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Resumo 
 

 

O principal objetivo do presente trabalho recai no estudo de sistemas aquosos 
bifásicos (SAB) reversíveis, constituídos por líquidos iónicos (LIs), bem como 
na sua potencial aplicação para a separação seletiva de corantes utilizados 
maioritariamente pela indústria têxtil. Esta é uma das principais indústrias que 
liberta uma grande quantidade de produtos químicos, destacando-se a 
descarga de elevadas quantidades de corantes através dos respetivos 
efluentes aquosos, o que é motivo de elevada preocupação tanto a nível 
ambiental como económico. Este trabalho centra-se no estudo da 
aplicabilidade de SAB reversíveis, através de variações de pH do meio 
aquoso, assim como na procura de SAB constituídos por LIs mais benignos 
que os estudados até ao momento, como uma técnica alternativa para a 
remoção de corantes de efluentes aquosos. Adicionalmente, também se deu 
um especial destaque à interpretação dos mecanismos que regem a partição 
de corantes entre as duas fases neste tipo de sistemas. 
Os SAB constituídos por LIs apresentam uma grande aplicabilidade na 
extração e purificação de uma vasta gama de compostos, incluindo corantes. 
Assim, iniciou-se o presente trabalho com a extração de um conjunto de 
corantes (ácido cloroanílico, azul indigo, sudão III) utilizando SAB mais 
convencionais e constituídos por LIs e um sal orgânico/inorgânico. Nesta etapa 
avaliou-se o efeito da estrutura química do LI sobre a capacidade de extração, 
assim como o efeito do sal e consequente pH do meio. Os resultados obtidos 
revelaram que uma seleção adequada do LI e do sal pode conduzir à extração 
completa dos três corantes estudados e num único passo operacional. 
Após demonstrar a elevada capacidade de SAB constituídos por LIs para 
extrair corantes de fases aquosas, estudou-se a aplicabilidade de SAB 
reversíveis, por variações de pH, na separação seletiva de corantes orgânicos 
e inorgânicos (sudão III e pigmento azul 27). A reversibilidade deste tipo de 
SAB foi conseguida com a manipulação da especiação do sal orgânico 
utilizado. Os resultados obtidos confirmaram a reversibilidade dos SAB, pelo 
menos até três vezes, por variação do pH, assim como uma capacidade de 
extração seletiva de cada um dos corantes para fases opostas. 
Por fim, e após confirmada a existência de SAB reversíveis, estudaram-se 
misturas de um polímero e LIs da família das colinas com aniões derivados de 
ácidos carboxílicos com o intuito de encontrar sistemas mais benignos e 
biocompatíveis. A variação do pH e reversibilidade neste tipo de sistemas foi 
conseguida com a especiação do anião do LI. Estes sistemas foram finalmente 
avaliados no que respeita à sua capacidade de extração e separação seletiva 
de corantes (sudão III, pigmento azul 27 e pigmento 29), e o estudo revelou 
que os sistemas LI-polímero conduzem a uma extração seletiva entre os 
corantes orgânicos e os pigmentos inorgânicos. 
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Abstract 

 
The main objective of this work conveys on the study of reversible aqueous 
two-phase systems (ATPS), constituted by ionic liquids (ILs), and their potential 
application for the selective separation of dyes mainly used in the textile 
industry. The textile manufacturing is one of the main industries which 
discharges a heavy load of chemicals, especially large contents of dyes during 
the dying process through wastewaters, which results in severe environmental 
and economic concerns. In this context, this work focuses on the applicability of 
reversible ATPS, as well as on the development of more benign systems than 
those studied hitherto, as an alternative technique for the removal of dyes from 
wastewaters. Additionally, special attention was also given to the 
understanding of the molecular mechanisms which rule the partitioning of dyes 
between the coexisting phases of ATPS. 
IL-based ATPS display a widespread applicability in the extraction, 
concentration and purification of a large range of compounds, including dyes. 
Thus, this work started with investigations on the extraction of a set of dyes 
(chloranilic acid, indigo blue and sudan III) using more conventional ATPS 
composed of ILs and an organic/inorganic salt. At this stage, the influences of 
the IL chemical structure, the salting-out ability of the salt employed and the 
consequent pH of the aqueous medium were evaluated by the dyes extraction 
efficiencies. The results obtained reveal that a proper selection of the IL and 
salt can lead to the complete extraction of the three dyes studied for the IL-rich 
phase in a single-step procedure. 
After demonstrating the high capacity of ATPS formed by ILs to extract dyes 
from aqueous phases, it was studied the applicability of pH-triggered reversible 
ATPS in the selective separation of organic and inorganic dyes (sudan III and 
pigment blue 27). The reversibility of this type of ATPS was achieved by the 
manipulation of the speciation of the organic salt used. The results obtained 
confirm the reversibility behaviour of ATPS by a pH-driven phenomenon, at 
least for three times, as well as their selective separation capability with both 
dyes being extracted for opposite phases. 
Finally, and after demonstrating the existence of reversible pH-triggered ATPS, 
mixtures of a polymer and cholinium-based ILs combined with anions derived 
from carboxylic acids were investigated, foreseeing the search of more benign 
and biocompatible systems. The reversibility of these systems was achieved 
with the speciation of the IL anion as a function of the pH. These systems were 
finally evaluated in what concerns their performance for the extraction and 
selective separation of dyes (sudan III, pigment blue 27 and pigment 29), and 
the study revealed that IL-polymer systems are capable of selectively extract 
organic and inorganic dyes for opposite phases. 





XIII 

 

Contents 

1. General introduction ..................................................................................................................... 1 

1.1. Scope and objectives ............................................................................................................. 3 

1.2. Textile industry and removal of dyes ..................................................................................... 4 

1.3. Ionic liquids (ILs)..................................................................................................................... 5 

1.4. Extraction of molecules using aqueous two-phase systems (ATPS) ....................................... 7 

2. Extraction of dyes using IL-based ATPS ......................................................................................... 9 

2.1. Introduction ......................................................................................................................... 11 

2.2. Experimental section ........................................................................................................... 12 

2.2.1. Chemicals .................................................................................................................... 12 

2.2.2. Experimental procedure .............................................................................................. 14 

2.3. Results and discussion ......................................................................................................... 17 

2.4. Conclusions .......................................................................................................................... 26 

3. Selective separation of dyes using IL-salt reversible ATPS........................................................... 27 

3.1. Introduction ......................................................................................................................... 29 

3.2. Experimental section ........................................................................................................... 30 

3.2.1. Chemicals .................................................................................................................... 30 

3.2.2. Experimental procedure .............................................................................................. 31 

3.3. Results and discussion ......................................................................................................... 33 

3.4. Conclusions .......................................................................................................................... 40 

4. Selective separation of dyes using IL-polymer reversible ATPS ................................................... 41 

4.1. Introduction ......................................................................................................................... 43 

4.2. Experimental section ........................................................................................................... 44 

4.2.1. Chemicals .................................................................................................................... 44 

4.2.2. Experimental procedure .............................................................................................. 45 

4.3. Results and discussion ......................................................................................................... 47 

4.4. Conclusions .......................................................................................................................... 54 

5. Final remarks ............................................................................................................................... 55 

5.1. Conclusions .......................................................................................................................... 57 

5.2. Future work ......................................................................................................................... 57 

6. References................................................................................................................................... 59 



XIV 

 

7. List of publications ...................................................................................................................... 69 

Appendix A Experimental binodal data ........................................................................................... 73 

A.1. Experimental binodal data for systems composed of IL + salt + H2O used in the extraction 

of dyes ........................................................................................................................................ 75 

A.2. Experimental binodal data for the reversible IL-based ATPS systems composed of IL + salt + 

H2O.............................................................................................................................................. 79 

A.3. Experimental binodal data for systems composed of PPG 400 + IL + H2O ........................... 87 

Appendix B Additional experimental data ....................................................................................... 95 

B.1. Additional data for the ATPS composed of ILs and salts ...................................................... 97 

B.2. Additional data for the reversible IL-salt-based ATPS ........................................................ 100 

B.3. Additional data for the reversible IL-polymer-based ATPS ................................................ 103 

  

 
 

 

  



XV 

 

List of tables 

Table 2.1. Thermophysical properties of the investigated dyes [79]. ............................................. 12 

Table 2.2. Correlation parameters used to describe the experimental binodal data by Equation 1.

 ........................................................................................................................................................ 19 

Table 2.3. Experimental data for TLs and TLLs of IL + K3C6H5O7 ATPS, initial mixture compositions 

([IL]M and [salt]M), and pH values of the coexisting phases. ............................................................ 19 

Table 2.4. Experimental data for TLs and TLLs of IL + Al2(SO4)3 ATPS, initial mixture compositions 

([IL]M and [Salt]M), and pH values of the coexisting phases. ............................................................ 20 

Table 3.1. Physicochemical properties of PB27 [79]. ...................................................................... 30 

Table 3.2. Correlation parameters obtained from the fitting of the experimental binodal data by 

Equation 1. ...................................................................................................................................... 35 

Table 3.3. Weight fraction percentage (wt %) for the coexisting phases of IL + potassium citrate + 

H2O, and respective values of tie-line length (TLL) and pH values of each phase............................ 35 

Table 3.4. Identification of the systems able () or not able () to form two-phase systems at 

different pH values. ......................................................................................................................... 37 

Table 3.5. pKa values of citric acid at 298 K [79]. ............................................................................. 37 

Table 4.1. Physicochemical properties of PB29 [139]. .................................................................... 44 

Table 4.2. Fitting parameters obtained from the description of the experimental binodal data by 

Equation 1. ...................................................................................................................................... 49 

Table 4.3. Weight fraction percentage (wt %) of the coexisting phases of IL + PPG 400 + H2O, and 

respective values of tie-line length (TLL), and pH values of each phase. ......................................... 49 

Table 4.4. Identification of the systems able () or not able () to form two-phase systems at 

different pH values. ......................................................................................................................... 51 

Table 4.5. pKa of acids used in this study at 298 K [79]. .................................................................. 51 

 





XIII 

 

List of figures 

Figure 1.1. Number of papers published per year involving ILs. Values from ISI Web of Knowledge 

in October 17th, 2013. ....................................................................................................................... 5 

Figure 1.2. Cation structures of nitrogen-based ILs: (i) dialkylimidazolium, (ii) dialkylpyrrolidinium, 

(iii) dialkylpiperidinium, (iv) alkylpyridinium and (v) tetralkylammonium. ........................................ 6 

Figure 2.1. Chemical structures of the dyes studied: (i) Indigo blue; (ii) chloranilic acid and (iii) 

sudan III. .......................................................................................................................................... 12 

Figure 2.2. Chemical structures of the ILs investigated: (i) [C2mim][CF3SO3]; (ii) [C4mim][CF3SO3]; 

(iii) [C4mim][Tos]; (iv) [C4mim][N(CN)2]; (v) [P4444]Br; (vi) [P4441][CH3SO4]; (vii) [Pi(444)1][Tos] and (viii) 

[P4444]Cl. ........................................................................................................................................... 13 

Figure 2.3. Chloranilic acid extraction with an ATPS formed by IL + K3C6H5O7 + H2O. ..................... 15 

Figure 2.4. Ternary phase diagrams for systems composed of IL + salt + water at 298 K and 

atmospheric pressure: (×) [C2mim][CF3SO3], (–) [C4mim][CF3SO3], () [C4mim][N(CN)2], (○) 

[C4mim][Tos], () [P4444]Cl, (▲) [P4444]Br, () [P4441][CH3SO4] and () [Pi(444)1][Tos]. .................... 18 

Figure 2.5. Partition coefficients of choranilic acid in the studied ATPS at 298 K. .......................... 20 

Figure 2.6. Partition coefficients of indigo blue in the studied ATPS at 298 K. ................................ 21 

Figure 2.7. Partition coefficients of sudan III in the studied ATPS at 298 K. .................................... 21 

Figure 2.8. Percentage extraction efficiencies of chloranilic acid, EECA%, in different ATPS at 298 K.

 ........................................................................................................................................................ 23 

Figure 2.9. Percentage extraction efficiencies of indigo blue, EEIB%, in different ATPS at 298 K..... 23 

Figure 2.10. Percentage extraction efficiencies of sudan III, EEsud%, in different ATPS at 298 K. .... 24 

Figure 2.11. Extraction of (CA) choranilic acid, (IB) indigo blue and (Sud) sudan III using ATPS 

composed of different ILs and the salt potassium citrate at 298 K. ................................................ 25 

Figure 3.1. Chemical structure of PB27. .......................................................................................... 29 

Figure 3.2. Chemical structures of the ILs used to form ATPS: (i) [C4mim]Br, (ii) [C4mim]Cl, (iii) 

[C4mpy]Cl, (iv) [C4C1mim]Cl, (v) [C4mpip]Cl and (vi) [P4444]Cl. .......................................................... 31 

 

file:///C:/Users/Ana%20Maria/Desktop/tese%20sem%20ligações%20Mara.docx%23_Toc375849569
file:///C:/Users/Ana%20Maria/Desktop/tese%20sem%20ligações%20Mara.docx%23_Toc375849582


XIV 

 

Figure 3.3. Evaluation of the pH effect in ternary phase diagrams composed of IL + water + 

K3C6H5O7/ C6H8O7 at (▲) pH ≈ 9, () pH ≈ 8, (♦) pH ≈ 7, (◊) pH ≈ 6 and (▬) pH ≈ 5. The ILs are: (a) 

[C4mim]Cl, (b) [C4C1mim]Cl, (c) [C4mpip]Cl, (d) [C4mpy]Cl, (e) [C4mim]Br and (f) [P4444]Cl. Some 

phase diagrams have been reported by other authors and are included here for comparison 

purposes [81, 89, 126]..................................................................................................................... 34 

Figure 3.4. Phases diagrams for the different ILs at fixed pH. Phase diagrams of ATPS composed of 

IL + water + K3C6H5O7 at (a) pH ≈ 9 and ATPS composed of IL + water + K3C6H5O7/C6H8O7 at (b) pH ≈ 

8, (c) pH ≈ 7 and (d) pH ≈ 6. The ILs used are: () [C4mim]Cl, (♦) [C4C1mim]Cl, () [C4mpip]Cl, (▲) 

[C4mpy]Cl, (▬) [C4mim]Br and () [P4444]Cl. .................................................................................... 36 

Figure 3.5. Ternary phase diagram of the systems composed of [C4mim]Cl + water + K3C6H5O7 at 

(●) pH ≈ 9, (▲) tie-line data, () initial biphasic mixture and() final biphasic mixture (after the 

citric acid and KOH addition). .......................................................................................................... 38 

Figure 3.6. Selective separation of sudan III and PB27 from their initial monophasic mixture using 

the ATPS composed of [C4mim]Cl. .................................................................................................. 39 

Figure 3.7. Percentage extraction efficiencies of sudan III and PB27, EEDye%, in the different ATPS 

at 298 K. .......................................................................................................................................... 40 

Figure 4.1. Chemical structure of PB29 [139]. ................................................................................. 44 

Figure 4.2. Chemical structures of the ILs and polymer investigated: (i) [Ch]Cl; (ii) [Ch][Ac]; (iii) 

[Ch][Pro]; (iv) [Ch][Gly]; (v) [Ch][But], (vi) [Ch][Lac], and (vii) PPG. ................................................. 45 

Figure 4.3. Ternary phase diagrams for systems composed of PPG 400 + IL + water at 298 K and 

atmospheric pressure. The ILs studied were: (×) [Ch][But], (○) [Ch]Cl, (▲) [Ch][Pro], () [Ch][Lac], 

() [Ch][Ac] and (+) [Ch][Gly]. ........................................................................................................ 48 

Figure 4.4. Evaluation of the pH effect in ternary phase diagrams composed of PPG 400 + water + 

IL at (♦) pH ≈ 9, () pH ≈ 8, () pH ≈ 7 , () pH ≈ 6, (▲) pH ≈ 5, () pH ≈ 4, (×) pH ≈ 3, (◊) pH ≈ 2, 

(▬) pH ≈ 1 and (○) pH ≈ 0. The ILs are: (a) [Ch]Cl, (b) [Ch][Ac], (c) [Ch][Gly], (d) [Ch][Lac], (e) 

[Ch][Pro], and (f) [Ch][But]. ............................................................................................................. 50 

Figure 4.5. Selective separation of sudan III and (a) PB27 or (b) PB29 using ATPS composed of 

[Ch][Ac]. .......................................................................................................................................... 52 

Figure 4.6. Percentage extraction efficiencies of sudan III and PB29, EEDye%, in the different ATPS 

at 298 K. .......................................................................................................................................... 53 

file:///C:/Users/Ana%20Maria/Desktop/tese%20sem%20ligações%20Mara.docx%23_Toc375849728


XV 

 

Figure 4.7. Percentage extraction efficiencies of sudan III and PB27, EEDye%, in the different ATPS 

at 298 K. .......................................................................................................................................... 53 

 

 





XIII 

 

List of symbols 

wt % – weight fraction percentage (%); 

λ – wavelength (nm); 

σ – standard deviation; 

Abs – absorbance (dimensionless); 

Mw – molecular weight (g·mol-1); 

KOW – octanol-water partition coefficient (dimensionless); 

R2 – correlation coefficient (dimensionless); 

α – ratio between the top weight and the total weight of the mixture (dimensionless); 

     – concentration of ionic liquid (wt % or mol·kg-1); 

       – concentration of ionic liquid in the ionic-liquid-rich phase (wt %); 

         – concentration of ionic liquid in the salt-rich phase (wt %); 

      – concentration of ionic liquid in the initial mixture (wt %); 

       – concentration of salt (wt % or mol·kg-1); 

         – concentration of salt in the ionic-liquid-rich phase (wt %); 

           – concentration of salt in the salt-rich phase (wt %); 

        – concentration of salt in the initial mixture (wt %); 

      
   – absorbance of the dye, at the maximum wavelength, in the ionic-liquid-rich phase; 

      
     – absorbance of the dye, at the maximum wavelength, in the salt-liquid-rich phase; 

EEdye% – percentage extraction efficiency of each dye (%); 

EECA% – percentage extraction efficiency of chloranilic acid (%); 

EEIB% – percentage extraction efficiency of indigo blue (%); 

EESud% – percentage extraction efficiency of sudan III (%); 

EEPB% – percentage extraction efficiency of pigment (%); 

EEPB27% – percentage extraction efficiency of pigment blue 27 (%); 

EEPB29% – percentage extraction efficiency of pigment blue 29 (%); 

     – partition coefficient of each dye (dimensionless); 

    – partition coefficient of chloranilic acid (dimensionless); 

    – partition coefficient of indigo blue (dimensionless); 

     – partition coefficient of sudan III (dimensionless); 

 





XIII 

 

List of abbreviations 

ATPS – aqueous two-phase system; 

IL – ionic liquid; 

PG27 – pigment blue 27; 

PG29 – pigment blue 29; 

PPG – polypropylene glycol; 

PPG 400 – polypropylene glycol with a molecular weight of 400 g·mol-1; 

TL – tie-line; 

TLL – tie-line length; 

UV – ultraviolet; 

VOC – volatile organic compound; 

[Ch][Ac] – (2-hydroxyethyl)trimethylammonium (cholinium) acetate;  

[Ch][But ] – (2-hydroxyethyl)trimethylammonium (cholinium) butanoate;  

[Ch]Cl – (2-hydroxyethyl)trimethylammonium (cholinium) chloride; 

[Ch][Gly] – (2-hydroxyethyl)trimethylammonium (cholinium) glycolate;  

[Ch][Hex] – (2-hydroxyethyl)trimethylammonium (cholinium) hexanoate;  

[Ch][Lac] – (2-hydroxyethyl)trimethylammonium (cholinium) lactate; 

[Ch][Pro] – (2-hydroxyethyl)trimethylammonium (cholinium) propionate; 

[C2mim][CF3SO3] – 1-ethyl-3-methylimidazolium trifluoromethanesulfonate; 

[C4C1mim]Cl – 1-butyl-2,3-dimethylimidazolium chloride; 

[C4mpip]Cl – 1-butyl-1-methylpiperidinium chloride; 

[C4mim]Br – 1-butyl-3-methylimidazolium bromide; 

[C4mim]Cl – 1-butyl-3-methylimidazolium chloride; 

[C4mim][N(CN)2] – 1-butyl-3-methylimidazolium dicyanamide;  

[C4mim][Tos] – 1-butyl-3-methylimidazolium tosylate;  

[C4mim][CF3SO3] – 1-butyl-3-methylimidazolium trifluoromethanesulfonate; 

[C4mpy]Cl – 1-butyl-3-methylpyridinium chloride; 

[P4444]Br – tetrabutylphosphonium bromide; 

[P4444]Cl – tetrabutylphosphonium chloride; 

[P4441][CH3SO4] – tributylmethylphosphonium methylsulfate; 

[Pi(444)1][Tos] – tri(isobutyl)methylphosphonium tosylate. 

 





 

 

 

1. General introduction 
  



 

 

 

 

 



General introduction 

3 

 

1.1. Scope and objectives 

The textile manufacturing is one of the main industries which discharge a heavy load of 

chemicals during the dying process. As a result, the release of large contents of dyes for the 

aqueous effluents leads to both environmental and economic drawbacks. Moreover, most of the 

dyes are carcinogenic, mutagenic, allergenic and toxic, leading therefore to human health 

concerns [1].  

The traditional approaches developed for the removal of synthetic dyes from wastewaters 

involve their adsorption on inorganic or organic matrices and their decolourization by 

photocatalysis or by oxidation processes [2]. However, traditional treatment technologies have 

found to be of high cost and of low efficiency [3]. Foreseeing more benign and cost-efficient 

techniques for the removal/extraction of dyes from aqueous effluents, aqueous two-phase 

systems (ATPS) composed of ionic liquids (ILs) were investigated, in this work 

As a first approach, more conventional ATPS composed of ILs and salts were evaluated 

regarding their ability to extract several dyes from aqueous media. For that purpose, the ternary 

phase diagrams (and respective tie-lines) formed by ILs, water and salt were determined. The 

extraction capacity of the ATPS formed either with aluminium sulphate or potassium citrate was 

further addressed through their application to the extraction/removal of three textile dyes, 

namely sudan III, indigo blue and chloranilic acid. The influence of the IL structural features, the 

nature and salting-out ability of the salt employed, and the pH of the aqueous medium were also 

evaluated. The aluminium sulphate salt was chosen because it is already used in water treatment 

processes [4]. Nevertheless, there are some environmental concerns associated with the use of 

inorganic salts which tend to be non-biodegradable. Hence, a biodegradable organic salt - 

potassium citrate - was also studied. 

The dynamic change between a homogeneous solution and a two-phase system is a crucial 

advantage in the separation field. In this context, the next stage of this work involved the 

investigation of pH-triggered reversible ATPS composed of ILs and organic salts, and their 

application in the selective separation of textile dyes. A large array of systems by the combination 

of potassium citrate with different ILs, and at different pH values, was investigated by the 

determination of their ternary phase diagrams. The reversible IL-based ATPS behaviour was 

ascertained by the addition of citric acid or potassium hydroxide to an initial ternary mixture at 

the biphasic region. The reversibility of this type of systems was proven for at least three times. 

Finally, the reversible capability of this type of ATPS was used for the selective separation of 

organic and inorganic dyes (sudan III and pigment blue 27) by their migration for opposite phases. 

https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDEQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FChloranilic_acid&ei=RiEvUrSHC7Ch7AaFx4HIAg&usg=AFQjCNHJ8BLAGOaX4YlWImCmrPMlWnBGig&sig2=yYtX9foMjBtbFrDRA8fNng&bvm=bv.51773540,d.ZGU
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The last stage of this work addressed the study of reversible pH-triggered ATPS composed of 

cholinium-based ILs and a polymer aiming at finding more benign and biocompatible systems 

through the addition of the corresponding acid of the anion base composing the IL. After 

demonstrating their reversibility behaviour, these systems were finally applied in the selective 

separation of organic and inorganic textile dyes (sudan III, pigment blue 27 and pigment blue 29). 

 

1.2. Textile industry and removal of dyes 

Large quantities of dyes are recurrently used in different industries, including the textile, 

leather tanning, pulp and paper, plastics, food, cosmetic, among others, for the coloration of their 

related products [1, 5-7]. Unfortunately, and despite all their interest, dyes generally have a 

synthetic origin and are based on complex aromatic structures which make them stable and 

resistant to biodegradation [8, 9]. Annually, 1 million tons of dyes are produced worldwide [6], 

and 10–15 % of them are discharged by the textile industry [10]. The wastewaters of this 

manufacturing are a considerable source of pollution and it was already demonstrated that they 

largely affect the photosynthetic activity in aqueous effluents [1, 11]. Furthermore, most of these 

dyes and their metabolites are toxic and potentially carcinogenic in nature, affecting thus the 

aquatic biota and the human health [1]. In this context, environmental regulations are becoming 

stricter in what concerns the removal of dyes from aqueous effluents [11, 12]. 

Different methods for the removal of dyes from water and wastewaters have been 

investigated, and these include biological, physical (membrane filtration, adsorption, coagulation, 

flocculation, precipitation, reverse osmosis, ion exchange, etc) and chemical (oxidation, 

ozonation, among others) processes [11]. Nevertheless, most of these time consuming techniques 

display major drawbacks, such as a high-running cost and low-removal efficiency. Consequently, 

the development of alternative cost-effective removal strategies is a top priority in the treatment 

of dye-contaminated wastewaters [7, 11]. 

Liquid–liquid extraction processes usually lead to high effectiveness, technological simplicity 

and economic nature, and have often been a preferential choice in process engineering [13]. 

Usually, volatile organic compounds (VOCs) are used in liquid-liquid extractions. However, these 

compounds have major disadvantages, such as their high volatility and toxicity, as well as their 

denaturing effects on enzymes and proteins [14]. In this context, ionic liquids (ILs) represent a 

viable option in liquid-liquid extraction due to their unique properties, and mainly due to their 

negligible vapour pressure, and high thermal and chemical stabilities [15-17]. In fact, several 

research groups have studied the liquid-liquid extraction or separation of textile dyes from 
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aqueous solutions using hydrophobic (non-water miscible) ILs [18-20]. Nevertheless, the use of 

ATPS composed of ILs for this application, as it will be demonstrated here, was not found in 

literature. 

 
1.3. Ionic liquids (ILs) 

ILs are ionic compounds (with a melting temperature below 373 K) that belong to the molten 

salts group; often, they are denominated by room temperature ILs when they are liquid at 

temperatures close to room temperature [21]. They are usually constituted by a large and organic 

cation and an organic or inorganic anion [21]. The low melting temperatures of ILs are typically 

associated with the lack of an ordered crystalline structure [21] - a main result of weak 

intermolecular interactions derived from the large size ions and their charge distribution [22, 23] . 

The first IL synthesized was ethylammonium nitrate, in 1914 by Paul Walden [24]. Later, in 

1934, Charles Graenacher filled the first patent regarding an industrial application of ILs in the 

preparation of cellulose solutions [25]. During the 2nd World War, new patents involving the use 

of ILs have appeared, while contemplating mixtures of aluminium chloride (III) and 1-

ethylpyridinium bromide for the electrodeposition of aluminium [26, 27]. Despite these findings, 

only more recently, in 1992, air and water stable ILs were synthetized [28]. Due to their more 

advantageous features, the study of their possible applications and properties increased 

significantly in the past 30 years, and as can been seen in Figure 1.1.  

 

Figure 1.1. Number of papers published per year involving ILs. Values from ISI Web of Knowledge in October 

17
th

, 2013.  
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The ionic nature of ILs is responsible for some of their unique properties, namely a negligible 

vapour pressure under atmospheric conditions, low flammability, high thermal and chemical 

stabilities, a large liquid temperature range, improved selectivity, high ionic conductivity, 

excellent microwave-absorbing ability, and a high solvating aptitude for organic and inorganic 

compounds [15-17]. All these properties made them improved alternatives to more typical 

solvents used nowadays in academia or industry, more specifically to VOCs. Currently, ILs are used 

in a wide range of applications, as in organic chemistry (Suzuki reaction [29]), as well as in new 

materials chemistry (electrolytes for the electrochemical industry [30]) and chemical reactions 

[31]. ILs are also applied in inorganic synthesis [32], polymerization [33], as solvents for 

multiphase biotransformation reactions [34], chromatographic separations [35], mass 

spectrometry analysis [36], and in batteries and fuel cells investigations [37]. Beyond these 

applications, ILs have also been used in liquid-liquid extractions of diverse biomolecules [38], 

metal ions [39], and organic compounds from aqueous solutions [40, 41]. 

Amongst the large range of ILs that can be synthesized, the most commonly studied are 

nitrogen-based ILs with their general cation structures presented in Figure 1.2. The cation can be 

highly complex with alkyl side chains of different length, diverse substitution positions and also 

additional functional groups [42]. Furthermore, the anion can be of a very different chemical 

nature, such as halogens, sulphates, cyano-based, fluorinated, etc. Thus, based on the theoretical 

vast number of cation/anion combinations it is possible to tune their physicochemical properties 

aiming at designing a specific IL for a target application [42-45], and so, ILs are commonly 

described as “designer solvents”. 

 

 

Figure 1.2. Cation structures of nitrogen-based ILs: (i) dialkylimidazolium, (ii) dialkylpyrrolidinium, (iii) 

dialkylpiperidinium, (iv) alkylpyridinium and (v) tetralkylammonium. 

 

Besides the existence of over six hundreds of common solvents used in industry, most aprotic 

ILs are an innovative ambient-friendly alternative due to their unique combination of non-

volatility and non-flammability [15, 16, 45]. In the environmental field, and with the intent of 

diminishing the air pollution, ILs are improved alternatives to VOCs due to their negligible vapour 
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pressure. This is the main reason behind the categorization of ILs as “green solvents”. However, 

the fact of displaying a negligible vapour pressure is not enough to assure that these compounds 

are in fact “green”. Properties such as toxicity and biodegradability must be accessed before such 

assumptions. For instance, even the most hydrophobic ILs have a non-negligible miscibility with 

water, which can result in the contamination of aqueous streams [46, 47]. In recent years, several 

studies were conducted to evaluate the toxicity and biodegradability of ILs [46, 48-52], either by 

the combination of different anions and cations or by changing the alkyl side chain length and 

number of alkyl groups at the cation ring. One of these studies showed that the ILs toxicity is 

primordially determined by the cation nature and increases with the increase of the length of the 

alkyl side chain (increase in hydrophobicity) [47]. Commonly, the anion has a smaller influence on 

toxicity than the cation, and generally, short cation alkyl chains or more hydrophilic ILs display 

lower toxicity [49]. The solubility of ILs in water decreases with their hydrophobicity, i.e., the 

more toxic ILs are those that usually exhibit lower mutual solubilities with water, and hence, their 

environmental impact in aquatic streams is somewhat minimized [46]. On the other hand, the ILs 

typically used to form ATPS, as stated below, tend to be completely miscible with water or 

hydrophilic, and thus, of lower toxicity. 

 

1.4. Extraction of molecules using aqueous two-phase systems (ATPS) 

Conventional techniques used for product recovery usually lead to low yields and require 

high energetic and chemical consumptions. To overcome these major drawbacks, there have been 

considerable efforts forecasting the development of sustainable and cost-effective separation 

techniques. In addition to the well-established chromatographic techniques, liquid–liquid 

extractions offer several advantages, namely their technological simplicity and low cost, as well as 

the capability to provide high yields, improved purification factors, enhanced selectivity and a 

good combination between the recovery and purification steps [14, 53, 54]. Aiming at avoiding 

the use of organic solvents in liquid-liquid extraction, in 1958, Albertson introduced the ATPS 

concept for the separation of (bio)molecules by their partitioning between two liquid aqueous 

phases [55]. ATPS have shown to be an alternative, efficient, and clean approach for the 

separation and purification of a broad array of (bio)molecules [56]. ATPS consist of two aqueous-

rich phases typically formed by polymer/polymer, polymer/ salt, or salt/salt combinations [56]. 

The basis of separation of (bio)molecules in ATPS is a direct result of their selective distribution 

between the two distinct aqueous phases [57]. On the whole, both phases are composed of 

approximately 70-90 wt % of water, which means that (bio)molecules are not easily denatured, 
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constituting therefore an important advantage when the goal is to extract proteins and/or 

enzymes [58, 59]. Moreover, a high extractive performance can be achieved by the manipulation 

of the affinity of the specific compound for each of the aqueous-rich phases.  

Besides the typical and largely studied polymer-polymer and polymer-salt ATPS [55], in recent 

years, Gutowski et al. [60] demonstrated that ATPS can also be formed by the addition of 

inorganic salts to aqueous solutions of hydrophilic ILs (imidazolium-based). These IL-rich systems 

were proposed as viable alternatives to polymeric ones with a set of important advantages: low 

viscosity, quick phase separation, and high and tailored extraction efficiency [56]. 

In the past decade, a large number of studies regarding the phase behaviour of ternary 

systems composed of ILs + water + inorganic salts has been reported [56, 58, 61-66]. One of these 

studies showed that the influence of the inorganic ions in the liquid-liquid demixing seems to be 

well described by the Hofmeister series (ions classification based on their salting-out/-in ability) 

[67]. Generally, it is accepted that the inorganic/organic salts of high charge density lead to the 

salting-out of the IL for a second liquid and aqueous phase [67]. In addition, it was also 

demonstrated that IL-based ATPS can be formed either with carbohydrates, polymers or amino 

acids [56]. Despite the determination of the ternary phase diagrams of IL-based ATPS, some 

researchers evaluated the potential of these systems for the extraction of the most distinct 

added-value compounds and/or biomolecules [56]. The extractive potential of biomolecules using 

IL-based ATPS was already shown for testosterone and epitestosterone [63], alkaloids [68], 

antibiotics [64], amino acids [61, 62], proteins [69], aromatic and phenolic compounds [70, 71], 

among others. In some of these works it was possible to demonstrate that a proper choice of the 

IL and salting-out agent could lead to the complete extraction of the target solute and 

concentration factors up to 100 times [68, 72]. 

ATPS were mostly studied at a laboratory scale, but their scale-up was already confirmed 

with a number of proteins being already purified by this process at an industrial level [57]. 

 

 
  



 

 

 

2. Extraction of dyes using 
IL-based ATPS 
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2.1. Introduction 

Based on the tailoring ability of ILs, either for the solvation of a wide array of compounds or 

to extract the most diverse biomolecules from aqueous media [73], in this work, IL-based ATPS 

were studied to extract and remove dyes typically discharged by the textile industry foreseeing 

their potential application in the treatment of aqueous effluents. Recent investigations reported 

the use of ILs in the extraction of dyes from water-rich phases [3, 18-20, 74-76]. Nevertheless, in 

these studies, hydrophobic ILs, i.e. non water-miscible ILs at temperatures close to room 

temperature, were employed [3, 18-20, 74-76]. Furthermore, most of the investigated 

hydrophobic ILs contain fluorinated ions which are environmentally less benign and some of them 

even tend to be unstable in aqueous media (leading to the release of fluoridic acid [77]). 

Fluorinated ILs also tend to be more expensive than halogen-based counterparts. The toxicity of 

ILs mainly depends on their hydrophobicity and hydrophilic ILs are recognized as more 

environmentally friendly compounds than the hydrophobic ones [78]. Thus, IL-based ATPS or 

aqueous systems composed of hydrophilic ILs should constitute a “greener” and more benign 

option since they are also mainly composed of water (ca. 40-50 wt % in the overall system) [56]. 

On the other hand, IL-based ATPS can lead to complete extractions and high concentration factors 

of a variety of compounds by a proper tailoring of the IL chemical structure and modification of 

the salting-out agent [56, 68, 72].  

To assess the potential of IL-based ATPS to extract/remove textile dyes from aqueous 

effluents, different ATPS composed of several ILs and two distinct salts were investigated. The 

selected combinations of IL/salt allow the evaluation of the influence of the IL structural features, 

the nature and salting-out ability of the salt employed and the effect of the pH of the aqueous 

medium through the extraction performance of the studied ATPS. The partition coefficients and 

extraction efficiencies of three current textile dyes, sudan III, indigo blue and chloranilic acid 

(Figure 2.1) for the IL-rich phase were experimentally determined at 298 K. The main 

physicochemical properties of the dyes investigated are listed in Table 2.1. 
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Figure 2.1. Chemical structures of the dyes studied: (i) Indigo blue; (ii) chloranilic acid and (iii) sudan III. 

 

Table 2.1. Thermophysical properties of the investigated dyes [79]. 

  Chloranilic Acid Indigo Blue Sudan III 

Molecular weight (g·mol-1) 208.98 262.26  352.39 

Solubility in water at 298 K Moderate Insoluble Insoluble 

Log(KOW) 0.76 2.65 7.74 

pKa1 /pKa2  at 298 K 5.22/9.41 8.18/8.44 0.22/11.34 

 

2.2. Experimental section 

2.2.1. Chemicals 

The ILs studied in this work were: 1-ethyl-3-methylimidazolium trifluoromethanesulfonate 

(triflate), [C2mim][CF3SO3] (purity of 99 wt %); 1-butyl-3-methylimidazolium 

trifluoromethanesulfonate (triflate), [C4mim][CF3SO3] (purity of 99 wt %); 1-butyl-3-

methylimidazolium tosylate, [C4mim][Tos] (purity of 98 wt %); 1-butyl-3-methylimidazolium 

dicyanamide, [C4mim][N(CN)2] (purity > 98 wt %); tetrabutylphosphonium bromide, [P4444]Br 

(purity of 95 wt %); tributylmethylphosphonium methylsulfate, [P4441][CH3SO4] (purity of 96-98 wt 

%); tri(isobutyl)methylphosphonium tosylate, [Pi(444)1][Tos] (purity of 98 wt %); and 

tetrabutylphosphonium chloride, [P4444]Cl (purity of 97 wt %). The chemical structures of the 

investigated ILs are depicted in Figure 2.2. The phosphonium-based ILs were kindly supplied by 

Cytec Industries Inc., whereas imidazolium-based ILs were purchased from Iolitec. Before use, all 
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ILs were purified and dried for a minimum of 24 h, under constant agitation, at moderate 

temperature (≈ 353 K) and under vacuum (to reduce their volatile impurities to negligible values). 

After this step, the purity of each IL was also confirmed by 1H and 13C NMR spectra and found to 

be in accordance with the purity levels given by the suppliers. 

 

 

Figure 2.2. Chemical structures of the ILs investigated: (i) [C2mim][CF3SO3]; (ii) [C4mim][CF3SO3]; (iii) 

[C4mim][Tos]; (iv) [C4mim][N(CN)2]; (v) [P4444]Br; (vi) [P4441][CH3SO4]; (vii) [Pi(444)1][Tos] and (viii) [P4444]Cl. 

 

The salts used were the inorganic salt aluminium sulphate, Al2(SO4)3 (≥ 98.0 wt % pure), and 

the organic salt potassium citrate (tribasic monohydrated), K3C6H5O7·H2O (≥ 99 wt % pure), 

acquired from Himedia and from Sigma–Aldrich, respectively.  

The water employed was ultra-pure water, double distilled, passed by a reverse osmosis 

system and further treated with a Milli-Q plus 185 water purification equipment. 

The dyes used were sudan III and chloranilic acid (> 99 wt % pure), both from Merck, and 

indigo blue (> 95 wt % pure) acquired from Sigma-Aldrich. 
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2.2.2. Experimental procedure 

2.2.2.1. Phase diagrams and tie-lines (TLs) 

Some of the ATPS used here for the extraction studies were prepared based  on compositions 

falling within the biphasic region and assessed from the respective ternary phase diagrams 

already reported in the literature [80, 81]. Nonetheless, novel ternary phase diagrams were also 

determined in this work to expand the study on the ILs and salts influence on the extraction 

efficiencies of the three dyes. The ILs investigated for the creation of ATPS comprise imidazolium- 

and phosphonium-based compounds whereas the salts used include an inorganic and an organic 

salt, Al2(SO4)3 and K3C6H5O7, respectively. The novel ternary phase diagrams (IL + salt + water) 

were determined at 298 K and atmospheric pressure with the organic salt for the following ILs: 

[C2mim][CF3SO3], [C4mim][Tos], [P4444]Br, [P4441][CH3SO4] and [Pi(444)1][Tos].  

The binodal curves of the ternary phase diagrams were determined through the cloud point 

titration method at (298 ± 1) K and atmospheric pressure [82, 83]. Aqueous solutions of K3C6H5O7 

and aqueous solutions of the different hydrophilic ILs at variable concentrations were prepared 

gravimetrically, and used for the determination of the binodal curves. Drop-wise addition of the 

aqueous organic salt solution to each IL aqueous solution, or vice-versa, was carried out until the 

detection of a cloudy solution (biphasic region), followed by the drop-wise addition of ultra-pure 

water until the detection of a clear and limpid solution (monophasic region). The ternary system 

compositions were determined by the weight quantification of all components added within  

 ± 10-4 g (using an analytical balance, Mettler Toledo Excellence XS205 DualRange).  

The tie-lines (TLs), which allow the inspection on the coexisting phases’ compositions, were 

determined by a gravimetric method originally described by Merchuk et al. [84]. In this method, a 

mixture at the biphasic region was gravimetrically prepared (IL + salt + water) within ± 10-4 g, 

vigorously stirred, and left for at least 12 h at (298 ± 1) K to reach the complete separation and 

equilibration of the coexisting phases. After separation, both top and bottom phases were 

weighed. The experimental binodal curves were fitted using Equation 1 [84], 

 

          (          )  (        )       (1) 

 

where      and        are the IL and salt weight fractions percentages, respectively, and  ,   and 

  are fitted constants obtained by least-squares regression.  

Each individual TL was determined by a weight balance approach through the relationship 

between the top weight phase composition and the overall system composition. For the 
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IL-rich 
phase 

Salt-rich 
phase 

determination of TLs the following system of four equations (Equations 2 to 5) was used to 

estimate (      ,         ,          and           ) [84]: 
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where the subscripts   ,      designate the top and  bottom phases, respectively, and   is the 

initial mixture composition. The parameter α is the ratio between the top weight and the total 

weight of the mixture. The solution of this system provides the concentration (wt %) of the IL and 

salt in the top and bottom phases, and thus the, TLs can be easily represented. 

For the calculation of the tie-line lengths (TLLs) Equation 6 was applied.  
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2.2.2.2. pH measurements 

The pH values (± 0.02) of both the IL-rich and salt-rich aqueous phases were measured at 

(298 ± 1) K using a Mettler Toledo S47 SevenMultiTM dual meter pH/conductivity equipment. 

 

2.2.2.3. Partition coefficients and extraction efficiencies of the dyes 

The ternary mixtures compositions used in the partitioning experiments were chosen based 

on the phase diagrams determined before or based on literature data 

[80, 81]. A ternary mixture with a common composition, and within the 

biphasic region, was prepared with 10 wt % of salt, 45 wt % of IL and  

45 wt % of water (Figure 2.3). Only for the system composed of 

[P4441][CH3SO4] and the citrate-based salt a different composition  

(19 wt % of salt, 35 wt % of IL and 46 wt % of water) was used due to the 

smaller biphasic region obtained with this IL. In each system, a small 

amount of dye, ≈ 0.30 mg, was added to glass tubes containing the 

(4) 

(5) 

Figure 2.3. Chloranilic 
acid extraction with an 

ATPS formed by IL + 
K3C6H5O7 + H2O. 
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ternary compositions with a total weight of 5 g. Each mixture was vigorously stirred and left to 

equilibrate for at least 12 h, at (298 ± 1) K, to achieve a complete dye partitioning between the 

two phases.  

In the studied ATPS, the top phase corresponds to the IL-rich aqueous phase, while the 

bottom phase is mainly composed of salt and water. The only exception was observed with the 

[C4mim][CF3SO3]-based systems [80, 81] and with the system composed of [C2mim][CF3SO3] and 

the organic salt. The higher density of the fluorinated ILs is the main reason behind this inversion 

of the phases’ densities [85]. 

After a careful separation of both phases, the quantification of each dye in the two phases 

was carried by UV-spectroscopy, using a Shimadzu UV-1700, Pharma-Spec Spectrometer, at a 

wavelength of 348 nm for sudan III, 335 nm for indigo blue and 321 nm for chloranilic acid. The 

maximum wavelengths observed here are in close agreement with those reported in literature 

[86, 87]. At least three individual experiments were performed in order to determine the average 

in the partition coefficient and extraction efficiency, as well as the respective standard deviations. 

The interference of the salts and ILs with the quantification method was also ascertained and 

blank control samples were always used.  

The partition coefficient of the studied dyes,       for sudan III,     for indigo blue, and     

for chloranilic acid, are defined as the ratio of the concentration of each dye in the IL-rich to that 

in the salt-rich aqueous phase according to Equation 7, 

 

      
      

  

      
      

 

where       
   and       

     are the absorbance of each dye at the maximum wavelength, adjusted 

by the respective dilution factor, in the IL-rich and in the salt-rich aqueous phases, respectively. 

The percentage extraction efficiency of each dye,         for sudan III,       for indigo 

blue and       for chloranilic acid, is defined as the percentage ratio between the amount of 

dye in the IL-rich aqueous phase to that in the total mixture, and is defined according to Equation 

8, 
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where    and       are the weight of the IL-rich phase and the weight of the salt-rich phase, 

respectively. 

 
2.3. Results and discussion 

The development of more efficient, economic and environmentally-friendly processes to 

remove and recover dyes from wastewaters is highly important. In this work, the choice of 

Al2(SO4)3 was due to its strong salting-out aptitude [88], and its current use in water treatment 

processes [4]. However, common inorganic salts lead to environmental concerns due to their high 

charge density and formation of aqueous solutions of high ionic strength [81]. Since organic salts 

tend to be biodegradable and nontoxic [89-91] an organic salt, K3C6H5O7, was also tested. 

The new phase diagrams for the ILs [C2mim][CF3SO3], [C4mim][Tos], [P4444]Br, [P4441][CH3SO4] 

and [Pi(444)1][Tos] combined with the organic salt are illustrated in Figure 2.4. The ternary phase 

diagrams previously reported for [P4444]Cl, [C4mim][CF3SO3] and [C4mim][N(CN)2] with K3C6H5O7 

[81] are also included for comparison purposes. In addition, the phase diagrams for the salt 

Al2(SO4)3 [80] are also shown in Figure 2.4. The detailed experimental weight fraction data of each 

phase diagram are presented in Appendix A (Table A.1.1. to Table A.1.4).  

From the analysis of Figure 2.4, it is visible that the solubility curves show a strong 

dependency on the IL chemical nature. The solubility curves give the minimum weight fraction 

composition to form a specific ATPS and separate the monophasic from the biphasic region. The 

larger the monophasic region the higher is the amount of IL and/or salt needed to induce the 

ATPS formation. From the gathered data, for a fixed concentration of 10 wt % of salt, the 

tendency of the ILs to form ATPS by the addition of Al2(SO4)3 follows the order: [P4444]Br > 

[C4mim][CF3SO3] > [P4444]Cl ≈ [P4441][CH3SO4] > [Pi(444)1][Tos] > [C4mim][N(CN)2] > [C2mim][CF3SO3] ≈ 

[C4mim][Tos]. At the same concentration of the organic salt, the ability of the ILs to undergo 

liquid-liquid demixing follows the rank: [C4mim][CF3SO3] > [P4444]Br > [C4mim][N(CN)2] > [P4444]Cl ≈ 

[Pi(444)1][Tos] > [C2mim][CF3SO3] ≈ [C4mim][Tos]. Albeit small differences in the ranking order of the 

ILs are observed it seems that, in general, ILs tend to closely follow the same order for a wide 

variety of salts. These small differences can be derived from purity levels of the IL or mainly from 

pH-derived effects [85, 92].  

In general, the higher the hydrophobicity of the IL, the higher is the ability of such IL to 

undergo liquid-liquid demixing in the presence of a given salt. An increase in the cation/anion 

alkyl side chain length leads to an increase in the IL hydrophobicity and thus to a higher phase 

separation ability. This trend can be seen with the ILs pair [C2mim][CF3SO3]/[C4mim][CF3SO3]. 
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Furthermore, the four aliphatic chains present in phosphonium-based ILs also confer a higher 

hydrophobicity to the IL and a consequent higher ability for phase separation. On the other hand, 

it was already demonstrated that the ability of ILs to create ATPS is largely dependent on their 

hydrogen-bond basicity values [71]. The hydrogen-bond basicity is a measure of the ability of the 

solvent to accept a proton (or donate an electron pair) in a solute-solvent hydrogen-bond. From 

the data presented in Figure 2.4 (the respective phase diagrams in molality units are presented in 

Appendix B in Figure B.1.1) it can be seen that a decrease in the hydrogen-bond basicity of the IL 

anion promotes the formation of ATPS, and in agreement with previous literature data [71]. 

Therefore the triflate-based ILs which present a lower ability to hydrogen-bond with water are 

more prone to be salted-out by conventional salts in aqueous media. 

 

Figure 2.4. Ternary phase diagrams for systems composed of IL + salt + water at 298 K and atmospheric 

pressure: (×) [C2mim][CF3SO3], (–) [C4mim][CF3SO3], () [C4mim][N(CN)2], (○) [C4mim][Tos], () [P4444]Cl, 

(▲) [P4444]Br, () [P4441][CH3SO4] and () [Pi(444)1][Tos]. 
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For the studied systems, the experimental binodal data were further fitted by the empirical 

relationship described by Equation 1 [84]. The regression parameters were estimated by least-

squares regression, and their values and corresponding standard deviations (σ) are provided in 

Table 2.2. In general, good correlation coefficients were obtained for all systems, indicating that 

these fittings can be used to predict data in a given region of the phase diagram where no 

experimental results are available. The experimental TLs, along with their respective length (TLL), 

are reported in Tables 2.3 and 2.4, for the citrate- and sulphate-based systems, respectively, as 

well as the initial composition of each system used for the extraction studies and respective pH 

values. 

 

Table 2.2. Correlation parameters used to describe the experimental binodal data by Equation 1. 

IL + K3C6H5O7 + water A ± σ B ± σ 105(C ± σ) R2 

[P4444]Br 108.6 ± 2.0 -0.442 ± 0.008 13.5 ± 0.46 0.9987 

[P4441][CH3SO4] 480.0 ± 73.3 -0.733 ± 0.039 1.99 ± 0.02 0.9993 

[Pi(444)1][Tos] 223.7 ± 8.3 -0.550 ± 0.013 15.0 ± 0.40 0.9982 

[C2mim][CF3SO3] 207.6 ± 8.7 -0.522 ± 0.015 2.07 ± 0.29 0.9980 

[C4mim][Tos] 119.8 ± 0.6 -0.330 ± 0.002 5.55 ± 0.04 0.9994 

 

Table 2.3. Experimental data for TLs and TLLs of IL + K3C6H5O7 ATPS, initial mixture compositions ([IL]M and 

[salt]M), and pH values of the coexisting phases. 

IL 
Weight fraction composition / wt % 

TLL 
[IL]IL [Salt]IL pHIL [IL]M [Salt]M [IL]Salt [Salt]Salt pHSalt 

[P4444]Cl 52.07 5.95 8.19 44.56 10.16 6.86 31.31 7.87 51.83 

[P4444]Br 84.16 0.33 7.44 44.69 10.48 4.19 20.90 7.01 82.57 

[P4441][CH3SO4] 60.26 7.94 7.01 34.71 19.01 3.75 32.42 6.85 61.59 

[Pi(444)1][Tos] 58.55 5.69 5.86 44.96 10.08 1.91 23.97 5.85 59.51 

[C2mim][CF3SO3] 57.10 6.07 7.11 44.73 10.03 20.29 17.87 6.87 38.65 

[C4mim][CF3SO3] 81.75 1.28 7.30 44.51 10.56 20.52 4.48 7.16 79.63 

[C4mim][N(CN)2] 63.19 2.18 7.28 44.47 10.43 2.23 29.05 7.10 66.62 

[C4mim][Tos] 55.78 5.26 8.24 44.75 9.94 9.96 24.78 7.92 49.81 
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Table 2.4. Experimental data for TLs and TLLs of IL + Al2(SO4)3 ATPS, initial mixture compositions ([IL]M and 

[Salt]M), and pH values of the coexisting phases.  

IL 
Weight fraction composition / wt % 

TLL 
[IL]IL [Salt]IL pHIL [IL]M [Salt]M [IL]Salt [Salt]Salt pHSalt 

[P4444]Cl 55.44 2.9 1.41 44.85 10.00 1.01 39.42 1.30 65.55 

[P4444]Br 63.40 1.69 1.41 44.94 9.97 1.37 29.51 1.26 67.98 

[P4441][CH3SO4] 58.34 2.21 1.49 44.95 9.97 2.81 34.38 1.35 64.18 

[Pi(444)1][Tos] 56.15 3.53 1.42 45.16 9.93 0.10 36.17 1.385 64.86 

[C2mim][CF3SO3] 56.80 2.56 1.93 44.96 9.96 6.26 34.19 1.76 59.62 

[C4mim][CF3SO3] 73.51 0.47 1.95 44.97 9.96 4.49 23.43 1.90 72.74 

[C4mim][N(CN)2] 58.66 0.69 4.76 45.09 9.94 40.04 0.95 4.65 69.85 

[C4mim][Tos] 53.57 4.84 3.16 45.05 10.63 0.82 40.67 3.00 63.77 

 

After the complete characterization of the studied ATPS by the determination of their phase 

diagrams, TLs and TLLs, they were further evaluated in their ability to extract textile dyes. Figure 

2.5 to Figure 2.7 depict the results obtained for the partition coefficients of the three dyes in the 

several IL-based ATPS at 298 K. It should be noted that when K equals ∞ it means that the 

complete extraction was reached (no detection of dye in the salt-rich phase). 

 

 

Figure 2.5. Partition coefficients of choranilic acid in the studied ATPS at 298 K.  
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Figure 2.6. Partition coefficients of indigo blue in the studied ATPS at 298 K. 

 

 

Figure 2.7. Partition coefficients of sudan III in the studied ATPS at 298 K. 

 

Outstanding results were obtained for sudan III and indigo blue with the complete extraction 

of the dyes for the IL-rich phase either by using the organic or the inorganic salt. Only chloranilic 

acid displays a partitioning trend more dependent on the IL nature with partition coefficient 

values ranging between 0.89 to the complete extraction, for the organic salt, and from 2.17 to the 

complete extraction, with the inorganic salt. Besides the salting-out ability of the two salts, this 

behaviour is also a consequence of the pH of the aqueous media. The pH values of both phases in 

each ATPS are given in Tables 2.3 and 2.4. The pH values of the systems composed of IL + 

K3C6H5O7 + H2O are in the neutral/alkaline region (pH ≈ 6 - 8) whereas the systems composed of IL 

+ Al2(SO4)3  + H2O are more acidic (pH ≈ 1 - 5). The main differences observed in the pH values of 

the aqueous solutions are a direct consequence of the speciation of the salts investigated. At pH 
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values ranging from 1 to 8, the indigo blue and sudan III are predominantly in a non-charged form 

- the respective dissociation curves are shown in Appendix B (Figure B.1.2, B.1.3 and B.1.4). 

However, the negatively charged form of chloranilic acid occurs at lower pH values (pKa1 = 5.22) 

[79]. Thus, chloranilic acid is the most affected dye by the pH variations and is negatively charged 

in the systems composed of the organic salt. This dye speciation can explain the lower partition 

coefficients observed with chloranilic acid for the IL-rich phase with the ATPS based on potassium 

citrate. In fact, and as previously confirmed with other molecules, charged species tend to migrate 

to less hydrophobic and more ionic and hydrated rich phases [38, 93]. However, lower partition 

coefficients for chloranilic acid were also observed in the aluminium-based ATPS where the pH 

values are below the dye pKa1. Therefore, besides the pH effect, the IL chemical structure is also 

playing a fundamental role. In general, the more hydrophobic phosphonium-based ILs lead to 

higher partition coefficients of chloranilic acid when compared with the imidazolium-based 

counterparts. This trend is a main consequence of the low affinity of the organic and more 

hydrophobic dyes for water and their preferential partitioning to organic-rich phases. The 

reported log(KOW) (octanol-water partition coefficient) of chloranilic acid, indigo blue and sudan III 

are 0.76 [79], 2.65 [79] and 7.47 [79], respectively. Thus, the lower partition coefficient obtained 

with chloranilic acid seems to be further justified. 

Amongst the studied ILs the phosphonium-based ILs are in general more efficient in the 

extraction/removal of textile dyes from aqueous media. Indeed, the imidazolium-based ILs are 

not able to extract indigo blue - the reason why the respective data are not presented in Figure 

2.6. With the imidazolium-based ATPS it was always observed the precipitated dye at the 

interface, while phosphonium-based ILs completely remove and dissolve the dye from the 

opposite saline aqueous phase.  This pattern reveals that indigo blue cannot be dissolved by any 

of the aqueous phases of the imidazolium-based systems. Nevertheless, it should be highlighted 

that this precipitation pattern can also be seen as treatment method itself for the removal of dyes 

from aqueous media and as previously attempted by other authors [94]. 

It should be remarked that both salts are strong salting-out agents according to the 

Hofmeister series (high-charge density anions with an improved ability to create hydration 

complexes) [47] and are able to further induce the partitioning of the dyes to the IL-rich phase. 

Depending on the purpose and specific application either an inorganic salt used in water-

treatment processes or a biodegradable and less toxic organic salt can be chosen.  

For an easier interpretation of the partitioning data and to ascertain on the potential of the 

investigated ATPS for scale-up, the extraction efficiencies of the three dyes in the investigated 
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systems are depicted in Figure 2.8 to Figure 2.10. It should be noted that a high partition 

coefficient does not necessarily corresponds to high extraction efficiency, or vice-versa, since the 

first is dependent on the volume/weight of the coexisting phases. The percentage extraction 

efficiencies (EE%) are defined as the percentage ratio between the amount of dye in the ionic-

liquid-rich phase to that in the total mixture. 

The extraction efficiencies of the three dyes, in all ATPS investigated, are always higher than 

50 %. Moreover, in most of the systems evaluated, the extraction efficiencies reach 100 % 

(complete extraction in a single-step procedure). 

 

 

Figure 2.8. Percentage extraction efficiencies of chloranilic acid, EECA%, in different ATPS at 298 K. 

 

 

Figure 2.9. Percentage extraction efficiencies of indigo blue, EEIB%, in different ATPS at 298 K. 
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Figure 2.10. Percentage extraction efficiencies of sudan III, EEsud%, in different ATPS at 298 K. 

 

To the best of our knowledge, we report here, for the first time, the remarkable ability of IL-

based ATPS to extract textile dyes in a single-step procedure with extraction efficiencies up to 100 
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performance in the extraction of textile dyes, while being more environmentally friendly, and 

should be considered as a promising route for wastewater treatment processes.  

Finally, the use of phosphonium-based ILs to create ATPS aiming at extracting dyes from 

aqueous media is recommended since they allow higher extraction efficiencies than the 

imidazolium-based compounds. Figure 2.11 depicts one example of the visual identification of the 

complete extraction behaviour observed with the studied systems. Most studies comprising IL-

based ATPS have been focused on imidazolium fluids [56]. Nevertheless, phosphonium-based ILs 

display additional advantages over the imidazolium-based counterparts: they are less expensive 

and thermally more stable [95, 96]. Phosphonium-based ILs are being industrially produced by 

Cytec, are available in a multi-ton scale and have been used in industrial processes [95, 96]. In 

addition, and unlike most ILs, phosphonium-based ILs are less dense than water facilitating 

therefore the use of conventional units designed for systems that require the aqueous phase 

decantation [97, 98]. Based on the results demonstrated here and on the additional 

phosphonium-based ILs advantages, they are particularly recommended for the 

extraction/removal of textile dyes from wastewaters.  

 

 

Figure 2.11. Extraction of (CA) choranilic acid, (IB) indigo blue and (Sud) sudan III using ATPS composed of 

different ILs and the salt potassium citrate at 298 K. 
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2.4. Conclusions 

In this work, the extraction of three textile dyes (chloranilic acid, sudan III and indigo blue) 

from aqueous media using IL-based ATPS was investigated. Besides the IL and salt effects, a slight 

pH-dependent effect on the partitioning behaviour, in particular for chloranilic acid, was also 

observed. Higher extraction efficiencies are reached at low pH values due to the predominance of 

non-charged dyes. In general, phosphonium-based ATPS lead to higher partition coefficients and 

extraction efficiencies when compared with imidazolium-based compounds. Extraction 

efficiencies up to 100 %, i.e. the complete removal of dyes from aqueous solutions, were obtained 

in a single-step procedure by a proper choice of the IL and salt nature. These results suggest that 

IL-based ATPS could be developed into alternative processes for the treatment of wastewaters 

contaminated with textile dyes.  

  



 

 

 

3. Selective separation of dyes 
using IL-salt reversible ATPS 
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3.1. Introduction 

Recently, a large interest has been devoted to the exploitation of less usual dynamic and 

reversible biphasic systems constituted by ILs [99]. More specifically, it was already demonstrated 

that mixtures involving ILs and other solvents can be adjusted between the homogeneous regime 

and a two-phase system either by a temperature-driven phenomenon or by adding CO2/N2 [100]. 

Some IL/solvent mixtures display an upper critical solution temperature (UCST) [18, 94, 101-106] 

whereas others present a lower critical solution temperature (LCST) [100, 107-114]. These 

temperature-dependent phase transitions have shown to be advantageous in the selective 

separation of proteins [113] and metals [111]. However, some UCST and LCST in systems involving 

ILs only occur at temperatures well above the room temperature and a high energy input is 

required to trigger their reversibility. Moreover, these systems are usually composed of an IL-rich 

phase (typically with hydrophobic characteristics) and a molecular solvent-rich phase (usually 

water [100, 101, 104-106, 108-120], alcohols [94, 102, 103, 116] or hydrocarbons [18]). On the 

other hand, reversible liquid-liquid systems have also been achieved with molecular solvents that 

react with CO2 forming salts and/or ILs [121-125]. These systems have been used in the separation 

of aliphatic and aromatic amines [124, 125]. However, these reversible systems require the 

addition of high-cost gases and the use of specific equipment that can be seen as their major 

disadvantages [121-125]. 

Actually, the research in liquid–liquid extractions using ILs has been focused on two different 

approaches: the direct use of hydrophobic ILs and non-miscible aqueous or organic solvents (and 

where the reversible temperature- and CO2/N2-dependent systems fall within) and the use of 

ATPS composed of ILs and organic/inorganic salts [56]. Besides all the advantages previously 

mentioned regarding the high performance of IL-based ATPS, their reversible behaviour was not 

hitherto attempted. Therefore, the major goal of this work is to show, for the first time, the 

reversibility behaviour of IL-based ATPS triggered by a pH-dependent 

phenomenon and their potential application in the selective separation of 

textile dyes, more specifically, sudan III and pigment blue 27 (PB27). In 

Figure 3.1 the chemical structure of PB27 is presented. Its main 

physicochemical properties are presented in Table 3.1. 

 

  

Figure 3.1. Chemical 

structure of PB27. 
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Table 3.1. Physicochemical properties of PB27 [79]. 

Molecular weight 306.89 g·mol-1 

Solubility in water at 298 K 10 mg·cm-3 

Log(KOW) -0.26 
 

pKa at 298 K --- 
 

 

3.2. Experimental section 

3.2.1. Chemicals 

The ATPS studied in this work were established by using the organic salt potassium citrate 

(tribasic monohydrated), K3C6H5O7·H2O (≥ 99 wt % pure), purchased from Sigma-Aldrich, 

monohydrate citric acid, C6H8O7·H2O (100 wt % pure) from Fisher Scientific, and potassium 

hydroxide (100 wt % pure) from Pronolab. The ILs studied were: 1-butyl-3-methylimidazolium 

chloride, [C4mim]Cl (99 wt %); 1-butyl-3-methylpyridinium chloride, [C4mpy]Cl (> 98 wt %); 1-

butyl-1-methylpiperidinium chloride, [C4mpip]Cl (99 wt %); tetrabutylphosphonium chloride, 

[P4444]Cl (98 wt %); 1-butyl-3-methylimidazolium bromide, [C4mim]Br (99 wt %); 1-butyl-2,3-

dimethylimidazolium chloride, [C4C1mim]Cl (98 wt %). The chemical structures of the investigated 

ILs are depicted in Figure 3.2. All imidazolium-, pyridinium-, and pyrrolidinium-based ILs were 

purchased from Iolitec. The [P4444]Cl was kindly supplied by Cytec Industries Inc. Before use all the 

ILs were dried for a minimum of 24h, at moderate temperature (353 K) and vacuum under 

constant agitation. After this procedure, the purity of each IL was further confirmed by 1H and 13C 

NMR spectra. 

The water used was ultra-pure water, double distilled, passed by a reverse osmosis system 

and further treated with a Milli-Q plus 185 water purification apparatus. 

For the extraction of dyes it was used sudan III from Merck, and PB27 acquired from Daicolor.  
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Figure 3.2. Chemical structures of the ILs used to form ATPS: (i) [C4mim]Br, (ii) [C4mim]Cl, (iii) [C4mpy]Cl, (iv) 

[C4C1mim]Cl, (v) [C4mpip]Cl and (vi) [P4444]Cl. 

 

3.2.2. Experimental procedure 

3.2.2.1. Phase diagrams and TLs 

New phase diagrams for the ILs at several pH values, namely [C4C1mim]Cl in the range from 

pH 9 to 7, [C4mpip]Cl from pH 8 to 6, [C4mpyp]Cl from pH 8 to 6, [C4mim]Cl at pH 8, [P4444]Cl at pH 

values of 8, 6 and 5, and [C4mim]Br from pH 8 to 5 were determined in this work. Other phase 

diagrams were already reported and were taken from literature [81, 89], such as [C4mpip]Cl at pH 

9, [C4mpyr]Cl at pH 9, [C4mim]Cl at pH 9 and 7, [P4444]Cl at pH 9 and 7, and [C4mim]Br at pH 9. 

Nevertheless, the results attained in this work were compared with literature data [81, 89] and 

are in close agreement. 

The ternary phase diagrams were determined for each of the water-soluble IL, water and 

K3C6H5O7 or K3C6H5O7/C6H8O7 mixtures. The latter mixture was used in different molar ratios as 

buffer solutions to maintain the pH of the overall ATPS at the desired value. The experimental 

procedure adopted was similar to the one described in Section 2.2.2. The ternary phase diagrams 

were determined through the cloud point titration method [81, 83] at (298 ± 1) K and atmospheric 

pressure, using aqueous solutions of salt at around 50 wt % and aqueous solutions of the different 

hydrophilic ILs (with concentrations ranging from 60 wt % to 90 wt %). The ternary system 

compositions were determined by weight quantification within ± 10−4 g.  

The TLs were determined by the gravimetric method described by Merchuk et al. [84] and 

presented in Section 2.2.2.  
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The pH of both IL and organic salt aqueous phases was measured at 298 K using a Mettler 

Toledo S47 SevenMultiTM dual meter pH/conductivity equipment within ± 0.02. 

 

3.2.2.2. pH-triggered reversibility experiments 

Aiming at studying the possibility of moving from monophasic to biphasic regimes in IL-based 

ATPS, by a proper tailoring of the pH the aqueous media, an initial ternary mixture region was 

chosen based on the phase diagrams determined before. A common ternary mixture, within the 

biphasic region, was prepared with K3C6H5O7 (35 wt %) + IL (45 wt %) + water (45 wt %) and 

allowed for the phases separation for at least 3 h. The only exception was [C4mim]Br (32 wt % of 

salt and 35 wt % of IL) because with this IL the initial mixture point falls within the biphasic region 

for all the studied pH values. At the initial mixture compositions the pH values of the aqueous 

media is circa to 9. In order to move to the monophasic regime, an aqueous solution of citric acid 

at 50 wt % was drop wise added under constant agitation until the mixture became homogeneous 

(monophasic). Then, an aqueous solution of potassium hydroxide at 50 wt % was added, under 

agitation, to attain the initial pH value of ≈ 9. It should be remarked that the pH of the aqueous 

solutions was experimentally measured in all of the addition steps. 

 

3.2.2.3. Partition coefficients and extraction efficiencies of the dyes 

The ternary mixtures compositions used in the partitioning experiments were the same used 

in the study of the pH-triggered reversibility studies. In each system, a small amount of sudan III 

and PB27 (≈ 0.30 mg of each dye) was added to glass tubes containing the ternary compositions 

with a total weight of 5 g. Each mixture was vigorously stirred and left to equilibrate for at least  

3 h, at (298 ± 1) K, to achieve the complete dye partitioning between the two phases. 

In the studied ATPS, the top phase corresponds to the IL-rich aqueous phase, while the 

bottom phase is mainly composed of salt.  

After a careful separation of both phases, the quantification of the dyes in each phase was 

carried by UV-spectroscopy, using a Shimadzu UV-1700, Pharma-Spec Spectrometer, at a 

wavelength of 348 nm for sudam III and 636 nm for PB27. At least three individual samples of 

each phase were quantified in order to determine the average in the partition coefficient and 

extraction efficiency and the respective standard deviations. The interferences of the salts and ILs 

with the analytical method were investigated and blank control samples were always used.   

The percentage extraction efficiency of sudan III for the IL-rich phase,       , was 

determined according to Equation 8 described in Section 2.2.2. On the other hand, the percentage 
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extraction efficiency of PB27,          is defined as the percentage ratio between the amount of 

pigment in the salt-rich aqueous phase to that in the total mixture, and according to Equation 9, 

 

      
      

          

      
              

          

 

 

where     and       are the weight of the IL-rich phase and the weight of the salt-rich phase, 

respectively. 

 
3.3. Results and discussion 

Aiming at studying the possibility of moving from monophasic to biphasic regimes in IL-based 

ATPS, by a proper tailoring of the pH the aqueous media, the liquid-liquid ternary phase diagrams 

were determined for different hydrophilic ILs, as well as their reversibility behaviour, namely 

[C4mim]Cl, [C4C1mim]Cl, [C4mpip]Cl, [C4mpy]Cl, [C4mim]Br and [P4444]Cl using combinations of 

potassium citrate (K3C6H5O7) and citric acid (C6H8O7). 

The ternary phase diagrams for the systems composed of water + organic salt + ILs at 

different pH values, are illustrated in Figure 3.3 (the respective phase diagrams in molality units 

are presented in Appendix B in Figure B.2.1). The experimental weight fraction data of each phase 

diagram are depicted in Appendix A (Table A.2.1. to Table A.1.8). It should be remarked that the 

phase diagrams at pH ≈ 8 and pH ≈ 6 with [C4mim]Br have already been reported by Zafarani-

Moattar and Hamzehzadeh [89], and the results obtained here show a good agreement with 

literature data [89]. The respective comparisons are provided in Appendix B (Figure B.1.2). For the 

studied systems at pH 9, the experimental binodal data were further fitted by the empirical 

relationship described by Equation 1 and their values and corresponding standard deviations (σ) 

are provided in Table 3.2. The experimental binodal data obtained lead to improved correlation 

coefficients indicating that these fittings can be used to predict data in a given region of the phase 

diagram where no experimental results are available. The experimental TLs, along with their 

respective length (TLL), are reported in Table 3.3, as well as the composition of each system used 

in the extraction and respective pH values. 

 

  

(9) 
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Figure 3.3. Evaluation of the pH effect in ternary phase diagrams composed of IL + water + K3C6H5O7/ 

C6H8O7 at (▲) pH ≈ 9, () pH ≈ 8, (♦) pH ≈ 7, (◊) pH ≈ 6 and (▬) pH ≈ 5. The ILs are: (a) [C4mim]Cl, (b) 

[C4C1mim]Cl, (c) [C4mpip]Cl, (d) [C4mpy]Cl, (e) [C4mim]Br and (f) [P4444]Cl. Some phase diagrams have been 

reported by other authors and are included here for comparison purposes [81, 89, 126].  
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Table 3.2. Correlation parameters obtained from the fitting of the experimental binodal data by Equation 1. 

IL A ± σ B ± σ 105 (C ± σ) R2 

[C4C1mim]Cl 92.3 ± 0.5 -0.198 ± 0.002 0.68 ± 0.01 0.9998 

[C4mim]Cl [81] 86.0 ± 0.5 -0.180 ± 0.003 0.84 ± 0.03 0.9998 

[C4mim]Br [81] 92.4 ± 0.6 -0.228 ± 0.003 1.87 ± 0.06 0.9997 

[C4mpip]Cl [81] 87.1 ± 0.3 -0.210 ± 0.001 0.85 ± 0.01 0.9997 

[C4mpy]Cl [81] 94.3 ± 0.4 -0.232 ± 0.001 0.80 ± 0.01 0.9996 

[P4444]Cl [81] 170.0 ± 5.7 -0.484 ± 0.011 1.64 ± 0.14 0.9944 

 

Table 3.3. Weight fraction percentage (wt %) for the coexisting phases of IL + potassium citrate + H2O, and 

respective values of tie-line length (TLL) and pH values of each phase. 

IL 

Weight fraction composition / wt % 

TLL 

[IL]IL [salt]IL pHIL [IL]M [salt]M [IL]salt [salt]salt pHsalt 

[C4mim]Cl 53.04 7.13 9.32 25.25 35.03 5.77 54.58 9.30 66.98 

[C4C1mim]Cl 47.88 10.76 8.93 25.02 34.90 9.78 51.00 8.67 55.42 

[C4mpip]Cl 55.91 4.46 9.26 25.13 34.75 4.40 55.15 9.34 72.27 

[C4mpy]Cl 55.74 5.13 8.44 24.62 35.47 4.39 55.19 8.16 71.71 

[C4mim]Br 76.93 0.65 8.93 35.08 32.04 0.42 58.03 8.92 95.64 

[P4444]Cl 72.93 3.06 9.34 24.97 35.03 0.58 51.29 9.14 86.95 

 

Figure 3.4 (the respective phase diagrams in molality units are presented in Appendix B in 

Figure B.2.3) shows that ILs with a higher hydrophobicity, achieved either with longer and more 

aliphatic moieties or with anions with improved hydrogen-bond basicity [71], are capable of 

forming ATPS at lower pH values. Such examples at work can be seen with [P4444]Cl and [C4mim]Br 

that form ATPS even at a pH of 5. Furthermore, at a fixed pH, the IL ability to form ATPS follows 

the order: [P4444]Cl > [C4mim]Br > [C4mpy] Cl ≈ [C4mpip]Cl > [C4C1mim]Cl ≈ [C4mim]Cl (Figure 3.4). 

This trend follows the hydrophobic sequence of the IL cations and anions. The phosphonium-

based IL investigated is highly hydrophobic due to its four butyl chains which favour its ability to 

undergo the liquid-liquid demixing even at acidic pH. Piperidinium-based ILs are 6-sided ring 

cations and are more able to induce ATPS when compared with the smaller 5-sided rings of 

imidazolium. Furthermore, it should be noted that the substitution of the most acidic proton in 

the imidazolium ring, from [C4mim]+ to [C4C1mim]+, has no significant influence on the ILs ability to 

form ATPS. This trend was already verified and discussed by Freire et al. [127] in ATPS composed 
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of ILs and K3PO4. The effect of the anion nature on the ATPS phase behaviour was also 

investigated with ILs containing the common [C4mim]+ cation, while combined with two anions (Cl- 

and Br-). [C4mim]Br is more prone to form ATPS than [C4mim]Cl in the presence of a fixed salt, and 

which is in agreement with results with other salts [81]. 

 

  

Figure 3.4. Phases diagrams for the different ILs at fixed pH. Phase diagrams of ATPS composed of IL + water 

+ K3C6H5O7 at (a) pH ≈ 9 and ATPS composed of IL + water + K3C6H5O7/C6H8O7 at (b) pH ≈ 8, (c) pH ≈ 7 and (d) 

pH ≈ 6. The ILs used are: () [C4mim]Cl, (♦) [C4C1mim]Cl, () [C4mpip]Cl, (▲) [C4mpy]Cl, (▬) [C4mim]Br and 

() [P4444]Cl. 

 

In general, and for all ILs, there is a decrease on the ability for ATPS formation with the pH 

reduction, e.g., the higher the pH of the aqueous medium the larger is the biphasic region. These 

results are summarized in Table 3.4.  
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Table 3.4. Identification of the systems able () or not able () to form two-phase systems at different pH 

values. 

pH 9 8 7 6 5 

[C4mim]Cl      

[C4C1mim]Cl      

[C4mpip]Cl      

[C4mpy]Cl      

[C4mim]Br      

[P4444]Cl      

 

In general, the ability for ATPS formation as a function of pH is strongly related with the 

speciation behaviour or citric acid or potassium citrate. Figure B.2.4 in Appendix B shows the 

speciation curves of citric acid. Table 3.5 presents the pKa values of citric acid. At pH values below 

3.05 the non-charged citric acid is mainly present. At pH values above 4.67 and 5.39 there is the 

prevalence of the divalent and trivalent charged hydrogenocitrate and citrate anions, respectively. 

Therefore, it seems that the most hydrophobic ILs such as [C4mim]Br and [P4444]Cl are still able to 

form ATPS with a large amount of hydrogenocitrate in solution (a weaker salting-out species if 

compared with the trivalent citrate anion). 

 

Table 3.5. pKa values of citric acid at 298 K [79]. 

pKa1  pKa2   pKa3   pKa4  

3.05 4.67 5.39 13.92 

 

After the determination of the ternary phase diagrams, the understanding of the pH effect, 

and at which pH the systems do not undergo the liquid-liquid demixing, the reversible IL-based 

ATPS behaviour was further evaluated by the addition of citric acid and potassium hydroxide. 

These compounds were chosen to be able to change the pH of the aqueous medium while 

maintaining the initial ionic species in all the liquid-liquid systems. Figure 3.5 depicts the summary 

of the described reversible process, and also represents the differences in the compositions of the 

two phases before and after the addition of citric acid and KOH. The differences in the phases' 

compositions are in fact small, since a short amount of each aqueous solution (± 0.6 wt %) is 

enough to trigger the reversibility behaviour.  
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Figure 3.5. Ternary phase diagram of the systems composed of [C4mim]Cl + water + K3C6H5O7 at (●) pH ≈ 9, 

(▲) tie-line data, () initial biphasic mixture and() final biphasic mixture (after the citric acid and KOH 

addition). 

 

The pH-driven reversibility was proved with the ILs [C4mim]Cl, [C4C1mim]Cl, [C4mpip]Cl, 

[C4mpy]Cl, [C4mim]Br and [P4444]Cl. In summary, it is possible to have reversible IL-based ATPS 

playing around with the speciation behaviour of the organic salt employed. In addition, the cyclic 

reversibility was also proved with the [C4mim]Cl-based ATPS, at least for 3 times, with no 

significant changes in the phases’ composition. Moreover, this reversible scenario occurs at room 

temperature and is achieved with low cost compounds. Therefore, these novel systems can be 

envisaged as potential alternatives to the more complex reversible systems that require high 

energy inputs [100, 101, 104-106, 108-120] or the addition of high-cost gases and specific 

equipment [121-125]. Their reversible nature is a crucial advantage on liquid-liquid extractions 

and to perform selective separations as demonstrated hereinafter.  

The investigated IL-based reversible ATPS were also investigated in what concerns their 

ability for the selective separation (migration for opposite phases) of mixtures of dyes and 

pigments usually found in textile effluents, more specifically of sudan III and PB27. The mixture of 

both dyes exists in the monophasic and homogenous mixture than can be selectively separated by 

the creation of an appropriate IL-based ATPS. Figure 3.6 depicts the macroscopic appearance of 

the selective separation achieved by manipulating the pH of the system composed of [C4mim]Cl at 

298 K, whereas Figure 3.7 depicts the extraction efficiencies (EE%) of each dye in each aqueous-

rich phase. The extraction efficiencies are defined as the percentage ratio between the amount of 
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each dye in one of phases to that in the total mixture considering the weight/volume of the 

coexisting phases.  

 

  

Figure 3.6. Selective separation of sudan III and PB27 from their initial monophasic mixture using the ATPS 

composed of [C4mim]Cl. 

 

From the results illustrated in Figure 3.6, it is clear that sudan III preferentially migrates for 

the IL-rich phase while PB27 partitions for the citrate-rich phase. Indeed, this trend reflects the 

behaviour displayed by their octanol-water partition coefficients (Kow): log(Kow) of sudan III is 7.47 

and log(Kow) of PB27 is -0.26 [79].Thus, sudan III has a less-polar character and preferentially 

migrates for the more hydrophobic IL-rich phase while the pigment favourably partitions to the 

more charged and polar phase. Note that, the selective extraction with the ATPS composed of 

[C4mim]Br or [P4444]Cl was not studied because these systems only reach the monophasic at lower 

pH values, namely pH 4 and pH 3, respectively. For both situations a higher amount of acidic 

solution is required when compared with the remaining ILs becoming thus less economically 

viable.  

The extraction efficiencies and the selective extraction of sudan III and PB27 for opposite 

phases is highly dependent on the IL cation (Figure 3.7). The selective partition of both 

compounds for the opposite phases follows the order: [C4mpy]Cl < [C4mpip]Cl < [C4C1mim]Cl < 

[C4mim]Cl. Remarkably, the extraction efficiencies of sudan III and PB27 with the ATPS constituted 

by [C4mim]Cl are close to 100 % meaning that this system is completely able to separate both 

dyes into opposite aqueous phases. In addition, amongst the studied fluids, these remarkable 

selective separations are achieved with a low cost and low toxic IL [43]. 

 

pH ≈6 pH ≈7
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Figure 3.7. Percentage extraction efficiencies of sudan III and PB27, EEDye%, in the different ATPS at 298 K. 

 

 
3.4. Conclusions 

The novel evidences demonstrated here clearly confirm that low-cost and easily reversible 

ATPS composed of ILs can be achieved by the use of organic salts. For the first time, the reversible 

nature of IL-based ATPS was demonstrated. In addition, these systems have shown to be highly 

valuable and efficient for the selective separation of compounds with different hydrophobic 

nature albeit present in the same aqueous medium. Therefore, the use of the proposed reversible 

systems for use in the separation of the most diverse compounds in straightforwardly envisaged.   
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4.1. Introduction 

Over the last decade, IL-based ATPS have gained a high recognition in the separation field 

due to their high extraction efficiencies for the most diverse compounds [56]. However, some ILs 

have been classified as less “green” solvents due to their high/moderate toxicity and poorly 

biodegradable nature, and these include imidazolium-, pyridinium-, piperidinium-, pyrrolidinium-, 

and phosphonium-based cations combined with several anions, such as halogens, or more 

complex fluorinated anions [128-130]. Actually, the main reason behind the “green” nature 

associated to ILs relays on their negligible volatility; and so, atmospheric pollution is avoided 

[131]. However, either in academia or at an industrial scale there will be the loss of ILs into water 

ecosystems causing aquatic environmental concerns. In addition, and when dealing with 

conventional salt-IL-based ATPS, the high concentrations of inorganic salts typically used produce 

a great amount of highly salty water leading also to related environmental problems. In this 

context, it is important to design more environmentally friendly IL-based ATPS for the 

development of cleaner manufacturing and/or separation processes.  

An alternative scenario for the most studied and moderately toxic ILs consists on the 

synthesis and use of non-toxic and more environmentally benign ILs. Cholinium chloride (also 

known as 2-hydroxyethyltrimethyl ammonium chloride or vitamin B4), is known to be non-toxic, 

biodegradable and is a water soluble essential nutrient which supports several biological functions 

[132]. However, cholinium chloride falls within the category of common salts due to its high 

melting point (575 K). Recent advances have demonstrated the synthesis of novel cholinium-

based ILs combined with more complex and organic anions which lead to the decrease of their 

melting temperatures [133]. Most of these anions either are amino-acid-based or derived from 

carboxylic acids and present a high biodegradability pattern and low toxicity, and therefore are 

more environmentally benign [134]. 

Poly(alkylene glycols), such as polyethylene or polypropylene glycols, PEGs or PPGs, 

respectively, are widely used as phase-forming components of ATPS [135-137]. These polymers 

display high biodegradability, low toxicity, low cost, relatively low melting points, and low 

volatility [138]. These are the main advantages which have contributed for their wide interest 

[138].  

Taking into account all the benefits of cholinium-based salts and PPGs, the development of 

more environmentally friendly ATPS can be anticipated by the combination of both solutes. 

Therefore, in this work, the phase diagrams, TLs and TLLs of novel systems composed of PPG 400 

and cholinium-based ILs were determined at 298 K. These ternary phase diagrams were also 
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evaluated according to their pH-dependent behaviour by the combination of cholinium hydroxide 

and the corresponding acid of the IL anion. Finally, the extractive performance and the 

reversibility behaviour of the proposed ATPS were evaluated through their application on the 

selective extraction of textile dyes, namely sudan III, PB27 and pigment blue 29 (PB29). The 

chemical formula of PGB29 and the respective physicochemical properties are presented in  

Table 4.1, as well as, the chemical structure of PB29 is presented Figure 4.1. The physicochemical 

properties and chemical structure of sudan III and PB27 were previously presented in Table 2.1 

and Table 3.1 and Figure 2.1 and Figure 3.1. 

 

Table 4.1. Physicochemical properties of PB29 [139]. 

Chemical formula Na6(Al6Si6O24S4).2NaS3 

Molecular weight 994.54 g·mol-1 

Solubility in water at 298 K Insoluble in cold water 

 

4.2. Experimental section 

4.2.1. Chemicals 

The ILs studied in this work were cholinium ((2-hydroxyethyl)trimethylammonium) chloride, 

[Ch]Cl (99 wt % pure), from Sigma-Aldrich, and cholinium acetate, [Ch][Ac] (98 wt % pure), 

purchased from Iolitec. The following ILs were also studied and were synthetized in our lab 

according to standard protocols [140, 141], namely cholinium propionate, [Ch][Pro]; cholinium 

glycolate, [Ch][Gly]; cholinium butanoate, [Ch][But]; cholinium lactate, [Ch][Lac]; and cholinium 

hexanoate, [Ch][Hex]. It should be remarked that [Ch]Cl does not fall within the IL category due to 

its higher melting point. However, it is included in the cholinium-based ILs group in all the results 

and discussions presented thereinafter for comparison purposes.  

Before use, all the ILs were purified and dried for a minimum of 24 h at constant agitation, at 

moderate temperature (≈ 353 K) and under vacuum (to reduce their volatile impurities to 

negligible values). After this step, the purity of each IL was confirmed by 1H and 13C NMR spectra 

and found to be > 98 wt %. The polymer used was polypropylene glycol of average molecular 

weight 400 g.mol-1, PPG 400, and was supplied by Aldrich and used as received. The chemical 

structures of the investigated ILs and of PPG 400 are depicted in Figure 4.2. 

The ATPS studied at different pH values were established by using the hydrochloric acid  

(37 wt % in aqueous solution) and glycolic acid (99 wt % pure), both purchased from Sigma-

Figure 4.1. Chemical structure of 

PB29 [139]. 
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Aldrich; acetic acid (≥ 99.5 wt % pure), purchased from José Manuel Gomes dos Santos; propanoic 

acid (99 wt % pure), acquired from Merck; and butanoic acid (99 wt % pure) and lactic acid (88-92 

wt % pure), both purchased from Riedel-de-Haën. 

The water employed was ultra-pure water, double distilled, passed by a reverse osmosis 

system and further treated with a Milli-Q plus 185 water purification equipment. 

For the extraction of dyes it used sudan III from Merck, and the pigments PB27 and PB29 

acquired from Daicolor and Holliday Pigments, respectively.  

 

 

Figure 4.2. Chemical structures of the ILs and polymer investigated: (i) [Ch]Cl; (ii) [Ch][Ac]; (iii) [Ch][Pro]; (iv) 

[Ch][Gly]; (v) [Ch][But], (vi) [Ch][Lac], and (vii) PPG. 

 

4.2.2. Experimental procedure 

4.2.2.1. Phase diagrams and tie-lines 

The ternary phase diagrams (PPG 400 + IL + water) were determined at several pH values 

with the following ILs: [Ch]Cl (from pH 5 to 0), [Ch][Ac] (from pH 9 to 5), [Ch][Pro] (from pH 8 to 5), 

[Ch][Gly] (from pH 7 to 4), [Ch][But] (from pH 8 to 5), [Ch][Lac] (from pH 7 to 4). 

The ternary phase diagrams were determined for each of the water-soluble ILs, water and 

PPG. The phase diagrams at different pH values were attained using the acid which corresponds 

to the precursor of the IL anion studied. The acid was used in different molar ratios in respect to 

the IL to maintain the pH of the overall ATPS at the desired value. Note that the acid is added to 

the initial aqueous solution of each IL. The experimental procedure adopted was similar to the 



Separation of dyes with reversible aqueous biphasic systems 

 

46 

 

one described in Section 2.2.2. The ternary phase diagrams were determined through the cloud 

point titration method [81, 83] at (298 ± 1) K and atmospheric pressure. Aqueous solutions of PPG 

400 at ≈ 65 wt % and aqueous solutions of the different hydrophilic ILs at variable concentrations 

(from 60 wt % to 80 wt %) were prepared gravimetrically and used for the determination of the 

binodal curves. Drop-wise addition of each aqueous IL solution to a PPG 400 aqueous solution was 

carried out until the detection of a cloudy solution (biphasic region), followed by the drop-wise 

addition of ultra-pure water until the detection of a clear and limpid solution (monophasic 

region). Whenever necessary, the addition of the PPG solution to the IL was also carried out to 

complete the phase diagrams. The ternary system compositions were determined by weight 

quantification within ± 10−4 g. 

The TLs were determined by the gravimetric method described by Merchuk et al. [84] and 

presented in Section 2.2.2.  

The pH of both the IL- and polymer-rich aqueous phases was measured at 298 K using a 

Mettler Toledo S47 SevenMultiTM dual meter pH/conductivity equipment within ± 0.02. 

 

4.2.2.2. Extraction efficiencies of the dyes 

The ternary mixtures compositions used in the partitioning experiments were chosen based 

on the phase diagrams determined here for each PPG 400-IL-water system. A ternary mixture with 

a common composition, and within the biphasic region, was prepared with 34 wt % of PPG 400, 

13 wt % of IL and 53 wt % of water. In each system, a small amount of the two dyes, ≈ 0.30 mg of 

each, was added to glass tubes containing the ternary compositions with a total weight of 3 g. 

Each mixture was vigorously stirred and left to equilibrate for at least 3 h, at (298 ± 1) K. 

In the studied ATPS, the top phase corresponds to the PPG-rich aqueous phase while the 

bottom phase is mainly composed of IL and water.  

After a careful separation of both phases, the quantification of each dye in the two phases 

was carried by UV-Visible spectroscopy, using a Shimadzu UV-1700, Pharma-Spec Spectrometer, 

at a wavelength of 348 nm for sudan III, 636 nm for PB27 and 725 nm for PB27. At least three 

individual experiments were performed in order to determine the average in the extraction 

efficiency, as well as the respective standard deviations. The interference of the salts and ILs with 

the quantification method was also taken into account and blank control samples were always 

employed.  

The percentage extraction efficiency of sudan III for the PPG-rich phase,       , was 

determined according to Equation 10, 
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where      and     are the weight of the PPG-rich phase and the weight of the IL-rich phase, 

respectively. On the other hand, the percentage extraction efficiency of PB27,          or the 

percentage extraction efficiency of PB29,           was determined according to Equation 11. 

 

      
      

      

      
                

      

 

 

4.3. Results and discussion 

Aiming at studying the possibility of moving from monophasic to biphasic regimes in IL-based 

ATPS by a proper tailoring of the aqueous media pH, the liquid-liquid ternary phase diagrams of 

different hydrophilic ILs, namely [Ch][But], [Ch]Cl, [Ch][Pro], [Ch][Lac], [Ch][Ac] and [Ch][Gly], 

were determined making use of the corresponding acids. These compounds were chosen to be 

able to change the pH of the aqueous medium while maintaining the initial ionic species in all the 

liquid-liquid systems. In summary, the reversibility behaviour is reached by the speciation of the IL 

anion. The experimental phase diagrams at the initial pH of the various ternary systems are 

graphically presented in Figure 4.3 (the phase diagrams in molality are presented in Appendix B in 

Figure B.3.1), and their detailed experimental weight fraction data are provided in Appendix A 

(Table A.3.1. to Table A.3.7). Some phase diagrams at the initial pH of the solution, e.g. with no 

control of the pH value of the ATPS, were already reported by Li et al. [131] and the results 

attained in this work are in close agreement with literature data. 

It should be stressed that the ability of [Ch][Hex] to form liquid-liquid aqueous phases was 

also tested; however, it was not possible to detect the formation of two liquid phases with this IL.  

According to the data depicted in Figure 4.3, the ability of ILs to form a biphasic system 

follows the rank: [Ch][But] < [Ch]Cl < [Ch][Pro] < [Ch][Lac] < [Ch][Ac] < [Ch][Gly]. Considering the 

fact that all ILs share the same cation, yet combined with different anions, the phase-forming 

aptitude of these ILs is only determined by the nature of their anions. Actually, the salting-out 

aptitude of an anion is directly related to its hydration capacity [131]. Anions with higher charge 

densities have stronger hydration capacities than those with lower charge densities, resulting in 

the decrease in the number of water molecules available to hydrate the polymer in a given ATPS. 

Therefore, ILs composed of more charged anions or anions with shorter alkyl side chains are more 

(10) 

(11) 
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able to form two aqueous phases with a highly hydrophobic polymer such as PPG. This trend can 

be seen at work with the ILs comprising the anions acetate, propanoate and butanoate. Indeed, 

the longest alkyl side chain IL anion, [Ch][Hex], is not able to form ATPS with PPG 400. 

Furthermore, the addition of extra –OH groups, for instance comparing the [Ch][Ac]/[Ch][Gly] and 

[Ch][Pro]/[Ch][Lac] pairs, leads to an improved ILs performance to create ATPS. The introduction 

of –OH groups enhances the affinity of the ILs for water, and thus their hydration aptitude, 

leading to an easier separation of the polymer for the opposite phase. This trend was already 

observed [62], yet with ABS composed of imidazolium-based ILs and inorganic salts and where the 

–OH group was introduced at the longest alkyl chain of the IL cation. 

 

  

Figure 4.3. Ternary phase diagrams for systems composed of PPG 400 + IL + water at 298 K and atmospheric 

pressure. The ILs studied were: (×) [Ch][But], (○) [Ch]Cl, (▲) [Ch][Pro], () [Ch][Lac], () [Ch][Ac] and (+) 

[Ch][Gly]. 

 

For the studied systems, the experimental binodal data were further fitted by the empirical 

relationship described by Equation 1. The regression parameters were estimated by the least-

squares regression method, and their values and corresponding standard deviations (σ) are 

provided in Table 4.2. In general, good correlation coefficients were obtained for all systems. The 

experimental TLs, along with their respective length (TLL), are reported in Table 4.3 for IL-based 

systems, as well as the composition of each system used in the selective extraction of dyes (shown 

later) and respective pH values. 
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Table 4.2. Fitting parameters obtained from the description of the experimental binodal data by Equation 1. 

IL A ± σ B ± σ 106 (C ± σ) R2 

[Ch]Cl 229.5 ± 14.9 -0.679 ± 0.030 0.10 ± 6.85 0.9913 

[Ch][Ac] 222.0 ± 7.7 -0.778 ± 0.017 0.10 ± 11.4 0.9970 

[Ch][Pro] 213.8 ± 10.2 -0.688 ± 0.020 18.6 ± 10.5 0.9938 

[Ch][But] 452.9 ± 33.6 -0.840 ± 0.028 0.10 ± 11.2 0.9984 

[Ch][Gly] 261.4 ± 10.6 -0.861 ± 0.019 18.2 ± 17.7 0.9962 

[Ch][Lac] 233.4 ± 9.5 -0.747 ± 0.017 0.10 ± 9.19 0.9972 

 

Table 4.3. Weight fraction percentage (wt %) of the coexisting phases of IL + PPG 400 + H2O, and respective 

values of tie-line length (TLL), and pH values of each phase. 

IL 
Weight fraction composition / wt % 

TLL 
[PPG]PPG [IL]PPG pHPPG  [PPG]M [IL]M [PPG]IL [IL]IL pHIL 

[Ch]Cl 42.18 6.23 3.11 33.91 13.13 3.36 38.62 3.03 50.56 

[Ch][Ac] 43.79 4.35 6.72 33.99 13.14 1.39 42.40 6.70 56.97 

[Ch][Pro] 44.33 5.21 3.02 34.13 13.29 0.89 39.62 2.95 55.42 

[Ch][Gly] 46.66 4.00 5.24 33.97 13.29 0.49 37.82 5.19 57.23 

[Ch][But] 40.74 8.22 6.74 34.00 13.30 2.44 38.59 6.65 48.88 

 

Aiming at exploring the reversibility behaviour of the systems shown in Figure 4.3, the phase 

diagrams for each IL, PPG 400 and water at several pH values, achieved by the addition of the 

anion corresponding acid, were determined at 298 K. The phase diagrams at the several pH values 

are shown in Figure 4.4 (the respective phase diagrams in molality units are presented in 

Appendix B in Figure B.3.2). In addition, Table 4.4 presents the summary on the ability or non-

ability of a given IL to form ATPS at a specific pH value. 
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Figure 4.4. Evaluation of the pH effect in ternary phase diagrams composed of PPG 400 + water + IL at (♦) 

pH ≈ 9, () pH ≈ 8, () pH ≈ 7 , () pH ≈ 6, (▲) pH ≈ 5, () pH ≈ 4, (×) pH ≈ 3, (◊) pH ≈ 2, (▬) pH ≈ 1 and (○) 

pH ≈ 0. The ILs are: (a) [Ch]Cl, (b) [Ch][Ac], (c) [Ch][Gly], (d) [Ch][Lac], (e) [Ch][Pro], and (f) [Ch][But]. 

 

From the gathered results there are clear evidences that the decrease on the pH is not 

favourable for the formation of ATPS. The lower the overall pH value of the aqueous solution the 

smaller is the biphasic region of a given ATPS. The ATPS composed of [Ch]Cl is the less affected by 

a pH-driven phenomenon. This fact is a direct result of the non-speciation of the chloride anion. In 

this type of system the [Ch]Cl is always present at all pH values, although with a higher amount of 

HCl in solution which inherently means a less concentrated [Ch]Cl system. This difference in the 

pH can also have some influence on the amount of dissociated ions in aqueous media [142] and 

can justify the slightly decrease in the ability for ATPS formation with [Ch]Cl as the pH moves 

towards the acidic region. 
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Table 4.4. Identification of the systems able () or not able () to form two-phase systems at different pH 

values. 

pH 9 8 7 6 5 4 3 2 1 0 

[Ch]Cl           

[Ch][Ac]           

[Ch][Gly]     
 

     

[Ch][Lac]           

[Ch]Prop]           

[Ch][But]           

 

In general, and for all ILs studied, the ability for ATPS formation apparently is related to the 

pKa of the acid corresponding to IL anion (Table 4.5). In fact, ILs constituted by the anions [Ac]-, 

[Pro]- and [But]- are those that are only able to form ATPS up to a pH value of 5 due to their higher 

pKa values. On the other hand, ILs with [Gly]- and [Lac]- can go further and down to a pH value of 4 

since their pKa values are smaller and, therefore, there is a larger amount of ionic species at this 

low pH value. 

 

Table 4.5. pKa of acids used in this study at 298 K [79]. 

Acid pKa1  pKa2   

hydrochloric acid  --- --- 

acetic acid  4.54 --- 

propanoic acid  4.75 --- 

butanoic acid  4.91 --- 

lactic acid  14.59 3.78 

glycolic acid  14.78 3.53 

 

After the proper evaluation of the pH-triggered reversibility of IL-PPG-based ATPS by the 

proper speciation of the IL anion, the investigated IL-based ATPS were further evaluated in what 

concerns their ability for the selective separation (migration for opposite phases) of mixtures of 

dyes and pigments usually found in textile effluents, more specifically, of sudan III, PB27 and 
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PB29. In this type of systems, two selective separations were attempted, namely the sudan 

III/PB27 and sudan III/PB29 pairs.  

Figure 4.5 depicts the macroscopic appearance of the selective separation achieved with the 

system composed of [Ch][Ac], whereas Figure 4.6 and Figure 4.7 present the extraction 

efficiencies (EE%) of each dye for the IL- or PPG-rich phases.  

 

 

Figure 4.5. Selective separation of sudan III and (a) PB27 or (b) PB29 using ATPS composed of [Ch][Ac]. 

 

From the results illustrated in Figure 4.5, it is clear that sudan III preferentially migrates for 

the PPG-rich phase while PB27 or PB29 partition for the IL-rich phase. Outstandingly, this type of 

systems are able to separate two pairs of dyes (trend not accomplished with the systems reported 

in Section 3 since with PB29 it was always observed the precipitation of the pigment that was not 

able to dissolve at the salt-rich phase). In addition, suddan III now migrates for the PPG-rich phase 

whereas the inorganic pigments partition for the IL-rich phase. In the previous Section 3.3, where 

the IL-salt-based ATPS were ascertained, sudan III migrated for the IL-rich phase and the pigment 

for the salt-rich phase. The trend observed reflects the behaviour displayed by the octanol-water 

partition coefficients of each dye and as previously discussed in Section 3.3. Sudan III has a less-

polar character and preferentially migrates to the more hydrophobic phase, which is now the 

PPG-rich phase, while the inorganic pigment partitions preferentially to the more charged and 

polar phase, that in PPG-IL-based ATPS corresponds to the IL-rich phase.  

 

a) b)
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Figure 4.6. Percentage extraction efficiencies of sudan III and PB29, EEDye%, in the different ATPS at 298 K. 

 

 

Figure 4.7. Percentage extraction efficiencies of sudan III and PB27, EEDye%, in the different ATPS at 298 K. 

 

According to the data provided in Figure 4.6 and Figure 4.7, the extraction efficiencies and 

the selective extraction of sudan III and PB27/PB29 for opposite phases is highly dependent on 

the IL anion. The selective partitioning of both compounds for the opposite phases, and 

independently of the inorganic dye, follows the order: [Ch][But] <[Ch][Pro] ≈ [Ch][Ac] < [Ch]Cl. 

Remarkably, the extraction efficiencies of sudan III and PB29 are higher than 80 % (in both phases) 

for the systems composed of [Ch][Ac], [Ch][Pro] and [Ch]Cl. The ATPS composed of [Ch][Gly] gives 
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rise to the precipitation of the inorganic dye at the interface and thus no extraction efficiencies 

are presented. This is the most hydrophilic IL investigated and seems to be unable to dissolve 

PB29. However, this trend can be seen as a separation method itself since both dyes are in fact 

separated. This type of separation approach was already shown by Maroof Ali et al. [94] with the 

precipitation of methylene blue and safranine O from aqueous media using imidazolium-based ILs 

[94]. For the systems with sudan III and PB27, the selective separation and respective extraction 

efficiency for both phases are slightly lower. This can be a main result of the structural differences 

between the pigments used.  

The pH-triggered ATPS proposed here can represent a novel approach for the selective 

separation of textile dyes commonly found in wastewaters. In addition, this type of systems are 

even able to separate two pairs of dyes, namely sudan III/PB27 and sudan III/PB29. Finally, these 

selective separations were achieved with less aggressive ILs and PPG that tend to be non-toxic and 

biodegradable. 

 

4.4. Conclusions 

For the first time, the reversible nature of IL-polymer ATPS was demonstrated. This pH-driven 

phenomenon was achieved with the speciation of [Ch]-based ILs.  

Aiming at exploring their possible application, these novels reversible ATPS were applied in 

the selective extraction/separation of textile dyes, namely sudan III and PB27 or sudan III and 

PB29. Selective extraction efficiencies higher than 80 % for sudan III and PB29 with the ATPS 

composed of [Ch][Ac], [Ch][Prop] and [Ch]Cl were achieved. On the other hand, lower extraction 

efficiencies were observed with the selective separation of sudan III and PB27 although higher 

than those observed with the ATPS composed of ILs and salts. These results reveal that IL-polymer 

ATPS are of a reversible nature and can be envisaged as a more environmentally-benign option for 

the treatment of wastewaters contaminated with textile dyes. 

 



 

 

 

5. Final remarks  
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5.1. Conclusions 

In this work it was demonstrated that IL-based ATPS are a potential alternative for the 

treatment of wastewaters contaminated with textile dyes.  

As a first approach, the ability of more conventional IL-based ATPS for the extraction of three 

textile dyes (chloranilic acid, indigo blue and sudan III) was evaluated. The results obtained reveal 

that the complete extraction of the dyes, extraction efficiencies up to 100 %, can be obtained in a 

single-step procedure by a proper tailoring of the IL and salt nature. In general, phosphonium-

based ATPS lead to higher partition coefficients and extraction efficiencies than their imidazolium-

based counterparts. 

After establishing the high ability of IL-based ATPS to remove dyes from aqueous media, it 

was demonstrated the reversibility behaviour of IL-salt-based ATPS, at least for three times, and 

their outstanding capacity to selectively separate two dyes (sudan III and PB27) for opposite 

phases. The reversibility behaviour was achieved by a pH-driven phenomenon through the 

manipulation of the speciation of the organic salt used.  

Finally, the selective efficiency of IL-polymer ATPS on the extraction of sudan III, PB27 and 

PB29 was studied. The results obtained reveal that these systems are reversible by the speciation 

of the IL anion and the respective acid and are able to selectively separate two pairs of dyes: 

sudan III/PB27 and sudan III/PB29. For the first set of dyes extraction efficiencies for opposite 

phases higher than 80 % where obtained for most of the systems evaluated.  

The novel evidences demonstrated here clearly confirm that low-cost and low toxic reversible 

ATPS composed of ILs can be formed with high potential for the selective separation of dyes from 

the wastewaters of textile industries. 

 

5.2. Future work  

Based on the results gathered in this work it will be interesting to further explore and to 

continue the study on the development of novel reversible ATPS composed of ILs. These can be 

achieved with other salts, other polymers and even with protic ILs where the speciation trend is 

also easy to attain. Moreover, their potential applicability in the selective separation of other 

added-value compounds, besides the textile dyes studied here, is of outmost importance. In 

particular, their particular application in the separation of biopharmaceuticals or natural 

compounds from more complex matrices seems to be the step to follow.  
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Finally, and to further support the sustainable character of the ATPS investigated, it will be 

important to ascertain on the phase-forming components recovery and reusability. 
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A.1. Experimental binodal data for systems composed of IL + salt + H2O used 

in the extraction of dyes 

 

Table A.1.1. Experimental weight fraction data for the system composed of IL (1) + K3C6H5O7 (2) + H2O (3) at 

298 K and at atmospheric pressure. 

[P4444]Br 

Mw = 339.3350 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

51.2054 2.7774 22.1335 10.7752 13.3589 14.9436 

46.0250 3.7720 21.3909 10.8461 12.9051 15.2856 

41.2637 4.5008 20.8937 11.0318 12.5616 15.3901 

39.6199 5.1429 20.4987 11.1598 12.2666 15.6394 

36.7642 5.9195 19.9260 11.5587 11.9834 15.7520 

33.3185 6.8030 19.3560 11.7659 11.5868 16.0676 

31.2465 7.4340 18.6758 12.0712 11.2310 16.3761 

29.9311 8.1018 17.9083 12.5040 10.7738 16.5972 

29.0453 8.3757 17.1944 12.8168 10.5388 16.8678 

28.4225 8.4537 16.5369 13.1794 10.2420 17.0877 

27.5378 8.7553 15.9963 13.2846 9.9183 17.3378 

26.5969 9.1913 15.7280 13.3633 9.6669 17.5626 

26.1587 9.2654 15.3466 13.6447 9.3651 17.8264 

24.9759 9.6407 14.8970 13.8781 8.9408 18.2411 

24.3121 9.9300 14.2094 14.3895 8.6094 18.5469 

23.5626 10.1176 13.8656 14.5471 
  

23.0361 10.4889 13.6138 14.6947     
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Table A.1.2. Experimental weight fraction data for the system composed of IL (1) + K3C6H5O7 (2) + H2O (3) at 

298 K and at atmospheric pressure. 

[Pi(444)1][Tos] 

Mw = 385.5220 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

53.5336 6.6908 15.9723 15.0872 9.6285 17.5388 

47.9469 7.2178 15.7041 15.1619 9.4927 17.6061 

44.7024 7.6756 15.2515 15.5076 9.3383 17.7529 

39.5386 8.4601 14.9748 15.5536 9.1646 17.7972 

37.0977 9.0046 14.6917 15.5992 8.9972 17.8805 

35.3901 9.5142 14.4536 15.6645 8.8580 18.0122 

33.9527 9.9528 14.2367 15.7347 8.6934 18.0595 

32.6468 10.2838 14.0002 15.7746 8.5321 18.1443 

31.4171 10.6446 13.7826 15.8239 8.3893 18.2275 

29.2493 11.2542 13.5388 15.8467 8.2866 18.3061 

28.2339 11.4356 13.4026 15.9878 8.0969 18.4345 

27.2772 11.6635 13.1972 16.0699 7.9045 18.5259 

26.5128 11.7871 12.9837 16.0865 7.7340 18.6723 

25.0733 12.1510 12.8104 16.1394 7.6074 18.7141 

24.3185 12.4134 12.6293 16.1943 7.4897 18.7605 

23.5845 12.5445 12.4917 16.3085 7.3528 18.9741 

22.9763 12.7841 12.3345 16.2466 7.1900 19.1161 

22.4133 12.9515 12.2070 16.3762 7.0357 19.1880 

21.8546 13.1370 12.0277 16.4137 6.8939 19.2861 

21.3143 13.2322 11.9084 16.5287 6.7686 19.4435 

20.9475 13.4843 11.7270 16.5626 6.6502 19.4365 

20.4430 13.6008 11.5662 16.6102 6.5296 19.5608 

19.9234 13.7892 11.4402 16.7279 6.4029 19.6444 

19.4655 13.9128 11.2921 16.7607 6.2875 19.7288 

19.0260 14.0292 11.1794 16.8581 6.1782 19.8506 

18.5666 14.1352 11.0141 16.8688 6.0216 20.0598 

18.2528 14.3779 10.8014 17.0319 5.8555 20.1627 

17.8730 14.4621 10.6733 17.0914 5.7535 20.2380 

17.4661 14.5013 10.4387 17.1533 5.6672 20.3351 

17.2202 14.6845 10.3083 17.1602 5.5517 20.4874 

16.8790 14.7872 10.1256 17.2967 5.4060 20.6199 

16.5103 14.8551 9.9421 17.4456 
  

16.2908 15.0240 9.7436 17.5355 
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Table A.1.3. Experimental weight fraction data for the system composed of IL (1) + K3C6H5O7 (2) + H2O (3) at 

298 K and at atmospheric pressure. 

[C4mim][Tos] 

Mw = 310.4220 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

76.5364 1.7167 17.3671 20.1048 10.0371 24.7323 

66.6935 3.4220 17.1566 20.1787 9.8975 24.7863 

39.5795 10.2758 16.9401 20.2928 9.7399 24.9172 

37.8640 10.6455 16.7293 20.3712 9.6410 25.0299 

36.8974 11.0812 16.5399 20.4496 9.5210 25.0885 

35.8420 11.4687 16.3434 20.5496 9.4179 25.2076 

34.9614 11.8804 16.0837 20.7798 9.2782 25.2471 

33.7284 12.7914 15.9116 20.8635 9.1837 25.3436 

32.3024 12.8622 15.7479 20.9802 9.0736 25.4666 

31.5806 13.1822 15.5970 21.0076 8.9864 25.5550 

30.9180 13.5003 15.3721 21.1829 8.8697 25.5939 

30.2660 13.7923 15.0401 21.3313 8.7863 25.6823 

29.6230 14.1261 14.8038 21.5665 8.6951 25.7984 

29.0006 14.4361 14.5077 21.7351 8.5937 25.8591 

28.4889 14.6829 14.2219 21.8147 8.5124 25.9590 

27.8921 14.9202 13.9545 22.1280 8.4412 26.0258 

27.3948 15.1332 13.6924 22.2400 8.3622 26.1054 

26.8600 15.3835 13.4673 22.3534 8.2633 26.1390 

26.3859 15.5781 13.2886 22.5063 8.1869 26.2296 

25.9518 15.8069 13.0485 22.5811 8.1156 26.3101 

25.0385 16.2305 12.8811 22.7379 8.0356 26.4110 

24.6547 16.3592 12.6524 22.8889 7.9167 26.4923 

24.0378 16.8543 12.4787 23.0254 7.8031 26.5793 

23.3250 17.0801 12.2878 23.1503 7.6937 26.6945 

22.6259 17.4918 12.1608 23.1324 7.5946 26.8220 

21.9862 17.6853 12.0137 23.2741 7.4922 26.9018 

21.4000 17.9221 11.9088 23.3237 7.4110 27.0323 

21.0743 18.0687 11.7768 23.4442 7.3090 27.0971 

20.7226 18.2482 11.6844 23.4780 7.1935 27.2235 

20.2985 18.5919 11.5438 23.6264 7.0959 27.3142 

19.7411 18.8027 11.3640 23.7045 6.9552 27.4941 

19.4646 18.9148 11.2260 23.8437 6.8731 27.5463 

19.0746 19.1983 11.0672 23.9120 6.7814 27.6329 

18.8377 19.3017 10.8510 24.1155 6.7299 27.6898 

18.5878 19.3819 10.7165 24.2165 6.6774 27.7537 

18.3624 19.4835 10.5078 24.3981 6.6292 27.8071 
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Table A.1.4. Experimental weight fraction data for the systems composed of IL (1) + K3C6H5O7 (2) + H2O (3) 

at 298 K and at atmospheric pressure. 

[C2mim][CF3SO3] [P4441][CH3SO4] 

Mw = 260.2260 Mw = 358.5200 

100 w1 100 w2 100 w1 100 w2 

60.9879 5.3370 19.0878 18.0162 

47.7790 8.0288 18.6400 18.1830 

40.1960 9.9859 18.2238 18.3045 

35.0475 11.6191 17.6277 18.7794 

31.9615 12.0822 16.3075 19.6538 

30.3081 12.8534 12.5893 22.0649 

28.8209 13.4909 11.7742 22.4587 

27.1495 14.1739 11.1081 22.8166 

18.5898 18.5102 10.1293 23.9271 

17.2233 19.4502 9.0064 25.0558 

16.1300 20.4838 7.7989 26.3301 

14.5170 21.7256 6.9569 27.3046 

13.1816 22.5504 6.1678 28.2098 

11.2206 24.7092 5.2036 29.7303 

8.8396 27.5867 4.2707 31.3776 

7.6313 29.5087 3.4033 33.4308 

6.1529 32.5501 2.5234 35.3110 
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A.2. Experimental binodal data for the reversible IL-based ATPS systems 

composed of IL + salt + H2O 

 

Table A.2.1. Binodal weight fraction data for IL (1) + salt (2) + H2O (3) system at 298 K and at atmospheric 

pressure.  

[C4C1mim]Cl 

Mw = 188.6998 

pH ≈ 9 pH ≈ 8 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

17.5639 39.8362 41.8435 15.1113 22.4236 35.3274 43.5522 13.9208 

20.0557 37.4146 42.6419 14.5066 23.3368 33.4880 44.0532 13.5694 

21.6310 35.2678 43.1248 14.0310 26.1175 30.6571 44.7276 13.0196 

23.6885 33.0411 43.9949 13.4263 27.8648 28.8437 45.1257 12.7364 

25.6583 31.0179 44.7581 12.8835 28.7956 27.7530 45.7717 12.2850 

26.5884 29.8473 45.8031 12.2799 29.9169 26.9052 46.4527 11.7919 

27.6666 28.4244 46.4520 11.8184 30.7609 25.6530 47.1620 11.3652 

29.1333 26.8809 47.0710 11.3796 32.6215 23.9410 48.2544 10.6519 

30.6602 25.3975 47.5449 11.0071 34.7080 22.2041 48.7955 10.2831 

31.9121 24.1263 48.1635 10.6226 35.4705 21.1840 49.1995 9.9937 

32.9990 22.9993 48.6019 10.3021 36.1866 20.3259 49.8791 9.5702 

33.8364 22.0619 49.0689 9.9799 37.4028 19.2026 50.7905 9.0487 

35.7135 20.6511 49.5037 9.6697 38.4585 18.3004 51.9121 8.4121 

36.7707 19.6852 50.0581 9.3561 39.3304 17.5438 52.5663 7.9932 

37.4674 18.9073 50.5745 9.0419 39.8576 16.9852 53.2454 7.6860 

38.2935 18.1959 49.8258 9.1656 40.3881 16.5001 53.7612 7.4004 

39.1099 17.4737 53.1731 7.3481 41.2282 15.8913 54.4843 7.0120 

39.6331 16.9411 56.8969 5.3008 41.7614 15.4316 59.8442 4.8006 

40.3374 16.3041 59.9870 3.7771 42.5672 14.7401 80.7466 1.5373 

40.9630 15.7582   43.0529 14.3983 
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Table A.2.2. Experimental weight fraction data for the systems composed of IL (1) + salt (2) + H2O (3) at 298 

K and at atmospheric pressure. 

[C4C1mim]Cl 

Mw = 188.6998 

pH ≈ 7 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

22.4236 35.3274 39.3304 17.5438 47.1620 11.3652 

23.3368 33.4880 39.8576 16.9852 48.2544 10.6519 

26.1175 30.6571 40.3881 16.5001 48.7955 10.2831 

27.8648 28.8437 41.2282 15.8913 49.1995 9.9937 

28.7956 27.7530 41.7614 15.4316 49.8791 9.5702 

29.9169 26.9052 42.5672 14.7401 50.7905 9.0487 

30.7609 25.6530 43.0529 14.3983 51.9121 8.4121 

32.6215 23.9410 43.5522 13.9208 52.5663 7.9932 

34.7080 22.2041 44.0532 13.5694 53.2454 7.6860 

35.4705 21.1840 44.7276 13.0196 53.7612 7.4004 

36.1866 20.3259 45.1257 12.7364 54.4843 7.0120 

37.4028 19.2026 45.7717 12.2850 
  

38.4585 18.3004 46.4527 11.7919 
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Table A.2.3. Binodal weight fraction data for IL (1) + salt (2) + H2O (3) system at 298 K and at atmospheric 

pressure. 

[C4mpip]Cl 

Mw = 191.7410 

pH ≈ 8 pH ≈ 7 pH ≈ 6 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

18.5918 34.7445 19.1288 34.2900 27.7645 27.8446 

20.8318 32.2317 21.7665 31.4809 29.1664 25.8716 

22.1675 30.4867 23.7906 29.1489 30.3075 24.5749 

24.0414 28.4860 25.3628 27.2222 32.1771 22.5954 

25.6902 26.6967 27.2252 25.2342 33.3385 21.3135 

27.5645 24.7879 29.2963 23.1948 34.8580 19.8117 

28.9116 23.3592 30.9309 21.5805 38.9572 16.7164 

30.4896 21.8523 32.7478 19.8526 40.0301 15.6677 

31.2913 20.9193 33.9099 18.7602 41.2147 14.5968 

32.4779 19.8362 35.3521 17.4506 42.6312 13.4330 

33.6068 18.7931 36.9450 16.1302 43.9236 12.4418 

34.9018 17.6500 37.9718 15.2572 45.4226 11.3171 

36.1462 16.5798 39.0318 14.3832 47.8643 9.6811 

38.5627 14.5789 40.3601 13.3873 52.7397 4.6158 

39.4598 13.8450 41.5498 12.4932 64.4868 1.6150 

40.5345 13.0524 42.3966 11.8384 
  

41.7785 12.1531 43.5867 11.0112 
  

44.0910 10.6062 45.2099 9.9857 
  

44.7628 10.0927 46.5449 9.1533 
  

45.9167 9.3553 47.7960 8.3586 
  

46.8941 8.7397 50.9636 6.6636 
  

48.9936 7.6139 56.2140 3.5958 
  

49.5723 7.0979 63.3822 2.2685 
  

53.5122 5.0866 
    

68.5290 1.7860 
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Table A.2.4. Binodal weight fraction data for IL (1) + salt (2) + H2O (3) system at 298 K and at atmospheric 

pressure. 

[C4mpy]Cl [C4mim]Cl 

Mw = 185.6940 Mw = 174.6550 

pH ≈ 8 pH ≈ 7 pH ≈ 6 pH ≈ 8 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

16.9273 35.6444 21.5771 31.7416 22.2059 33.7680 16.2015 39.7620 

18.2660 34.0265 24.2457 28.8622 24.4832 31.2751 18.0449 37.5680 

20.2400 32.0472 26.7603 26.2502 26.6514 28.8265 20.6275 34.6616 

21.3891 30.6210 29.0774 23.9020 28.4713 26.7850 23.0347 32.3024 

22.9234 29.0184 31.0846 21.9179 30.0789 24.9885 24.9579 30.2246 

24.9414 27.2426 33.0890 20.0474 31.4671 23.4530 26.6832 28.3980 

25.7217 26.2342 36.1432 17.4650 33.1138 21.9288 28.7878 26.3575 

26.9441 25.0526 38.6748 15.4201 34.4902 20.5712 30.0575 24.9217 

28.0943 23.9309 41.3471 13.3668 35.8826 19.2143 31.9690 23.2300 

29.1787 22.9104 31.9968 20.1813 36.9922 18.1436 33.4293 21.8732 

30.1656 21.9762 37.4888 15.6438 38.1765 17.1090 34.3020 20.9736 

31.4095 20.9305 40.8707 13.1594 39.4551 15.9860 35.3888 19.9772 

32.2430 20.1809 45.7972 9.8627 40.4175 15.1589 36.5283 19.0168 

33.0047 19.4386 48.1307 8.5136 41.5049 14.2939 37.2610 18.3318 

34.0095 18.5780 50.9816 6.9487 42.4770 13.5260 38.2071 17.5459 

34.8891 17.8234 53.4026 5.8067 43.1374 13.0487 39.0233 16.8121 

35.6641 17.1577 63.1170 2.4657 44.2086 12.2774 39.8134 16.1412 

36.4912 16.5136 72.4823 1.2649 45.4020 11.4464 41.0238 15.3058 

37.2162 15.9302 
  

46.4700 10.6942 41.9017 14.6291 

38.0505 15.2839 
  

47.8241 9.8384 42.7254 14.0282 

38.9771 14.8442 
  

49.2084 9.0043 43.6995 13.3455 

39.4575 14.4938 
  

74.1362 1.2936 44.7233 12.6910 

40.0736 13.9930 
    

45.3943 12.1682 

42.6186 12.0720 
    

46.1959 11.6223 

45.2390 10.4137 
    

46.8467 11.1724 

47.2672 9.2799 
    

47.3296 10.8433 

49.6622 7.8588 
    

48.0030 10.4235 

51.2425 7.1413 
    

48.6208 10.0248 

53.0469 6.2975 
    

49.1136 9.7075 

54.7933 5.4977 
    

49.7471 9.3290 

56.6343 4.6807 
    

50.2986 9.0019 

58.4954 3.8956 
    

50.7863 8.7038 

75.3583 0.9345 
    

51.3774 8.3611 

      
62.9106 2.7942 

      
71.8110 1.5504 
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 Table A.2.5. Binodal weight fraction data for IL (1) + salt (2) + H2O (3) system at 298 K and at atmospheric 

pressure. 

[P4444]Cl 

Mw = 294.8840 

pH ≈ 8 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

57.5547 5.1133 21.9022 16.7962 11.3907 25.1182 

51.3753 5.7210 21.0825 17.4168 11.1177 25.4472 

47.5050 6.4933 20.0351 18.1653 10.8229 25.6632 

43.0923 7.0668 18.9056 18.9747 10.5643 25.9218 

40.1382 7.7242 18.4039 19.2313 10.2648 26.2606 

38.2240 8.4985 17.8655 19.6852 10.0261 26.4734 

35.8977 9.0434 17.1444 20.3577 9.8045 26.7087 

34.5148 9.7294 16.2847 21.0846 9.5972 26.8828 

33.2760 10.2711 15.2364 21.7508 9.1832 27.2877 

32.3099 10.6881 14.7070 22.2491 9.0141 27.4496 

31.2601 11.0874 14.4866 22.3586 8.8087 27.6920 

29.6716 12.1152 13.9772 22.8716 8.4320 28.1528 

28.6393 12.4888 13.6519 23.0838 8.3148 28.2237 

27.3283 13.2994 13.2699 23.4331 8.2061 28.2859 

25.9506 14.2791 13.0134 23.6562 7.9859 28.5354 

25.1962 14.5425 12.7424 23.8372 7.7987 28.7652 

24.1979 15.3099 12.3581 24.1644 7.6536 28.9181 

23.6382 15.6013 12.0469 24.5081 7.4963 29.1136 

23.1173 15.8606 11.7097 24.8224 7.3494 29.2819 
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Table A.2.6. Binodal weight fraction data for IL (1) + salt (2) + H2O (3) system at 298 K and at atmospheric 

pressure. 

[P4444]Cl 

Mw = 294.8840 

pH ≈ 6 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

41.5610 9.4338 17.6874 21.6882 10.0606 27.3306 

39.8025 10.0148 16.8498 22.1895 9.8021 27.5614 

38.1769 10.5583 16.2087 22.6783 9.5076 27.8837 

36.8672 10.8672 15.4576 23.3484 9.3654 28.0262 

35.4010 11.3902 15.0291 23.6087 9.1816 28.1641 

33.8517 12.0940 14.5723 23.9605 9.0279 28.3228 

32.6151 12.6011 14.0916 24.3544 8.9228 28.3978 

31.0253 13.4039 13.5857 24.7420 8.6930 28.6809 

29.8230 13.8782 13.0761 25.2134 8.4773 28.8730 

28.5100 14.6504 12.9396 25.2058 8.3147 29.0162 

27.1956 15.4978 12.6996 25.3586 8.1654 29.1964 

25.8070 16.1369 12.4731 25.4425 7.9760 29.3996 

24.6101 16.8965 12.2056 25.4959 7.7789 29.5979 

23.4508 17.7110 11.8010 25.8939 7.6032 29.7881 

22.3471 18.3558 11.5617 26.0623 7.3574 30.0296 

21.4818 18.8986 11.2675 26.3211 7.1839 30.2386 

20.5104 19.5391 11.0216 26.4946 6.9413 30.4722 

19.6346 20.2063 10.7197 26.7594 6.7763 30.6786 

19.1031 20.6049 10.4980 26.9721 6.6610 30.7860 

18.3677 21.1999 10.2920 27.1530 6.5208 30.9234 
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Table A.2.7. Binodal weight fraction data for IL (1) + salt (2) + H2O (3) system at 298 K and at atmospheric 

pressure. 

[P4444]Cl 

Mw = 294.8840 

pH ≈ 5 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

57.7084 4.1732 18.3660 24.0994 9.9574 30.8217 

52.3413 5.3498 17.4716 24.8313 9.6061 31.1558 

41.1731 9.4540 16.5868 25.4299 9.2556 31.4689 

38.4940 10.7645 15.6178 26.2426 8.9596 31.7383 

36.2354 11.9482 14.8823 26.7742 8.6081 32.1045 

34.3652 13.0916 14.1684 27.3257 8.3384 32.3654 

32.2713 14.1512 13.6598 27.7164 8.0661 32.6489 

29.5863 15.9934 13.0798 28.1534 7.5930 33.1546 

27.3230 17.6217 12.4625 28.7098 7.1679 33.5836 

25.3565 18.9943 12.0134 29.0412 6.8786 33.8693 

23.5731 20.2839 11.5925 29.3615 6.5060 34.3004 

21.8258 21.5693 11.1492 29.7298 6.1373 34.7029 

20.5767 22.5930 10.7012 30.1348 5.7658 35.1614 

19.4395 23.3356 10.3057 30.4901 
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Table A.2.8. Binodal weight fraction data for IL (1) + salt (2) + H2O (3) system at 298 K and at atmospheric 

pressure. 

[C4mim]Br 

Mw = 219.1220 

pH ≈ 8 pH ≈ 6 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

74.6692 1.7071 14.7402 31.1274 13.1289 40.9277 42.5059 13.0330 

62.2292 3.5899 
  

14.6369 37.8062 42.8610 12.7617 

55.7952 4.5687 
  

15.4353 36.7627 43.2331 12.5204 

53.7379 5.4895 
  

16.6319 35.4319 43.5518 12.2803 

52.4385 6.0282 
  

18.0233 34.0131 43.9026 12.0745 

51.1184 6.5971 
  

18.6667 33.2197 44.2004 11.8618 

49.2717 7.6222 
  

19.9499 32.0458 44.6306 11.5841 

47.9687 8.3090 
  

21.4402 30.7913 45.0522 11.3258 

46.8307 8.7596 
  

22.6211 29.6228 45.3365 11.1196 

45.6325 9.3666 
  

23.4683 28.6192 45.8005 10.8714 

43.9663 10.2978 
  

24.7265 27.5343 46.1277 10.6633 

42.5776 11.0643 
  

26.1772 26.3980 46.4046 10.4826 

41.4969 11.7464 
  

26.9795 25.6396 46.6931 10.2876 

40.4967 12.3258 
  

27.5439 25.0612 46.9333 10.1271 

39.2647 13.0520 
  

28.6331 24.2187 47.2513 9.9269 

38.3023 13.6647 
  

29.3257 23.5222 47.4015 9.7540 

36.8416 14.6905 
  

30.4280 22.7180 47.7184 9.5641 

35.3456 15.7034 
  

30.9947 22.1325 48.0615 9.3802 

34.2934 16.4524 
  

31.6755 21.5690 48.3586 9.2140 

33.0183 17.3642 
  

32.4393 20.8683 48.6681 9.0465 

31.1062 18.8453 
  

32.8501 20.4090 48.9684 8.8754 

30.2517 19.3823 
  

33.3331 19.9721 49.2857 8.7043 

28.7960 20.4784 
  

34.0746 19.4849 49.6341 8.5348 

27.8623 21.1637 
  

34.4802 19.0562 50.0614 8.2920 

27.0973 21.7318 
  

35.3174 18.4711 50.8046 7.8751 

26.6466 22.0029 
  

35.6522 18.0907 51.1411 7.7314 

25.9514 22.5344 
  

36.3547 17.6037 51.3609 7.6091 

25.2505 23.0745 
  

36.7720 17.2347 51.6497 7.4731 

24.1415 23.9091 
  

37.5590 16.7515 52.0009 7.3234 

23.5451 24.3393 
  

37.8739 16.4092 52.2130 7.2098 

20.8741 25.2211 
  

38.4874 16.0096 52.5221 7.0811 

20.2310 25.7807 
  

38.7591 15.6990 52.9099 6.8869 

19.5592 26.3928 
  

39.2165 15.3895 53.5474 6.5863 

18.3783 27.4884 
  

40.0778 14.7448 54.9257 6.0009 

17.0936 28.7205 
  

40.9810 14.0989 56.2662 5.4754 

16.3846 29.4266 
  

41.3850 13.8069 58.0126 4.7360 

15.5370 30.3036 
  

41.8287 13.5066 69.9374 1.6121 
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A.3. Experimental binodal data for systems composed of PPG 400 + IL + H2O 

 

Table A.3.1. Binodal weight fraction data for PPG 400 (1) + IL (2) + H2O (3) system at 298 K and at 

atmospheric pressure.  

[Ch]Cl 

Mw = 139.6240 

pH ≈ 6 pH ≈ 5 pH ≈ 4 pH ≈ 3 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

59.7532 4.1395 52.8723 5.5387 52.7824 5.9084 58.3564 5.3205 

49.4185 5.3248 46.4150 6.4181 42.9307 7.1386 49.2396 6.3663 

35.8966 6.9097 40.7974 7.1892 39.2582 7.7223 40.4128 7.3836 

32.4552 7.4524 36.8239 7.6400 36.4770 7.9673 31.6416 9.6679 

29.6019 8.2317 33.6122 8.3820 34.5635 8.3681 28.8933 10.3231 

26.7506 9.4906 27.6148 10.3735 31.2450 9.3932 27.0617 11.0236 

24.4788 10.5980 25.7613 10.9259 28.4750 10.1740 25.6632 11.8768 

18.4968 13.3364 23.7786 11.8542 26.2602 11.1482 21.7211 13.9509 

17.5558 14.0857 22.2997 12.6928 24.6853 12.1823 20.4996 14.8983 

16.6818 14.8366 20.9626 13.5935 23.0535 13.0662 19.2025 15.8738 

15.5831 15.9160 19.8542 14.4509 21.8673 13.7015 18.0334 16.3081 

14.8640 16.7543 18.5097 15.7845 20.4640 14.8041 17.1847 17.2285 

14.3194 17.0226 17.1164 16.7403 19.3719 15.2737 16.0937 18.0482 

13.6968 17.6815 15.8749 17.9693 18.2690 16.1415 15.5562 18.3674 

13.2829 18.1224 15.1095 18.6685 15.6427 17.4720 15.0386 18.9172 

12.8191 18.3980 14.1274 19.8070 14.3531 19.0349 14.5618 19.4484 

12.4294 18.8661 13.1325 20.6890 13.3947 19.9554 14.0055 20.0191 

0.0000 0.0000 12.2130 21.6637 12.6118 20.9712 13.5096 20.3838 

11.6097 19.9104 11.5915 22.4241 11.9627 21.6976 13.1025 20.7967 

11.1937 20.2424 10.7515 23.4144 11.4323 22.2675 12.5953 21.3281 

10.7458 20.7799 10.0731 24.4786 10.8227 23.0596 12.0384 21.8452 

10.4340 21.0027   
 

10.2984 23.7361 11.6476 22.2494 

10.0677 21.4114   
 

  
 

11.1255 22.9989 

9.6171 22.0911   
 

  
 

10.6908 23.6781 

9.3013 22.5695   
 

  
 

10.2762 24.0234 

8.9851 22.9893   
 

  
 

9.9460 24.4708 

8.6572 23.3424   
 

  
 

9.5722 25.0197 

8.3524 23.6269   
 

  
 

  
 

8.0836 24.0514   
 

  
 

  
 

7.7731 24.3902             
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Table A.3.2. Binodal weight fraction data for PPG 400 (1) + IL (2) + H2O (3) system at 298 K and at 

atmospheric pressure. 

[Ch]Cl [Ch][Ac] 

Mw = 139.6240 Mw = 163.2148 

pH ≈ 2 pH ≈ 1 pH ≈ 0 pH ≈ 9 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

46.7755 6.9008 57.0021 5.8068 53.9184 6.1384 62.2434 2.5662 

40.8679 7.2435 48.8889 6.4576 45.7955 7.3566 53.3027 3.6444 

34.6006 8.5195 43.0007 7.1546 39.9227 8.3976 45.0223 4.2765 

32.1922 9.0772 39.2462 8.0611 24.4734 13.0221 40.2374 4.8220 

30.1997 9.7495 24.0966 13.6377 23.0218 13.9407 35.7533 5.5826 

28.5268 10.7455 22.9697 13.9400 21.5591 15.0802 32.3194 5.9866 

26.2866 11.6911 21.5344 14.6861 20.0394 16.0374 30.3054 6.3806 

24.4148 12.5483 20.0900 15.3788 18.7397 16.8646 28.0351 6.8690 

22.6845 13.6216 19.2542 15.9541 17.7027 17.7139 23.8764 7.8872 

21.0476 14.9172 18.2562 16.6517 16.7640 18.5601 22.4079 8.4851 

19.0809 16.3731 17.3228 16.9136 15.6210 19.4367 20.7062 9.2137 

17.5593 17.5620 16.2446 17.9112 14.7004 20.4285 19.2778 9.9999 

16.2876 18.5948 15.2223 18.6531 13.9119 21.0559 16.0776 11.1828 

15.5805 19.4104 14.2998 19.7305 13.1692 21.9370 15.4904 11.4911 

14.8130 20.2956 13.5687 20.5798 12.4195 22.6066 14.9912 11.8453 

14.0085 21.2632 12.8833 20.8624 11.8282 23.3835 14.4345 12.3824 

13.4975 21.8212 12.5215 21.2633 11.0677 24.1862 13.8961 12.6638 

12.9722 22.3954 12.0080 21.8916 10.5670 24.7267 13.3943 12.9397 

    
9.9752 25.7119 12.9830 13.4865 

      
12.4644 13.9071 

      
12.0131 14.2372 

      
11.6145 14.5842 

      
11.1326 14.8984 

      
10.8677 15.1538 

      
10.5030 15.5629 

      
10.1721 15.9009 

      
9.8193 16.2896 

      
9.4237 16.6121 

      
8.9030 17.6248 

      
8.6957 18.0559 
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Table A.3.3. Binodal weight fraction data for PPG 400 (1) + IL (2) + H2O (3) system at 298 K and at 

atmospheric pressure. 

[Ch][Ac] 

Mw = 163.2148 

pH ≈ 8 pH ≈ 7 pH ≈ 6 pH ≈ 5 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

54.6031 5.0394 56.4943 6.8460 48.0396 9.5022 54.1295 9.8833 

48.8655 6.0096 51.4596 7.7135 46.2564 9.9356 51.0816 11.6533 

29.9665 11.8524 47.5712 8.3634 44.6495 10.7930 49.3503 13.3356 

27.9906 12.7336 44.6179 9.2990 43.3274 11.0511 46.2413 14.5185 

26.6476 13.4651 34.2213 10.9544 40.6562 11.9750 42.4865 18.0246 

24.7729 13.9703 32.3083 11.2973 39.1273 12.7216 39.4951 20.9362 

23.3359 14.6873 30.9894 11.7560 37.7614 13.7091 
  

22.0874 15.1576 29.4847 12.0318 36.7350 14.0281 
  

20.6967 15.8834 28.5021 12.4839 35.3484 14.8988 
  

19.4767 16.8004 27.5649 12.9219 34.5000 15.2042 
  

18.2613 17.3891 26.6191 13.4923 33.2758 16.0089 
  

17.3460 17.8304 25.0059 14.1441 31.7019 16.4039 
  

16.3928 18.4987     30.5723 17.4661 
  

15.5605 19.0674     28.6270 18.7499 
  

14.8769 19.3999     26.9100 19.9894 
  

  
    25.2884 21.4396 

  

  
    23.5715 23.2259 

  

  
    22.2588 24.7318 

  

  
    20.9626 25.8128 

  

  
    19.6128 27.7123 

  

  
    18.3490 29.6039 

  

  
    17.0761 31.8186 

  
        15.6422 34.9359     
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Table A.3.4. Binodal weight fraction data for PPG 400 (1) + IL (2) + H2O (3) system at 298 K and at 

atmospheric pressure. 

[Ch][Pro] 

Mw = 177.2414 

pH ≈ 8 pH ≈ 7 pH ≈ 6 pH ≈ 5 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

44.5952 5.7175 56.4943 6.8460 55.5307 8.2453 61.4200 8.8946 

41.3783 6.1279 51.4596 7.7135 51.6542 9.3539 56.8397 11.2466 

34.4822 6.8389 47.5712 8.3634 49.8029 10.3037 52.4439 12.9165 

32.4571 7.1200 44.6179 9.2990 46.8573 11.2386 50.1136 13.6458 

31.1750 7.4391 34.2213 10.9544 44.4757 11.7993 47.5044 15.5158 

27.6950 8.6203 32.3083 11.2973 42.6258 12.5584 45.3968 17.0625 

26.3713 8.9673 30.9894 11.7560 40.6863 13.2181   
 

24.7850 9.7275 29.4847 12.0318 35.6820 14.9487   
 

23.1773 10.0498 28.5021 12.4839 34.2739 15.3597   
 

21.9820 10.7785 27.5649 12.9219 32.6688 16.1998   
 

20.5827 11.3181 26.6191 13.4923 31.3793 16.3884   
 

19.3680 11.6819 25.0059 14.1441 30.4884 16.8421   
 

18.4598 12.2914 23.9300 14.7874 29.8749 17.5404   
 

17.2735 12.6296 22.7203 15.4359 29.0650 17.8387   
 

16.5801 13.1291 21.4602 16.4649 27.9969 18.9169   
 

15.7179 13.7294 20.0449 17.4179 27.0550 19.7528   
 

14.8602 14.4935 18.7946 18.1425 26.0586 20.4862   
 

13.9646 15.0787 17.4092 19.0483 
  

  
 

13.3363 15.3438 16.6174 19.6840 
  

  
 

12.6596 15.9378 15.7684 20.4511 
  

  
 

12.1134 16.4191 14.8904 21.1748 
  

  
 

11.4332 17.1174 14.1233 21.8795 
  

  
 

11.0200 17.5610 13.3370 22.9640 
  

  
 

10.4604 18.1920 12.5012 23.9935 
  

  
 

9.9837 18.6085 11.6981 25.2076 
  

  
 

9.5463 19.0402 10.7417 27.0962 
  

  
 

9.1016 19.5564             
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Table A.3.5. Binodal weight fraction data for PPG 400 (1) + IL (2) + H2O (3) system at 298 K and at 

atmospheric pressure. 

[Ch][But] 

Mw = 191.2414 

pH ≈ 8 pH ≈ 7 pH ≈ 6 pH ≈ 5 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

53.7438 6.4849 53.2194 8.2470 55.5565 10.1883 63.5970 12.2093 

41.4257 7.9477 49.0677 8.7056 52.4686 10.9727 58.8795 13.3721 

38.5059 8.5858 43.3820 9.8970 50.2901 11.7508 55.4079 14.2592 

36.7404 9.0032 41.4811 10.3504 46.3183 12.8915 52.8001 14.9857 

35.3450 9.2535 39.6983 10.7545       
 

33.4556 9.7941 
  

      
 

31.1496 10.2126 
  

      
 

29.2204 10.5930 
  

      
 

27.5838 10.9168 
  

      
 

26.2754 11.6103 
  

      
 

20.8215 13.3207 
  

      
 

19.4545 13.9915 
  

      
 

17.8966 14.7195 
  

      
 

16.7536 15.3331 
  

      
 

15.6362 16.1611 
  

      
 

14.3498 17.2106             
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Table A.3.6. Binodal weight fraction data for PPG 400 (1) + IL (2) + H2O (3) system at 298 K and at 

atmospheric pressure. 

[Ch][Lac] 

Mw = 193.2408  

pH ≈ 7 pH ≈ 6 pH ≈ 5 pH ≈ 4 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

56.9575 3.5283 58.7605 4.7414 46.7239 9.1828 54.8035 11.3515 

0.0000 5.8800 56.0807 5.4008 44.6863 9.9975 50.4094 14.4250 

35.5059 6.2014 53.6867 5.8983 43.2509 10.3578 46.9767 16.8815 

33.0561 6.6436 50.0782 6.3409 41.5848 10.9828 44.1931 18.7172 

30.0739 7.6275 48.2521 6.8630 35.2355 13.0357 41.5404 20.4667 

26.6982 8.4305 45.0155 7.5570 33.2873 13.9893 38.7645 22.5816 

23.8971 9.0050 42.3031 8.0129 31.2925 14.8492 35.8946 25.0858 

22.0381 9.5716 39.8886 8.3647 29.7590 15.5212 33.5717 27.1607 

20.4718 10.5160 38.5278 8.7424 27.9996 16.3845 31.7752 28.8225 

19.1057 11.3305 37.3275 9.1039 25.9459 17.6506   
 

17.6568 12.1084 36.1461 9.4873 24.4075 18.4441   
 

16.4701 12.6995 34.2409 9.8379 21.0115 21.2016   
 

15.6712 13.0326 32.7047 10.2688 19.8296 21.9969   
 

14.9078 13.5705 31.0008 10.7548 18.5687 22.7285   
 

14.1921 14.1030 28.7951 11.5977 17.4251 23.7080   
 

13.5151 14.5670 26.8138 12.5599 16.2915 24.7439   
 

13.0089 15.0409 25.0422 13.3312 15.6619 25.4254   
 

12.3006 15.5938 23.3603 14.0865 14.7127 26.3039   
 

11.7019 15.9777 22.2641 14.9301 13.5136 27.6597   
 

11.1916 16.5126 20.9622 15.7390 12.6090 28.8469   
 

10.7446 16.9131 19.7527 16.4743 11.6030 30.3170   
 

10.3590 17.2277 18.5438 17.4251 10.9748 32.0263   
 

9.9392 17.6969 17.2843 18.1701 10.1309 33.1935   
 

9.5100 18.0761 16.2173 18.8301 9.2899 34.5470   
 

  
15.4649 19.4988 

  
  

 

  
14.5479 20.1697 

  
  

 

  
13.6239 20.9971 

  
  

 

  
12.8825 21.5915 

  
  

 

  
12.1359 22.6195 

  
  

 

  
11.1002 23.4026 

  
  

 

  
10.3702 24.4070 

  
  

 

  
9.6582 25.0032 

  
  

 
    8.7701 26.0296         
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Table A.3.7. Binodal weight fraction data for PPG 400 (1) + IL (2) + H2O (3) system at 298 K and at 

atmospheric pressure. 

[Ch][Gly] 

Mw = 179.2142 

pH ≈ 7 pH ≈ 6 pH ≈ 4 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

62.9671 3.1708 59.7877 4.9948 57.8111 6.7937 

51.3010 4.0717 51.4078 5.9067 51.0564 8.0817 

43.8295 5.1693 46.3200 6.6792 47.5512 9.0382 

36.9375 5.7690 42.8885 7.3476 44.5361 10.0949 

28.0324 7.2200 39.8920 7.9482 41.6892 10.8792 

25.7823 7.6551 37.0065 8.4363 39.8818 11.7668 

24.0925 8.1523 34.5014 8.8010 37.6512 12.2464 

22.4759 9.0019 32.6456 9.3662 34.0591 13.6205 

20.8381 9.6107 30.6550 9.6897 31.3547 14.6370 

19.3942 10.3030 28.7295 10.7020 28.8978 15.6352 

18.1418 11.0393 26.4707 11.4722 27.6539 15.9857 

16.9162 11.7583 24.7902 12.0716 25.8482 16.8336 

15.9441 12.3304 23.6134 13.3213 23.9382 18.1751 

15.0238 12.7526 22.2632 13.7163 22.4799 19.2959 

14.2388 13.4776 20.5797 15.4497 20.7106 20.5423 

13.5185 13.7305 19.3834 15.9492 19.2389 21.3595 

12.8304 14.3680 18.1396 17.0536 17.9515 22.7080 

12.1284 14.8950 16.7612 17.7890 16.6972 23.6229 

11.4602 15.6133 16.0667 18.3390 15.4629 24.7914 

10.8353 16.0448 15.0440 19.5769 14.4042 26.0293 

10.2723 16.6132 13.9212 20.1407 13.3780 27.3638 

9.6447 17.1678 12.4944 22.3703 12.4233 28.5322 

  
11.5647 23.1238 11.2612 30.4304 

  
10.8146 23.7316 10.3707 31.4536 

    9.9253 24.4484     
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B.1. Additional data for the ATPS composed of ILs and salts 

 

Figure B.1.1. Ternary phase diagrams for systems composed of IL + salt + water at 298 K and atmospheric 

pressure: (×) [C2mim][CF3SO3], (–) [C4mim][CF3SO3], () [C4mim][N(CN)2], (○) [C4mim][Tos], () [P4444]Cl, 

(▲) [P4444]Br, () [P4441][CH3SO4] and () [Pi(444)1][Tos]. 
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Figure B.1.2. Speciation curve of chloranilic acid as a function of pH [79]. 

 

 

Figure B.1.3. Speciation curve of indigo blue as a function of pH [79]. 
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Figure B.1.4. Speciation curve of sudan III as a function of pH [79]. 
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B.2. Additional data for the reversible IL-salt-based ATPS  

 

Figure B.2.1. Evaluation of the pH effect in ternary phase diagrams composed of IL + water + K3C6H5O7/ 

C6H8O7 at (▲) pH ≈ 9, () pH ≈ 8, (♦) pH ≈ 7, (◊) pH ≈ 6 and (▬) pH ≈ 5. The ILs are: (a) [C4mim]Cl, (b) 

[C4C1mim]Cl, (c) [C4mpip]Cl, (d) [C4mpy]Cl, (e) [C4mim]Br and (f) [P4444]Cl. Some phase diagrams have been 

reported by other authors and are included here for comparison purposes [81, 89, 126].  
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Figure B.2.2. Phase diagram for the ternary system composed of [C4mim]Br + K3C6H5O7/C6H8O7 +H2O, () 

pH ≈8 and (○) pH ≈6 at 298 K. The full symbols represent the data obtained in this work while the empty 

symbols correspond to literature data [89]. 
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and (d) pH ≈ 6. The ILs used are: () [C4mim]Cl, (♦) [C4C1mim]Cl, () [C4mpip]Cl, (▲) [C4mpy]Cl, (▬) 

[C4mim]Br and () [P4444]Cl. 
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Figure B.2.4. Speciation curve of acid citric as a function of pH [79]. 
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B.3. Additional data for the reversible IL-polymer-based ATPS  

 

 

Figure B.3.1. Ternary phase diagrams for systems composed of PPG 400 + IL + water at 298 K and 

atmospheric pressure. The ILs studied were: (×) [Ch][But], (○) [Ch]Cl, (▲) [Ch][Pro], () [Ch][Lac], () 

[Ch][Ac] and (+) [Ch][Gly]. 
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 Figure B.3.2. Evaluation of the pH effect in ternary phase diagrams composed of PPG 400 + water + IL at (♦) 

pH ≈ 9, () pH ≈ 8, () pH ≈ 7 , () pH ≈ 6, (▲) pH ≈ 5, () pH ≈ 4, (×) pH ≈ 3, (◊) pH ≈ 2, (▬) pH ≈ 1 and (○) 

pH ≈ 0. The ILs are: (a) [Ch]Cl, (b) [Ch][Ac], (c) [Ch][Gly], (d) [Ch][Lac], (e) [Ch][Prop], and (f) [Ch][But]. 
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