+) ion is also interesting because of its strong f–d transition. It possesses a 

4f15d0 electronic configuration, and accordingly, the 4f–5d transition can produce 

luminescence in the visible region. Particularly, because the surrounding crystalline 

environment can remarkably affect the 5d energy level of Ce3+, the emission 

wavelengths can be tuned. Yttrium Aluminum Garnet (YAG, Y3Al5O12) doped with Ce3+ 

is probably one of the most important cerium doped materials. The first generation of 

commercial white Light-Emitting Diode (LED) was fabricated by mixing the InGaN 

chip emitting at around 460 nm (blue light) and the YAG: Ce3+ phosphors of yellow 

emitting.[61]  
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3. Reagents and general procedures 

3.1. Reagents 

 

Bacterial cellulose, in the form of wet membranes, was produced in our laboratory using 

conventional culture medium conditions.[62]  

Cellulose triacetate [C6H7O2(OOCCH3)3]n  was obtained from Fluka Analytical; terbium 

triacetylacetonate complex, was prepared  in the  physics department. The complex was 

prepared by an addition of terbium chloride (TbCl3·6H2O, 99.9%, Aldrich) to acetyl 

acetone (99.5%, Aldrich) in an ethanol solution 1:3 molar ratio followed by the addition 

of sodium hydroxide until the pH reaches 6.5. The obtained complex was filtrated and 

dried under vacuum[63]. All other solvents and reagents were of analytical grade and 

used as provided by the suppliers. 

 

3.2. Acetylation of bacterial cellulose 

 

A lyophilized bacterial cellulose membrane was cut in small pieces and suspended in a 

mixture of 20 moleq. (mol equivalent) of acetic acid, 9 moleq. of acetic anhydride and 

0,08 moleq. of concentrated sulphuric acid (add enough quantity until the cellulose is 

completely covered) at 50 ºC. After 30-40 minutes of reaction, cellulose was completely 

dissolved in the reaction media. The excess of acetic anhydride was destroyed by the 

addition of 5-10 mL of aqueous acetic acid (80%). After cooling, cellulose acetate was 

precipitated by carefully adding water to the reaction mixture. The product was washed 

with water until complete removal of acetic acid, and dried in a ventilated oven.[64] 

 

3.3. Partial acetylation of bacterial cellulose 

 

Bacterial cellulose membrane was disintegrated with an Ultra-Turrax equipment for 30 

minutes at 2500 rpm, and then submitted to solvent exchange with ethanol and acetone. 

For the acetylation step, 225 mL of acetic anhydride were placed in a 500 mL round 

bottomed flask followed by 0,9 wt% of H2SO4 (0,75 mL), and finally disintegrated BC 

(15 g) was added under stirring. The treatment was conducted at 30 ºC for 4h. At the 

end of the reaction time the acetylated BC was filtered and sequentially washed with 
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acetone, ethanol, water and again with ethanol. Then, to remove any trace of acetic 

anhydride and other impurities, the modified fibers were Soxhlet extracted with ethanol 

for 12 hours and finally dried at 60 ºC for 24 hours.[65] 

 

3.4. Preparation of cellulose triacetate/lanthanide films 

 

0,5 g of cellulose acetate (synthesized BCA and commercial cellulose triacetate) were 

dissolved in dichloromethane (around 10-15mL) with continuous stirring, followed by 

the addition of different amounts of Tb(acac)3·3H2O (0, 1, 5 and 10% relative to the 

cellulose triacetate mass). Finally, films were obtained by casting in petri dishes at room 

temperature in a ventilated oven.  

Additionally, cellulose triacetate films with 5% of Tb(acac)3 and 5 and 10% of partially 

acetylated bacterial cellulose fiber were also prepared following the procedure 

described above. 
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4. Characterization methods 

 
BCA, commercial cellulose triacetate and partially acetylated cellulose triacetate, were 

characterized by FTIR, NMR and SEM while the corresponding films doped with 

Tb(acac)3·3H2O by nuclear magnetic resonance (1H NMR and 13C NMR), infrared 

spectroscopy (FTIR-ATR), thermogravimetric analysis (TGA), mechanical assays, 

ultraviolet-visible spectroscopy (UV-Vis), photoluminescence and lifetime, emission 

quantum yields, scanning electronic microscopy (SEM), and water uptake. 

 

4.1. Nuclear Magnetic Resonance 

 

Cellulose triacetate were analysed by 1H NMR and 13C NMR using a BRUKER DRX 

300 spectrometer (300,13 MHz for 1H NMR and 75,47 MHz for 13C NMR) in liquid-

state, using 15 mg of bacterial cellulose triacetate sample mashed solid and deuterated 

chloroform (CDCl3) as solvent. 

Solid-state CP/MAS 13C NMR spectra of 0%, 5% and 10% Tb(acac)3·3H2O doped 

BCA films were obtained at 12 kHz using a NMR Bruker 500 spectrometer. 

 

4.2. Fourier Transform Infrared Spectroscopy 

 
FTIR spectra were acquired using a Brüker IFS 55 FTIR spectrometer, with a resolution 

of 4 cm-1 after 256 scans. Spectra were collected from 4000 to 300 cm-1. 

 

4.3. Thermogravimetric Analysis 

 
Thermal decomposition temperatures of BCA and commercial samples of 0%, 1%, 5% 

and 10% of Tb(acac)3·3H2O were determined by thermogravimetric analyses (TGA) on 

a Shimadzu TGA-50 analyser equipment. The assays were run under nitrogen 

atmosphere in the range of 20-800°C. 
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4.4. Mechanical Assays 

 
The test samples were cut into rectangles of 4 cm length and 0,5 cm width, and 

acclimated 2 days in a dissecator to stabilize the humidity constant. All analysed 

measurements were performed for at least four (and maximum eight) replicates for each 

sample and the average value was recorded. The mechanical assays were made with an 

Instron 5966 mechanical testing equipment with a cross-head speed of 10 mm/min 

using a 1 kN static load cell.  

 

4.5. Photoluminescence and lifetime 

 
The photoluminescence spectra were recorded at room temperature with a modular 

double grating excitation spectrofluorimeter with a TRIAX 320 emission 

monochromator (Fluorolog-3, Horiba Scientific) coupled to a R928 Hamamatsu 

photomultiplier, using a front face acquisition mode. The excitation source was a 450 W 

Xe arc lamp. The emission spectra were corrected for detection and optical spectral 

response of the spectrofluorimeter and the excitation spectra were corrected for the 

spectral distribution of the lamp intensity using a photodiode reference detector. The 

emission decay curves were measured with the setup described for the luminescence 

spectra using a pulsed Xe–Hg lamp (6 μs pulse at half width and 20–30 μs tail). 

 
5D4 lifetime values (ms) were monitored at 545 nm under distinct excitation 

wavelengths (λex, nm). 

 

4.6. Emission quantum yields 

 
The absolute emission quantum yields were measured at room temperature using a 

quantum yield measurement system C9920-02 from Hamamatsu with a 150 W Xenon 

lamp coupled to a monochromator for wavelength discrimination, an integrating sphere 

as sample chamber and a multi channel analyser for signal detection. Three 

measurements were made for each sample so that the average value is reported. The 

method is accurate to within 10 %. 
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4.7. UV-Vis-NIR absorption spectra 

 
UV-Vis-NIR absorption spectra were recorded at room temperature, using a dual-beam 

spectrometer Lambda 950, (Perkin-Elmer) with a 150 mm diameter Spectralon 

integrating sphere. 

 

4.8. Scanning Electronic Microscopy 

 
SEM micrographs were obtained with a HR-FESEM SU-70 Hitachi equipment. 

Samples were mounted on carbon tape and coated with carbon for SEM analysis. 

 

4.9.  Water-uptake 

 
Films with 0%, 5% and 10% of Tb(acac)3·3H2O were immersed in water at room 

temperature to study their water uptake. The samples were taken out of water and 

weighed after gently drying the surface and then re-immersed in water. The 

measurement was carried out after one week.  
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5. Results and discussion 

 

This study began with the acetylation of BC, aiming to prepare BC triacetate 

derivatives, following standard procedures described in the literature for plant 

fibres.[64]  

The obtained BC acetates were characterized and then used for the preparation of 

transparent films doped with lanthanides. 

 

5.1. BC acetylation 

 

BC acetylation was carried out by reaction of BC nanofibres with acetic anhydride, in 

the presence of acetic acid and sulphuric acid, for 30-40 minutes at 50ºC (Figure 10). 

 
 

 

 

 

 

Figure 10. Schematic representation of BC acetylation and visual aspect of BC before 
and after modification. 
 

The occurrence of the acetylation reaction was primary confirmed based on the visible 

changes occurred after BC modification. The white lyophilized BC membranes were 

converted into an ivory hard shape solid (BCA). 

 

The success of the BC acetylation was then further confirmed by FTIR and 1H and 13C 

NMR analysis.  

 

 

BCA Lyophilized BC 
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5.1.1. Fourier Transform Infrared Spectroscopy 

 

The FTIR spectra of BC, BCA and of commercial cellulose triacetate are shown in 

Figure 11. 

 

The FTIR spectrum of pure BC is characterized by a broad band at 3500-3000 cm-1, 

attributed to O–H stretching vibrations; at 2892 cm-1 associated with C–H stretching 

vibration of CH and CH2 groups, and a sharp and steep band at around 1162 cm-1 due to 

the presence of C–O–C stretching vibration of the cellulose chains.[66] [67] 

 

The main bands observed on the spectrum of BCA are assigned to the carbonyl C=O 

stretching (1730 cm-1) and bands with strong intensity are also found at 1212 cm−1 and 

1030 cm−1, both corresponding to the stretching vibrations of C–O–C bonds. [68] 

Therefore, the success of the BC acetylation was mainly confirmed by the appearance 

of the intense band at around 1730 cm-1, associated to the C=O stretching vibrations of 

the acetate groups, and by the almost complete disappearance of the hydroxyl groups 

vibration at around 3500-3000 cm-1, as a result of the extensive acetylation of the 

hydroxyl groups of BC. 

No significant differences between the FTIR spectra of BCA and of the commercial 

cellulose triacetate were observed. 
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Figure 11. ATR FTIR spectra of bacterial cellulose (BC)[67], bacterial cellulose 
triacetate (BCA) and commercial cellulose triacetate. 
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5.1.2. Nuclear Magnetic Resonance 

 

The 1H-NMR and 13C-NMR spectra of BCA are shown in Figure 12. 

 

The NMR spectrum of BCA is characterized by 1H resonances at δ=3,59-5,14 ppm 

assigned to the protons linked to glycosidic carbons (in the following order H-

3,1,2,6,5,4) and resonances between 1,78 and 2,17 ppm (O=C-CH3), which is in close 

agreement with the values described in literature for cellulose triacetates and obtained 

for commercial samples (results not shown).[69][70]   

 

The 13C NMR spectrum of BCA is also in accordance with the literature, with carbon 

resonances at δ=170 ppm (C=O), 20 ppm (O=C-CH3), 100,5 ppm (C1), 61,8 ppm (C6) 

and 71-77 ppm (C2,3,4,5).[71][72][73] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. 1H-NMR and 13C-NMR (liquid state) of BCA sample. 
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5.1.3. Scanning Electron Microscopy 

 

The effect of the acetylation reaction on the morphology of BC was studied by SEM. As 

can be observed in Figure 13 the characteristic three-dimensional network of BC was 

totally destroyed. These results are expectable, since almost all hydroxyl groups were 

acetylated and the nanofibrillar structure inevitably destroyed.   

 
Figure 13. SEM images, pure BC membrane (left) [74] and BCA film (right). 
 

5.2. BCA-lanthanide films characterization 

 

The films of BCA and commercial cellulose triacetate doped with lanthanides (Figure 

14) were prepared by dissolving BCA or commercial cellulose triacetate and different 

amounts of Tb(acac)3 in dichloromethane, followed by solvent casting of the final 

solution. 

 

 

 

 

 

 

 

 

 

Figure 14. Transparent films from BCA and commercial cellulose triacetate doped with 
Tb(acac)3. 

BCA 1%Tb   BCA  

Commercial 5%Tb BCA 10%Tb 
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As shown in Figure 14, the films obtained are very homogeneous and transparent, 

suggesting a good dispersion of the lanthanide inside the cellulose acetate matrices. 

 

The BCA doped films were characterized by FTIR, NMR, TGA, mechanical assays, 

water-uptake and photophysical analysis. 

 

5.2.1. Fourier Transform Infrared Spectroscopy 

 

The FTIR spectra of all BCA (and commercial cellulose triacetate) films doped with 

Tb(acac)3·3H2O showed only the typical absorption bands of cellulose triacetate 

matrices described above. The characteristic vibrations of Tb(acac)3 observed in the 

spectrum of the pure compound, were not perceptible, certainly because of the lower 

contents used and to some overlapping promoted by the BCA vibrations (Figure 15). 

With 10% it should seeing some signals of Tb(acac)3 shall be seen, although none of the 

characteristic bands can be distinguished. 
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Figure 15. ATR- FTIR spectrum of Tb(acac)3·3H2O, BCA 1% Tb, Commercial 1% Tb, 
BCA 5% Tb, Commercial 5% Tb, BCA 10% Tb and Commercial 10% Tb. 
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5.2.2. Solid state 13C NMR 

 

The solid state CP/MAS 13C-NMR spectra of BCA, BCA Tb(acac)3 5% and BCA 

Tb(acac)3 10% (Figure 16) were obtained to determine the potential interactions 

established between the lanthanide complexes and the acetate groups.  

 

As in the FTIR spectra, the typical resonances of the lanthanide complex were not 

observed in the CP/MAS 13C-NMR spectra of BCA Tb(acac)3 5% and BCA Tb(acac)3 

10%.  

 
Figure 16. The solid state CP/MAS 13C-NMR spectra of BCA, BCA 5% Tb, BCA 10% 
Tb[71] 

 

These lanthanide complexes are paramagnetic metal complexes, which induce changes 

in the chemical shift of protons close to an electronegative substituent with a lone 

electron pair (carbonyl groups for example). The ability of certain lanthanide complexes 

to induce large change in chemical shifts with relatively small line broadening effects 

made them popular as NMR shift reagents.[76] 
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This is markedly seen in the proton resonances and not so likely to occur in C13 

resonances. However, an interaction between BCA and the lanthanide can be observed 

by 13C-NMR. 

 

On the basis of the spectrum of the undoped BCA, spectrum bands whit terbium 

contents of 5% have a negative deviation, while the film with 10% terbium have 

positive deviation. This point, needing more time to his research, stays open for future 

work. 

 

In Table 2, the effect of the Tb(acac)3 caused in the BCA carbons are 

summarized.[77][12] 

 

Table 2. Chemical shifts of 13C NMR solid state for the BCA and terbium complex 
samples. 

δ/ppm BCA 0% Tb BCA 5% Tb BCA 10% Tb 

C=O 170,29 170,33 170,38 

C1 100,89 100,84 100,74 

C2-C5 72,90 72,99 73,03 

C6 62,68 62,70 62,49 

C-Me 20,38 20,44 20,42 

 

 

5.2.3. Thermogravimetric Analysis 

 

Cellulose triacetates (CTA) typically degrade in two steps (Figure 17, Table 3). The first 

step with a maximum degradation temperature at around 330ºC represents the main 

degradation of the cellulose triacetate chains. The second one starts at around 476 °C 

and is attributed to the carbonization of the products to ash. In the case of the BCAs 

films prepared in this study, the maximum degradation temperature (339ºC) is very 

similar to that found in literature. However, the commercial cellulose triacetate films are 

slightly more stable, being the maximum degradation temperature 361ºC.[79][80][9] 
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The TGA analysis of cellulose triacetate doped with Tb(acac)3 films showed no great 

changes on the Tdi when compared with the undoped ones. Only an increment of 9ºC 

was observed for the BCA film with 1% of Tb(acac)3·3H2O. Furthermore, it can be 

observed (Figure 17) that the major weight loss events occur at the same interval (310-

360ºC). These results indicate that the thermal behaviour of the cellulose acetate films 

was poorly affected by doping with the lanthanide complex.[81][82]  

 

Another important observation, from the TGA data, is that no significant weight loss 

event was observed within 150-220ºC for all cellulose triacetate films doped with the 

lanthanide complex precursors. This could reveal that after the doping process the water 

molecules coordinated to the Tb3+ ion are replaced by interactions between the Tb3+ 

ions and the oxygen atoms of the carbonyl groups of the cellulose triacetate chains. 

However, as already referred this observation can be also related with the low quantities 

used to prepare the films.[82] 

 

 

 

 

 

 

                       a) 

 
 
 

 
 
 
 
 
 
                       b)  
 
Figure 17. a) TG and DTG of BCA 0% and BCA 1% Tb, BCA 5% Tb, BCA 10% Tb 
b) TG and DTG of Commercial 0% and Commercial 1% Tb, Commercial 5% Tb, 
Commercial 10% Tb 
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Table 3. Thermal properties of bacterial cellulose triacetate (BCA) and commercial 
cellulose triacetate films with terbium complex  

Sample Tdi/ºC Tdmax/ºC 

BCA 0% Tb 288 338,58 

BCA 1% Tb 297 368,81 

BCA 5% Tb 277,5 363,09 

BCA 10% Tb 285,5 364,11 

Commercial 0% Tb 289 361,28 

Commercial 1% Tb 290 374,56 

Commercial 5% Tb 287 362,75 

Commercial 10% Tb 285 368,43 

 

5.2.4. Mechanical Assays 

 

The mechanical performance of the materials was evaluated by tensile experiments. 

Tensile tests were performed, at room temperature, for BCA and commercial cellulose 

triacetate films. Figure 18 and Table 4 show the tensile mechanical properties, including 

Young’s modulus, tensile strength and elongation at break, determined from the typical 

stress-strain curves. 

 

In general, the incorporation of 1 and 5% of the lanthanide complex into the BCA 

matrices produced films with increased mechanical properties, as observed by 

increments on the elongation at break and tensile strengths, probably due to the 

establishment of interactions between Tb(acac)3 and BCA, as confirmed by solid state 
13C NMR analysis (Figure 17) . This tendency is particularly visible for the films of 

commercial cellulose triacetate. However, the samples with 10% terbium showed a 

decreased in these properties when compared with the samples with 5%, probably due 

to the increased tendency of aggregation of Tb(acac)3.[83] 
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Table 4.  Young’s modulus, tensile strength and elongation at break values of bacterial 
cellulose triacetate (BCA) and commercial cellulose triacetate with terbium complex. 

Sample  
Young Modulus 

(MPa) 
 
 

Tensile Strength 

(MPa) 

 Elongation at Break 

(%) 

BCA 0% Tb  5898,44±935,66  79,67±15,19  1,26±0,58 

BCA 1%  5010,31±591,53  82,72±27,31  1,76±0,80 

BCA 5% Tb  5455,83±227,99  112,85±12,51  3,19±1,10 

BCA 10% Tb  5666,5±997,76  80,65±18,88  1,51±0,5 

Commercial 0% Tb  3414,84±294,94  77,06±6,50  3,73±0,89 

Commercial 1% Tb  4646,20±928,54  101,17±21,88  4,18±1,48 

Commercial 5% Tb  6896,24±1023,07  162,11±28,32  8,88±2,51 

Commercial 10% Tb  5843,37±917,40  145,56±26,00  11,14±2,45 

 

 

 
Figure 18. Young’s modulus, tensile strength and elongation at break graphics of 
bacterial cellulose triacetate (BCA) and commercial cellulose triacetate with terbium 
complex. 
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5.2.5. Water-uptake 

 

Swelling studies were performed for BCA and commercial cellulose triacetate films in 

order to evaluate their water sensitivity in a period of a week (Figure 19). 

 

All films absorbed water in the conditions tested; however, the incorporation of the 

lanthanide complex decreases the water absorption capacity. The cellulose acetate 

groups provide a hydrophilic character to the films, and their ability to absorb some 

water. When incorporated in the films, the terbium complexes, could release the water 

molecules in the first coordination sphere, interacting with the acetate groups, and 

therefore reducing the water absorption.[82]  

 

 
Figure 19.  Water-uptake of the studied bacterial cellulose triacetate (BCA) and 
commercial cellulose triacetate films. 
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5.2.6. Photoluminescence and lifetime 

5.2.6.1. Photoluminescence 

 

The photoluminescence excitation and emission spectra of all the films containing BCA 

and commercial cellulose triacetate complexes of Tb3+ generally reveal that the ligand-

lanthanide synergy is maintained after the addition.  

 

The absence of the intra-4f8 lines in the excitation spectra (Figure 21 and 22) is a proof 

of the efficiency of the ligand to absorb energy and transfer it to Tb3+ ions.  

 

However, there exist some degrees of variations, from 1% and from 5% lanthanide 

complexes, in the disappearance of the BCA matrix band as can see in the excitation 

spectra on Figure 21a and 21b.  

 

The photoluminescence maxima bands at 490, 545, 585 and 622 nm are attributed, 

respectively, to the 5D4 à 7F6, 5D4 à 7F5, 5D4 à 7F4 and 5D4 à 7F3, typical transitions 

of Tb3+ ions.[55] 

The BCA (and commercial cellulose triacetate) composite films containing Tb(acac)3 

exhibit green emission under UV light (Figure 22). 

Figure 20. Photographs of BCA and commercial samples under UV light. 

 

BCA 1% Tb BCA 5% Tb BCA10% Tb 

 

Commercial 1% Tb Commercial 5% Tb Commercial 10% Tb 
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a)

b)

c)  

Figure 21. Emission (left) and excitation (right) spectra of BCA a) 1% Tb, b) 5% Tb, c) 
10% Tb 
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a)

b)

c)  

Figure 22. Emission (left) and excitation (right) spectra of commercial a) 1% Tb, b) 5% 
Tb, c) 10% Tb 
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5.2.6.2. Lifetime values 

 

The lifetime of the excited states of the Ln3+ ions is defined as a sum of duration times 

of the ion intrinsic luminescence (radiative emission) and the non-radioactive 

deactivation processes.[11] The obtained 5D4 lifetime values are listed in Table 5.  

 

The increase of the 5D4 lifetime values as the Tb3+ (τTb(acac)3= 0,774±0.001 ms [63]) 

amount increases in the films can be explained by an increase on the radiative emission 

due to the presence of more emitting centres.[78] 

 

Table 5. 5D4 lifetime values (ms) monitored at 545 nm under distinct excitation 
wavelengths (λex, nm). 

Reference λex λem τ  (ms)(300 K) 

BCA 1% Tb 295 545 0.737±0.006 

BCA 5% Tb 295 545 0.819±0.002 

BCA 10% Tb 
290 

546 
1,067±0.003 

310 1,048±0.003 

Comercial 1% Tb 295 545 0.628±0.005 

Comercial 5% Tb 295 545 0.839±0.006 

Comercial 10% Tb 
290 

546 
0.995±0.002 

310 1,013±0.003 

 

5.2.7. Emission quantum yields 

 

The quantum yields of the terbium hybrids films of BCA and commercial cellulose 

triacetate are shown in Table 6. 

 

Quantum yield is the ratio between the numbers of photons emitted and the number of 

photons absorbed. 

 

As can be seen in Table 8, the greater values correspond to 10% concentration for both 

cellulose matrices, without a drastic difference on the emission quantum yields between 

them. 
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Table 6. Absolute emission quantum yields (φ) obtained at different excitation 
wavelengths (λexc, nm). 

Reference λexc φ  

BCA 1% Tb 

250 <0.01 

 275 

295 0.02 

BCA 5% Tb 

250 
<0.01 

275 

295 0.09 

BCA 10% Tb 

275 0,11 

295 0,18 

310 0,20 

Commercial 1% Tb 

250 
<0.01 

275 

295 0.02 

Commercial 5% Tb 

250 <0.01 

275 
0.04 

295 

Commercial 10% Tb 

275 0,08 

295 0,18 

310 0,26 

 

5.2.8. UV-Vis-NIR absorption spectra 

 

As the trend in the other physical properties, the absorbance in the ultraviolet region is 

higher, when the luminescent agent amount increases. 

 

While in the film of 10% the two samples display similar absorption, with a 1 and 5% 

of Tb3+ the difference between the absorption of commercial and bacterial cellulose is 

appreciable. 
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Figure 23. UV-Vis absorbance spectra of BCA 1% Tb, Commercial 1% Tb, BCA 5% 
Tb, Commercial 5% Tb, BCA 10% Tb, Commercial 10% Tb. 
 

 

5.3. Partially acetylated bacterial cellulose films (preliminary study) 

 

The use of bacterial cellulose nanofibers as reinforcing elements in composite materials 

had gained considerable interest in the last years. In this sense, aiming to produce BCA 

doped luminescent films with better mechanical properties; partial acetylated BC 

nanofibers were used as fillers in these films.  

 

Bacterial cellulose nanofibers were partially acetylated with acetic anhydride, in 

presence of sulphuric acid, for 4h at 30ºC. The schematic representation of BC partial 

acetylation is displayed in the Figure 24. 
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Figure 24. Schematic representation of the BCA partial acetylation and visual aspect of 
fibrous BCA before and after modification. 
 

The occurrence of the partial acetylation reaction was primary confirmed based on the 

visible preservation of the BC nanofibers after reaction, however with a harder aspect. 

The success of the BC acetylation was further confirmed by FTIR (Figure 25), based on 

the appearance of the typical vibration of the acetate groups, previously described for 

the triacetate derivatives. The presence of the broad band typical of OH vibrations at 

3500-3000 cm-1, confirms the partial modification on the BC nanofibrils. 

 

 

 

 

 

 

 

 
 
 

Figure 25. ATR- FTIR spectra of partially acetylated BC.  
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Then, the partially acetylated BC nanofibers were used as reinforcing elements (at 5 and 

10% of load) in the BCA films doped with 5% of lanthanide complex. The obtained 

films were characterized by FTIR and mechanical and photophysical assays.  

 

5.3.1. Fourier Transform Infrared Spectroscopy 

 

The FTIR spectra of the  BCA films doped with Tb(acac)3·3H2O and reinforced with  5 

and 10 % of partially acetylated BC showed also only the typical absorption bands of 

cellulose triacetate matrices described before. The typical vibrations of the partially 

acetylated BC nanofibers were not visible even for 10% of reinforcement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. ATR- FTIR spectra of BCA+ 5% fibers + 5% Tb and BCA + 10% fibers + 
5%Tb  
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5.3.2. Mechanical assays 

 

The mechanical performance of the reinforced BCA films was also studied by tensile 

experiments (Figure 27).  

 

As expected, the BCA doped films filled with the partially acetylated fibers are more 

rigid than their counterparts without fibers (Figure 18), as shown by the considerable 

increments on the Young modulus and the concomitant decrease of the elongation at 

break. The tensile strength was poorly affected by the addition of the partially 

acetylated BC nanofibers. 

 

 

 
Figure 27. Young’s modulus, tensile strength and elongation at break graphics of 
bacterial cellulose triacetate (BCA) with partially acetylated bacterial cellulose and with 
terbium complex. 
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Table 7.  Young’s modulus, tensile strength and elongation at break values of bacterial 
cellulose triacetate (BCA) and partially acetylated bacterial cellulose with 5% terbium 
complex. 

Sample  
Young Modulus 

(MPa) 
 
 
Tensile Strength 

(MPa) 

 Elongation at 

Break (%) 

BCA %5 fiber %5 Tb  6921,48±397,78  86,47±19,88  0,99±0,17 

BCA 10% fiber %5 Tb  7746±430,55  90,85±15,79  1,39±0,871 

 
 

5.3.3. Photoluminescence and lifetime 

5.3.3.1. Photoluminescence 

 

The photoluminescence spectrum of BCA and partially acetylated BC fibers films 

doped with 5% Tb(acac)3 are shown at Figure 29 and 30. 

 

The photoluminescence maxima bands at 490, 545, 585 and 622 nm are attributed, 

respectively, to the 5D4 à 7F6, 5D4 à 7F5, 5D4 à 7F4 and 5D4 à 7F3, typical transitions 

of Tb3+. [55] 

 

The BCA composite films containing Tb(acac)3 exhibit green emission under UV light 

(Figure 28). 

 

 

 

 

 

 

 

 

 

Figure 28. Photographs of BCA with partially acetylated bacterial cellulose samples 
under UV light. 
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Figure 29. Emission (left) and excitation (right) spectra of BCA 5%fibres 5%Tb. 

  
Figure 30. Emission (left) and excitation (right) spectra of BCA10% fibres 5%Tb. 

 

5.3.3.2. Lifetime values 

 

Both films of BCA and fibres with terbium ion show a decrease lifetime value 

compared with BCA and commercial cellulose triacetate films lifetime. 

 

Table 8. 5D4 lifetime values (ms) monitored at 545 nm under distinct excitation 
wavelengths (λex, nm). 
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Reference λex λem τ  (ms)(300 K) 

BCA 5%fibres 5%Tb 290 546 0.649 ± 0.004 

BCA 10% fibres 5%Tb 290 545 0.436 ± 0.008 
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5.3.4. Emission quantum yields 

 

The incorporation of BCA fibers, as shown at lifetime values, affects the emission 

quantum yields, decreasing the value compared with the BCA samples with the same 

amount of terbium (φλexc =295=0,09). 

 

Table 9. Absolute emission quantum yields (φ) obtained at different excitation 
wavelengths (λexc, nm). 

Reference λexc φ  

BCA 5%fibres 5%Tb 

250 0.01 

275 0.03 

295 0.06 

BCA 10%fibres 5%Tb 

250 0.01 

275 0.02 

295 0.04 
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6. Conclusions 

 

The present work described the successful preparation of novel luminescent films based 

on bacterial cellulose triacetate (BCA) (prepared by almost complete acetylation of 

bacterial cellulose, as confirmed by FTIR and 13C NMR) and a terbium complex 

(Tb(acac)3). The films were obtained by the simple dispersion of different amounts (1, 5 

and 10%) of the lanthanide complex into a solution of cellulose acetate in 

dichloromethane, followed by solvent casting.  

All the obtained films were very homogeneous and transparent, and displayed improved 

thermal and mechanical properties, as evidenced by reasonable increments in the 

maximum degradation temperature, and Young modulus and tensile strength, 

respectively. However, the films with 5% of Tb(acac)3 showed the better results. 

In addition, as expected, the increment of lanthanide quantity in the films, due to the 

presence of more emitting centres, improved the luminescent properties, such as, 

lifetime and emission quantum yields values. 

 

Preliminary results on the addition of partially acetylated bacterial cellulose to the 

lanthanide loaded films resulted in considerable increments on the Young modulus 

(increasing 42%), without compromising in a great extent their photoluminescent 

properties.  

Finally, future research activities to continue and complement this study will consider 

the following issues: 

- The combination of cellulose triacetates with other complexes that increase the 

antenna effect aiming to enhance the luminescence. 

- The improvement of the mechanical properties of the films by addition of partial 

acetylated cellulose nanofibers (or other reinforcing elements) with different DS 

values. 

- The processing of the materials with other forms or morphologies, for example 

by electrospinning. 

- The search for greener alternatives for the processing of the materials, i.e. 

avoiding the use of harmful organic solvents. 
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