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Resumo  
 
 

Os carboidratos constituem os polímeros naturais mais abundantes na Terra, e 
a sua valorização química é de grande interesse no contexto das biorefinarias. 
O objetivo deste trabalho centrou-se na conversão de carboidratos 
(monossacarídeos e polissacarídeos) em 2-furaldeído (Fur) e 5-hidroximetil-2-
furaldeído (Hmf) na presença de catalisadores ácidos, em reatores 
descontínuos. Fur e Hmf são considerados compostos “plataforma” porque 
podem ser convertidos numa grande variedade de produtos químicos e 
materiais (alternativos aos derivados do petróleo). Testaram-se catalisadores 
ácidos heterogéneos como alternativa aos ácidos minerais que são comumente 
usados como catalisadores homogéneos para a produção industrial do Fur. Por 
outro lado utilizou-se água ou um líquido iónico como solvente para a dissolução 
dos carboidratos no meio reacional. As temperaturas reacionais foram 
superiores a 150 ºC quando o solvente era a água, e inferiores a 150 ºC no caso 
de líquidos iónicos. Com o intuito de identificar os produtos reacionais (solúveis 
e insolúveis), utilizaram-se diferentes técnicas nomeadamente espetroscopia de 
infravermelho, espetroscopia de RMN de estado líquido e sólido, TGA, DSC e 
GCxGC-ToFMS. Obtiveram-se misturas complexas de produtos reacionais e 
discutiram-se aspetos mecanísticos.  
A estabilidade térmica do catalisador é importante uma vez que a formação de 
matéria carbonácea insolúvel é característica destes sistemas reacionais 
tornando-se necessário proceder à regeneração do catalisador por calcinação. 
Os catalisadores testados foram ácidos inorgânicos nanoporosos, cristalinos ou 
amorfos, com tamanho de partícula nano ou micrométrico, especificamente 
silicoaluminofosfatos, aluminossilicatos e óxidos mistos de zircónio e tungsténio. 
Estes tipos de materiais são versáteis uma vez que as suas propriedades físico-
químicas podem ser modificadas no sentido de melhorar os seus desempenhos 
catalíticos na conversão de diferentes tipos de substratos (ex. através da 
criação de mesoporos nos materiais e/ou modificação das propriedades ácidas). 
Os materiais testados exibiram melhores desempenhos catalíticos para a 
conversão de pentoses em Fur do que para a de hexoses em Hmf, quando o 
solvente era a água. Em suma, os catalisadores apresentaram boa estabilidade 
hidrotérmica. No caso dos sistemas reacionais à base de líquidos iónicos foram 
verificados elevados rendimentos em Fur e Hmf. especialmente quando os 
substratos eram a D-frutose ou polissacarídeos relacionados. Contudo, os 
catalisadores sofreram desativação tal que as reações catalíticas ocorreram em 
fase homogénea. Conforme explicado numa revisão bibliográfica sobre o estado 
da arte da conversão catalítica de carboidratos em Fur e Hmf usando líquidos 
iónicos, o desenvolvimento de sistemas catalíticos heterogéneos à base de 
líquidos iónicos representa um grande desafio. 
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Abstract  
 

The conversion of plant biomass-derived carbohydrates (preferably non-edible) 
into added-value products is envisaged to be at the core of the future 
biorefineries. Carbohydrates are the most abundant natural organic polymers 
on Earth. This work deals with the chemical valorisation of plant biomass, 
focusing on the acid-catalysed conversion of carbohydrates (mono and 
polysaccharides) to furanic aldehydes, namely 2-furaldehyde (Fur) and 5-
hydroxymethyl-2-furaldehyde (Hmf), which are valuable platform chemicals that 
have the potential to replace a variety of oil derived chemicals and materials. 
The investigated reaction systems can be divided into two types depending on 
the solvent used to dissolve the carbohydrates in the reaction medium: water or 
ionic liquid-based systems. The reaction temperatures were greater than 
150 ºC when the solvent was water, and lower than 150 º C in the cases of the 
ionic liquid-based catalytic systems. As alternatives to liquid acids (typically 
used in the industrial production of Fur), solid acid catalysts were investigated 
in these reaction systems. Aiming at the identification of (soluble and insoluble) 
reaction products, complementary characterisation techniques were used 
namely, FT-IR spectroscopy, liquid and solid state NMR spectroscopy, TGA, 
DSC and GC×GC-ToFMS analyses. Complex mixtures of soluble reaction 
products were obtained and different types of side reactions may occur. 
The requirements to be put on the catalysts for these reaction systems partly 
depend on the type of carbohydrates to be converted and the reaction 
conditions used.  The thermal stability is important due to the fact that formation 
of humins and catalyst coking phenomena are characteristically inherent to 
these types of reactions systems leading to the need to regenerate the catalyst 
which can be effectively accomplished by calcination. Special attention was 
given to fully inorganic nanoporous solid acids, amorphous or crystalline, and 
consisting of nano to micro-size particles. The investigated catalysts were 
silicoaluminophosphates, aluminosilicates and zirconium-tungsten mixed 
oxides which are versatile catalysts in that their physicochemical properties can 
be fine-tuned to improve the catalytic performances in the conversion of 
different substrates (e.g. introduction of mesoporosity and modification of the 
acid properties). The catalytic systems consisting of aluminosilicates as solid 
acids and water as solvent seem to be more effective in converting pentoses 
and related polysaccharides into Fur, than hexoses and related 
polysaccharides into Hmf. The investigated solid acids exhibited fairly good 
hydrothermal stabilities. On the other hand, ionic liquid-based catalytic systems 
can allow reaching simultaneously high Fur and Hmf yields, particularly when 
Hmf is obtained from D-fructose and related polysaccharides; however, catalyst 
deactivation occurs and the catalytic reactions take place in homogeneous 
phase. As pointed out in a review of the state of the art on this topic, the 
development of truly heterogeneous ionic liquid-based catalytic systems for 
producing Fur and Hmf in high yields remains a challenge. 
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General list of abbreviations 

 

AAL α-Angelica lactone 

27
Al MAS NMR 

27 
Al Magic-angle spinning nuclear magnetic resonance 

AEL
 

Aluminophosphate-eleven (AlPO-11)
 

AFI  Aluminophosphate-five (AlPO-5) 

AFR  Aluminophosphate-forty (AlPO-40) 

Alfr Framework aluminium 

Alext-fr Extraframework aluminium 

AS  Acid sites 

a.t. Ambient temperature 

ATR Attenuated total reflectance 

B Brönsted acid sites 

BAL β-Angelica lactone 

BAMA 2,5-bis(aminomethyl)furan  

BEA Beta zeolite 

BET Brunauer, Emmett and Teller 

BJH Barrett-Joyner-Halenda 

BS Base sites 

BuOH n-Butanol 

CCel Conversion of D-cellobiose 

CFru Conversion of D-fructose 

CFur Conversion of 2-furaldehyde 

CGlu Conversion of D-glucose 

CSub Conversion of substrate 

CSuc Conversion of D-sucrose 

CXyl  Conversion of D-xylose 

CBC Carbon based catalysts 

13
C CP MAS NMR  

13
C cross polarisation, magic-angle spinning, nuclear magnetic 

resonance 

13
C NMR

 13
C nuclear magnetic resonance
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Cel
 

D-cellobiose
 

CH Conventional heating method 

CIMV Compagnie Industrielle de la Matière Végétable 

DFF Diformylfuran 

DFP Difuranpropane 

DFT Density functional theory 

DHMF  2,5-Dihydroxymethylfuran 

DHMTHF  2,5-Di-(hydroxymethyl)tetrahydrofuran  

DMA Dimethylacetamide 

DMF 2,5-Dimethylfuran 

DMFA N,N-Dimethylformamide 

DMSO Dimethylsulfoxide 

Dp Maximum at the pore size distribution 

DOP Degree of polymerisation 

DR UV-vis  Diffuse reflectance ultraviolet visivel 

DSC Differential scanning calorimetry 

DTHFP (Di-tetrahydrofuran)propane 

FA  Furfuryl alcohol 

FAU Faujasite zeolite 

FDCA  2,5-Furandicarboxylic acid  

FFAA 5-Formylfuran-2-acetic acid 

FFDI  2,5-Furfuryldiisocyanate 

FT-IR  Fourier transform infrared  

Fru D-fructose 

Fur  2-Furaldehyde  

GC-MS  Gas chromatography-mass spectrometry 

Glu D-glucose 

HAF  2-(2´-Hydroxyacetyl)furan 

HAFF 2-(2´-Hydroxyacetyl)furan formate 

HB-HMF  3-(Hydroxybutenyl)-hydroxymethylfuran 

HCW Hot compressed water 

HHMMF 4-Hydroxy-2-(hydroxymethyl)-5-methyl-3(2H)-furanone 
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HHT 4-Hydroxy-2,3,5-hexanetrione 

HKPA 5-Hydroxy-4-keto-2-pentenoic acid 

Hmf 5-Hydroxymethyl-2-furaldehyde  

HMFA  5-Hydroxymethyl-furoic acid 

HMFI 5-(Hydroxymethyl)furfurylidene ester 

HMFIA 5-(Hydroxymethyl)furfurylidene acetophenone 

HMPT  Hexamethylphosphotriamide 

HMTHFA  5-Hydroxymethyltetrahydro-2-furaldehyde 

1
H NMR 

1
H nuclear magnetic resonance 

HPAs Heteropolyacids 

HPLC  High performance liquid chromatography 

HRTEM High resolution transmission electron microscopy 

HT Hydrotalcite 

IBMK Isobutylmethylketone 

ICP-AES Inductively coupled plasma atomic emission spectroscopy 

IL(s) Ionic liquid(s) 

InsolOrg Water-insoluble organic matter 

Ipr 1,3-bis(2,6-diisopropylphenyl)imidazolylidene 

IUPAC International union of pure and applied chemistry 

L Lewis acid sites (not associated with numbers) 

Mal  D-maltose 

Man D-mannose 

MCFAT Methyl furan-2-carboxylate 

MF 2-Methyl-2-furaldehyde 

MFI Mordenite framework inverted 

MFF 5-Methyl-2-furaldehyde 

MOR Mordenite 

MPY 1-Methyl-2-pyrrolidone 

MR Membered ring 

MTC Multi turbin column 

MTHF Methyltetrahydrofuran 

MTHFAT Methyltetrahydrofuran-2-carboxylate 
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MW Microwave 

PEC Pure energy corporation 

PSD  Pore size distribution 

PTFE Polytetrafluoroethylene 

PVP Poly-(1-vinyl-2-pyrrolidinone) 

S Selectivity 

SAPOS Silicoaluminophosphates 

SBET BET specific surface area 

SEM Scanning electron microscopy 

SEXT External specific surface area 

SFur Selectivity of 2-furaldehyde 

SHmf Selectivity of 2-hydroxymethyl-2-furaldehyde 

Smeso  Mesoporous specific surface area 

SPME/GCxGC-ToFMS Solid-phase microextraction coupled with comprehensive two-

dimensional gas chromatography with a time-of-flight mass 

spectrometry 

Suc D-sucrose 

TEM  Transmission electron microscopy 

TGA Thermogravimetric analysis 

THF Tetrahydrofuran 

THFA Tetrahydrofurfuryl alcohol 

THFAC Tetrahydrofuran-2-carboxylic acid 

THFAM Tetrahydrofuran-2-methanamine 

THFF Tetrahydro-2-furaldehyde 

TIC GC x GC-ToFMS Total ion chromatogram by comprehensive two-dimensional gas 

chromatography with a time-of-flight mass spectrometry 

TMS Tetramethylsilane 

Tol Toluene 

p-TsOH  para-Toluenesulfonic acid 

TUD-1 Technische Universital Delft, number one 

TY Theoretical yield 

USDOE US department of energy 
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Vmicro Microporous volume 

Vmeso Mesoporous volume 

Vp  Total pore volume 

VS.T.P. Volume adsorbed at a standard temperature and pressure conditions 

Wt Water 

Y Yield 

YCel Yield of D-cellobiose 

YHmf Yield of 5-hydroxymethyl-2-furaldehyde 

YFru Yield of fructose 

YFur  Yield of 2-furaldehyde 

YGlu  Yield of D-glucose 

YMan Yield of D-mannose 

YSuc Yield of D-sucrose 

YXyl Yield of D-xylose 

XRD  X-ray diffraction 

Xyl D-xylose 
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List of abbreviations of ionic liquids 

 

[Amim]
+
 1-Allyl-3-methylimidazolium cation 

[Amim]Cl 1-Allyl-3-methylimidazolium chloride 

[Asbi] 
+
 3-Allyl-1-(4-sulfobutyl)imidazolium cation 

[Asbi] CF3SO3 3-Allyl-1-(4-sulfobutyl)imidazolium trifluoromethane sulfonate 

 [Ascbi]CF3SO3 3-Allyl-1-(4-sulfurylchloridebutyl)imidazolium trifluoromethane 

sulfonate 

[B2im]
+
 Butyl-3-methyl-imidazolium cation 

[B4N]
+
 1-Tetra-butyl ammonium cation 

[B4N]Cl 1-Tetra-butyl ammonium chloride 

[B4N]HSO4 1-Tetra-butylammonium hydrogen sulfate 

[B4P]
+
 1-Tetra-butyl phosponium cation 

[B4P]HSO4 1-Tetra-butyl hydrogen sulfate 

[Bdmim]Cl 1-Butyl-2,3-dimethylimidazolium chloride 

[Bemim]Cl 1-Benzyl-3-methylimidazolium chloride 

[Bm2im]
+
 Butyl-2,3-dimethylimidazolium cation 

[Bm2im]Cl Butyl-2,3-dimethylimidazolium chloride 

[Bmim]
+
 1-Butyl-3-methyl imidazolium cation 

[Bmim]BF4 1-Butyl 3-methyl imidazolium tetrafluoroborate 

[Bmim]Br 1-Butyl-3-methyl imidazolium bromide 

[Bmim]Cl 1-Butyl-3-methyl imidazolium chloride 

[Bmim]CH3COO 1-Butyl-3-methyl imidazolium acetate 

[Bmim]CF3COO  1-Butyl-3-methyl imidazolium trifluoromethane acetate 

[Bmim](CF3SO2)2N 1-Butyl-3-methylimidazolium bistriflate imide 

[Bmim]CF3SO3  1-Butyl-3-methylimidazolium trifluoromethane sulfonate 

[Bmim]saccharine 1-Butyl-3-methylimidazolium saccharine 

[Bmim]SCN 1-Butyl-3-methylimidazolium thiocyanate 

[Bmim]HPO4 1-Butyl-3-methylimidazolium hydrogen phosphate 

[Bmim]HSO4  1-Butyl-3-methyl imidazolium hydrogen sulfate 

[Bmim]PF6 1-Butyl-3-methyl imidazolium hexafluorophosphate 

[Bmim]TolSO3 1-Butyl-3-methylimidazolium p-toluenesulfonate 
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[Bmpy]
+
 1-Butyl-1-methylpyridinium cation 

[Bmpy]Cl 1-Butyl-3-methypyridinium tetrafluoroborate 

[Bpy]AlCl4 1-Butylpyridinium tetrachloroaluminate 

[Bpy]BF4 1-Butylpyridinium tetrafluoroborate 

[Cho]
+
 Choline cation 

[Cho]Cl Choline chloride 

[Cho]HSO4 Choline hydrogen sulfate 

[Dmim] 
+
 1-Decyl-3-methylimidazolium cation 

[Dmim]Cl  1-Decyl-3-methylimidazolium cation 

[EH3N]
+
 1-Ethylammonium cation 

[EH3N]NO3 1-Ethylammonium nitrate 

[Emim]
+
 1-Ethyl-3-methylimidazolium cation 

[Emim]AlCl4 1-Ethyl-3-methylimidazolium tetrachloroaluminate 

[Emim]BF4 1-Ethyl-3-methylimidazolium tetrafluoroborate 

[Emim]Br 1-Ethyl-3-methylimidazolium bromide 

[Emim]Cl 1-Ethyl-3-methylimidazolium chloride 

[Emim]HSO4 1-Ethyl-3-methylimidazolium hydrogen sulfate 

[Emim]CF3SO3 1-Ethyl-3-methylimidazolium trifluoromethane sulfonate 

[E4N]Cl  Tetraethylammonium chloride  

[E3Nmeo]nCl Poly(triethyl-ammonium methylene ethylene oxide) 

[Epy]
+
 1-Ethylpyridinium cation 

[Epy]Cl 1-Ethylpyridinium chloride 

[Hmim]
+
 1-H-3-Methylimidazolium cation 

[Hmim]CH3SO3 1-H-Methylimidazolium methyl sulfonate 

[Hmim]Cl  1-H-3-Methylimidazolium chloride 

[Hmim]HSO4 1-H-3-Methyl imidazolium hydrogen sulfonate 

[Hpy]
+
 1-H-Pyridinium cation 

[Hpy]Cl 1-H-Pyridinium chloride 

[Hpy]TolSO3 1-H-Pyridinium p-toluene sulfonate 

[Hxmim]
+
 1-Hexyl-3-methylimidazolium cation 

[Hxmim]Cl 1-Hexyl-3-methylimidazolium chloride 

[Hxpy]
+
 1-Hexylpyridium cation 
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[Mim]Cl 1,3-Dimethylimidazolium chloride 

[M3BeN]Cl Trimethylbenzylammonium chloride hydrated 

[M3HN]Cl Trimethylammonium chloride hydrated 

[M2N]Cl Dimethylammonium chloride hydrated 

[M4N]Cl Tetramethylammonium chloride hydrated 

[M3PhN]Cl Trimethylphenylammonium chloride hydrated 

[Morph]
+
 Morpholinium cation 

[Morph]HSO4 Morpholinium hydrogen sulfonate 

[Mscbi]
+
  3- Methyl-1-(4-chlorosulfonylbutyl)imidazolium cation 

[NMM]
+
 N-Methylmorpholinium cation 

[NMM]CH3SO3  N-Methylmorpholinium methyl sulfonate 

[NMM]HSO4 N-Methylmorpholinium hydrogen sulfonate 

[NMP] N-Methylpyrollidinium  

[NMP]CH3SO3 N-Methylpyrollidinium methyl sulfonate 

[NMP]HSO4 N-Methylpyrollidinium hydrogen sulfonate 

[Omim]
+
 1-Octyl-3-methylimidazolium cation 

[Omim]Cl 1-Octyl-3-methylimidazoloum chloride 

[Pcohpy]Cl 3-Chloro-2-hydroxypropyl pyridinium chloride 

[Pcmopy]Cl 3-Chloro-2-methoxypropyl pyridinium chloride 

[Sbmim]
+
  1-(4-Sulfonic acid) butyl-3-methylimidazolium cation 

[Sbmim]Cl 1-(4-Sulfonic acid) butyl-3-methylimidazolium chloride 

[Sbmim]HSO4 1-(4-Sulfonic acid) butyl-3-methylimidazolium hydrogen sulfate 

[Spmim]
+
 1-(4-Sulfonic acid) propyl-3-methylimidazolium cation 

[Spmim]Cl 1-(4-Sulfonic acid) propyl-3-methylimidazolium chloride 

TES[Pmim]Cl 1-Triethoxysilyl)-propyl-3-methyl-imidazolium chloride 

[TMG]
+
  Tetramethylguanidinium cation 

[TMG]CF3CO2 Tetramethylguanidium trifluoromethane acetate 

[TMG]Lac Tetramethylguanidium lactate 
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1.1. Renewable sources for energy and chemicals 

 

 

Energy is the base of life of a modern industrial society. It is related to almost everything 

that man does or wishes to do. In its many useful forms, it is a basic element that influences and 

limits human standard of living and technological progress. Clearly, it is an essential support 

system for all of us.1 The intense population growth is expected to contribute to the growing 

worldwide demand for energy.2 Key strategies for efficient energy consist essentially of a safe 

supply, low implementation costs, and environmental sustainability. Coal became the primary 

energy resource and was the majority of coal produced is burned to produce heat and electric 

power. Other uses include the production of synthetic fuels and feedstock for the petrochemical 

industry.1,3 During processing and/or combustion of coal, several compounds can be released into 

the environment as harmful pollutants: sulfur dioxide, sulfur trioxide, nitrogen oxides, hydrogen 

chloride, mercury vapor and a wide variety of trace metals are some examples.1-3 Furthermore the 

use of coal may result in the production of CO2 which is the most important greenhouse gas in the 

atmosphere, or volatile organic solvent emissions. The combustion of coal releases more CO2 per 

unit of heat released than combustion of oil or gas, since it has the lowest H/C ratio of the fossil 

fuels. Besides the greenhouse gas emissions, other issues, such as global warming or natural 

resource depletion, are becoming worldwide environmental concerns.2 A growing interest in 

obtaining cleaner fuels from coal (e.g. increasing demand for low sulfur coal) was noticed.2-11 A 

coal-based economy remained prevalent until the discovery of petroleum (in the middle of XX 

century). Oil and natural gas began to substitute coal, in a fossil fuel based economy (i.e. as raw 

materials for the production of energy such as, heat, steam, electric power, and of solid, liquid or 

gaseous fuels).12,13 Natural gas started to be widely adopted for cooking, space heating, water 

heating and industrial uses in most urban areas, once it was possible to transport natural gas 

through a pipeline grid system. Pipelines were developed with the purpose of transporting oil 

from the producing regions to the refineries. An oil well is drilled to bring liquid petroleum to the 

surface and the first pipeline was built in 1859 in Titusville, Pennsylvania.1  

Indeed the fossil fuel era had a large impact on civilisation and industrial development. 

However, the threat to oil supplies in 1973 (the first oil shock), due to the depletion of the 

reserves of fossil fuels, and environmental issues led to major increases in oil prices.1 Intensive 

research programs started to be developed. The future energy production needs to be as clean as 

possible and economically viable. Renewable energy sources have become desirable because they 
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can alleviate our dependence on the inevitable depletion of non-renewable fossil fuels, replacing 

part of the crude oil and natural gas which are the current major raw materials. 10,11,14-25 Based on 

the predicted end of cheap oil by 2040,1,26 Lichtenthaler et al.15 reported that the curve for the 

utilisation of biofeedstocks should rise and intersect  the one for fossil raw materials between 

2030-2040 (Figure 1.1). According to these data, the transition in the evolution to a more bio-

based system continues somewhat inhibited by the cheaper fossil raw materials. Until the mid-

1800s, renewable biomass sources, in the form of wood and farm residues/wastes, supplied the 

vast majority of the world’s energy and fuel needs, and were the first principal sources of fuel and 

construction materials because of the little capital technological investment needed.1,2 

Afterwards, coal and fossil fuels slowly displaced biomass consumption and became the preferred 

energy sources. Presently, considerable achievements and rapid progress are being made in areas 

such as hydropower, geothermal energy, solar thermal technology, wind energy conversion, 

photovoltaics and biomass conversion.2,11,17,27-29 Due to the first oil shock in the mid 1970s 

mentioned above, there is a reborn interest in using biomass to reduce oil consumption and 

imports.14 

 

 

Figure 1.1- Raw materials basis of the chemical industry in an historical perspective [adapted from 

15]. 
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1.2. Biomass as a renewable source

 

 

Biomass is non-fossil organic matter with chemical energy content, essentially of plant 

origin (phytomass), and a renewable, relatively inexpensive and 
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sustainability (renewable source of 
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Biomass can be harvested for 

decomposition. After a long period of time, the decomposition products from biomass and the 

wastes from the harvesting can be partially recovered as fossil fuels. 

be converted to energy (heat, power) and synthetic fuels by suitable conversion processes which 

are essentially thermochemical and biochemical.

process is known as the gasification process where the biomass is heated under air, O

giving origin to a gas mixture, referred as syngas (

conversion of biomass is that used for bi

 

Figure 1.3- Biomass conversion into fuels, heat and power by a thermochemical process [

from 39]. 
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Figure 1.4- Biomass conversion 
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(forming essentially crystalline structures), with a degree of polymerisation (DOP) going from 

10000 in native wood to 1000 in bleached kraft pulp.4,39 Each D-anhydroglucopyranose unit 

possesses hydroxyl groups at C-2, C-3 and C-6 positions.43,47 In D-glucose, C-1 refers to the 

aldehyde anomeric carbon centre of the hemiacetal functional group: in cellulose, the C-1 of one 

glucose unit is linked to C-4 of the next glucose unit via β-(1,4)-glycosidic bonds (Table 1.1).48 

Hemicelluloses are heterogeneous biopolymers (amorphous structures) which bind strongly to 

cellulose by hydrogen bonds. Hemicelluloses are composed mainly of five-carbon 

monosaccharides (pentoses such as xylose and arabinose) and some six-carbon monosaccharides 

(e.g. D-mannose, D-glucose and D-galactose).4,39 The most prevalent hemicellulose is D-xylan, 

composed of D-xylopyranosyl units linked by β-1,4-glycosidic bonds. In hardwood, the D-xylan 

backbone is modified with various side chains, including 4-O-methyl-D-glucuronic acid linked to  

D-xylose units via α-(1,2)-glycosidic bonds and acetic acid that esterifies the D-xylose units at the 

O-2 or O-3 positions (Table 1.1). In non-acetylated softwood xylans, there are L-arabinofuranose 

residues attached to the main chain by α-(1,2) and/or α-(1,3)-glycosidic linkages (Table 1.1).49 

Hemicellulose polymers are almost always branched possessing a wide variety of substituents as 

specified for D-xylan (e.g. 4-O methyl glucuronic and galacturonic acid residues).50 Sugars are 

linked together by α-(1,4) or β-(1,4)- glycosidic bonds, occasionally by α-(1,3) and/or α-(1,2)-

glycosidic bonds (e.g. xylan polysaccharides composed of (pentose) xylose units) or yet by α-(1-2)-

β-glycosidic bonds (e.g. sucrose, Table 1.1).51-54  

Hemicelluloses possess a lower DOP (50-300) than cellulose and are more vulnerable to 

chemical attack (e.g. hydrolysis).25 Although abundant, cellulose and hemicelluloses are difficult to 

dissolve in water, particularly in the former case.39 The hemicelluloses and lignin provide a 

protective cover in the surroudings of cellulose and should be removed to enable the efficient 

hydrolysis of cellulose.39 The removal of this protective cover is possible by a chemical treatment 

using an appropriate acid catalyst.25 The high level of hydrogen bonding among the 

polysaccharide chains makes it difficult to depolymerise cellulose. Starch and inulin are less 

abundant carbohydrates than cellulose and hemicelluloses.4,36 Inulin is a polymer composed of 

fructose units linked by β-(2,1) glycosidic bonds (Table 1.1). Starch consists of glucose units joined  

by α-glycosidic bonds and is composed of amilopectin (ca. 75-80 wt.%) and amylose (ca. 20-25 

wt.%, Table 1.1).55,56 In amilopectin the glucose units are linked in a linear fashion via α-(1,4)-

glycosidic bonds and branching occurs via α-(1,6)-glycosidic bonds. Amylose is essentially a linear 

polymer made up of α-(1,4)-glycosidic bonds;  it is less soluble in water than amilopectin and is 

hydrolysed more slowly.57 Other carbohydrates include disaccharides like D-cellobiose (two 
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glucose units linked by a β-(1,4)-glycosidic bond), D-maltose (two glucose units linked by a α-(1,4)-

glycosidic bond) and D-sucrose (one glucose and one fructose units linked via an ether bond 

between C-1 on the glucosyl unit and C-2 on the fructosyl unit; α-D-glucopyranosyl-(1-2)-β-D-

fructofuranoside). D-glucose and D-xylose are the most common hexoses and pentoses, 

respectively.34 

 

Table 1.1- Simplified representation of molecular structures of saccharides and lignin. 
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Table 1.1- Continued. 
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Table 1.1- Continued. 
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Biomass conversion processes can allow large molecules to be broken down into smaller 

ones, and the reduction in the degree of oxygen-functionalities.58-60 The selective deconstruction 

of biomass may allow a complex mixture of monomeric and polymeric materials to be converted 

into streams of primary biorefinery building blocks (high molecular weight biopolymers, low 

molecular weight chemicals or intermediates), which can be subsequently transformed into 

added value chemicals (Figure 1.5).61,62  
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Figure 1.5- Biomass deconstruction into pri
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Figure 1.6- Schematic representation of 

5-hydroxymethyl-2-furaldehyde
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Figure 1.7- Clean fractionation process [adapted from 
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(e.g. zeolites) in water or an organic solvent, or alternatively

used.18,32,58-60,70-73 These different types of reaction media 
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Clean fractionation process [adapted from 39]. 

Furanic aldehydes as platform chemicals 

One of the most important chemical transformations of carbohydrates is the hydrolysis of 

cellulose and hemicelluloses into the constituent monosaccharides, essentially hexoses and

pentoses, and the dehydration of the latter into the furanic aldehydes, Hmf 

are promoted by an acid which can be a liquid acid, an insoluble solid 

(e.g. zeolites) in water or an organic solvent, or alternatively an ionic liquid medium

ifferent types of reaction media will be discussed in S
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One of the most important chemical transformations of carbohydrates is the hydrolysis of 

constituent monosaccharides, essentially hexoses and 

 and Fur, respectively 

which can be a liquid acid, an insoluble solid 

an ionic liquid medium can be 

will be discussed in Sections 1.4 and 1.5. 



______________________________________________________________________________________________

____________________________________________________

 

Figure 1.8- Simplified representation of t

2-furaldehyde (Hmf) and 2-fur

 

 

The conversion of biomass to the 

considered an important route for

The conversion of polysaccharides 

is 100% selective, H2O is the only co

gives a positive net production of water.  The stoichiometry of these reactions is given for Hmf 

production in Equations (1.1)

polysaccharides consumes one molecule of 

whereas the dehydration of each molecule of monosaccharide gives one 

aldehyde plus three molecules of water

 

(C6H10O5)n

(nx162.14)

Equation 1.1- Stoichiometry of the complete hydrolysis of a polysaccharide containing n hexose 

units. 

n(C6H12O6) -

(nx180.16)

Equation 1.2- Stoichiometry of the dehydration of the hexose molecules to 

2-furaldehyde (Hmf). 
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representation of the conversion of carbohydrates 

uraldehyde (Fur) [adapted from 4]. 

conversion of biomass to the furanic aldehydes Fur and Hmf as platform chemicals, is 

considered an important route for achieving sustainable supply of energy and chemicals.

polysaccharides to Hmf and Fur requires acidic reaction conditions and 

O is the only co-product. Coupling the hydrolysis and dehydration reactions 

gives a positive net production of water.  The stoichiometry of these reactions is given for Hmf 

1)-(1.3), being similar for Fur production. The hydrolysis reaction of 

one molecule of water per monosaccharide formed

whereas the dehydration of each molecule of monosaccharide gives one 

aldehyde plus three molecules of water (equation 1.2). 

+ nH2O nC6H12O6

(nx18.02) (nx180.16 ) (g.mol-1)

Stoichiometry of the complete hydrolysis of a polysaccharide containing n hexose 

 

- (3n) H2O nC6H6O3

(3nx18.02) (nx126.11) (g.mol-1)

Stoichiometry of the dehydration of the hexose molecules to 
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he conversion of carbohydrates to 5-hydroxymethyl-      

and Hmf as platform chemicals, is 

of energy and chemicals.25,71,74,75 

conditions and when it 

product. Coupling the hydrolysis and dehydration reactions 

gives a positive net production of water.  The stoichiometry of these reactions is given for Hmf 

, being similar for Fur production. The hydrolysis reaction of 

per monosaccharide formed (equation 1.1), 

whereas the dehydration of each molecule of monosaccharide gives one molecule of furanic 

(1.1)

 

Stoichiometry of the complete hydrolysis of a polysaccharide containing n hexose 

(1.2)

 

Stoichiometry of the dehydration of the hexose molecules to 5-hydroxymethyl-      
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(C6H10O5)n - (2n) H2O nC6H6O3

(nx162.14) (2nx18.02) (nx126.11) (g.mol-1)

(1.3)

 
 
Equation 1.3- Stoichiometry of the overall hydrolysis-dehydration reaction scheme. 
 

 

The theoretical yield of Hmf (C6H6O3) obtained from a polysaccharide ((C6H10O5)n) is about 

78 wt.%. In the case of Fur (C5H4O2, 96.08 g.mol-1), obtained from a polysaccharide with n pentose 

unit ((C5H10O4)n, 132.11 g.mol-1) the theoretical yield is about 73 wt.%. Detailed reaction 

mechanisms will be presented later. 

 

 

1.3.1. 2-Furaldehyde 

 

 

2-Furaldehyde (Fur) was discovered by Döbereiner in 1821.37 It was obtained as a            

by-product during the synthesis of formic acid. Afterwards, Emmett observed that Fur can be 

obtained from vegetable substances. Later, in 1840, Stenhouse found that Fur could be produced 

by distilling a wide variety of crop materials (e. g. corn cobs, oat husks, bran, sawdust, sugar cane 

bagasse, rice and peanut) from agricultural waste rich in pentosans using an aqueous solution of 

H2SO4, and he attributed the empirical formula C5H4O2 to Fur.76,77 The chemical structure of Fur 

was determined by the chemist Carl Harries in 1901 as cited by Dalin Yebo.78 It consists of a 

furanic ring (aromatic character) with an aldehyde substituent group (Figures 1.6 and 1.8), has a 

boiling point of 161.7 °C,79,80 and is a colourless liquid that in the presence of oxygen suffers auto-

oxidation becoming dark red/brown in colour.72 Generally, Fur is produced from pentosans such 

as xylans which are acid-hydrolysed to D-xylose (an aldopentose) and the latter is dehydrated into 

Fur (Figure 1.8).25 

 
  

1.3.1.1. Industrial production 
 

 

The industrial production of Fur was stimulated by the necessity of the USA to become 

self-sufficient in war periods. Therefore between 1914 and 1918 they started to explore processes 

to transform agricultural residues into valuable products. However, the large-scale production of 
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Fur only started in 1921 with the Quaker Oats company

industrial scale, commonly using aqueous sulfuric acid medium

for the production of Fur are 

hemicellulose feedstocks are treated with 

essentially D-xylose which is further dehydrated into Fur

The batch process of Quaker Oats 

production.58,81,82 A simplified representation of this process is given

materials (oat hulls harvested from their cereal mill in Cedar 

diluted solution of H2SO4 in a reactor heated at 153 °

limited because the reactors could not support too high pressures. Therefore compensation 

factors such as increasing the residence time and the amount of H

consideration. These strategies led to the formation of str

hazards, favouring secondary reactions

the reaction, a mixture of Fur (35%) and water (65

stripped to an azeotropic distillation column. 

25.4% of initial water content

distillate and in the residue was 

giving an overall yield of 62.2%

 

Figure 1.9-The batch process of Quaker Oats
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Fur only started in 1921 with the Quaker Oats company.58 Ever since Fur has been produced on an 

industrial scale, commonly using aqueous sulfuric acid medium.25,58-60,73 The commercial proce

for the production of Fur are based on the use of either batch or continuous reactors where 

hemicellulose feedstocks are treated with an acid to hydrolyse the hemicelluloses fraction into 

xylose which is further dehydrated into Fur.25  

batch process of Quaker Oats in 1921 was the first industrial process 

plified representation of this process is given in 

(oat hulls harvested from their cereal mill in Cedar Rapids, Lowa) were mixed with a 

in a reactor heated at 153 °C for 5 to 8 h. The reaction 

limited because the reactors could not support too high pressures. Therefore compensation 

factors such as increasing the residence time and the amount of H2SO4 had to be taken into 

consideration. These strategies led to the formation of strongly acidic residues and acid corrosion 

secondary reactions, which lowered the Fur yield of the process. At the 

reaction, a mixture of Fur (35%) and water (65%) was obtained. This mixture was steam

istillation column. According to Brownlee’s optimum

initial water content),83 the initial H2SO4 concentration was 6.05 

and in the residue was 52.3% and 9.9% of the theoretical yield (73 wt

giving an overall yield of 62.2%.58 

atch process of Quaker Oats [adapted from 58]. 
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the hemicelluloses fraction into 

was the first industrial process of Fur 

Figure 1.9. The raw 

Rapids, Lowa) were mixed with a 

C for 5 to 8 h. The reaction temperature was 

limited because the reactors could not support too high pressures. Therefore compensation 

had to be taken into 

ongly acidic residues and acid corrosion 

yield of the process. At the end of 

was obtained. This mixture was steam-

optimum conditions (at 

s 6.05 wt.%, the Fur in the 

(73 wt.%) respectively, 
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In the older industrial commercial processes (Quaker-Oats, Agrifurane, Rosenlew, Escher 

Wyss or Chinese) that ran at temperatures below 200 °C (Table 1.2), yields of  Fur of up to 50% of 

the theoretical value were obtained while in the “analytic Fur process”, 100% YFur was observed.58 

According to Zeitsch the reason for these huge differences is related to the reactions that Fur 

suffers within the liquid and vapor media. In the “analytical Fur process” for the quantitative 

determination of the pentose, the substance to be analysed is added to H3PO4 saturated with 

NaCl to increase the achievement of the boiling point, which is ca. 110 °C, temperature at which 

the water vapor undergoes superheating. In the case of the conventional processes mentioned 

above, the remaining Fur in the liquid phase reacts with itself or with intermediates of the 

conversion of pentosans to Fur in the presence of an acid catalyst. On the other hand, in the case 

of the analytical process, the mixture is brought to boiling and is maintained as such throughout 

the digestion period. In this process Fur is shifted from the liquid into the vapor phase where it 

does not undergo loss reactions, since the vapor phase does not contain the active acid species. 

This cannot be achieved in conventional industrial processes, because at any pressure, condensing 

steam is thermodynamically incapable of inducing an aqueous pentose solution to boil (due to the 

elevated boiling point). Thus Fur generated is left temporarily in the liquid phase.58 

Several advances have been made to avoid Fur loss reactions in the liquid phase. 

Improved Fur yields were obtained by processes operating at higher temperatures (> 200 °C) such 

as Supratherm, Stakes, Suprayield and Montane (Table 1.2). The current production of Fur uses 

high pressure steam to heat the reaction.84 Due to the entropy effect at higher temperatures, the 

formation of larger molecules by condensation of Fur is avoided.84,85 The Suprayield process is a 

good example that demonstrates this effect. It was invented by Zeitsch in 1999,86 and developed 

by International Furan Technology Ltd. in South Africa, which is a member of DalinYebo group 

(further founded in 2001).87  In this process, the liquid phase is heated to the primary 

temperature (240 °C) with steam for a short time (the secondary temperature should not be 

below 180 °C to avoid slow reactions.58,85 The higher the primary temperature the lower is the 

need for an acid, which should not be H2SO4  (to avoid losses by sulfonation) nor HCl (causes 

corrosion) or HNO3 (due to nitration). H3PO4 was the preferred acid because it does not cause any 

side reaction.58,78 During the heating, the steam (Fur-water vapor mixture) condenses and the 

moisture content of the reactor is increased.85 When the pressure in the reactor is gradually 

decreased below the vapor pressure of the liquid, the liquid phase boils and the Fur is removed 

from the reaction solution through a stripping column. The Fur rich vapor mixture formed is then 

condensed.58,84,85 As long as the vapor is separated from the liquid phase, the solution cools and 
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the vapor pressure decreases, making it necessary to continue lowering the reactor pressure.85 

The limited solubility of Fur in water (8.3% at 20 °C),84 facilitates the separation of the Fur rich 

lower phase from the upper phase in a decanter. After the separation, the commercial product is 

obtained by purification processes (e.g. by distillation)  while the water-rich upper phase is 

recycled from the decanter back to the stripper column as reflux.84 Apart from Suprayield, there 

are other patented processes, such as Verdernikovs,88-90 CIMV (Compagnie Industrielle de la 

Matière Végétable),91 Lignol, 92,93 MTC (Multi-Turbin-Column),94 or Chempolis.95,96 The CIMV is the 

only technology in the world today that can cleanly recycle the three main components of the 

vegetable matter (cellulose, hemicelluloses and lignin) of lignocellulosic feedstock, and separate 

them into intermediary products, such as sugar syrup, for both chemical and biotechnology 

industries. The refining of these syrups (mainly composed of C-5 sugars and principally D-xylose) 

results in the production of Fur and its many derivatives.97  In the case of the MTC process, 

extractions with toluene and distillation under reduced pressure were carried out to prevent 

reactions of Fur with organic acids.85 Not all the processes need an acid since the organic acids 

formed as by-products of the decomposition of the raw materials may act as catalysts in 

autocatalytic reaction mechanisms. Some of these processes are represented in Table 1.2 

(Rosenlew, Supratherm, Stakes, CIMV or Chempolis).  

Fur can be obtained via sulfite pulping (discovery by Tilghman in 1866) which allow white 

cellulose fibers to be obtained by treating wood in aqueous solution of calcium bisulfite Ca(HSO3)2 

under reduced pressure (Figure 1.10). Lignin present in the wood reacts with sulfite to form 

water-soluble sulfonic acids, liberating the fibers of the wood. The reaction requires a 

temperature of 140 °C and the presence of an acid to permit the conversion of pentosans to Fur. 

The Fur yield can be increased by recovering the Fur that exists in the liquor.58 However, the 

pentose in calcium sulfite waste liquors is not used to produce Fur because during the digestion at 

higher pressures a super saturation with CaSO4 occurs, due to the reduction of sulfur dioxide to 

dithionate (Equation 1.4). Some processes that operate with sulfite liquor to produce Fur are 

listed in Table 1.3.58 

 

CaSO4 + SO2 CaS2O6  

Equation 1.4- Reduction of SO2 to S2O6.
58 
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Figure  1.10- Flow diagram of the sulfite
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Flow diagram of the sulfite pulping process [adapted from 58]. 
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Table 1.2 -Industrial,a patented,b and other studiedc processes for production of 2-furaldehyde (Fur). 

Industrial Process Country Catalyst Reactor 
(operation mode) 

Temperature 

(°C) 
Reaction 
Time (h) 

YFur (wt. %) Process 
duration  

Ref 

Quaker Oats 
a U.S.A. H2SO4 Batch 153 5 50  1921-1961 58 

Quaker Oats 
a U.S.A. H2SO4 Continuous 184 1 55 1961-1997 58,72,98 

Natta 
a nf d HCl Batch nf d nf d nf d nf d 41,99 

Natta 
b nf d HCl Continuous 20-25,100 190-

200,101 300102 
3-8,100 24102 70-80  1954-1957 100-102 

Roni and Sebara 
a nf d H2SO4 nf d 177-161  nf d nf d nf d 41 

Duipopetrovski 
a nf d HCl nf d nf d nf d nf d nf d 41 

Chinese 
a China H2SO4 Batch 160 4-5 35-50 nf-2004 58,72,98,103,104 

West Pro modified Chinese 

Huaxia Technology 
a 

China H2SO4 Continuous < 200 nf d 98.9-99.5 2004-to 
present 

25,72,85 

Agrifurane (Petrole chimie) 
a  France H2SO4 Batch  177-161  nf d 40- 5085 1981-

Abandoned 

58,72,85,98,105 

Escher Wyss 
a Germany H2SO4 Continuous 170  0.75 40-5085 Abandoned 58,72,85,98,106 

Rosenlew 
a Sweden and 

Finland 
Autocatalytic 

(acid by-produts) 
Continuous 18098 2 40-5085  nf d 58,72,85,98,106 

Supratherm 
b
 Germany H2SO4 or 

autocatalytic 
Continuous 200-23058,107 Few s58,107 High 1988 58 

Stake 
b Canada Autocatalytic Continuous  

108-110 
230 0.105 66 1978 58 

Suprayield 
a,b, e South Africa H3PO4 or 

autocatalytic 
Continuous 240-180 25,58,85 0.0014-

0.01725, 1103 
7025,85  

to 80103 
1999 58,85,86,103,104 

Biofine 
a U.S.A. H2SO4 Continuous 190-200 0.33 70-84 1988-1996 8,85,111-113 

Vedernikov 
b Latvia H2SO4 Continuous 170 1 70-80 1996-1999 85,88-90,114,115 

 MTC 
a, f The Netherlands H2SO4 Continuous nf d 0.41 >86 2010-to 

present 

8,85 

CIMV 
a, g 

 
France Autocatalytic Continuous 100-120116 1-3116 nf d 1999-to 

present 

8,91,116-118 

Lignol
 a 

 

Canada Acetic acid Continuous 119 180-20093,120 0.5-1.5 120  nf d 2001-2009 
119,121 

8 
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Table 1.2- Continued. 
Chempolis 

a Finland Autocatalytic Continuous 110-12595,96 0.33-1.3395,96 nf d 1997-to 
present 

118 

Montane et al.
c Spain H2SO4 Continuous 220-240 Few min 50-65 2002 122 

Rong Xing et al.
c U.S.A HCl or H2SO4 Continuous 110-220 3 h 92.2 [HCl] 2011 123 

a) Industrial process. b) patented process. c) other processes.  d) nf = information not found. e) Suprayield process was recently owned by the Proserpine Corporative Sugar Milling Association Ltd., Australia, 85,124 
and by the India Arcoy Biorefinery Private Ltd. 8,85,125  f) MTC process (Multi-Turbin-Column) was developed by Technical University of Delft. 8,85 g) CIMV-Compagnie Industrielle de la Matière Végétable. 

 

Table 1.3- Pilot scale processes to produce 2-furaldehyde (Fur) that operate with sulfite liquor. 58 

Industrial Process Country Reactor Temperature (°C) Reaction 
Time (h) 

Observations 

Voest-Alpine  Austria Continuous 150-180 
126,127  

0.17-0.42126,127 Without any applications since the use of calcium liquor 
was prohibitve due to fouling and with magnesium sulfite 
pulping there is no incentive to make Fur since there is no 
effluent. 

Reactive 

Desorption 
Czechoslovakia Continuous 140-220 nf b Steam injection was thermodynamically incapable of 

boiling sulfite liquor, and consequently any Fur formed in 
this column remained dissolved in the liquid phase, where 
it reacts with itself, with intermediates of the conversion 
of the pentose to Fur and with other ingredients of liquor, 
thus incurring many losses. 

Enforced 

Ebullition 
a 

Germany Continuous 240-234 nf b In addition to steam as primary heating agent, a hot gas is 
used to bring the liquor from the steam condensation 
temperature to boiling, to avoid the loss reactions of Fur 
with itself and with intermediates of the conversion of the 
pentose to Fur. Nevertheless the decomposition of the 
pentose with lignosulfonated and other ingredients is not 
avoided. 

a) No reference to pilot scale testing. b) nf = Information not found. 
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During the 1990s, the world production of Fur changed from developed countries to 

developing countries (China).72 The inexpensive Fur imports from China and the Dominican 

Republic led to the closure of USA plants (between 1995 and 2003);72 and since 2005, U.S.A. is no 

longer a Fur producer.120 In 1998 the world market for Fur was ca. 142 000 ton.year-1.41,128  In 2005 

it was estimated to be between 250 000-300 000 ton.year-1,11,25,72 which was continued until 

2011;4,99 very recently this value was reported to be 400 000 ton.year-1.80 China is the biggest Fur 

producer (ca. 200 000 ton.year-1), and exporter, accounting for over 70% of the global Fur 

production (with tendency to increase).25,72,79,99,129 The other main producers are the Dominican 

Republic (32 000 ton.year-1, 2005) and South Africa (20 000 ton.year-1, 2005).25,72 In 2009, 5 000 

ton.year-1 of Fur were planned to be produced by the Suprayield process in Proserpine, Australia 

(by the Propersine Corporation Sugar Milling Association Ltd).85,124  Afterwards in 2010, the India 

Arcoy Biorefinery Private Ltd at Panoli, Ankleshwar (Gujarat Province) plans to produce Fur at      

11 000 ton.year-1 based on this Suprayield one process.8,85,125  The MTC, a similar process to the 

Suprayield had a capacity to produce ca. 10 000 ton.year-1.8,85 Gravitis in 2000 and 2001 reported 

that a plant in Russia based on the Verdernikov process,88-90 produces 4 300 ton of Fur and 8 800 

ton of ethanol per year.130,131 

The International Furan Chemicals B. V. founded in 1994 in the Netherlands is the leading 

market provider in the field of Fur and furfuryl alcohol worldwide: Fur is produced in one of the 

world’s largest Fur facilities, Central Romana Corporation, located in the Dominican Republic, and 

converted to furfuryl alcohol at the related party, TransFuran Chemicals in Belgium.65 The 

DalinYebo group founded in 2001 also markets and sells Fur.132  

 

 

1.3.1.2. Applications 

  

 

Fur is a key chemical used in the synthesis of a wide range of added-value compounds and 

non-petroleum derived chemicals that have several present and potential applications in plastics, 

pharmaceutical,58,106,130 and agrochemical industries.58 Presently Fur is used as a solvent to 

remove aromatic compounds from lubricating oils and diesel fuels,58,106,130 and to obtain 

unsaturated compounds from vegetable oils to make drying oils; as a fungicide for  growing plants 

and wood; and as a nematocide.58 The major use of Fur (ca. 65%) is as an intermediate for the 

synthesis of furfuryl alcohol (FA) which in turn is essentially used for producing furan resins, which 
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are used as binding agents in foundry technologies (e.g. urea furan resin, a binding material used 

in metallurgy for heavy metals and precision casts and dies).71,80,106,130,133-136 Fur is used as an 

intermediate to produce surface coatings,72 polymers,71,72 mortar, adhesives for foundry cores and 

moulds, boiler, and floor grouting (by FA),72 nylons and lubricants.106,130   

Figure 1.11 illustrates some of the added-value products obtainable from Fur.80,137 Fur can 

be hydrogenated to tetrahydro-2-furaldehyde (THFF) (which in turn by self-aldol condensation 

can be converted to a diesel fuel),138 furfuryl alcohol (FA) (for furanic resins or plastics),80,137,139,140 

2-methylfuran (MF), tetrahydrofurfuryl alcohol (THFA) and methyltetrahydrofuran 

(MTHF).11,32,75,80,113 FA is one of the most common products of Fur produced worldwide 

representing 65% of Fur conversion.58 MTHF (20 wt.% oxygen content) was approved by the 

USDOE (US Department of Energy) for use as gasoline additive in P series type fuels and is a 

component of P-series fuel.11,141  P series fuels are defined as renewable and non-petroleum clear 

liquid fuels that can substitute gasoline and are used in flex-fuel vehicles (FFVs) and spark-ignition 

engines.142 Besides MTHF, P series fuels contain a mixture of ethanol (55%) and pentane-plus 

(27.5%) and normal butane (in a vestigious quantity).143 It was patented in 1997,144 and an 

exclusive license for commercialisation is owned by the Pure Energy Corporation (PEC) since 1998, 

when P-Series were recognised as alternative fuels in accordance with the Energy Police Act of 

1992.143 Over aqueous phase processing, Fur is an intermediate that can produce liquid straight-

chain alkanes in the range C8-13 useful to make jet and diesel fuels.11,123,138,145-147 Jet fuels are 

complex hydrocarbon mixtures that consist of different classes such as paraffin, naphthene and 

aromatics, which were especially designed as an aviation fuel for use in aircraft by gas-turbine 

engines.145,148,149 Fur can be transformed into furan, a widely used solvent in industry, by pyrolysis 

(which promotes the break of the aldehyde group) or by hot alkali (since fused alkali allows the 

oxidation of the aldehyde group into furoic acid and subsequent descarboxylation.150 Furthermore 

furan gives THF (by hydrogenation),106,140 acetylfuran and difuranpropane (DFP) that by 

hydrogenation gives  (Di-tetrahydrofuran)propane (DTHFP).106 Furoic acid is converted to 

tetrahydrofuran-2-carboxylic acid (THFAC) by hydrogenation, or to methylfuran-2-carboxylate 

(MCFAT) by esterification.106 Methyltetrahydrofuran-2-carboxylate (MTHFAT) and 

tetrahydrofuran-2-methanamine (THFAM) are other Fur derivatives.106 
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Figure 1.11- 2-Furaldehyde (Fur)
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(Fur) platform for biofuels [adapted from 80,106,137,140

Desirable jet and diesel fuel range alkanes (C8-C13) can be obtained by 

to higher molecular weight products which can subsequently undergo 

hydrogenation to give linear alkanes such as tridecane (Figure 1.12).

d high yields of alkanes by this procedure. The aldol condensation occurs between the 

carbonyl group of Fur and the carbonyl group of acetone, forming a β-hydroxycarbonyl deri

which by dehydration gives origin to α,β-unsaturated carbonyl compounds: 

C8 product) and Fur-acetone dimer (F-Ac, C13 product).

hydrogenation gives alcohol H-dimer or spiro H-dimer. Tridecane is finally produced by 

et al.145 used a bi-functional Pt/SiO2-Al2O3 catalyst. 
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140,151]. 

can be obtained by base-catalysed 

can subsequently undergo 

(Figure 1.12). Xing et al.145 

condensation occurs between the 

hydroxycarbonyl derivative, 

unsaturated carbonyl compounds: Fur-acetone 

product).152,153 Further 

dimer. Tridecane is finally produced by 

catalyst.  
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Figure 1.12- Production of tridecane from 
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Hydroxymethyl-2-furaldehyde and applications 

is a yellow solid which melts at relatively low temperatures (28

(for a pressure of 1 mmHg).155 Hmf was discovered in 1895 by D

while developing methods to prepare oxymethyl-2-fural

oxalic acid, Kiemeyer used sugar cane. Later, in 1919, Middendorp

a full and detailed study concerning the synthesis, physical characteris

more functionalised molecule than Fur; it consists

ohol, an aromatic aldehyde (apart from the furan ring system

Hmf has a weak cytotoxicity and mutagenicity in humans, except for Hmf concentrations 

Above these values it is cytotoxic, causing irritation to eyes, the respiratory 

tract, the skin and the mucous membrane.160 Hmf is present in many foods in low quantities.
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145,154]. 

is a yellow solid which melts at relatively low temperatures (28-34 °C) and has a 

was discovered in 1895 by Düll156 

furaldehyde. While Düll 

, Middendorp158 presented 

synthesis, physical characterisation and chemical 

consists simultaneously of a 

furan ring system) (Figures 1.6 

except for Hmf concentrations 

cytotoxic, causing irritation to eyes, the respiratory 

Hmf is present in many foods in low quantities.137 

vinegars,161,168 jams and 
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alcoholic products,161 biscuits161,162,169 and meat products.170 Higher amounts were found in 

bread,169,171 coffee,170,172 dried fruits, juices, caramel products,170 prunes, dark beer, canned 

peaches and raisins,172 breakfast cereals,162,173 jam,162 and soy sauce.159 In fresh food it is absent.160 

Hmf is obtainable from hexose-based polysaccharides such as cellulose or inulin via acid-

hydrolysis to D-glucose or D-fructose, respectively, being further dehydrated to Hmf (Figure 1.8).4 

In 1944, Haworth et al.174 made an important contribution to the knowledge of the mechanism of 

formation of Hmf. Newth175 was the first to publish a review about Hmf in 1951, and many others 

were followed which keep on growing every year very fast, proving its great 

importance.15,38,71,74,151,176-185 

The production of Hmf has not gone beyond the pilot plant scale.186,187 In 1993 an 

evaluation of the costs to produce Hmf indicated a Hmf marketing price of at least 2500 €.ton-1.15 

More recently, Dumesic reported a techno-economic analysis of Hmf production from D-fructose 

and referred that the market for Hmf could de comparable with that of terephthalic acid (which in 

the USA exceeds 4 million metric ton.year-1).20 For the production of Hmf from D-fructose the 

estimated costs were about $ 102.4 million for the equipment and $ 36.4 million for catalyst first 

charge and $ 258.500 million for replacement every two years.20 The estimated costs are quite 

high for a bulk-scale industrial product and the present politico-economical situation still favours 

the petroleum route.71  

Efforts need to be taken into consideration because worldwide production can be larger 

for Hmf than for Fur as a result of the more abundant terrestrial resources containing hexoses 

than those containing pentoses. A successful commercial implementation to produce Hmf 

depends partly on the feedstocks availability and prices, lower capital costs and higher price for 

the by-product levulinic acid (which currently is $ 300.ton-1)20; there are some important 

challenges to lower the price of Hmf as a biobased platform chemical. 

 

Hmf can be used for the synthesis of dialdehydes, ethers, amino alcohols and other 

organic intermediates, that lead to solvents (e.g. furan, THFA and FA),188 surface-active agents, 

phytosanitary products and phenolic resins.34,74,189 FA is obtained by the addition of H2O to Hmf 

(Figure 1.13).38,190 Phenolic resins are formed by acid catalysed reaction of Hmf with phenol.15,71,191 

Hmf can be converted into diesel fuel additives138,192,193 and biofuels,194 similar to Fur. To obtain 

kerosene and other diesel fuel intermediates there is the need to increase the carbon chain 

length of Hmf,70 which is done by aldol condensation and further aqueous phase dehydration-

hydrogenation. The aldol condensation of Hmf might consist of a non  C-C coupling or a cross 



Chapter 1 
______________________________________________________________________________________________ 

______________________________________________________________________________ 
28 
 

coupling (C-C) reaction.70 In the non C-C coupling, furan derivatives (alkoxylmethyl-2-furaldehyde 

ethers or esters) are formed by condensation with lower alcohols or carboxylic acids through the 

–OH group of Hmf.195 In the cross coupling reaction, Hmf suffers cross condensation with acetone 

(or other aldehydes or ketones with at least one acidic α-proton). When using acetone the 

product obtained is 5-(hydroxymethyl)furfurylidene acetophenone (HMFIA) which by further 

hydrogenation of the keto group gives origin to 3-(hydroxybutenyl)-hydroxymethylfuran (HB-

HMF).33,190 5-(Hydroxymethyl)furfurylidene ester (HMFI) is obtained by aldol-crossed 

condensation, (Figure 1.13).33,71 Since Hmf does not have an α-H it cannot undergo self-aldol 

condensation. The resulting condensation compounds are hydrophilic and rich in oxygen. This 

hydrophilicity can be reduced by subsequent hydrogenolysis giving origin to fuels of  kerosene 

and other diesel range products.70  

Disubstituted furan derivatives of Hmf include several compounds, such as                       

2,5-furandicarboxylic acid (FDCA), diformylfuran (DFF) and 2,5-dimethylfuran (DMF) (Figure 

1.13).15,32-34,38,71,74,140,177,185,196-199 They have potential to replace some important petrochemicals to 

produce polyesters or to be used as liquid transportation fuels. FDCA is a promissing substitute of 

terephthalic acid,177,200 and is obtained by oxidation of DFF, which in turn is obtained by oxidation 

of Hmf.15,33 DMF and 2-methylfuran (MF) are obtained by hydrogenation of 

Hmf,11,32,33,35,38,138,188,201,202 and have the advantage of being less volatile and of 40% higher energy 

density than ethanol.74 5-(hydroxymethyl)furfurylidene acetophenone (HMFA) is another product 

of Hmf oxidation.71,151 The direct hydrogenation of Hmf leads to the formation of                              

5-hydroxymethyltetrahydro-2-furaldehyde (HMTHFA),33 2,5-dihydroxymethylfuran 

(DHMF),33,140,190,203-208  and 2,5-di-(hydroxymethyl)tetrahydrofuran (DHMTHF).33,190,209-211              

2,5-furfuryldiisocyanate (FFDI),71 and  2,5-bis(aminomethyl)furan (BAMA)15,71,151 are other Hmf 

derivatives. Other applications may include pharmaceuticals with a wide spectrum of biological 

activities;15,212(e.g. Hmf was found to bind specifically with intracellular sickle hemoglobin (HbS), 

inhibiting the formation of sickled cells in blood213); thermoresistant polymers synthesized via 

reactions involving the carboxylic acid groups in FDCA;18,38,70,74,140,214 and macrocyclic compounds 

(e.g. oxo-porphyrines, oxo-annulenes, and alkenyl or alkynyl furans synthesised via reactions 

involving the dialdehyde group in DFF and FDCA, and possessing biological activity).74,177,185 

Derivatives of Hmf have been utilized as fungicides, corrosion inhibitors and flavoring agents.177 

Decomposition of Hmf can give levulinic acid and formic acid;33,34,38,71,74,190,215 levulinic acid is a 

versatile chemical for the synthesis of various bulk chemicals with applications as fuel additives, 
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resin precursors, etc.215  Hmf 

5-formylfuran-2-acetic acid (FFAA)

 

 
Figure 1.13- Some added value

2-furaldehyde (Hmf).15,33,34,38,71

 

 

Until 2000, a way to pr

Hmf without the need for complementary feed

James et al.70 presented reaction route

as the feedstock, by reacting two or more Hmf molecules

reactions include: the benzoin 

ketosination (Figure 1.14).70

employed. 
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Hmf can be converted to Fur by decarboxylation,137 

(FFAA).216  

added value chemicals derived from reactions of

71,74,140,151,185,190,202,215 

Until 2000, a way to produce kerosene and other diesel range fuel intermediates

complementary feedstocks (e.g. ethanol or acetone) 

reaction routes where these products could be obtained with Hmf alone 

reacting two or more Hmf molecules through the -OH or

reactions include: the benzoin reaction, the hetero Diels-Alder reaction, acid 

70 To obtain the respective fuels hydrogenolysis must then be 
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 or carbonylated into 

 

reactions of 5-hydroxymethyl-                    

range fuel intermediates from 

stocks (e.g. ethanol or acetone) was unknown. 

where these products could be obtained with Hmf alone 

OH or -CO groups. These 

acid condensation and 

To obtain the respective fuels hydrogenolysis must then be 
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Figure 1.14- Reaction routes

range intermediates [adapted from 

 

 

1.4. Catalytic conversion of saccharides 

 

1.4.1. Reaction mechanism of the conversion of saccharides to furanic 

aldehydes  

 

 

The mechanisms for the hydrolysis of polysaccharides into the respective pento

hexoses and subsequent dehydration into the furanic aldehydes

investigated using liquid acids, particularly mineral acids such as H

are discussed in this Section. 

The mechanism of the acid

Abatzoglou et al.217 is exemplified for the case 

protonation of the glucosidic 

followed by the cleavage of the C

______________________________________________________________________________________________

______________________________________________________________________________ 

Reaction routes of 5-hydroxymethyl-2-furaldehyde (Hmf) to kerosene and diesel 

[adapted from 70].  

tic conversion of saccharides to furanic aldehydes

Reaction mechanism of the conversion of saccharides to furanic 

he mechanisms for the hydrolysis of polysaccharides into the respective pento

dehydration into the furanic aldehydes have been extensively 

investigated using liquid acids, particularly mineral acids such as H2SO4. Some 

 

mechanism of the acid-catalysed hydrolysis of a polysaccharide

is exemplified for the case of cellulose in Figure 1.

protonation of the glucosidic oxygen (which is linked to two sugar units) by the proton of the acid

cleavage of the C-O bond and the simultaneous formation o
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o kerosene and diesel 

to furanic aldehydes 

Reaction mechanism of the conversion of saccharides to furanic 

he mechanisms for the hydrolysis of polysaccharides into the respective pentoses and 

have been extensively 

. Some mechanistic aspects 

a polysaccharide, proposed by 

1.15. It involves the 

oxygen (which is linked to two sugar units) by the proton of the acid, 

O bond and the simultaneous formation of a lower molecular 
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weight cellulosic chain and of a relatively unstable carbocation. The formation of this 

intermediate is faster at the end than in the middle of the chain.218 Finally, the carbocation reacts 

with water giving origin to another smaller cellulosic chain (with a hemiacetal end group) and the 

acidic H+ is regenerated.217 This sequence of processes is repeated until the monomer (D-glucose) 

is formed.58 This mechanism can also apply for the case of furanosides, characteristic of 

hemicellulosic structures. The furanosides have a higher reaction rate than the pyranosides.217 
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Figure 1.15- Mechanistic proposal for the hydrolysis of cellulose.217 

 

 

In the dehydration of a pentose into Fur, three water molecules are released per Fur 

molecule that is produced.58 Hydroxyl groups are transformed into H2O
+ by the presence of a 

Brönsted acid which leads to the release of a water molecule and to the formation of carbocation 

intermediates.  According to Antal et al.219 there are two possible mechanisms for the dehydration 

of D-xylose to Fur. These two mechanisms basically differ in the hydroxyl group that is first 

protonated. The xylofuranose intermediate can be formed by elimination of the OH group at C-1 

(giving xylosyl cation) and subsequent substitution of O-2 at C-5 with simultaneous scission of the 

C-5-O-5 linkage. Afterwards the loss of two more water molecules leads to the formation of Fur 

(Figure 1.16). 
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Figure 1.16- Reaction mechanism for the dehydration of D-xylose (Xyl) to 2-furaldehyde (Fur) 

proposed by Antal et al.219 

 

 
During the dehydration reaction of a pentose into Fur, several side reactions take place. 

Figure 1.17 shows some of the possible by-products during the dehydration of D-xylose into Fur. 

D-xylose in an open-chain form can suffer isomerisation into lyxose and xylulose, and 

decomposition into fragmentation products. Lyxose can undergo dehydration to give Fur.219,220 If 

Fur formed remains in the liquid phase containing the catalytically active species, two types of 

secondary reactions can take place.58 Fur reacts with itself, which is the so-called resinification 

reaction; Fur reacts with intermediates of the conversion of the pentose, commonly referred as 

condensation reactions of Fur. According to Antal, Fur does not react directly with D-xylose.219,221  
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Figure 1.17- By-products formed by

condensation or resinification of

 

 

Side reactions may be avoided by re

temperature.58,133,221 This procedure may decrease the resinification of Fur because higher 

temperatures inhibit the formation of larger molecules (entropy effect).

loss reactions can be avoided by using a

phase as it is formed.222 Fur reaction losses are higher for condensation reactions than for 

resinification.58 

 

The acid catalysed dehydration of hexoses (mainly 

D-Fructose as substrate tends to give higher 

aqueous phase reactions considerable amounts of by

are produced.34 In order to enhance selectivity to Hmf in the reaction of D

to promote the selective isomeris

which can be done by the addition of a base catalyst (
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products formed by decomposition reactions of D-xylose (Xyl)

resinification of 2-furaldehyde (Fur) [adapted from 58,99,219]. 

Side reactions may be avoided by reducing the reaction time and increasing the 

This procedure may decrease the resinification of Fur because higher 

temperatures inhibit the formation of larger molecules (entropy effect).58 On the other hand, Fur 

loss reactions can be avoided by using as organic co-solvent that extracts Fur from the aqueous 

Fur reaction losses are higher for condensation reactions than for 

ed dehydration of hexoses (mainly D-fructose and D

e tends to give higher Hmf yields than D-glucose.34,74,99

considerable amounts of by-products (e.g. levulinic acid and oligomers) 

enhance selectivity to Hmf in the reaction of D-glucose it is necessary 

mote the selective isomerisation of D-glucose to D-fructose prior to the dehydration to Hmf 

which can be done by the addition of a base catalyst (Figure 1.18).34,74,99,201,224 
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(Xyl) in acidic medium or 

ducing the reaction time and increasing the 

This procedure may decrease the resinification of Fur because higher 

On the other hand, Fur 

solvent that extracts Fur from the aqueous 

Fur reaction losses are higher for condensation reactions than for 

D-glucose) gives Hmf. 

99,223,224 In the case of 

products (e.g. levulinic acid and oligomers) 

glucose it is necessary 

rior to the dehydration to Hmf 
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Figure 1.18- Isomerisation of D-glucose to D-fructose followed by the acid-catalysed dehydration 

to 5-hydroxymethyl-2-furaldehyde (Hmf) [adapted from 34,74,99,201,224]. 

 

 

The type of reaction mechanism is difficult to establish due to the small lifetimes of the 

intermediate species. Haworth et al.174,225 proposed the first mechanism for the dehydration of             

D-fructose to Hmf, based on the formation of the fructofuranosyl cation as intermediate. The 

formation of Hmf can proceed by two possible pathways: the acyclic and cyclic route.74 In the 

following works, Antal et al.226 and Newth175  proposed the cyclic route due to the evidence of the 

intermediate enol (Figure 1.19).  
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Figure 1.19- Reaction mechanism of the dehydration of D-fructose to 5-hydroxymethyl-                 

2-furaldehyde (Hmf) proposed by Antal et al. [adapted from 226]. 

 

 

Other authors have suggested the more complex acyclic route through an open-chain  

1,2-enediol mechanism.74,178,223 In the acyclic route the 1,2-enediol undergoes β-elimination to 

form deoxy-hexosulose intermediates which suffer dehydration to give Hmf (Figure 1.20). Retro 

aldol cleavage gives Fur and dehydration of 2,3-enediol gives hydroxyacetylfurane.223 For D-

glucose or other hexoses the Hmf yields are lower due to their small extension into enol 

intermediates.223 
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Figure 1.20- Reaction mechanism for the dehydration of D-fructose to 5-hydroxymethyl-               

2-furaldehyde (Hmf) based on the acyclic route [adapted from 223]. 

 

 

More recently, Assary et al.227 confirmed the mechanistic proposal of Antal et al.226 by 

investigating the formation of fructofuranosyl intermediate species, the enol and the aldehyde 

intermediates in neutral and acidic environments by theoretical studies, including calculations of 

enthalpies, free energies and effective solvation interaction. In work carried out  by Caratzoulas  

et al.228 free-energy calculations using hybrid quantum mechanics/molecular simulations 

indicated that the reaction of D-fructose to Hmf proceeds via intramolecular proton and hydride 

transfers (Figure 1.21). The first dehydration was similar to the mechanistic proposal by Haworth 

et al.174,225 and developed by Antal et al.,226 but the second dehydration step was found to involve 
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three sequential, elementary steps: a) hydride transfer from C-1 to C-2 (Intermediate-1 (I-1) to     

I-2), b) proton transfer from O-1 to O-3 (I-2 to I-3) and c) dehydration (I-3 to I-4). The third and 

final dehydration step involves a hydride transfer to C-4 (I-5 to I-6), followed by a proton transfer 

from C-3 to O-4 (I-6 to I-7) with further water loss.228  

 

HO

HO

OH
O

OH

OH

1
H+

O

HO

OH
O

OH

OH

1

H

H
HO

OH
O

OH

OH

1
-H2O

HO

OH
O

OH

OH

Fructofuranosyl cationic
intermediate 1 (I-1)

HO

OH
O

OH

OHH2O

OH
O

O

OH

-H2OOH
O

O

OH

O

O

HO

H

H H

OH
O

O

OH
H H

OH
O

O

OH
H H

H

OH2

O

O

OH
H H

-H2O O

O

OH
H H

-H+

2
3

4

5

6

2 2 2

2
2222

2 2

3 3 3

3
3

3
33

3 3

4 4 4

4
4444

4 4

5 5 5

5
5555

5 5

6
6 6

6
666

6

6
6

1

1
1

111

1
1

I-2

I-3I-4I-5I-6

I-7 I-8

HO

OH
O

OH

OH

2
3

4

5

6

1

H

 

Figure 1.21- Reaction mechanism for the dehydration of D-fructose to 5-hydroxymethyl-               

2-furaldehyde (Hmf) proposed by Caratzoulas et al. [adapted from 228 ]. 

 

 

The conversion of hexoses to Hmf may be accompanied by different types of reactions 

including isomerisation (e.g. D-glucose and D-mannose to D-fructose),74,185,224,226,229-232 dehydration 

(besides Hmf, other by-products may be formed such as 5-methyl-2-furaldehyde (MFF),                

α-angelica lactone (AAL), β-angelica lactone (BAL), 2-(2-hydroxyacetyl)furan (HAF),                         

2-(2-hydroxyacetyl)furan formate (HAFF), 4-hydroxy-2,3,5-hexanetrione (HHT), 4-hydroxy-             

2-(hydroxymethyl)-5-methyl-3(2H)-furanone (HHMMF) and isomaltol),226 fragmentation reactions 

of the monosaccharides and condensation reactions.74,185,224,226,233,234  Decomposition of Hmf to 

levulinic and formic acids (I) (favoured at a low pH),74,185,224,226,231-233,235,236 self-polymerisation 

between Hmf molecules (II),29,235 or cross polymerisation between Hmf and the hexose (III)35,224,235 

are possible side-reactions which can lead to the formation of insoluble by-products, humins 

(favoured at high pHs) (Figure 1.22).185,224,226,233,235-237 Self polymerisation between hexose 

molecules can also take place leading to difructose dianhydrides and levulosans (soluble 

polymers), in the case of D-fructose.224 Other by-products during the conversion of D-fructose to 
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Hmf include dihydroxyacetone and glyceraldehyde from a 

pyruvaldehyde by dehydration of glyceraldehyde

(HKPA).185,238  

 

 

Figure 1.22- 5-Hydroxymethyl

 

 

1.4.2. Type of acid catalysts

 

 

The syntheses of fur

attracted much attention.74 Se

of pentoses and hexoses to Hmf and Fur, and may be divided into liquid or solid (soluble or 

insoluble). These reactions have been studied employing a single solvent (water 

solvents)196,219,229,233,239-254 or a biphasic solvent system

immiscible organic solvents ).
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etone and glyceraldehyde from a retro-aldol reaction of 

pyruvaldehyde by dehydration of glyceraldehyde,188,226 and 5-hydroxy-4-keto

Hydroxymethyl-2-furaldehyde (Hmf) reaction products [adapted from

1.4.2. Type of acid catalysts 

The syntheses of furan derivatives from saccharides in the presence of 

Several types of acid catalysts have been tested for the dehydration 

of pentoses and hexoses to Hmf and Fur, and may be divided into liquid or solid (soluble or 

). These reactions have been studied employing a single solvent (water 

or a biphasic solvent system (water and an organic co

).29,145,223,240,247,249,250,255-262 In some cases Hmf or Fur is obtained in a 
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reaction of D-fructose; 

keto-2-pentenoic acid 

 
adapted from 185,226,231,235]. 

in the presence of catalysts have 

have been tested for the dehydration 

of pentoses and hexoses to Hmf and Fur, and may be divided into liquid or solid (soluble or 

). These reactions have been studied employing a single solvent (water or organic 

(water and an organic co-solvent or two 

In some cases Hmf or Fur is obtained in a 
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one-pot hydrolysis/dehydration step from di or polysaccharides in either a mono 196,239,253,254,263 or 

biphasic solvent system.29,145,256,262 Tables 1.4 and 1.5 show examples of the investigated catalysts, 

which can be grouped according to their physical state in the pure form (e.g. liquid or solid acids). 

The investigated (molecular) liquid acids are essentially (inorganic) mineral acids and some 

organic acids; in general these are Brönsted acids, some are soluble in the reaction medium such 

as Lewis acid salts and Brönsted heteropolyacids of the Keggin type, and others are insoluble 

(heterogeneous). In the case of insoluble solid acids some are organic materials such as, acid ion-

exchange resins (Brönsted acids), others are inorganic such as zeolites and zeotype materials 

(possess Brönsted and Lewis acid sites), or hybrid organic-inorganic materials such as mesoporous 

silicas functionalised with sulfonic acid groups (Brönsted acid sites).  

Mineral acids such as H2SO4 or HCl have been extensively used as catalysts for the 

conversion of carbohydrates to furanic aldehydes. In particular H2SO4 continues to be the 

common industrial catalyst. However it poses risks to human health (high toxicity), the 

environment (due to the difficult catalyst recovery/recycling and sulfur-containing by-products 

resulting from catalyst residues leading to expensive purification procedures), and equipment 

corrosion hazards.58,240,264 For these reasons the production of Fur and Hmf is one process where 

the demand for green chemistry is stimulating the use of recyclable and less-toxic acid 

catalysts.265,266  

Heterogeneous acid catalysts are promising alternatives to homogeneous ones because 

their use may allow overcoming typical disadvantages associated with the use of homogeneous 

catalysts: e.g. the separation of the catalyst from the reaction products is easier (e.g. via filtration) 

which can lower the costs of the process, as separation processes typically represent more than 

half of the total investment in the equipment.267,268 Neutralisation steps at the end of the reaction 

in the presence of mineral acids (with the formation of waste products) are avoided through the 

use of heterogeneous catalysts. Heterogeneous catalysts can be quite resistent to high 

temperatures, which is favourable in terms of the catalyst lifetime. Solid acids can lead to higher 

selectivities towards Hmf than homogeneous ones.239,267 The acid properties of solid acid catalysts 

can be fine-tuned in order to improve the Fur/Hmf yield.74 The design of selective catalysts with 

isolated active sites for one-pot transformation processes is a challenge.269 The literature data 

related to the use of saccharides to Fur and Hmf using water or organic solvents is summarised in 

the Section 1.4.2. 
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Table 1.4- Catalysts tested in the conversion of pentoses and related di/polysaccharides. 

Liquid Acids Solid Acids 

Organic Inorganic Soluble Insoluble 

Organic Hybrid Inorganic 

Zeolites and  

Zeotypes 

Others 

CH3COOH270 
HCOOH270  
 

HCl29,270-277       
HCl(NaCl), HCl(KCl), 
HCl(CaCl2), 
HCl(KBr), HCl(FeCl3) 
272 
HCl (CrCl2)277 
H3PO4

29,270,278,279  
H2SO4

29,231,241,255-

257,270,272,275,280,281  
HNO3

270  
 

para toluene sulfonic acid 
(TsOH)280 
Yb(OTf)3

271  
YCl3

282 
CrCl2, CrCl3,  CrBr3

277  
CrCl2(LiBr),CrCl2(NaBr), 
CrCl3(LiBr), CrBr3(LiBr)277  
AlCl3

275  
AlCl3.6H2O283  
SnCl2

275 
SnCl4.5H2O274  
CsxH3-xPW12O40,  x < 2.5284  
H3PW12O40

275,280,284,285 
H4SiW12O40,  

H3PMo12O40
280 

VOPO4.2H2O, 
VOHPO4.0.5H2O, 

VO(H2PO4)2, γ-VOPO4,  
VO(PO3)2

286 
(VO)2P2O7

286
 

Amberlyst-15 
240,248,274  
Amberlyst-70 
271,287  
Nafion-SAC-13 
271,288  
Nafion-117288 

SBA-15-SH, 
SBA-15-SO3H(C), a 
SBA-15-SO3H(G),b, 

257  
MCM-41-SO3H 
240,289  
MSHS-SO3H, c 
HMS-SO3H289 
Hybrid SO3H240 
MP-NH-PW12O40, d 
LP-NH-PW12O40

e ,285 
SCBC f,256  
 

 

H-Beta249,290 
SnBeta274 
H-ZSM-5220,249 
H-Y Faujasite 
222,249,271,291,292 
H-Mordernite 
222,249,292 
H-Ferrierite249 
Nu-6, H-Nu-6  
del-Nu-6265 
 
 
 
 

 

Cs2.5H0.5PW12O40,  
MPy-CsxPW12O40, 

g  
x= 2.5 or 3;  
y=15 or 34 wt.%  
LPy-CsxPW12O40,g  
y=15 wt.%284  
MPy-PW12O40, g 
LPy-PW12O40,h 
y=15-34 wt.%285 
Niobium silicates:  
Na-AM-11, H-AM-11,  
Nb-MCM-41291,292   

γ-Al2O3, 

SiO2–Al2O3
249,271,281  

Si, H-SBA-15257,293  
Al-SBA-15290 
Si, H-MCM-41240 
Al-MCM-41290,292,294,295 
Al-MCM-48290  
Pt-MCM-48290 
MSHS-Al k,289  
Al-phosphate complex281 
Zr-P i, 271  
ZrO2

296,297 
TiO2

281,296,297 
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Table 1.4- Continued. 
      TiO2–ZrO2

278,297 
WO3–ZrO2

271,278 
SO4

2-/Al2O3, SO4
2-/SiO2,  

SO4 
2-/TiO2, SO4

2-/Fe2O3
255 

SO4
2-/ZrO2

255,296,298 
S2O8

2-/ZrO2 

S2O8
2-/Al2O3-ZrO2

298 
S2O8

2-/ZrO2-MCM-41, 
S2O8

2-/Al2O3-ZrO2-MCM-
41298 
MSZ, MSAZ j. 298 
SO4

2-/Nb2O5, SO4
2-/SnO2,  

SO4
2-/HfO2

255 
SO4

2-/ZrO2–Al2O3, 
SO4

2-/ZrO2-MCM-41,  
SO4

2-/ZrO2-Al2O3-MCM-41 
298  
SO4

2-/ZrO2–Al2O3/SBA-15,  
SO4

2-/ ZrO2 /SBA-15293
 

HTiNbO5, HTi2NbO7, 
HNb3O8,H4Nb6O17, 
H2Ti3O7,exfoliated 
nanosheets299 
[RE(H2cmp)H2O]l,282 

In brackets are indicated other salts which were sometimes added. 
a) SBA-15-SO3H(C)-prepared by co-condensation. b) SBA-15-SO3H(G)-prepared by grafting.257  c) MSHS-SO3H- sulfonic acid modified mesoporous shell silica bead.289 d) MP-NH- medium-pore micelle template 
aminopropyl functionalised silica. e) LP-NH- Large-pore micelle templated aminopropyl functionalised silica.285  f )SCBC- Sulfonated carbon based catalyst.256  g) Mpy- medium-pore micelle templated MCM-41 
(3.7 nm) (y is the loading of heteropolyacid). h) Lpy - Large-pore micelle templated silica (9.6 nm) (y is the loading of heteropolyacid).284,285 i) Zr-P-Zirconium phosphate.271 j) MSZ and MSAZ- Mesoporous 
sulfated zirconia and alumina modified mesoporous sulfated zirconia respectively.298 k) MSHS-SO3H  and MSHS-Al- aluminium modified mesoporous shell silica bead.289 l) [RE(H2cmp)H2O]-Rare earth hybrid 
layered networks formed by rare earth (RE) chloride salts and N-carboxymethyl)iminodi(methylphosphoric acid (H5cmp).282 
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Table 1.5- Catalysts tested in the conversion of hexoses and related di/polysaccharides.  
 

Liquid Acids Solid Acids 

 

Organic 

 

Inorganic 

 

 

Soluble 

Insoluble 

Organic Hybrids Inorganic 

Zeolites and 

Zeotypes 

Others 

Oxalic acid 
70,177,233  
Maleic acid 
70,177,233,300  
CH3SO3H198,235,301 
CF3SO3H198,301-303 
HCOOH243,304,305 
CH3COOH301,304-

307 
CF3COOH198  
Citric acid233,308 
Nicotinic acid308 
para-toluene 
sulfonic acid 
(TsOH)70,177,229,233,

235,309-311
 

HCl29,35,196,198,229,230,233,23

5,237,242,243,258,259,300-

302,304-307,312-322 
HCl(NaCl)235,258 
HCl(LiCl), HCl(KCl), 
HCl(CsCl), HCl(CaCl2), 
HCl(MgCl2), HCl(KBr), 
HCl(NaBr)258 
HCl (AlCl3), HCl (CrCl3), 
 HCl(LaCl3)235,258 
HCl(Na2SO4)233 
N(CH3)3/HCl,  
NH(CH3)2/HCl323 
H3PO4

29,35,198,233,243,278,27

9,300,301,305,306,308,319,324,325 
Pyridine /H3PO4

70,177,308 
α- Picoline /H3PO4,  

Collidine/H3PO4
70,177,308 

NaH2PO4
308 

(NH4)2HPO4
308

 

AlCl3
201,242,304,307,312,323,326-329 

AlCl3(Et4NCl)323 
AlCl3.6H2O 305,314,318,326 
AlCl3 (NaCl)326 
AlBr3

326  
Al2(SO4)3

242,312 
Al2(SO4)3

242
    

Al(NO3)3
312 

CrCl2
73,196,201,230,242,253,305,309,

310,313,322,327-332 
CrCl2 (LiCl), CrCl2(LiBr)253 
CrCl3

196,201,253,263,310,312,324,32

7-337  
CrCl3(LiCl)253,263,335  
CrCl3(LiBr)253,263  
CrCl3(NaCl), CrCl3(KCl), 
CrCl3(NaBr), CrCl3(KBr), 
CrCl3(NH4Cl), CrCl3(NH4Br), 
CrCl3(NH4I)263  
CrCl3.6H2O 
252,305,313,318,323,331,336,338-340 
CrBr3

196,201,253 
Cr2(SO4)3

312 
CrSO4

242
    

Cr(NO3)3
253,324 

ZnCl2
230,242,304,305,310,313,341 

Amberlyst-15 
35,229,243,245-

247,260,302,306,309-311,342-

344 
Amberlyst-36309  
Amberlyst-70302,345,346 
Amberlite-IR118, 
Amberlite-IR120347 
Dowex50-WX-8  
259,306,348 
Dowex50-WX-4253 
Diaion-PK21618,347,348 
Diaion-PK208,  
Diaion-PK228,   
Lewatit-SC-108347 
Levait-SPC-108349,350 
Lewatit-S2328,  
Lewatit-K1131,  
Lewatit-K1469,  
Lewatit-K2641351  
Nafion245 
Nafion-NR50229 
NKC-9304,335 
OC-1052320 

SCBC a, 256 
AC-SO3H, b 
Glu-TsOH c,246  
TP-A380, d 
TAA-A380, e  
TP-SBA-15, f 
TAA-SBA-15 g

,
346,352 

SBA-15-SO3H352,353  
SSA-SBA-15,h 

GCC, FCC, CCC, LCC, 
BCC, JCC i,354  
Carb-SO3H j,302 
MIL-101-H3PW12O40 
k,355   
 
BHCl,356 (it was 

considered a 

homegeneous 

hybrid catalyst) 

H-MCM-22295 
Y244 
H-Y 
Faujasite244,245,261,309

,357,358  
Na-Beta359 
SiO2-H-Beta250  
H-Beta 
229,245,246,250,261,290,309,

358,359 
Ti-Beta  
Sn-Beta (HCl)360  
 H-Mordernite 
223,250,261,309,358 
 SiO2-H-
Mordernite250  
Na-ZSM-5304,359 
 H-ZSM-5 
229,250,261,309,313,359  
SiO2-H-ZSM-5250  
H-MFI358 
LZY 361 

Cs2.5H0.5PW12O40
245,

335 
Cs3PW12O40

315,362  
Zn1.5PW12O40

362  
Ag3PW12O40

315 
Si-H-SBA-15346,353  
Al-MCM-20357 
Al-MCM-41290,357 
Al-MCM-48290 
TS-1, Sn-MCM-41, 
Ti-MCM-41360   
Pt-MCM-48290  
SO4

2-/ZrO2/SBA-
15335 
ZrO2

296,297,363-369 
SO4

2-–ZrO2 
229,245,296,364,367,370 
SO4

2--ZrO2/Al2O3
370 

WO3-ZrO2
245,278 

Zr3(PO4)2
239,264,335,37

1  
ZrPP, TPP m,239  
TiO2

296,297,363,365,366,

368,372 
TiO2-HCl365 
TiO2-H3PO4

239,365 
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Table 1.5. Continued. 
 H2SO4

29,35,70,177,196,198,201,

231,233,242-

244,253,256,258,259,300-302,304-

307,312,313,316,318,319,324,327,3

34,335,338,353,363,366 
Pyridine (H2SO4)70,177,308 
H2SO4 (Na2SO4)258 
H2SO4 (LiCl),  
H2SO4 (LiBr)253 
H2SO4 (NaCl), 
H2SO4(CrCl3.6H2O)340 
HCl+H2SO4

233 
NaHSO4.H2O(Et4NCl)323 
HI70,177 
HBr235,312 
VCl4

201 
 H2IrCl6

312  
GeCl4

373 
SnCl4

252,263,327,329,336,374 
SnCl4.4H2O 373 
SnCl4.5H2O 252,305,360 
SnCl4(NH4Br)263 
TiCl4.

328 
HClO4

235 
HNO3

198,243,300,304,305,319 

ZnSO4
242,312 

CuCl196,201,329 
CuSO4

312
  

CuCl2
201,304,306,327-329 

CuCl2.2H2O252,305,323 
CuCl2.2H2O (Et4NCl)323 
CuClBr2

201 
FeCl2

201,242,328,329,375,376  
FeCl3

201,242,252,263,304,305,310,31

2,323,328,329,333,375 
FeCl2.4H2O252 
FeCl3.6H2O305 
FeCl3 (NH4Br)263,375 
FeCl3 (Et4NBr)323,375 
FeCl3 (Et4NCl), FeCl3 (LiCl), 
FeCl3(NaCl), FeCl3(KCl), 
FeCl3 (LiBr), FeCl3 (NaBr),  
FeCl3(KBr)375 
Fe2(SO4)3

242,312 
FeSO4

242 
Fe(NO3)3

312 
Fe(NO3)2/ Et4NBr, 
Fe(NO3)3/Et4NBr375 
VCl3

201 
CoCl2

242,377 
CoSO4

242,377 
Co2(SO4)3, Co(NO3)2

377 
MnCl2

201,242,329 
MnCl2.4H2O305 
MnSO4

242 

NiCl2
242,329 

NiCl2.6H2O252 
NiSO4

242 

   TiO2 (IrCl3)324 
TiO2(SO4

2-)335   
TiO2-ZrO2

278,297 
Al2O3

245,372 
Pt/Al2O3

378 
Al2O3-SiO2

250  
AlF-Zr-P n,371 
 2O5.xH2O229,335,379-

382  
NbOPO4

379-

381,383,384 
SiO2

372 
SiO2-gel 385 
B2O3, P2O5

325
 

CeO2
372 

SnO2
360 

Ta2O5.nH2O379  
VOPO4.2H2O/ SiO2;  

VOPO4.2H2O/TiO2
3

86
  

VOPO4.2H2O/ γ-
Al2O3, 386 
Pillared 
montmorillonite 
(PM) clays: 
H-, Cr-, Fe-PM o,387  
Al-PM310,357,387 
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Table 1.5. Continued. 
  TiCl3

312 
ScCl3

388 
ScCl3.6H2O373 
Sc(OTf)3

245,310,389 
GeBr2

373 
Ge (OEt)4

373 
PdCl2

201,306,312,328,329,390 
RuCl3

201,251,328,390 
RuCl3 (MgCl2), 
RuCl3(MgSO4)251 
RuSO4

251,312 
RhCl3

201 
MoCl3

201,323,333  
MoCl3 (Et4NCl)323 
 SnCl2

307,327,329 
SnCl2.2H2O263,305 
SnCl2(NH4Br)263 
ZrCl4

328,373  
Zr(NO3)4

324
   

AgNO3
315

 

Ag2(SO4)251,312
   

YCl3, YCl3.6H2O388 
PtCl2, PtCl4

201,329 
IrCl3

324 
IrCl3.H2O339 
AuCl3 (HCl)324 
BiCl3

373 
WCl3

333 
WCl4, WCl6

328 
HfCl4

373 
LaCl3

201,242,329,388,390 
La2(SO4)3

242 
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Table 1.5. Continued. 
  Yb(OTf)3

389,391 
YbCl3

390,391 
NdCl3

390,391 

Nd(OTf)3
389  

DyCl3
390,391 

EuCl3
390   

PrCl3
390,391 

HoCl3
390   

Ho(OTf)3
389 

SmCl3
390

 

Sm(OTf)3
389

 

GdCl3, TbCl3, ErCl3, LuCl3
390 

CeCl3
373,390,391 

Ce(NH4)3 (NO3)6
324 

H3BO3
262,313,325,392 

H3BO3(K2SO4), H3BO3(LiCl), 
H3BO3(LiBr), H3BO3(LiNO3), 
H3BO3(NaCl), H3BO3(NaBr),  
H3BO3(NaNO3), 
H3BO3(Na2SO4), 
H3BO3(KCl), H3BO3(KBr), 
H3BO3(KI), H3BO3(KNO3)262 
H3BO3(MgCl2), 
H3BO3(K2SO4), 
H3BO3(AlCl3),H3BO3(FeCl3)2

62 
(NH4)2SO4 70,177,252,308 
(NH4)2SO3

308 
NH4NO3

252 
NH4Br 252,263 
NH4I263 
NH4Cl252,308  
NaCl/NH4Cl252 
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Table 1.5. Continued. 
  E4NBr375 

(NH4)/OAc308 
FePW12O40

315 
H3PW12O40

198,245,307,315,335,35

5,362  
H3PMo12O40, H3SiW12O40 

H3SiMo12O40
198

 

VOPO4.2H2O386 
VO(SO4)2

70,177 
[Fe(H2O)].VOPO4.2H2O386 
[Al(H2O)].VOPO4.2H2O, 
[Ga(H2O)].VOPO4.2H2O, 
[Cr(H2O)].VOPO4.2H2O, 
[Mn(H2O)].VOPO4.2H2O386 

    

In brackets are indicated other salts which were sometimes added. 
a) SCBC-Sulfonated carbon based catalyst.256 b) AC-SO3H- Sulfonated activated carbon. c) Glu-TsOH- sulfonated carbonaceous material bearing SO3H, OH, and COOH groups via one-step hydrothermal 
carbonisation of D-glucose and para-toluene sulfonic acid (TsOH) under mild conditions.246 d) TP-A380- Thiopropyl groups onto non-porous silica.346  e) TAA-A380- Propylsulfonic acid groups on Tp-A380      
(3-(thiopropyl)-propane-1-sulfonic acid funcionalised onto non-porous silica.346 f) TP-SBA-15- Thiopropyl functionalised silica SBA-15.346 g) TAA-SBA-15- Propylsulfonic acid groups on Tp-SBA-15                      
(3-(thiopropyl)-propane-1-sulfonic acid functionalised silica SBA-15).346,352 h) SSA-SBA-15- 3-(Propylsulfony)-propane-1-sulfonic acid functionalised silica SBA-15.352 i) TESAS-SBA-15- 3-(Propylthio)propane-1-
sulfonic acid functionalised silica SBA-15.352 i) Carbonaceous based catalysts: GCC, FCC, CCC, LCC, BCC and JCC- Glucose, fructose, cellulose, lignin and bamboo derived carbonaceous catalyst.354 j) Carb-SO3H- 
Vulcan carbonaceous support on sulfonic acid.302  k) MIL-101- chromium based metal-organic framework.355 l) BHC-Betaíne hydrochloride, a co-product of carbohydrate industry. m) ZrPP and TPP- Layered 
zirconium pyrophosphate, titanium phosphate and cubic titania pyrophosphate239 n) AlF-Zr-P-Zirconium phosphate coating on aluminium foams.371 
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1.4.3. Conversion of saccharides to furanic aldehydes in the presence of 

heterogeneous catalysts 

 

 

Since the pentoses and hexoses and the respective di/oligo/polysaccharides are polar and 

non-volatile compounds, their conversion to Hmf and Fur is restricted to liquid-phase processing. 

The solubilisation of polysaccharides into the reaction medium is one of the requirements to 

avoid detrimental mass transfer limitations and to maximise feedstock loadings, which is desirable 

for process intensification. This is particularly important in the cases of insoluble solid acid 

catalysts (to avoid detrimental mass transfer limitation associated with the catalyst and reagent 

being in the solid state). Employing an aqueous-phase reaction medium has important 

advantages: water is cheap, non-toxic, non-flammable and a clean solvent, increasing the 

economic feasibility of the process.264 The use of an immiscible organic co-solvent is known to 

allow enchanced Fur or Hmf yields; in this way the target products are extracted as they are 

formed from the aqueous phase, avoiding undesired side reactions. Román-Leshkov et al.35 

proposed a two-phase reactor system for the dehydration of D-fructose to Hmf (Figure 1.23). The 

aqueous phase consisted of a mixture of dimethylsulfoxide (DMSO) and poly(1-vinyl-2-

pyrrolidinone) allowing the suppression of undesired side reactions; the organic phase consisted 

of isobutylmethylketone (IBMK) which continuously extracts Hmf. The countercurrent extractor 

was employed to remove the Hmf remaining in the aqueous phase.35 Afterwards, the same group 

investigated the solvent effect on the dehydration of D-fructose in biphasic system with saturated 

inorganic salt, with THF as extract solvent, reaching an outstanding Hmf selectivity of 83%.258 

Furthermore, one pot procedures involving multiple catalytic steps such as reaction and 

separation of products can minimise investment in equipment and energy consumption.269 
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Figure 1.23- Conversion of saccharides to 

(Hmf) using an aqueous-organic biphasic solvent system, under b

from 35,74].   

 

 

Although cellulose is one of the most abundant natural polymers and attractive 

renewable feedstocks, it is insoluble in water and most organic solvents and not easy to hydrolyse 

because of its compact crystalline structure (formed mainly by inter

hydrogen bonds).25,393,394 Pre-

allow the crystallinity of cellulose to be decreased, facilitating its 

has been successfully used to dissolve cellulose 

mineral acids due to the fact of being less corrosive and due to i

cost.400  The addition of H3PO

of cellulose leading to cellulose

groups of cellulose chains and H

H2O or a hydrogen ion.398 

Fur/Hmf yields. However DMSO can d

separation from Hmf can be quite energy intensive.

Conversion of carbohydrate biomass to f
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Conversion of saccharides to 2-furaldehyde (Fur) and 5-hydroxymethyl

organic biphasic solvent system, under batch operation mode

Although cellulose is one of the most abundant natural polymers and attractive 

renewable feedstocks, it is insoluble in water and most organic solvents and not easy to hydrolyse 

crystalline structure (formed mainly by inter- 

-dissolution treatments applied to cellulose using 

y of cellulose to be decreased, facilitating its hydrolysis.3

used to dissolve cellulose and compares favourably

the fact of being less corrosive and due to its non-toxic

PO4 to cellulose involves an esterification reaction 

leading to cellulose-O-PO3H2 and a competition of H-bond formation between 

of cellulose chains and H-bond formation between one hydroxyl group of cellulose with 

 DMSO dissolves fairly well saccharides and leads to 

DMSO can decompose giving toxic S-containing by

can be quite energy intensive.29,401,402 The alternative use of ionic liquids 
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hydroxymethyl-2-furaldehyde 

operation mode [adapted 

Although cellulose is one of the most abundant natural polymers and attractive 

renewable feedstocks, it is insoluble in water and most organic solvents and not easy to hydrolyse 

 and intra-molecular 

dissolution treatments applied to cellulose using phosphoric acid can 

395-399 Phosphoric acid 

and compares favourably to other inorganic 

toxic properties and low 

to cellulose involves an esterification reaction with the –OH groups 

bond formation between –OH 

bond formation between one hydroxyl group of cellulose with 

leads to quite good               

containing by-products,34 and its 

ative use of ionic liquids 
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based catalytic systems for converting saccharides to furanic aldehydes has been explored in 

recent years with one of the main advantages being the favourable properties of some ionic 

liquids in dissolving cellulose and other pol

solvents and water.403 The state of the art 

focuses on heterogeneous catalytic systems using on

Porous solids can be classifie

2 nm in width, mesopores have widths 

above 50 nm, according to IUPAC.

pores sizes are shown in Figure 1.24.

function as bulk catalysts, or can be used as (inert) supports for active species (supported 

catalysts). A wide range of reaction systems based on heterogeneous catal

solvent systems have been investigated in the

collects the catalytic results reported for the conversion of mono/polysaccharides and 

lignocellulosic feedstocks, using water and/or org

acid catalysts. 

 
 

Figure 1.24- Typical pore widths

 

 

The use of porous solid acid catalysts in the hydrolysis/dehydration of polysaccharides 

into furan derivatives seems attractive although important requirements need to be considered 

such as, type and density of acid sites, 

______________________________________________________________________________________________

_____________________________________________________________________________

based catalytic systems for converting saccharides to furanic aldehydes has been explored in 

recent years with one of the main advantages being the favourable properties of some ionic 

liquids in dissolving cellulose and other polysaccharides in comparison with common organic 

The state of the art of this field is presented in Section 1.5. This S

focuses on heterogeneous catalytic systems using only water and/or organic solvents.

Porous solids can be classified according to their pore sizes: micropores possess le

s have widths in the range 2 to 50 nm, and macropores have widths 

above 50 nm, according to IUPAC.404,405 Examples of porous materials with different ranges of 

pores sizes are shown in Figure 1.24.406 The porous solids can possess catalytic active sites and 

function as bulk catalysts, or can be used as (inert) supports for active species (supported 

catalysts). A wide range of reaction systems based on heterogeneous catal

solvent systems have been investigated in the conversion of saccharides to Hmf and Fur. Table 1.6 

collects the catalytic results reported for the conversion of mono/polysaccharides and 

lignocellulosic feedstocks, using water and/or organic solvents in the presence of heterogeneous 

widths of micro-, meso- and macroporous materials [

The use of porous solid acid catalysts in the hydrolysis/dehydration of polysaccharides 

seems attractive although important requirements need to be considered 

type and density of acid sites, acessibility of the acid sites (avoiding detrimental internal 
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The porous solids can possess catalytic active sites and 

function as bulk catalysts, or can be used as (inert) supports for active species (supported 

catalysts). A wide range of reaction systems based on heterogeneous catalysts using different 

conversion of saccharides to Hmf and Fur. Table 1.6 

collects the catalytic results reported for the conversion of mono/polysaccharides and 

anic solvents in the presence of heterogeneous 

 

and macroporous materials [adapted from 406]. 

The use of porous solid acid catalysts in the hydrolysis/dehydration of polysaccharides 

seems attractive although important requirements need to be considered 
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mass transfer limitations), stability under the applied reaction conditions (e.g. leaching of the 

active species into solution), leveling-off of the acidity by the type of solvent (e.g. water-

tolerance), resistance to thermal and/or chemical treatments for removing insoluble by-products 

and regenerating the catalyst (allowing extended catalyst lifetimes).36 

 Crystalline inorganic oxides (such as zeolite H-Beta,229,245,246,249,250,261,290,359 H-Ferrierite,249              

H-ZSM-5,220,229,249,250,261,313,359 H-Mordenite,222,223,249,250,261,291,292,407 and H-Y                              

Faujasite222,244,245,249,261,271,291,292,357,358,387), amorphous niobium oxides (such as e.g.                 

Nb2O5.nH2O,229,379,380,382,407 Nb2O5/PO4 
2-, 379-381,383,384 and  Nb2O5/SO4

2- 255), exfoliated niobates     

(e.g. eH4Nb6O17 and eHNb3O8),
299 exfoliated titanates (e.g. eH2Ti3O7

299), titanoniobate nanosheets 

(e.g. HTiNbO5
299), exfoliated titanoniobates (e.g. eHTi2NbO7

299) and delaminated microporous 

aluminosilicate (del-Nu-6(1)265) are considered fairly stable and water tolerant porous solid acid 

catalysts (Table 1.6). Microporous pillared-clay catalysts are layered montmorillonite sheets with 

intercalated metal oxide pillars and larger pores widths (> 10 Å, enough to accommodate             

D-glucose, 8.6 Å) than zeolites, promote high conversions with high selectivities to organic acids 

but low selectivities to Hmf. Lourvanij et al.387 stated that larger pore sizes  allowed D-glucose to 

diffuse into the microporous matrix but also trapped the Hmf molecule, directing the reaction to 

final organic acids. Some examples are aluminium pillared montmorillonite (Al-PM),357,387 Cr-PM,   

Fe-PM and H-PM387  (Table 1.6). Aluminosilicate catalysts (e.g. zeolite) seem more attractive in 

terms of costs and/or availability of the sources of the constituent elements (Al, Si) than 

transition-metal containing ones such as, H-AM-11 (microporous niobium silicate), Nb-MCM-41 

(mesoporous niobium silicate),291,292 Pt-MCM-48,290 Pt/Al2O3,
378 WO3/ZrO2,

245,271,278 

ZrO2,
296,297,363,365-368 TiO2,

281,296,297,363,365,366,368,372 TiO2-ZrO2,
297 Ta2O5.nH2O,379 and CeO2

372 (Table 1.6). 

Several other advantages in the use of zeolites are reported particularly when compared to acidic 

ion exchange resins, such as presenting higher selectivities in water; resistance to higher 

temperatures favouring the formation of Hmf; capacity to adsorb organic acids partly responsible 

for further degradation of Hmf; easier to regenerate by thermal processes.223 However various 

authors reported that in the case of crystalline microporous solid acids as zeolites and zeotypes, 

the formation of coke can lead to catalyst surface passivation and pore blockage, resulting in 

decreasing catalytic activity and/or product selectivity.71,220,222,223,249 O’Neill et al. 220 with H-ZSM-5 

in the dehydration of D-xylose observed the formation of bulky by-products entrapped in the 

micropores; Moreau et al.222,223 concluded that H-Mordenites or H-Faujasites with higher Si/Al 

ratio lead to lower selectivities because upon increasing the Si/Al ratio, the acid properties of the 

catalysts are decreased, and increases secondary reactions with formation of by-products; Kim et 
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al.249 observed the same behaviour for other zeolites. On the other hand, heavier substrate 

molecules (e.g. di/polysaccharides) can be too bulky to enter the channels of the microporous 

structures. The investigation of the microporous acid catalysts in the conversion of saccharides to 

Fur/Hmf were followed by innovative applications of mesoporous materials possessing Brönsted 

acid sites such as sulfonic acid groups (firstly tested by Dias et al.240 with MCM-41-SO3H, and 

followed by other authors with SBA-15-SO3H,257,352 sulfonic acid modified mesoporous shell silica 

bead, MSHS-SO3H,289 and propylthiol mesoporous silica SBA-15-SH,257 Table 1.6). Mesoporous 

materials possessing both Lewis acid sites and Brönsted acid sites associated with the presence of 

aluminium were also tested (amorphous SiO2-Al2O3,
249,250,271,281,407 aluminium modified 

mesoporous  shell silica bead, Al-MSHS,289  aluminium-containing MCM-41 type,290,292,294,295,357 

MCM-48 type,290 or crystalline mesoporous MCM-20 type,357 Table 1.6 ).Some zeolites are formed 

from lamellar precursors (e.g.  by thermal treatment) and these may be delaminated to form 

mesopores from aggregates, enhancing the specific surface area and acid sites accessibility (e.g. 

ITQ-2,408,409 ITQ-6,410 ITQ-18,411,412 Nu-6413). These type of materials are quite promissing for the 

conversion of pentoses to Fur.265  

Solid acids possessing sulfur-containing surface groups such as 

(per)sulfate229,245,255,293,296,298,367,370 and sulfonic acid240,257,289,346,352 have been successfully applied as 

acid catalysts in the reaction of saccharides to Hmf/Fur (Table 1.6). These types of materials 

shown in Table 1.6 are organic such as, ion-exchange resins  (e.g. Nafion,245 Nafion SAC-13,271,288 

Nafion-117,288 Nafion NR-50,229 (perfluorinate sulfonic acid resins) Amberlyst-15,35,229,240,243,245-

247,260,274,407 Amberlyst-70,271,287,345,346,352 Amberlite IR-118,347 (macroreticular resin based on  a 

styrene-divinylbenzene co-polymer) Diaion PK-216,18,347,348 Dowex 50wx4,253 Dowex 50wx8,259,348 

(microreticular resin based on a styrene-divinylbenzene co-polymers) Lewatit S2328,351 Lewatit 

SCP 108,350 OH1052320), or others such as phosphonics arylsulfonic acid-functionalised non-

ordered silica (SiSphSA),352 thiopropyl groups onto non-porous silica (Tp-A380)346 and 

propylsulfonic acid groups on Tp-A380 (Taa-A380)346; inorganic such as, versions of (per)sulfate 

bulk (zirconia, titania, alumina or other metals) (e.g. S2O8
2-/ZrO2,

298 SO4
2-/ZrO2,

229,245,255,296,298,367,370 

SO4
2-/TiO2,

255 SO4
2-/Al2O3,

255 SO4
2-/Fe2O3,

255 SO4
2-/SnO2

255 and SO4
2-/HfO2

255); alumina or silica-

supported (per)sulfate zirconia (e.g. S2O8
2-/Al2O3-ZrO2, 

298  S2O8
2-/ZrO2-MCM-41,298 S2O8

2-/Al2O3-

ZrO2/MCM-41,298 SO4
2-/Al2O3-ZrO2,

293,298,370 SO4
2-/ZrO2-Al2O3/SBA-15,293 SO4

2-/ZrO2/SBA-15,293 SO4
2-

/ZrO2-MCM-41,298 and SO4
2-/Al2O3-ZrO2/MCM-41298); hybrid organic-inorganic such as silicas 

modified with sulfonic acid surface groups (e.g. MCM-41-SO3H,240,289 SBA-15-SO3H,257,352 HMS-

SO3H,289 and sulfonic acid modified mesoporous shell silica bead, MSHS-SO3H
289), thiopropyl 
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groups (e.g. Tp-SBA-15346 and SBA-15-SH257) or with thiopropylsulfonic acid groups                      

(e.g. Taa-SBA-15,346 3-((3-methoxysilyl)-propyl)thio)propane-1-sulfonic acid,TESAS-SBA-15,352       

3-propylsulfonyl)propane-1-sulfonic acid, SSA-SBA-15352). SBA-15 in particular is a good suppot for 

the dispersion of sulfated zirconia or sulfated groups because of its unique surface, pore 

structure, and hydrothermal stabilities.414 These types of catalysts present some limitations in 

terms of thermal stability associated with the sulfur containing groups (SO4 
2- groups are unstable 

at high temperatures (ca. 250 °C240,255) and catalyst regeneration requires a thermal treatment 

above this temperature for the removal of the accumulated organic matter.240,293,370 Alternatives 

might include regeneration with H2O2,
240,257,293 or acetone.257 Another limitation is associated with 

leaching of sulfur-containing groups during the catalytic reaction.255,293,296,298 For example, for 

materials of the type (per)sulfated zirconia supported on mesoporous silica MCM-41 (some doped 

with aluminium) used as catalysts in the dehydration of D-xylose, while no leaching of zirconium 

and aluminium was observed, the sulfur loading dropped by ca. 50%, compromising its 

reusability.298 Shi et al.257  observed coke formation in 34 wt.% for SBA-15-SO3H(C) (prepared by 

co-condensation) which lead to a deactivation of the catalyst. After regeneration with acetone the 

content of coke was still high (28.2 wt.%), which indicates that part of the accumulated organic 

matter is not dissolved in acetone and the catalytic activity dropped by ca. 10%. However when 

regenerated with H2O2 the content of coke dropped almost completely (0.4 wt.%) and the 

catalytic activity was recovered competely. These results indicate that H2O2 treatment is an 

effective method for regenerating sulfonic acid functionalised mesoporous SBA-15 materials. 

Furthermore no sulfur leaching was observed for SBA-15-SO3H(C) (S content was similar for the 

fresh and recovered catalysts) indicatiing that the material has a high thermal stability.257 MCM-

41-SO3H resulted in a significant decrease in the Fur selectivity (65% to 23%) and CXyl (37% to 28%) 

due to the formation of organic by-products (confirmed by colour change of the catalyst) which 

were not efficiently eliminated by filtration and washing processes.289  The same behaviour was 

previously noted by Dias et al.240 when the catalyst MCM-41-SO3H was washed with methanol and 

treated with H2O2 (CXyl dropped from 62 to 52% and the Fur selectivity from 80% to 34%). On the 

other hand, despite the lower activity of HMS-SO3H, and MSHS-SO3H, the colour of the catalysts 

remained white after catalysis and no decrease in the selectivity was observed.289   

The substitution of sulfur groups by phosphorous has also been investigated in the 

reaction under study. Solid acids with phosphorous-containing surface groups such as versions of 

titanium phosphates (e.g. α-PO4
2-/TiO2,

239
 γ-PO4

2-/TiO2
239), zirconium phosphates (e.g. PO4

2-/ 

ZrO2,
264,271,371 γ-PO4

2-/ZrO2,
239,407

 and Al2O3/PO4
2-/ZrO2

371), niobium phosphates (e.g. PO4
2-
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/Nb2O5
381), pyrophosphates (e.g. cubic zirconium pyrophosphate, C-ZrO2/P2O7,

239
 cubic titanium 

pyrophosphate C-TiP2O7
239), metal-oxides with phosphoric acid (e.g. Ta2O5.nH2O/H3PO4

2-,379
 

TiO2/H3PO4,
365

 Nb2O5/H3PO4
381) or yet layered vanadyl phosphates (VOP) involving both Brönsted 

and Lewis acid sites were also tested, supported on silica, alumina, or titania (e.g.  VOP/SiO2,
386 

VOP/Al2O3,
386 and VOP/TiO2

386 ) and have been employed with good performances in both activity 

and selectivity (Table 1.6). The reuse of the phosphorous containing materials was possible after 

removal of the adsorbed reaction by-products with acetone treatment, which allowed significant 

improvement of the catalytic performances;239,381 or by treatment with a solution of H3PO4 

without loss in the catalytic activity or selectivity for seven runs.264 No leaching was observed for 

phosphorous containing materials in aqueous media.271 Hybrid organic-inorganic materials with 

phosphorous tested in the dehydration of D-xylose are exemplified by rare earth hybrid layered 

networks formed by rare earth chloride salts and N-(carboxymethyl)iminodi(methylphosphoric 

acid).282 

Mesoporous silica-supported heteropolyacids (HPAs) of the Keggin-type, such as 

supported HxPW12O40
3-x 285 and CsxH3-xPW12O40,

284 are quite active catalysts in the dehydration of 

D-xylose, although leaching of the active species was observed (using water and toluene (Wt/Tol) 

as a biphasic solvent system), resulting in a decrease of the catalytic activity and Fur yields in the 

subsequent batch runs (Table 1.6). Using DMSO as solvent there was pratically no loss of 

activity.284,285 The leaching phenomena is most likely related to relatively weak interactions of the 

active species (ionic) with the support and solvation effects (when using the biphasic Wt/Tol 

system), leaving only Keggin anions strongly bound to the surface of the support.285 The 

compound Ag3PW12O40 (as a Lewis acid) was tested in the conversion of D-fructose to Hmf, using 

water/IBMK biphasic system as solvent, and was recycled for 6 batch runs without drop in 

catalytic activity.  The leaching of Ag3PW12O40 was relatively low, ca. 5% (Table 1.6).315 A 

sulfonated organic heteropolyacid, [MimPS]3PW12O40, a heteropolyacid salt of an ionic liquid 

cation functionalised with a propanesulfonate group, 1-(3-sulfonicacid)propyl-3-methyl 

imidazolium phosphotungstate, was very efficient to convert D-fructose to Hmf presenting high 

stability without loss of activity during 6 recycling runs.362 

Carbon-based catalysts (CBC) are hybrid organic-inorganic catalysts synthesised by 

incomplete carbonisation of high carbon content materials (e.g. sugars and naphthalene), that 

have recently been used in biomass conversion and have the advantage of having a high thermal 

stability, high acidity, low preparation costs and high capacity of recyclability without significant 

losses.246,256,354 Some examples of such catalysts include sulfonated napthalene-based catalyst 
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(SCBC),256 lignin-derived carbonaceous catalyst (LCC),354 and Glu-TsOH, a carbon-based catalyst 

prepared by a facile and eco-friendly approach from D-glucose and p-toluenesulfonic acid           

(p-TsOH).246 These types of catalysts compare favourably to strong acidic sulfonated co-polymer 

resins which have low thermal stability (with temperatures below 130 °C) due to their organic 

frameworks.415 CBC have high thermal stability because of their carbon frameworks (Table 1.6).246  

In a recent work, Ordomsky et al.407 studied the acidity of some of the types of the 

mentioned materials (alumina, aluminosilicate, zirconium phosphate, niobic acid, ion-exchange 

resin Amberlyst-15 and zeolite Mordenite) using temperature-programmed desorption of NH3 

and IR spectroscopy of adsorbed pyridine. In that work it was reported that the nature and 

strength of acid sites plays a crucial role in the selectivity towards Hmf. While the Brönsted acid 

sites in the case of zeolites and ion-exchange resin led to high selectivities in the dehydration of  

D-fructose with an increase in the selectivity with the addition of IBMK, the Lewis acidity in the 

case of phosphate and oxides results in the intensive production of humins from D-fructose at the 

initial stages of the process, where organic phase addition did not affect selectivity.407 
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Table 1.6- Catalytic results reported for the conversion of saccharides (and levoglucosan) to 2-furaldehyde (Fur) and 5-hydroxymethyl-2-furaldehyde 

(Hmf) in the presence of insoluble solid acid catalysts. 

Csub– Substrate conversion in mol.%;  YFur- 2-furaldehyde yield in mol.%, YHmf- 5-hydroxymethyl-2-furaldehyde yield in mol.%; 

AS= Acid sites, µmol.g-1; [B]= Concentration of Brönsted acid sites, µmol.g-1; BS= Base sites, µmol.g-1; [L]= Concentration of Lewis acid sites, µmol.g-1, 

CO2-TPD- Acid properties measured by temperature programmed desorption of the adsorbed CO2, 

Dp =Pore width (nm),  

IR-NH3- Acid properties measured by infrared spectroscopy with ammonium as probe molecule, 

IR-py- Acid properties measured by infrared spectroscopy of adsorbed pyridine as probe molecule, 

ITA- Intrinsic total acidity,  µ.eq.g-1, 

NH3-TPD- temperature programmed desorption of the adsorbed ammonia. It usually has coupled TCD (thermal condutivity detector) and it uses helium as a carrier gas, 

T-NaOH- Titrating the solid with NaOH, T-BuNH2- Non-aqueous titration with butylamine, 

SBET= Specific surface area, m2.g-1; Vmicro= Microporous volume, cm3.g-1; Vmeso= Mesoporous volume, cm3.g-1, Vp= Total volume pore, cm3.g-1. 

Tol-Toluene; DMSO- dimethylsulfoxide; IBMK- Isobutylmethylketone; DMFA-N,N-dimethylformamide; BuOH-Butanol; HCW- Hot compressed water; MPY-1-Methyl-2-pyrrolidone;  

PVP- Poly-(1-vinyl-2-pyrrolidinone); THF-Terahydrofuran; HMPT- Hexamethylphosphotriamide; 

HT- Hydrotalcite; VOP- Vanadyl phospate, NbOPO4- Niobium phosphate; 

MW-microwave. 

Substrate Catalyst 
(composition, acid properties) 

Reaction Conditions  
(Solvent/added catalyst/temperature/time) 

Csub (%) YHmf or YFur (%) Ref 

Zeolites and Zeotypes 

D-Fructose Na-Beta (Si/Al=25) DMSO, 130 °C, 30 min 99 49 Hmf 359 

D-Xylose H-Beta (Si/Al=12.5; 508 SBET ) (H2O, 140 °C, 4 h)/(DMSO, 140 °C, 4 h)/ 
(H2O+Tol, 140 °C, 4 h) 

52/90/90 19/24/40 Fur 249 

D-Fructose H-Beta (Si/Al=15) H2O, IBMK, 165 °C, 60 min 85 34 Hmf 261 

D-Fructose H-Beta (Si/Al=12.5±2.5) DMSO, 120 °C, 120 min, 9.7x104 Pa 100 97 Hmf 245 

D-Fructose H-Beta (Si/Al=25) DMSO, 130 °C, 30 min 99 65 Hmf 359 

D-Fructose H-Beta (590 SBET; 100 AS by TPD-NH3 ) DMSO, 130 °C, 1.5 h 99 60 Hmf 246 

D-Fructose H-Beta (Si/Al=15.6; 610 SBET; 0.22 Vmicro; 860 AS by TPD-NH3) H2O, 165 °C, 82 min, in an autoclave 35 9.8 Hmf 250 
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Table 1.6- Continued. 
D-Fructose or 

D-Glucose 
H-Beta (Si/Al=12.5)   DMFA, 100 °C, 3 h Trace 0 Hmf 229 

Levoglucosan H-Beta  (Si/Al=25; 0.477 Vp; 589 SBET; 143 [B]; 7 [L] by IR-py) H2O, 450 °C, 2 h nf a 1 Hmf+7 Fur 290 

D-Xylose  Sn-Beta (Sn/Si=0.01) Amberlyst co-catalyst, H2O, 110 °C, 180 min 92 9.5 Fur 274 

D-Xylose Sn-Beta (Sn/Si=0.01) HCl co-catalyst, H2O, 110 °C, 60 min 77 21 Fur 274 

D-Glucose Sn-Beta (Si/Sn=96) HCl co-catalyst, H2O, 140 °C, 120 min nf a 11 Fur 360 

D-Xylose H-Ferrierite (Si/Al=10; 390 SBET) (H2O, 140 °C, 4h)/(DMSO, 140 °C, 4 h)/    
(H2O+Tol, 140 °C, 4 h) 

45/74/80 13/23/35 Fur 249 

D-Fructose Na-ZSM-5 (Si/Al=24) DMSO, 130 °C, 60 min 1 1 Hmf 359 

D-Xylose H-ZSM-5 (Si/Al=11.5; 572 SBET) (H2O, 140 °C, 4 h)/(DMSO, 140 °C, 4 h)/   
(H2O+Tol, 140 °C, 4 h) 

57/69/90 17/21/43 Fur 249 

D-Xylose H-ZSM-5 (Si/Al=28; 1.2 Dp) H2O, 220 °C, 10 min 97 46 Fur 220 

D-Fructose or 

D-Glucose 
H-ZSM-5 (Si/Al=45) DMFA, 100 °C, 3h Trace 0 Hmf 229 

D-Fructose H-ZSM-5 (Si/Al=25) H2O, IBMK, 165 °C, 60 min 90 53 Hmf 261 

D-Fructose H-ZSM-5 (Si/Al=24) DMSO, 130 °C, 30 min 94 48 Hmf 359 

D-Fructose H-ZSM-5 (Si/Al=13; 442 SBET; 0.18 Vmicro; 966 AS by TPD-NH3) (Non solvent, 165 °C, 88 min)/(H2O, 165 °C,  
67 min)/(H2O+IBMK, 165 °C, 208 min in an 

autoclave) 

38/38/76 12/11/30 Hmf 250 

D-Fructose H-ZSM-5 DMSO, 110 °C, nf a nf a 65 Hmf 313 

D-Fructose SiO2/H-ZSM-5 (Si/Al=14.1; 414 SBET; 0.17 Vmicro; 894 AS by 
TPD-NH3) 

H2O, 165 °C, 67 min in an autoclave 22 10 Hmf 250 

D-Xylose  H-Mordenite (Si/Al=10; 433 SBET) (H2O, 140 °C, 4 h)/(DMSO, 140 °C, 4 h)/      
(H2O+Tol, 140 °C, 4 h) 

40/62/81 12/24/35 Fur 249 

D-Xylose  H- Mordenite (Si/Al=11) H2O+Tol, 170 °C, 50 min 37 33 Fur 222 

D-Xylose H- Mordenite (Si/Al=12) H2O+IBMK, 170 °C, 50 min 36 20 Fur 222 

D-Xylose H-Modernite (Si/Al=6) H2O+Tol, 160 °C, 6 h 79 28 Fur 291,292 

D-Fructose H- Mordenite (Si/Al=11; 0.192 Vmicro; 0.056 Vmeso) H2O+IBMK, 165 °C, 60 min 76 69 Hmf 223,261 

D-Fructose H-Mordenite (Si/Al=12; 420 SBET; 1100 AS by TPD-NH3;229 [B]; 
42 [L] by IR-py; 0.5-0.75 Dp) 

 

H2O, 135 °C, 433 min 7 3 Hmf 407 
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Table 1.6- Continued. 
D-Fructose H-Mordenite (Si/Al=11.7; 461 SBET; 0.21 Vmicro; 1100 AS by 

TPD-NH3) 
(Non solvent, 165 °C, 124 min)/H2O, 165 °C, 
117 min)/(H2O+IBMK, 165 °C, 83 min), in an 

autoclave 

55/56/12 27/27/12 Hmf 250 

D-Fructose SiO2/H-Mordenite (Si/Al=13.7; 423 SBET; 0.2 Vmicro; 915 AS by 
TPD-NH3) 

(H2O, 165 °C, 182 min)/(H2O+IBMK, 165 °C, 
400 min) in an autoclave 

56/78 36/53 Hmf 250 

D-Xylose H-Y Faujasite (Si/Al=2.6; 631 SBET) (H2O, 140 °C, 4 h)/(DMSO, 140 °C,                     
4 h)/(H2O+Tol, 140 °C, 4 h) 

71/61/97 22/1/41 Fur 249 

D-Xylose H-Y Faujasite (Si/Al=5) H2O+Tol, 160 °C, 6 h 94 39 Fur 291,292 

D-Xylose H-Y Faujasite (Si/Al=30; 303 SBET; 0.028 Vmicro; 312 [B]; 208 [L] 
by TPD-NH3) 

H2O, 160 °C, 90 min 75 24 Fur 271 

D-Xylose H-Y Faujasite (Si/Al=15) (H2O+Tol, 170 °C, 50 min)/(H2O+IBMK, 170 °C, 
50 min) 

51/54 42/30 Fur 222 

D-Fructose H-Y Faujasite (Si/Al=2.4) DMSO, 120 °C, 120 min, 9.7x104 Pa 100 76 Hmf 245 

D-Fructose H-Y Faujasite (Si/Al=15) H2O, IBMK, 165 °C, 60 min 76 40 Hmf 261 

D-Glucose H-Y Faujasute(515.2 SBET; 0.74 Dp) H2O, 150 °C, 2.5 h 56 6 Hmf 357 

D-Glucose H-Y Faujasite (Si/Al=3.3) H2O, 160 °C, 3 h 68 7 Hmf 244 

D-Glucose H-Y Faujasite (Si/Al=3.3; Na2O= 0.18 wt.%; 645±3 SBET; AS= 
520±10; 0.74 Dp) 

H2O, 150 °C, 5 h 87 8 Hmf 387 

D-Sucrose H-Y Faujasite (Si/Al=15) H2O, 95 °C, 120 min 100 Traces 358 

Levoglucosan H-MCM-22 ( Si/Al=30; 547 SBET; 173 [B]; 15 [L] by IR-py)              H2O, 300 °C, 0.3 s nf a 0 Hmf+1 Fur 295 

D-Xylose Nu-6 (2) (Si/Al=36; Na/Al=3.3; 25 SBET; 0.01 VP) H2O, Tol, 170 °C, 6 h 90 22 Hmf 265 

D-Xylose H-Nu-6 (2) (Si/Al=32; Na/Al=1.6; 20 SBET; 0.01 Vp) H2O, Tol, 170 °C, 6 h 60/90 28/45 Hmf 265 

Amorphous silica 

D-Fructose SiO2-gel (0.500 g) H2O, 20 bar of synthetic air, 160 °C, 65 min 52 52 Hmf 385 

D-Fructose SiO2  H2O, 120 °C, 5 min nf a 1.2 Hmf 372 

D-Xylose Si-H-SBA-15 (765 SBET;257 584 SBET;
293 1.09 Vp;257,293  

1.1 Dp;257 8.09 Dp
293) 

             H2O, Tol, 160 °C, 4 h 39 5 Fur 257,293 

D-Fructose Si-H-SBA-15  (850 SBET; 8.9 Dp
416)    H2O, IBMK/2-BuOH, 180 °C, 120 min 59 31 Hmf 346 

 D-Xylose       Si-H-MCM-41 (833 SBET; 0.59 Vp)    DMSO, 140 °C, 24 h 86 45 Fur 240 

Alumina 

D-Xylose γγγγ-Al2O3 (262 SBET; 171 [B]; 257 [L] by TPD-NH3) H2O, 160 °C, 90 min 100 10 Fur 271 
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Table 1.6- Continued. 
D-Xylose γγγγ-Al2O3 (250 SBET)    H2O, 160 °C, 60 min 84 18 Fur 281 

D-Xylose γγγγ-Al2O3 (213 SBET) (H2O, 140 °C, 4 h)/(DMSO, 140 °C, 4 h)/     
(H2O+Tol, 140 °C, 4 h) 

84/85/99 21/13/31 Fur 249 

D-Fructose A2O3 (262 SBET; 72 AS by TPD-NH3; 135 [L] by IR-py; 9.8 Dp) H2O, 135 °C, 458 min 24 4 Hmf 407 

D-Fructose Al2O3  DMSO, 120 °C, 2 h, 9.7x104 Pa 40 0 Hmf 245 

D-Fructose Al2O3  H2O, 120 °C, 5 min nf a 2 Hmf 372 

Modified aluminium 

D-Xylose Al-Phosphate (155 SBET) (H2O, 160 °C, 60 min)/(H2O, 180 °C,                
30 min)/(H2O, 200 °C, 30 min) 

18/27/89 11/18/47 Fur 281 

D-Glucose Pt/Al2O3 HCW,  1x107 Pa,  continuous flow, 238-250 °C 22 0 378 

Porous metallosilicates 

D-Xylose Na-AM-11 (Si/Nb=19.5; 489 SBET; 0.22 Vp) H2O, Tol, 160 °C, 6 h 77 31 Fur 291,292 

D-Xylose H-AM-11 (Si/Nb=29.2; 328 SBET, 0.17 Vp) H2O, Tol, 160 °C, 6 h 85 46 Fur 291,292 

D-Xylose ex-H-AM-11 (Si/Nb=3.7; Nb loading= 19.5 wt.%, 395 SBET;  
0.22 Vp; prepared by ion-exchange with NH4NO3 solution) 

H2O, Tol, 160 °C, 6 h 85 39 Fur 291 

D-Xylose Nb-MCM-41 (Si/Nb=2.4, 1040 SBET, 0.99 Vp; 4.0 Dp) H2O, Tol, 160 °C, 6 h 99 39 Fur 291,292 

D-Xylose ex-Nb-MCM-41 (Si/Nb=23; Nb loading= 4.5 wt.%, 827 SBET; 
0.66 Vp; 3.5 Dp; prepared by ion-exchange with NH4Cl) 

H2O, Tol, 160 °C, 6 h 94 35 Fur 291 

Levoglucosan Pt-MCM-48 (410 SBET; 0.573 Vp; 5 [B]; 3 [L] by IR-py) H2O, 450 °C, 2 h nf a 12 Hmf+1 Fur 290 

Modified mesoporous silicates with organic groups (hybrids) 

D-Xylose SBA-15-SO3H (S loading=1.49  mmol.g-1;747 SBET; 1.26 Vp;     
6.6 Dp (for fresh)); (S loading=1.48 mmol.g-1; 338 SBET; 0.42 Vp; 

3.9-5.7 Dp (for used)) 

H2O, Tol, 160 °C, 4 h 92 68 Fur 257 

D-Fructose SBA-15-pSO3H (S/Si=1.35, 640 SBET; 4.5 Dp; 0.90 Vp; 64 AS) H2O, IBMK:2-BuOH, 130 °C, 140 min 79 52 Hmf 352 

D-Xylose MSHS-SO3H (Sulfonic acid modified mesoporous shell silica 
bead; S loading=0.35 mmol.g-1; 432 SBET; 0.38 Vp;3.4 Dp) 

H2O, 190 ºC, 1 h 64 44 Fur 289 

D-Xylose HMS-SO3H H2O, 190 °C, 1 h 64 14 Fur 289 

D-Xylose MCM-41-SO3Hc (S loading= 3.9 wt.%; 438 SBET; 0.24 Vp;        
0.7 H+ meq.g-1 by T-NaOH) 

DMSO, 140 °C, 24 h 91 75 Fur 240 

D-Xylose MCM-41-SO3H (S loading=1.09 mmol.g-1; 686 SBET; 0.68 Vp;  
1.9 Dp) 

H2O, 170 °C, 1 h 37 24 Fur 289 



Chapter 1 
_________________________________________________________________________________________________________________________________________________________ 

_____________________________________________________________________________________________________________________________ 
58 
 

Table 1.6- Continued. 

D-Xylose SBA-15-SH (Propylthiol mesoporous silica) H2O, Tol, 160 °C, 4 h 23 0 Fur 257 

D-Fructose Tp-A380 (Thiopropyl groups grafted onto non-porous silica;   
S loading=0.36 mmol.g-1; 360 SBET) 

H2O, IBMK/2-BuOH, 180 °C, 120 min, 
autonomous pressure 

62 38 Hmf 346 

D-Fructose Tp-SBA-15 (Thiopropyl functionalised mesoporous silica;        S 
loading=1.1 mmol.g-1; 444 SBET; 4.1 Dp) 

H2O, IBMK/2-BuOH, 180 °C, 120 min, 
autonomous pressure 

61 32 Hmf 346 

D-Fructose Taa-A380 (Propylsulfonic acid groups on Tp-A380;                    
S loading=0.38 mmol.g-1) 

H2O, IBMK/2-BuOH, 180 °C, 120 min, 
autonomous pressure 

67 43 Hmf 346 

D-Fructose Taa-SBA-15 (Propyl sulfonic acid groups on Tp-SBA-15;            
S loading=2.3 mmol.g-1; 218 SBET;7.5 Dp) 

H2O, IBMK/2-BuOH, 180 °C, 30 min, 
autonomous pressure 

66 49 Hmf 346 

D-Fructose SSA-SBA-15 (3-(propylsulfonyl)propane-1-sulfonic acid 
functionalised in SBA-15; S/Si=0.82; 585 SBET; 4.7 Dp; 0.86 Vp, 

64 AS) 

H2O, IBMK/2-BuOH, 130 °C, 140 min 81 53 Hmf 352 

D-Fructose TESAS-SBA-15 (3-(propylthio)propane-1-sulfonic acid 
functionalised in SBA-15; S/Si=1.25; 449 SBET; 4.7 Dp; 0.72 Vp; 

64 AS) 

H2O, IBMK/2-BuOH, 130 °C, 141 min 84 60 Hmf 352 

D-Fructose Si-SphSA (phosphonics arylsulfonic acid-functionalised non-
ordered silica) 

H2O, IBMK/2-BuOH, 130 °C, 115 min 79 53 Hmf 352 

Modified ordered mesoporous silicates (with sulfate groups) 

D-Xylose SO4
2-

/ZrO2-Al2O3/SBA-15 (ZrO2-Al2O3=12 wt.%, S loading=  
1.55 wt.%; 276 SBET; 0.43 Vp, 6.60 Dp; AS=910 by TPD-NH3) 

H2O, Tol, 160 °C, 4 h 99 53 Fur 293 

D-Xylose SO4
2-

/ZrO2/SBA-15 (ZrO2= 12 w%, S loading= 1.96 wt.%,      
245 SBET; 0.32 Vp; 4.94 Dp; 880 AS by TPD-NH3) 

H2O, Tol, 160 °C, 4 h 98 44 Fur 293 

Ordered mesoporous aluminosilicates 

Levoglucosan Al-SBA-15 (632 SBET; 0.509 Vp; 4 [B]; 4 [L] by IR-py) H2O, 450 °C, 2 h nf a 1Hmf+11 Fur 290 

D-Xylose  SiO2-Al2O3 (Si/Al=5; 585 SBET; 342 [B]; 90 [L] by TPD-NH3) H2O, 160 °C, 90 min 90 23 Fur 271 

D-Xylose SiO2-Al2O3 (Si/Al=3.3; 572 SBET) (H2O, 140 °C, 4h)/(DMSO, 140 °C, 4 h)/       
(H2O+Tol, 140 °C, 4 h) 

43/91/99 15/11/41 Fur 249 

D-Xylose SiO2-Al2O3 (Si/Al=5, 370 SBET; Si/Al=30, 470 SBET; Si/Al=40,   
500 SBET) 

H2O, 160 °C, 60 min 85/78/55 17/19/16 Fur 281 

D-Fructose SiO2-Al2O3 (Si/Al=11; 327 SBET; 12 AS by TPD-NH3;28 [B]; 46 [L] 
by IR-py; 9.5 Dp) 

H2O, 135 °C, 500 min 24 6 Hmf 407 
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Table 1.6- Continued. 
D-Fructose SiO2-Al2O3 (Si/Al=10.8; 327 SBET; 225 AS by TPD-NH3) (Non solvent, 165 °C, 135 min)/(H2O, 165 °C, 

95 min)/(H2O+IBKM, 165 °C, 105 min) in an 
autoclave 

62/48/50 20/14/16 Hmf 250 

D-Xylose Al-MSHS (Aluminium modified mesoporous shell silica bead; 
473.5 SBET; 0.6 Vp; 2 Dp) 

                        H2O, 170 °C, 1 h 45 16 Fur 289 

D-Glucose Al-MCM-20 (541.8 SBET; 2.74 Dp)         H2O, 150 °C, 24 h 60 18 Hmf 357 

D-Xylose Al-MCM-41 (Al2O3 loading: 3-4 wt.%; SBET ≥ 800; Vp≥ 0.70; 3 
Dp) 

       H2O, NaCl, 1-BuOH, 170 °C, 2 h 82 48 Fur 294 

D-Xylose Al-MCM-41 (649 SBET; 0.35 Vp; 2. 6 Dp)   H2O, Tol, 160 °C, 6 h 96 47 Fur 292 

D-Glucose Al-MCM-41 (799.8 SBET; 3.28 Dp)           H2O, 150 °C, 16 h 80 16 Hmf 357 

Levoglucosan Al-MCM-41 (0.636 Vp; 944 SBET; 3 [B]; 12 [L] by IR-py) H2O, 450 °C, 2 h nf a 1 Hmf+14 Fur 290 

Levoglucosan Al-MCM-41 (Si/Al=20; 944 SBET; 3 [B]; 12 [L] by IR-py)               H2O, 300 °C, 0.3 s nf a 0 Hmf+6 Fur 295 

Levoglucosan Al-MCM-48 (0.573 Vp; 718 SBET; 2 [B]; 7 [L] by IR-py) H2O, 450 °C, 2 h nf a 2 Hmf+10 Fur 290 

Layered materials 

D-Fructose AlVOP (0.8 SBET)/CrVOP (10 SBET) 
b
 H2O, 80 °C, 2h 76/58 58/58 Hmf 386 

D-Fructose FeVOP (5.3 SBET)/MnVOP (3.7 SBET)/GaVOP (0.8 SBET) b H2O, 80 °C, 1 h 71/55/52 60/46/39 Hmf 386 

D-Fructose VOP/SiO2 (14 wt.% VOP; 200 SBET); VOP/ γγγγ-Al2O3 (7.9 wt.%; 
100 SBET); VOP/TiO2 (9.6 wt.% VOP; 125 SBET) 

H2O, 80 °C, 1 h 39/38/40 29/32/35 Hmf 386 

D-Fructose Nb2O5 H2O, 100 °C, 54-70 h 71-78 18-20 Hmf 382 

D-Fructose Nb2O5 (180 SBET; 242 AS by TPD-NH3; 11 [B]; 27 [L] by IR-py; 
8.0 Dp) 

H2O, 135 °C, 250 min 44 13 Hmf 407 

D-Fructose Nb2O5.nH2O (80 wt.% Nb2O5; 20 wt.% H2O; 108 SBET; 222 ITA 
by IR-NH3)  

H2O, 100 °C, 40 min 42 9 Hmf 380 

D-Fructose Nb2O5.nH2O (70 SBET; 3500 AS by TPD-NH3) 2-BuOH, H2O, 160 °C, nf a 79 46 Hmf 379 

D-Fructose Nb2O5.nH2O DMFA, 100 °C, 3 h 8 0 Hmf 229 

D-Glucose Nb2O5.nH2O DMFA, 100 °C, 3 h 12 0 Hmf 229 

D-Fructose Nb2O5.nH2O/H3PO4 (215 SBET; 4400 AS379  by NH3-TPD,        
4.3 Dp

384) 
BuOH, H2O, 160 °C, 50 min 384  90 89 Hmf 379,384 

D-Fructose NbOPO4 ( P/Nb= 0.45; 150 SBET) H2O, 100 °C, 30 min 29 29 Hmf 381,383 

D-Fructose NbOPO4 (66.7 wt.% Nb2O5; 15.9 wt.% P2O5; 2.1 wt.% K2O; 
142 SBET; 283 ITA by IR-NH3) 

H2O, 110 °C, 30 min 65 23 Hmf 380 
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Table 1.6- Continued. 
D-Glucose Nb2O5.nH2O/H3PO4 (215 SBET; 4400 AS by NH3-TPD;379          

4.3 Dp
384) 

BuOH, H2O, 160 °C, 110 min 68 49 Hmf 384 

D-Sucrose NbOPO4 (P/Nb=0.53; Nb loading= 3.4 wt.%) H2O, 100 °C, 4 h 30 27 Hmf 381 

Inulin Nb2O5.nH2O/H3PO4 (215 SBET; 4400 AS by NH3-TPD;379        
4.3 Dp

384) 
BuOH, H2O, 160 °C, 140 min 86 54 Hmf 384 

Inulin NbOPO4 (P/Nb= 0.45; 150 SBET) H2O, 100 °C, 30 min 30 26 Hmf 381
 

Jerusalem 

artichoke juice 
c 

Nb2O5.nH2O/H3PO4 (215 SBET; 4400 AS by NH3-TPD;379        
4.3 Dp

384) 
BuOH, H2O, 160 °C, 150 min 93 51 Hmf 384 

D-Xylose SO4
2-

/Nb2O5 (SO4
2- loading= 0.58 mmol.g-1; 39 SBET) H2O, Tol, 100 °C, 48 h 20 8 Fur 255 

D-Fructose Ta2O5.nH2O (41.6 SBET; 900 AS by NH3-TPD)  BuOH, H2O, 160 °C, nf a 81 62 Hmf 379 

D-Fructose Ta2O5.nH2O/ H3PO4 (141.5 SBET; 1500 AS by NH3-TPD) BuOH, H2O, 160 °C, 100 min 94 90 Hmf 379 

D-Glucose Ta2O5.nH2O/ H3PO4 (141.5 SBET; 1500 AS by NH3-TPD) BuOH, H2O, 160 °C, 120 min 68 57 Hmf 379 

Inulin Ta2O5.nH2O/ H3PO4 (141.5 SBET; 1500 AS) BuOH, H2O, 160 °C, 150 min 95 87 Hmf 379 

Jerusalem 

artichoke juice 
c 

Ta2O5.nH2O/ H3PO4 (141.5 SBET; 1500 AS) BuOH, H2O, 160 °C, 120 min 91 79 Hmf 379 

D-Xylose RE [H2cmp] H2O (RE3+= Y3+, La3+, Pr3+, Nd3+, Sm3+, Eu3+,Gd3, 
Tb3+, Dy3+, Ho3+, Er3+; multi-functional rare-earth (RE) hybrid 

layered networks formed by rare-earth chloride salts and  
N-(carboxymethyl)iminodi(methylphosphoric acid) (H5cmp) 

H2O, Tol, 170 °C, 4 h 40-77 25-40 Fur 282 

D-Glucose H-pillared montmorillonite (40.9± 8.1 SBET; 900±70 AS;  
1.72±0.01 Dp) 

        H2O, 150 °C, 12 h 60 13 Hmf 387 

D-Glucose Al-pillared montmorillonite (132 SBET; 1.08 Dp)      H2O, 150 °C, 5 h 86 13 Hmf 357 

D-Glucose Al-pillared montmorillonite (138±0.8 SBET; 520±10 AS;    
1.08±0.06 Dp) 

     H2O, 150 °C, 5 h 80 10 Hmf 387 

D-Glucose Cr-pillared montmorillonite (250±21.7 SBET; 980±170 AS;    
1.2±0.03 Dp) 

     H2O, 150 °C, 5 h 82 13 Hmf 387 

D-Glucose Fe-pillared montmorillonite (231±7.0 SBET; 930±150 AS;      
1.5±0.07 Dp) 

        H2O, 150 °C, 3.6 h 87 3 Hmf 387 

Exfoliated nanosheets 

D-Xylose eH4Nb6O17 (136 SBET; 0.18 Vp; 204 [B]; 245 [L] by IR-py) H2O, Tol, 160 °C, 2 h 97 53 Fur 299 

D-Xylose eH2Ti3O7 (57 SBET; 0.03 Vp; 7 [B]; 135 [L] by IR-py) H2O, Tol, 160 °C, 2 h 97 44 Fur 299 
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Table 1.6- Continued. 
D-Xylose eHTi2NbO7 (88 SBET; 0.08 Vp; 85 [B]; 226 [L] by IR-py) H2O, Tol, 160 °C, 2 h 96 51 Fur 299 

D-Xylose eHTiNbO5–MgO (103 SBET; 0.08 Vp;162 [B]; 220 [L] by IR-py) H2O, Tol, 160 °C, 3 h 90 54 Fur 299 

Delaminated microporous aluminosilicate 

D-Xylose del-Nu-6(1) (Si/Al=29, Na/Al=0.9; 151 SBET; 0.07 Vp) H2O, Tol, 170 °C, 1 h 90 48 Fur 265 

Titanium oxides 

D-Xylose HTiNbO5 (330 SBET 
417) H2O, Tol, 160 °C, 6 h 45 26 Fur 299 

D-Xylose TiO2 (48 SBET; 0.120 Vp; 4.6 Dp; 161 AS by TPD-NH3; 83.9 BS 
by TPD-CO2) 

HCW, 250 °C, 5 min 72 31 Fur 296,297 

D-Xylose TiO2 (8.7 SBET) H2O, 160 °C, 60 min 80 33 Fur 281 

D-Fructose Anatase TiO2 (HCW, 200 °C, 5 min, MW)/(HCW, 200 °C,       
5 min, sand bath) 

84/65 38/27 Hmf      
+5/5 Fur 

366 

D-Fructose Anatase-TiO2 (4.7 SBET; 79 AS by TPD-NH3; 42 BS by         
TPD-CO2) 

H2O, 200 °C, 5 min 98 22 Hmf 368 

D-Fructose Anatase TiO2 H2O, 200 °C, 300 s nf a 21 Hmf+2 Fur 363 

D-Fructose TiO2 H2O, n-BuOH, 200 °C, 1.38x107 Pa, 3 min nf a 18 Hmf 365 

D-Fructose TiO2 (326 SBET; 0.3 Vp) (H2O, 120 °C, 5 min, MW)/(H2O, 120 °C, 15 
min, MW) /(acetonitrile, 120 °C, 5 min, MW) 

nf a 34/36/29 Hmf 372 

D-Fructose TiO2 (326 SBET; 0.3 Vp) (DMSO, 140 °C, 5 min, MW)/(MPY, 140 °C, 5 
min, MW)/(H2O+IBMK, 130 °C, 5 min, MW) 

nf a 54/37/40 Hmf 372 

D-Glucose Anatase TiO2 (H2O, 200 °C, 300 s)/(HCW, 200 °C, 200 s) nf a 20/16 Hmf      
+2/2 Fur 

363 

D-Glucose Anatase TiO2 HCW, 200 °C, 3 min, MW 42 7 Hmf+1 Fur 366 

D-Glucose Anatase-TiO2 (4.7 SBET; 79 AS by TPD-NH3; 42 BS by         
TPD-CO2) 

H2O, 200 °C, 5 min 83 19 Hmf 368 

D-Glucose TiO2 (48 SBET; 0.120 Vp; 4.6 Dp; 161 AS by TPD-NH3; 84 BS by 
TPD-CO2) 

HCW, 250 °C, 5 min 78 27 Hmf+4 Fur 296,297 

D-Glucose TiO2 (326 SBET; 0.3 Vp) (H2O, 120 °C, 5 min)/(DMSO, 140 °C,                
5 min)/(MPY, 150 °C, 5 min)/(H2O+IBMK,        

130 °C, 5min) 
 
 

nf a 25/37/30/26 
Hmf 

372 
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Table 1.6- Continued. 
D-Glucose TiO2 (0.15 M HCl, H2O, IBMK, 180 °C, 6.9x106 Pa,   

2 min)/ (0.10 M H3PO4, H2O, IBMK, 180 °C, 
6.9x106 Pa, 2 min) 

nf a 37/33 Hmf 365 

D-Glucose TiO2 (H2O+IBMK, 180 °C, 3.4E6 Pa, 2 min)/(H2O+   
n-BuOH, 200 °C, 1.38Ex107 Pa, 3 min)/( H2O+ 

n-BuOH+IBMK, 180 °C, 1.38x107 Pa,                 
2 min)/(H2O+IBMK+4 methy-2-pentanol,       

180 °C, 1.38x107 Pa, 2 min) 

nf a 29/13/12/14 
Hmf 

365 

D-Maltose TiO2 (326 SBET;0.3 Vp) (H2O, 120 °C, 5 min)/(DMSO, 140 °C, 5 min) nf a 11/14 Hmf 372 

D-Sucrose TiO2 (326 SBET; 0.3 Vp) (H2O, 120 °C, 10 min)/(DMSO, 140 °C, 5 min)/ 
(MPY, 140 °C, 5 min)/(H2O+IBMK, 130 °C,        

5 min) 

nf a 15/21/12/15 
Hmf 

372 

D-Sucrose TiO2 H2O, n-BuOH, 180 °C, 1.38x107 Pa, 3 min nf a 16 Hmf 365 

D-Cellobiose TiO2 (326 SBET; 0.3 Vp) (H2O, 120 °C, 5 min)/(DMSO, 140 °C, 5 min) nf a 15/19 Hmf 372 

D-Xylan TiO2 (48 SBET; 0.120 Vp; 4.6 Dp; 161 AS by TPD-NH3, 83.9 BS 
by TPD-CO2) 

HCW, 250 °C, 5 min 67297/62296  26 Fur 296,297 

Cellulose TiO2 (48 SBET; 0.120 Vp; 4.6 Dp; 161 AS by TPD-NH3; 83.9 BS 
by TPD-CO2) 

HCW, 250 °C, 5 min 62297/60296  12 Hmf+3 Fur 296,297 

Cellulose TiO2 H2O, IBMK, 270 °C, 6.9x106 Pa, 60 min, 
continuous process 

80 35 Hmf 365 

Starch TiO2 H2O, IBMK, 180 °C, 6.9x106 Pa, 2 min nf a 15 Hmf 365 

Lite corn syrup TiO2 H2O, IBMK, 180 °C, 6.9x106 Pa, 2 min nf a 27 Hmf 365 

Honey  TiO2 H2O, IBMK, 170 °C, 6.9x106 Pa, 2 min nf a 26 Hmf 365 

Sugarcane 

bagasse 
TiO2 (48 SBET; 0.120 Vp;4.6 Dp; 161 AS by TPD-NH3; 83.9 BS 

by TPD-CO2) 
HCW, 250 °C, 5 min nf a 7 Hmf+9 Fur 296,297 

Rice husk TiO2 (48 SBET; 0.120 Vp; 4.6 Dp; 161 AS by TPD-NH3; 83.9 BS 
by TPD-CO2) 

HCW, 250 °C, 5 min nf a 3 Hmf+8 Fur 297 

Cornocobs TiO2 (48 SBET; 0.120 Vp; 4.6 Dp; 161 AS by TPD-NH3; 83.9 BS 
by TPD-CO2) 

 
 
 

HCW, 250 °C, 5 min nf a 8 Hmf+10 Fur 297 
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Table 1.6- Continued. 
Zirconium oxides 

D-Xylose ZrO2 (124 SBET; 0.234 Vp;4.3 Dp; 232 AS by TPD-NH3; 129 BS 
by TPD-CO2) 

HCW, 250 °C, 5 min 65296/66297 26 Fur 296,297 

D-Fructose ZrO2 (27.1 SBET) H2O, 200 °C, 5 min 80 36 Hmf 367 

D-Fructose ZrO2 (27.1 SBET) Acetone, DMSO, 180 °C, 5 min 75 46 Hmf 367 

D-Fructose ZrO2  HCW, 200 °C, 5 min, MW 65 31 Hmf+3 Fur 366 

D-Fructose ZrO2 (110 SBET; 670 AS by TPD-NH3; 550 BS by TPD-CO2) H2O, 200 °C, 5 min 92 15 Hmf 368 

D-Fructose ZrO2 H2O, 200 °C, 300 s nf a 15 Hmf+1 Fur 363 

D-Glucose ZrO2 H2O, 200 °C, 300 s nf a 5 Hmf+1 Fur 363 

D-Glucose ZrO2  H2O, IBMK, flow system, 180 °C, 3.4x106 Pa,    
2 min 

nf a 21 Hmf 365 

D-Glucose ZrO2 (124 SBET; 0.234 Vp; 4.3 Dp; 232 AS by TPD-NH3; 129 BS 
by TPD-CO2) 

HCW, 250 °C, 5 min 76 17 Hmf+3 Fur 296,297  

D-Glucose ZrO2  HCW, 200 °C, 5 min, MW 57 10 Hmf+1 Fur 366 

D-Glucose ZrO2 (110 SBET; 670 AS; 550 BS) H2O, 200 °C, 5 MW 51 5 Hmf 368 

D-Xylan ZrO2 (124 SBET; 0.234 Vp;4.3 Dp; 232 AS by TPD-NH3; 129 BS 
by TPD-CO2) 

 HCW, 250 °C, 5 min 49296/51297  23 Fur 296,297 

Cellulose ZrO2 (124 SBET; 0.234 Vp; 4.3 Dp; 232 AS by TPD-NH3; 129 BS 
by TPD-CO2) 

HCW, 250 °C, 5 min 38296/45297 8 Hmf+2 Fur 296,297 

Sugar Cane 

Bagasse 
ZrO2 (124 SBET; 0.234 Vp; 4.3 Dp; 232 AS by TPD-NH3;129 BS 

by TPD-CO2) 
HCW, 250 °C, 5 min nf a 4 Hmf+7 Fur 296,297 

Rice Husk ZrO2 (124 SBET; 0.234 Vp; 4.3 Dp; 232 AS by TPD-NH3; 129 BS 
by TPD-CO2) 

HCW, 250 °C, 5 min nf a 2 Hmf+5 Fur 297 

Corcob ZrO2 (124 SBET; 0.234 Vp;4.3 Dp; 232 AS by TPD-NH3; 129 BS 
by TPD-CO2) 

HCW, 250 °C, 5 min nf a 6 Hmf+7 Fur 297 

D-Xylose  TiO2-ZrO2 (187 SBET; 0.391 Vp; 2.5 Dp; 645 AS by TPD-NH3; 
712 BS by TPD-CO2) 

HCW, 250 °C, 5 min 79 34 Fur 297 

D-Glucose TiO2-ZrO2 (187 SBET; 0.391 Vp; 2.5 Dp; 645 AS by TPD-NH3; 
712 BS by TPD-CO2) 

HCW, 250 °C, 5 min 84 29 Hmf+5 Fur 297 

D-Xylan TiO2-ZrO2 (173 SBET; 0.335 Vp; 3.1 Dp) 
 

Acetone, DMSO, 250 °C, 5 min 22 17 Fur 297 
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Table 1.6- Continued. 
D-Xylan TiO2-ZrO2 (187 SBET; 0.391 Vp; 2.5 Dp; 645 AS by TPD-NH3, 

712 BS by TPD-CO2) 
HCW, 250 °C, 5 min 75 27 Fur 297 

Cellulose TiO2-ZrO2 (187 SBET; 0.391 Vp; 2.5 Dp; 645 AS by TPD-NH3; 
712 BS by TPD-CO2) 

 

HCW, 250 °C, 5 min 71 14 Hmf+2 Fur 297 

Cellulose TiO2-ZrO2 (173 SBET; 0.335 Vp; 3.1 Dp) Acetone, DMSO, 250 °C, 5 min 37 11 Hmf+2 Fur 297 

Sugarcane 

bagasse 
TiO2-ZrO2 (187 SBET; 0.391 Vp; 2.5 Dp; 645 AS by TPD-NH3; 

712 BS by TPD-CO2) 
HCW, 250 °C, 5 min nf a    7 Hmf+9 Fur 297 

Rice husk TiO2-ZrO2 (187 SBET; 0.391 Vp;2.5 Dp; 645 AS by TPD-NH3; 
712 BS by TPD-CO2) 

HCW, 250 °C, 5 min nf a    3 Hmf+9 Fur 297 

Corncob TiO2-ZrO2 (187 SBET; 0.391 Vp; 2.5 Dp; 645 AS by TPD-NH3
 ; 

712 BS by TPD-CO2) 
HCW, 250 °C, 5 min nf a 8 Hmf+10 Fur 297 

D-Xylose WOx-ZrO2 (149 SBET; 138 [B]; 186 [L] by TPD-NH3) H2O, 160 °C, 90 min 96 16 Fur 271 

D-Fructose WO3-ZrO2 DMSO, 120 °C, 2 h, 9.7x104 Pa 100 94 Hmf 245 

D-Xylan WO3-ZrO2 (92 SBET; 0.189 Vp; 3.4 Dp) Acetone, DMSO, 250 °C, 5 min 25 17 Fur 278 

Cellulose WO3-ZrO2(92 SBET; 0.189 Vp; 3.4 Dp) Acetone, DMSO, 250 °C, 5 min 60 14 Hmf+3 Fur 278 

Tabioca flour WO3-ZrO2(92 SBET; 0.189 Vp; 3.4 Dp) Acetone, 230 °C, 5 min 60 22 Hmf+2 Fur 278 

Corncob WO3-ZrO2(92 SBET; 0.189 Vp; 3.4 Dp) Acetone, 250 °C, 5 min 53 11 Hmf+4 Fur 278 

Other oxides 

D-Fructose CeO2  H2O, 120 °C, 5 min nf a 1 Hmf 372 

Ion-exchange resins 

D-Fructose Nafion DMSO, 120 °C, 2 h, 9.7x10 4 Pa 100 94 Hmf 245 

D-Xylose Nafion SAC-13 (231 SBET; 140 [B] by TPD-NH3
 ) d

 H2O, 160 °C, 240 min 22 11 Fur 271 

D-Xylose Nafion SAC-13 (111000 AS) DMSO, 125 °C, 8 h 87 55 Fur 288 

D-Xylose Nafion 117 (53000 AS) DMSO, 150 °C, 2 h 91 60 Fur 288 

D-Fructose Nafion NR-50 DMFA, 100 °C, 3 h ~100 45 Hmf 229 

D-Glucose Nafion NR-50 (DMFA, 100 ºC, 3 h)/(HT+DMFA, 100 °C, 3 h) 34/60 0/27 Hmf 229 

D-Xylose Amberlyst-15 (4.6 H+ meq.g-1 by T-NaOH) DMSO, 140 °C, 24 h 90 63 Hmf 240 

D-Xylose Amberlyst-15 H2O, 110 °C, 60 min 66 24 Hmf 274 

D-Fructose Amberlyst-15 DMFA, 100 °C, 180 min ~100 73 Hmf 229 

D-Fructose Amberlyst-15 HT, DMFA, 100 °C, 3h ~100 76 Hmf 229 

D-Fructose Amberlyst-15 H2O, DMSO, PVP, IBMK/2-BuOH, 90 °C,e 76 59 Hmf 35 
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Table 1.6- Continued. 

D-Fructose Amberlyst-15 (0.15-0.053 Dp) DMSO, 120 °C, 2 h, N2 under 1.01x10 5 Pa or 
9.7x104 Pa 

100 100 Hmf 245 

D-Fructose Amberlyst-15 (DMFA, 80 °C, 2h)/(DMFA, 100 °C, 2 h) 88/100 77/90 Hmf 247 

D-Fructose Amberlyst-15 (Metanol+THF, 120 °C, 3 h)/(THF, 120 °C,      
20 min)/(methanol, 120 °C, 3h) 

97/98/96 29/48/17 Hmf 260 

D-Fructose Amberlyst-15 (SO3H loading=4.7 mmol.g-1;53 SBET; 4700 AS 
by TPD-NH3) 

DMSO, 130 °C, 1.5 h ~100 84 Hmf 246 

D-Fructose Amberlyst-15 Isopropyl alcohol, 120 °C, 4 h nf a 60 Hmf 243 

D-Fructose Amberlyst-15 (53 SBET; 4700 [B] by IR-py; 30 Dp) H2O, 135 °C, 408 min 32 18 Hmf 407 

D-Glucose Amberlyst-15 DMFA, 100 °C, 3 h 69 0 Hmf 229 

D-Glucose Amberslyt-15 (HT, DMFA, 80 °C, 4.5 h)/(HT, DMFA, 80 °C,     
9 h) 

60/73 76/42 Hmf 229 

D-Glucose Amberlyst-15 HT, DMFA, 100 °C, 3 h 64 38 Hmf 229 

D-Glucose Amberlyst-15 HT, DMFA, 80 °C, 9 h 73 42 Hmf 247 

D-Sucrose Amberlyst-15 HT, DMFA, 120 °C, 3h  58 54 Hmf 229 

D-Cellobiose Amberlyst-15 HT, DMFA, 120 °C, 3h 52 35 Hmf 229 

D-Xylose Amberlyst-70 H2O, Tol, 175 °C, 4 h 81 54 Fur 287 

D-Xylose Amberlyst-70 (0.32 SBET; 2860 [B] by TPD-NH3) d
 H2O, 160 °C, 240 min 38 20 Fur 271 

D-Fructose Amberlyst-70 (36 SBET; 22 Dp 
418) H2O, IBMK/2-BuOH, 180 °C, 10 min, 

autonomous pressure 
86 67 Hmf 346 

D-Fructose Amberlyst-70 (2550 AS) H2O, IBMK/2-BuOH, 130 °C, 225 min 85 60 Hmf 352 

D-Glucose Amberlyst-70 ( ≥ 2.55 eq. H+. kg-1) H2O, methanol, 170 °C, 80 min ~100 7 Hmf 345 

D-Fructose Amberlite IR-118  DMSO, 80 °C, 200 h nf a 94 Hmf 347 

D-Fructose Diaion Pk 216  DMSO, 80 °C, 500 min nf a 90 Hmf 347 

D-Fructose Diaion PK 216 (H2O, MPY, 90 °C, 18 h)/(DMSO, IBMK, 90 °C, 
12 h) 

98/90 83/73 Hmf 18 

D-Fructose Diaion PK 216 H2O, acetone, 150 °C, 15 min 95 73 Hmf 348 

D-Sucrose Diaion PK 216 (H2O, MPY, 90 °C, 21 h)/(DMSO, IBMK, 90 °C, 
21 h) 

58/55 43/38 Hmf 18 

Inulin Diaion PK 216 (H2O, MPY, 90 °C, 21 h)/(DMSO, IBMK, 90 °C, 
21 h) 

100/100 69/62 Hmf 18 
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Table 1.6- Continued. 

D-Tagatose Dowex 50wx4 DMSO, 120 °C, 2 h nf a 55 Hmf 253 

D-Fructose Dowex 50wx8-100 H2O, acetone, 150 °C, 15 min 95 73 Hmf 348 

D-Fructose Dowex 50wx8-100 Acetone, DMSO, 150 °C, 20 min 99 87 Hmf 259 

D-Fructose Lewatit S2328 (5.39 meq. H+.g-1) H2O, 90 °C, 180 h nf a 3 Hmf 351 

D-Fructose Lewatit SCP 108 (0.95 eq. H+.g-1) H2O, DMSO, IBMK, 76 °C for 100 h in a 
continous mode plus 2 h of IBMK 

nf a 97 Hmf 350 

D-Fructose Lewatit SCP 108 (0.95 eq. H+.g-1) (HMPT, 76 °C, 100 h)/(MPY, 76 °C,                
100 h)/(DMFA, 76 °C, 100 h)/(Acetonitrile,    

76 °C, 100 h)/(Pyridine, 76 °C, 100 h) 

nf a 33/88/ 
84/10/5 Hmf 

350 

D-Fructose OH1052 (1.38 meq. H+.g-1) H2O, ROX activated carbon to Hmf 
adsoprtion, 90 °C, 48 h 

77 51 Hmf 320 

Phosphate/(Per)Sulfate Zirconium based solid acids 

D-Xylose PO4
2-

/ZrO2 (168 SBET; 1362 [B]; 5.1 [L] by TPD-NH3) H2O, 160 °C, 90 min  42 58 Fur 271 

D-Fructose PO4
2-

/ZrO2 (P/Zr=1.8; 38.1 SBET) H2O, 240 °C, 3.35x104 Pa, 120 s 81 50 Hmf 264 

D-Fructose PO4
2-

/ZrO2 (P/Zr=1.8; 63.6 SBET) Sub-critical water, 240 °C, 3.35x104Pa, 180 s 97 54 Hmf 264 

D-Fructose γγγγ-PO4
2-

/ZrO2 (6 SBET) H2O, 100 °C, 30 min 39 29 Hmf 239 

D-Fructose PO4
2-

/ZrO2 (89 SBET) H2O, 135 °C, in autoclave, under N2, 238 min 13 6 Hmf 371 

D-Fructose PO4
2-

/ZrO2(93 SBET; 111 AS by TPD-NH3; 45 [B]; 92 [L];        
8.5 Dp) 

H2O, 125 °C, 308 min 42 12 Hmf 407 

D-Glucose PO4
2-

/ZrO2 (P/Zr=1.8; 63.6 SBET)  Sub-critical water, 240 °C, 3.35x104 Pa, 180 s 53 21 Hmf 264 

D-Fructose C-ZrO2/P2O7 (12 SBET; cubic zirconium pyrophosphate)  H2O, 100 °C, 30 min  44 44 Hmf 239 

Inulin  C-ZrO2/P2O7 (12 SBET; cubic zirconium pyrophosphate) H2O, 100 °C, 30 min 26 26 Hmf 239 

D-Fructose Al foam /PO4
2-

/ZrO2 (ZrP loading = 16 wt.%; 198 SBET; 
ZrP=zirconium phosphate) 

H2O, 135 °C, autoclave, under N2, 250 min  18 7 Hmf 371 

D-Xylose SO4
2-

/ZrO2 (S loading=0.37 mmol.g-1; 90 SBET) H2O, Tol, 160 °C, 4 h 86 37 Fur 298 

D-Xylose SO4
2-

/ZrO2 (SO4
2- loading=0.39 mmol.g-1; 152 SBET) H2O, Tol, 100 °C, 48 h 21 9 Fur 255 

D-Xylose SO4
2-

/ZrO2 (243 SBET; 0.390 Vp; 3.6 Dp; 734 AS by               
TPD-NH3;70.5 BS by TPD-CO2)  

HCW, 250 °C, 5 min 69 29 Fur 296 

D-Fructose SO4
2-

/ZrO2 (154 SBET) H2O, 200 °C , 5 min 89 33 Hmf 367 

D-Fructose SO4
2-

/ZrO2 (154 SBET) Acetone, DMSO, 180 °C, 5 min 91 66 Hmf 367 

D-Fructose SO4
2-

/ZrO2 DMFA, 100 °C, 3 h 57 21 Hmf 229 
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Table 1.6- Continued. 
D-Fructose SO4

2-
/ZrO2 (6.9 SBET; 0.008 Vp; 1830 AS by TPD-NH3; 320 BS 

by TPD-CO2) 
DMSO, 130 °C, 4 h, under N2 100 72 Hmf 370 

D-Fructose SO4
2-

/ZrO2 DMSO, 120 °C, 2 h, 9.7x104 Pa 100 92 Hmf 245 

D-Glucose SO4
2-

/ZrO2 (6.9 SBET ; 0.008 Vp; 1830 AS by TPD-NH3;320 BS 
by TPD-CO2) 

DMSO, 130 °C, 4 h, under N2 95 19 Hmf 370 

D-Glucose SO4
2-

/ZrO2                         DMFA, 100 °C, 3 h 7 0 Hmf 229 

D-Glucose SO4
2-

/ZrO2 (243 SBET; 0.390 Vp; 3.6 Dp; 734 AS by TPD-NH3; 
70.5 BS by TPD-CO2) 

HCW, 250 °C, 5 min 78 22 Hmf+2 Fur 296 

D-Xylan SO4
2-

/ZrO2 (243 SBET; 0.390 Vp; 3.6 Dp; 734 AS by TPD-NH3; 
70.5 BS by TPD-CO2) 

HCW, 250 °C, 5 min 58 24 Fur 296 

Cellulose SO4
2-

/ZrO2 (243 SBET; 0.390 Vp; 3.6 Dp;734 AS by                 
TPD-NH3;70.5 BS by TPD-CO2) 

HCW, 250 °C, 5 min 55 11 Hmf+2 Fur 296 

Sugarcane 

bagasse 
SO4

2-
/ZrO2 (243 SBET; 0.390 Vp; 3.6 Dp;734 AS by TPD-NH3; 

70.5 BS by TPD-CO2) 
HCW, 250 °C, 5 min - 6 Hmf+7 Fur 296 

D-Xylose S2O8
2-

/ZrO2 (S loading=0.33 mmol.g-1; 85 SBET) H2O, Tol, 160 °C, 4 h 80 38 Fur 298 

D-Xylose SO4
2-

/Al2O3-ZrO2 (S loading=0.38 mmol.g-1;                            
Al loading= 0.28 mmol.g-1; 94 SBET) 

H2O, Tol, 160 °C, 4 h 86 42 Fur 298 

D-Xylose SO4
2-

/Al2O3-ZrO2 (580 AS by TPD-NH3)  H2O, Tol, 160 °C, 4 h 99 41 Fur 293 

D-Fructose SO4
2-

/Al2O3-ZrO2 (Zr/Al=9; 11 SBET; 0.015 Vp; 1790 AS by 
TPD-NH3; 350 BS by TPD-CO2) 

DMSO, 130 °C, 4 h, under N2 100 64 Hmf 370 

D-Glucose SO4
2-

/Al2O3-ZrO2 (Zr/Al=1; 27 SBET; 0.038 Vp; 1550 AS by 
TPD-NH3; 520 BS by TPD-CO2) 

DMSO, 130 °C, 4 h, under N2 99 48 Hmf 370 

D-Xylose S2O8
2-/ Al2O3-ZrO2 (S loading=0.45 mmol.g-1;                           
Al loading= 0.31 mmol.g-1; 91 SBET) 

H2O, Tol, 160 °C, 4 h 87 40 Fur 298 

D-Xylose SO4
2-

/ZrO2-MCM-41 (S loading=0.90 mmol.g-1;                      
Zr loading=0.96 mmol.g-1; 426 SBET) 

H2O, Tol, 160 °C, 4 h 94 40 Fur 298 

D-Xylose S2O8
2-

/ZrO2-MCM-41 (S loading=1.20 mmol.g-1;                     
Zr loading=0.93 mmol.g-1; 382 SBET) 

H2O, Tol, 160 °C, 4 h 95 43 Fur 298 

D-Xylose SO4
2-

/Al2O3-ZrO2/MCM-41 (S loading=0.40 mmol.g-1; Al 
loading=0.12 mmol.g-1; Zr loading=1.01 mmol.g-1; 394 SBET) 

 

H2O, Tol, 160 °C, 4 h 50 23 Fur 298 
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Table 1.6- Continued. 

D-Xylose S2O8
2-/ Al2O3-ZrO2/MCM-41 (S loading=0.70 mmol.g-1; Al 

loading=0.10 mmol.g-1; Zr loading=0.90 mmol.g-1; 359 SBET) 
H2O, Tol, 160 °C, 4 h 84 41 Fur 298 

Phosphate/ (Per)Sulfate Titanium, aluminium and other based solid acids 

D-Fructose αααα-PO4
2-

/TiO2 (8.7 SBET) H2O, 100 °C, 30 min 29 29 Hmf 239 

D-Glucose TiO2/H3PO4 H2O, IBMK, 180 °C, 6.9x106 Pa, 2 min nf a 33 Hmf 365 

Inulin γγγγ-PO4
2-

/TiO2 (4.5 SBET) H2O, 100 °C, 30 min 32 31 Hmf 239 

D-Fructose C- TiP2O7 (10.5 SBET; cubic titanium pyrophosphate H2O, 100 °C, 30 min 25 25 Hmf 239 

D-Xylose SO4
2-

/TiO2 (SO4
2- loading:0.64 mmol.g-1; 126 SBET) H2O, Tol, 100 °C, 48 h 39 17 Fur 255 

D-Xylose SO4
2-

/Al2O3 ( SO4
2- loading:0.92 mmol.g-1; 209 SBET) H2O, Tol, 100 °C, 48 h 7 2 Fur 255 

D-Xylose SO4
2-

/SiO2 (SO4
2- loading: 0.04 mmol.g-1; 147 SBET) H2O, Tol, 100 °C, 48 h 2 1 Fur 255 

D-Xylose SO4
2-

/Fe2O3 (SO4
2- loading:0.37 mmol.g-1; 67 SBET) H2O, Tol, 100 °C, 48 h 16 1 Fur 255 

D-Xylose SO4
2-

/SnO2 (SO4
2- loading:0.64 mmol.g-1; 139 SBET and 

calcined at 500 ºC) 
H2O, Tol, 100 °C, 48 h 61 29 Fur 255 

D-Xylose SO4
2-

/SnO2 (SO4
2- loading:0.68 mmol.g-1; 125 SBET and 

calcined at 450 ºC) 
H2O, Tol, 100 °C, 48 h 75 29 Fur 255 

D-Xylose SO4
2-

/HfO2 (SO4
2- loading:0.22 mmol.g-1;158 SBET) H2O, Tol, 100 °C, 48 h 42 10 Fur 255 

Supported HPAs 

D-Xylose Cs2.5H0.5PW12O40 (128 SBET) H2O, Tol, 160 °C, 8h 45 21 Fur 284 

D-Fructose Cs2.5H0.5PW12O40 (116 SBET) DMSO, 120 °C, 2 h, 9.7x105 Pa 100 91 Hmf 245 

D-Fructose Cs3PW12O40 DMSO, 120 °C, 2 h 96 73 Hmf 362 

D-Fructose Cs3PW12O40 H2O, IBMK, 120 °C, 60 min 47 40 Hmf 315 

D-Glucose Cs3PW12O40 H2O, IBMK, 130 °C, 4 h 33 13 Hmf 315 

D-Fructose Zr1.5PW12O40  DMSO, 120 °C, 2 h 97 51 Hmf 362 

D-Fructose Ag3PW12O40 (W loading=69.2 wt.%; P loading=1.0 wt.%; Ag 
loading=10.1 wt. %; W:P:Ag=12:1:3; 5.1 SBET; 0.87 Dp; 3010 

AS by IR-py) 

(H2O, IBMK, 120 °C, 60 min)/(H2O, IBMK,     
120 °C, 90 min)/(H2O, IBMK, 130 °C, 60 min) 

83/93/nf a 79/78/88 Hmf 315 

D-Glucose Ag3PW12O40 (W loading=69.2 wt.%; P loading=1 wt.%;        
Ag loading=10.1 wt. %; W:P:Ag=12:1:3; 5.1 SBET; 0.87 Dp; 

3010 AS by IR-py)  

H2O, IBMK, 130 °C, 4 h 90 76 Hmf 315 

D-Xylose MP34PWb12O40 (233 SBET; 0.198 Vp; 12-tungstophosphoric 
acid immobilised in medium mesoporous silica in butanol) 

(H2O, Tol, 160 °C, 4 h)/(DMSO, 140 °C, 4 h) 80/49 42/52 Fur 285 
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Table 1.6- Continued. 

D-Xylose MP34CsPW12O40 (705 SBET; 0.552 Vp; cesium salt of            
12-tungstophosphoric acid supported on medium pore      

MCM-41) 

(H2O, Tol, 160 °C, 8 h)/(DMSO, 140 °C, 4 h) 77/91 45 Fur 284 

D-Xylose LP15CsPW12O40 (608 SBET; 1.421 Vp; cesium salt of              
12-tungstophosphoric acid supported on large pore micelle 

template silica) 

(H2O, Tol, 160 °C, 4 h)/(DMSO, 140 °C, 4 h) 65/70 26/24 Fur 284 

D-Xylose LP34PWb12O40 (520 SBET; 1.392 Vp; 12-tungstophosphoric 
acid immobilised in large mesoporous silica) 

(H2O, Tol, 160 °C, 4 h)/(DMSO, 140 °C, 4 h) 82/53 48/50 Fur 285 

D-Xylose MPNHPW12O40 (481 SBET; 0.3 Vp; 12-tungstophosphoric acid 
immobilised in medium pore amino-functionalised silica) 

H2O, Tol, 160 °C, 4 h 68 18 Fur 285 

D-Xylose LPNHPW12O40 (663.6 SBET; 2 Vp; 12-tungstophosphoric acid 
immobilised in large pore amino-functionalised silica) 

H2O, Tol, 160 °C, 4 h 64 18 Fur 285 

D-Fructose [MIMPS]3PW12O40 (Heteropolyacid salt of an ionic liquid 
cation functionalised with a propanesulfonated group,        

1-(3-sulfonicacid)propyl-3-methyl imidazolium 
phosphotungstate) 

(IBMK, 120 °C, 2 h)/(DMSO, 120 °C, 2 h)/          
(n-BuOH, 120 °C, 2h)/(sec-BuOH, 120 °C,        

2 h)/(iso-BuOH, 120 °C, 2 h) 

99/99/99/
100/99 

44/76/75 
/99/57 Hmf 

362 

Carbon based catalysts 

D-Xylose SCBC (S loading=1.46 mmol.g-1; 1.1 SBET; 0.7 Vp; sulfonated 
carbon-based catalysts) 

Acetone, DMSO, H2O, 200 °C, 10 min 45 9 Fur 256 

D-Fructose SCBC (S loading=1.46 mmol.g-1; 1.1 SBET; 0.7 Vp; sulfonated 
carbon-based catalysts) 

Acetone, DMSO, H2O, 200 °C, 10 min 95 28 Hmf+1 Fur 256 

D-Glucose SCBC (S loading=1.46 mmol.g-1; 1.1 SBET; 0.7 Vp; sulfonated 
carbon-based catalysts) 

Acetone, DMSO, H2O, 200 °C, 10 min 29 6 Hmf+1 Fur 256 

D-Xylan CBC (S loading=1.46 mmol.g-1; 1.1 SBET; 0.7 Vp; sulfonated 
carbon-based catalysts) 

Acetone, DMSO, H2O, 230 °C, 5 min - 10 Fur 256 

Cellulose CBC (S loading=1.46 mmol.g-1; 1.1 SBET; 0.7 Vp; sulfonated 
carbon-based catalysts) 

Acetone, DMSO, H2O, 230 °C, 7 min - 7 Hmf+1 Fur 256 

Cassava Waste CBC (S loading=1.46 mmol.g-1; 1.1 SBET; 0.7 Vp; sulfonated 
carbon-based catalysts) 

Acetone, DMSO, H2O, 250 °C, 1 min - 12 Hmf+3 Fur 256 

D-Fructose LCC (CH0.94O0.37S0.027; lignin-derived carbonaceous catalyst (H2O, DMSO, MW 100W, 110 °C, 10 min) 98 84 Hmf 354 

D-Fructose Ac-SO3H ( SO3H loading= 0.6 mmol.g-1; 506 SBET; 2700 AS by 
TPD-NH3; sulfonated activated carbon) 

DMSO, 130 °C, 1.5 h      ~100 81 Hmf 246 
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Table 1.6- Continued. 
D-Fructose Glu-TsOH (< 1 SBET; 2000 AS by TPD-NH3; carbonaceous 

catalyst formed in an eco-friendly approach between         
D-glucose and p-toluene sulfonic acid) 

DMSO, 130 °C, 1.5 h      ~100 91 Hmf 246 

a) nf- information not found. b) Although the authors considered these compounds as heteregeneous catalysts, recent studies demonstrated that at least for VOPs the catalytic reaction is homogeneous in 
nature.286 c) The aqueous extract of the Jerusalem artichoke was processed by cation and anion exchange to remove the various ions, and ultrafiltration dialysis to remove potein. d) Weak LAS were detected from 
the silica matrix by IR-NH3. e) Choosen from a set of values in which the reaction time was from 8 to 16 h. 
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1.5. Conversion of saccharides to furanic aldehydes using ionic liquid (IL) 

based catalytic systems 

 
 

The poor solubility of polysaccharides (especially that of cellulose, the most abundant 

source of hexoses for Hmf) in almost any solvent may be a problem when considering the use of 

solid acid catalysts due to the possible severe diffusion limitations. Some approaches prior to the 

reaction in the presence of a solid acid may be pre-treating the carbohydrate feedstock by pre-

dissolution, which allows transforming the crystalline and recalcitrant cellulose structure (natural 

form) into an amorphous form that is faster hydrolysed than the crystalline form. This is 

important because the crystalline form is resistant to chemical and biological transformations (the 

glycosidic bonds are protected by the tight packing of cellulose chains in microfibrils). Many 

authors have been making efforts to selectively convert saccharides into Hmf and Fur in ionic 

liquids (ILs) in order to enhance the solubility of the substrate in the reaction medium, improve 

yields of target products and facilitate catalyst recycling.403 

ILs were first introduced in 1914 by Paul Walden who reported the physical properties of 

ethyl ammonium nitrate [EtNH3]NO3 formed by neutralisation of ethylamine with concentrated 

nitric acid.419 Nevertheless the earliest report on ILs applied to polysaccharides is only dated after 

two decades in a patent from 1934 focusing on the molten salt N-ethylpyridinium chloride that 

dissolved cellulose.420 In 1948 they emerged as mixtures of aluminium(III) chloride and                  

1-ethylpyridinium bromide.421 Chemical and physical properties of derivatives of 1-

butylpyridinium tetrachloroaluminate ([Bpy]AlCl4) were found to have some limitations since it 

was liquid at ambient temperature only within a very narrow composition range.422 Some years 

later, 1-ethy-3-methylimidazolium tetracholoraluminate ([Emim]AlCl4) appeared with a much 

wider liquid range becoming the first IL system liquid at ambient temperature. Since then a wide 

number of potential applications of ILs as solvents in organic synthesis have been developed 

incorporating many different ions (Table 1.7).423  

 ILs are defined as a class of non-molecular ionic solvents consisting of ion pairs; an 

organic heterocyclic cation (e.g. dialkylimidazolium) and an inorganic (e.g. chloride or nitrate) or 

organic anion (e.g. trifluoromethane sulfonate or acetate) that usually melt at or below 100 °C. 

Their versatility allows them to be referred to as “designer solvents”, because they may be 

tailored through the modification of the constituent ions to meet desired properties, such as 
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polarity, hydrophilicity, and miscibility with solutes or other solvents, and acid-base 

properties.424,425 The cations in ILs are responsible for their physical properties (such as melting 

point, viscosity and density) whereas the anions control chemical properties and reactivity.426  

The requirements of a certain solvent to dissolve cellulose are highly demanding such as: 

i) dissolution of cellulose (preferably more than 10 wt.%) at low temperature ; ii) melting point 

lower than 20 °C; iii) high thermal stability (> 200 °C); iv) non-volatile; v) non-toxic, vi) chemically 

stable; vii) no undesired cellulose decomposition; viii) easy recyclable process; ix) cost effective.16 

Compared to common organic solvents used in carbohydrate chemistry, ILs have interesting 

properties and different reviews describe their numerous advantages,403 besides they fulfill some 

of the “Green Chemistry” requirements. They have almost no vapour pressure, avoiding 

atmospheric pollution problems (emission and explosion risks) typically associated with volatile 

organic solvents and products contamination with the solvent in distillation processes. ILs remain 

liquid through a wide range of temperatures and are quite stable at high temperatures. They are 

fairly air- and water-stable (water is intrinsically associated with the hydrolysis/dehydration 

processes), and in some cases they can be recycled efficiently. ILs also have relatively moderate 

surface tensions compared to organic solvents and even when compared to water.427 ILs display 

singular solubilisation properties for cellulose (and other polysaccharides), as  the dissolution of 

the latter in ILs, breaks down crystalline domains leaving the polysaccharide chains more exposed 

and the glycosidic bonds more accessible to active species.428-430 In the specific case of [Bmim]Cl, 

an NMR study demonstrated that the solubility of cellulose is due to the disruption of the 

hydrogen bonds in cellulose by the chloride anions of the IL.431 Hence, through the use of ILs it is 

possible to affect the thermodynamic and kinetic barriers commonly associated with the 

transformation of the polysaccharides in water or common organic solvents.428-430,432 Therefore ILs 

open up a window of opportunities for the dissolution of carbohydrates and their ability to 

dissolve cellulose is dependent on the degree of polymerisation (DOP), its crystallinity, and on the 

operating conditions.234 

The most effective ILs for dissolving cellulose or cellulosic biomass have included those 

composed of imidazolium or pyridinium cations with short aliphatic chain substituent groups and 

anions, which are strong hydrogen bond acceptors, such as chloride and acetate, for disrupting 

the extensive hydrogen bond network of cellulose (Table 1.7).184,420,426,428-430,433-448 The efficiency of 

the IL-based reaction system may be further improved through the use of MW heating (in bulk 

heating), instead of conventional heating (CH, using an external heating source involving 

conduction/convection),343,449,450 since the dielectric properties of ILs allow the MW absorption in 
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bulk heating to be extremely efficient.334,451,452 However, apart from the advantages mentioned, 

one of the disadvantages they present is related to their viscosity being relatively high compared 

to conventional solvents (66 to 1110 cP at 20-25 °C), and hence the design of less viscous ILs is still 

a challenge for many applications.453 

Two main approaches have been successfully used as tools in different perspectives 

regarding the application of ILs in the acid-catalysed hydrolysis/dehydration of saccharides to Fur 

and Hmf, under mild reaction conditions: i) ILs as solvents (an acid catalyst is added) or ii) acid 

solvents/catalysts (dual function).  Ideally, the IL dissolves the substrate (and the catalyst when 

the IL is not acidic) but not the target products, simplifying the product separation process and 

avoiding product and/or catalyst loss/decomposition in more laborous/demanding work-up 

procedures. Accordingly, in the case of Fur production, the product separation is possible by 

decantation, and in the case of Hmf (solid) by filtration. However, Fur and Hmf are soluble in the 

IL systems which have been investigated (Tables 1.7 and 1.8). When the target products are 

soluble in the IL, it may be beneficial to use a co-solvent for in situ extraction of those products as 

they are formed (a biphasic liquid-liquid system). Nevertheless, the addition of a co-solvent may 

cause cross-contamination requiring additional purification steps (Table 1.8). In the case of Fur 

production, a cleaner approach may be to evaporate the product as it is formed.  

High expectations on ILs for these reaction systems are evident and have already 

deserved patent applications.194,454-457 A review about the use of imidazolium salts in the 

conversion of biomass was published in 2010.184 More recently Zakrzewska et al.458 focused 

specifically on Hmf production by means of the IL-mediated conversion of hexoses or related 

di/polysaccharides and summarised studies published until July 2010. A minireview by Stählberg 

et al.459 has focused on issues of process technology of the synthesis of Hmf using ILs, and a 

review by A. Rosatella et al.185 addresses the toxicological and environmental impact issues 

regarding the preparation of Hmf, which includes ILs as solvents. A recent review about ILs used in 

the hydrolysis/dehydration reaction of saccharides (pentoses or hexoses) into furanic aldehydes 

was published.4 The research and development of IL-based catalytic systems for the chemical 

valorisation of (highly complex) biomass can be made by looking at how each type of IL-based 

catalytic system performed for different  types of carbohydrates (containing pentoses and 

hexoses). The latter approach has good prospects to convert different saccharides into Fur+Hmf 

(including stability and recycling efficiency) which are desirable for process intensification.  
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Several published works have focused on a specific substrate, which leaves gaps in the 

knowledge of the potential of the investigated IL-based catalytic systems for converting different 

carbohydrate feedstocks.  

In the following Sections IL-mediated production of Fur and Hmf from biomass is 

summarised, in the perspective of the type of IL-based catalytic system (IL as solvents coupled 

with a Brönsted or Lewis acid catalyst or acidic ILs working as solvents and catalysts), crossing 

information of different scientific contributions having in common the application of a specific 

type of IL-based catalytic system, and promising achievements in the reactions of different 

mono/di/polysaccharides are reported. Comparisons of product selectivity should only be made 

for similar saccharide (or saccharide conversions). Since this was often not possible between 

different works, the results are focused in terms of Hmf and Fur molar yields (denoted Y, equation 

1.5) and in terms of molar conversions of saccharides (denoted Csaccharide, equation 1.6): no 

(saccharide), nt (saccharide) and nt (Fur or Hmf) are the initial moles of saccharide, the moles of 

saccharide, Fur or Hmf at a reaction time t, respectively. Furthermore the investigated ILs are 

given in Table 1.7.   

  

                YFur or Hmf (% at a reaction time t) =
�� (��� �� 	
�)

�(�� 
�������������) �� � � (�� ������������)
× 100          (1.5) 

 

                     C saccharide (% at a reaction time t)= 
� (����������)"�� (����������)

�(����������)
 × 100                   (1.6) 

 

Table 1.7- Names, abbreviations and structures of cations of ionic liquids. 

Structure 
 

R R’ R’’ Abbreviation 

 
 
 
 
 

N N
R''R

R'''  

H H CH3 [Hmim] 

CH3CH2 H CH3 [Emim] 

CH3(CH2)3 H CH3 [Bmim] 

CH3(CH2)5 H CH3 [Hxmim] 

CH3(CH2)7 H CH3 [Omim] 

CH3(CH2)9 H CH3 [Dmim] 

CH3(CH2)3 H CH3(CH2)3 [B2im] 

CH2CH=CH2 H CH3 [Amim] 

(CH2)4SO3H H CH2CH=CH2 [Asbi] 

(CH2)4SO2Cl H CH2CH=CH2 [Ascbi] 

(CH2)4SO2Cl H CH3 [Mscbi] 

(CH2)4SO3H H CH3 [Sbmim] 

(CH2)3SO3H H CH3 [Spmim] 

CH3(CH2)3 CH3 CH3 [Bm2im] 
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Table 1.7- Continued. 
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+
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N
R'

+

R  

H H — [Hpy] 

CH3CH2 H — [Epy] 

CH3(CH2)5 H — [Hxpy] 

CH3(CH2)3 CH3 — [Bmpy] 

CH2CHOHCH2Cl H — [Pcohpy] 

 H2CH(OCH3)CH2Cl H — [Pcmopy] 

 
 

R'

N+

R

R

R´´

 
 

CH3(CH2)3 CH3(CH2)3 CH3(CH2)3 [B4N] 

CH3CH2 CH3CH2 CH3CH2 [E4N] 

CH3CH2 CH2(CHO)CH2 CH3CH2 [E3Nmeo] 

CH3 CH3 CH3 [M4N] 

CH3 C6H5CH2 CH3 [M3BeN] 

CH3 H H [M2H2N] 

CH3 H CH3 [M3HN] 

CH3 C6H5 CH3 [M3PhN] 

CH3(CH2)3 (CH2)2OH — [Cho] 

R'

P+

R

R''

R

 

 
CH3(CH2)3 

 
CH3(CH2)3 

 
CH3(CH2)3 

 

[B4P] 

N

O

+

R

R'

 

H H — [Morph] 

H CH3 — [NMM] 

N

NH2

+
N

 

 
— 

 
— 

 
— 

 

[TMG] 

 

 

1.5.1. ILs as solvents (an acid catalyst is added) 

 

 

When ILs are used as solvents in the conversion of polysaccharides into furanic 

compounds, the catalysts used are Lewis acids (e.g. transition metal salts) or Brönsted acids 

(mineral acids, heteropolyacids and organic acids). The investigated ILs were essentially those 

containing an alkyl or allyl-substituted imidazolium cation and a halide anion, which have 

interesting solubilisation properties for saccharides and are readily available (Table 1.8). Fur and 

Hmf are fairly stable in these types of ILs.231 Density functional theory (DFT) calculations revealed 

that the imidazolium IL solvent “switches” the dehydration of D-fructose from a 
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thermodynamically unfavourable reaction to a thermodynamically favourable one, activating the 

reactants, stabilising the products, and enhancing Hmf yield.432  The water concentration in the ILs 

is an important issue since it has been reported that ILs enhance the water auto-ionisation 

process (influencing the pKw values of water), increasing the concentration of both [H+] and [OH-] 

in the IL-water mixtures, enabling acid- and/or base-catalysed reactions to occur.460 According to 

Zhang et al.,460 the values of Kw of water in IL-water mixtures under mild conditions (typically 

employed in biomass conversion using ILs) are similar to that of water under high temperature 

and pressure conditions.460 The loadings of substrate may enhance formation of humins (dark-

brown compounds) as reported by Qi et al.336  

Table 1.8 shows the results for the hydrolysis/dehydration of di/polysaccharides. The 

values of the yields (denoted Y) are given in wt.% unless specified otherwise. In general, the best 

results were chosen when the reaction conditions were optimised. 

 

Table 1.8- Hydrolysis/Dehydration of di/polysaccharides or lignocellulosic biomass into                  

5-hydroxymethyl-2-furaldehyde/2-furaldehyde (Hmf/Fur) using ionic liquids. 

Substrate Acid added/IL /co-solvent Reaction 

conditions (°C/ h) 
YFur/Hmf

a 

(wt.%) 
Ref 

DISACCHARIDES (TY Hmf= 74 wt.%) 
b 

D-Cellobiose CrCl3/[Bmim]Cl/n.u.c 140/0.08 20 336 

(CuCl2+CrCl2)/[Emim]Cl/n.u.c 100/3 <10 329 

CrCl3.6H2O/[E4N]Cl/n.u.c 130/0.17 22 305 

SnCl4/[Emim]BF4/n.u.c 100/3 20 374 

GeCl4/[Bmim]Cl/n.u.c 120/0.5 15 373
 

D-Maltose CuCl2/CrCl2/[Emim]Cl/n.u.c 100/3 <6 329 

GeCl4/[Bmim]Cl/n.u.c 120/0.5 9 373 

D-Sucrose HCl/[Omim]Cl/n.u.c 120/1.5 58 230 

CrCl3/[Bmim]Cl/n.u.c 100/0.08 28 336 

CrCl2/HCl/[Omim]Cl/n.u.c 120/1 82 230 

CrCl3.6H2O/[E4N]Cl/n.u.c 130/0.17 28 305 

SnCl4/[Emim]BF4/n.u.c 100/6 23 374 

GeCl4/[Bmim]Cl/n.u.c 120/0.5 21 373 

IrCl3/[Bmim]Cl/n.u.c 100/3 14 324 

p-TsOH e/[Cho]Cl/n.u.c 100/1 9 310 

n.u./[Hmim]Cl/n.u.c 90/1 37 342 

n.u./[NMM]CH3SO3/DMFA-LiBr d 90/1.5 18 461 

Lactose CrCl2/H2SO4/[Emim]Cl/n.u.c 120/2  8 253 

POLYSACCHARIDES 

Cellulose (TY Hmf ≅≅≅≅  74 

wt.%) 
HCl/[Emim]Cl/n.u.c 105/4 30f 317 

HCl/[Emim]Cl/acetonitrile 110/3 29f 301 

HCl/[Emim]Cl/H2O 110/3 25f 301 

HCl/[Bmim]Cl/(H2O+H2SO4) 90/1.08 20f 301 

CuCl2/CrCl2/[Emim]Cl/n.u.c 120/ 8 58 329 
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Table 1.8- Continued. 

Cellulose (TY Hmf  ≅≅≅≅ 74 

wt.%) 

CrCl2/HCl/[Emim]Cl/(DMA-LiCl) 140/2 54f 196 

n.u./[Emim]Cl/(DMA-LiCl) 140/2 4f 196 

CrCl3/[Bmim]Cl/n.u.c 150/0.17 54f 336 

CrCl3/[Bmim]Cl/n.u.c h/0.033 62f 334 

CrCl3.6H2O/[Bmim]Cl h/0.042 62f 337 

CrCl3/[Bmim]Cl/n.u.c 160/0.1 55f 340 

CrCl3/[Bmim]Cl/H2O 140/0.67 53 f 335 

CrCl3/LiCl/[Bmim]Cl/H2O 140/0.67 62f 335 

CrCl2/[Bmim]Cl/n.u.c 120/6 34 309 

Ipr-CrCl2 
i/[Bmim]Cl/n.u.c 120/12 48 309 

GeCl4/[Bmim]Cl/n.u.c 120/0.5 37f 373 

FeCl2/[Sbmim]SO4/(IBMK) 150/5 34+19g 376 

CoSO4/[Sbmim]HSO4/IBMK 150/5 24+17g 377 

n.u./[Sbmim]HSO4/(IBMK+H2O) 150/5 15+8g 376 

n.u./ [Sbmim]HSO4/(IBMK+H2O) 150/5 15+8g 377 

Amberlyst-36/[Bmim]Cl/n.u.c 120/6 20 309 

H-Y/[Bmim]Cl/n.u.c 120/6 36 309 

p-TsOH e/[Bmim]Cl/n.u.c 120/6 21 309 

Inulin (TY Hmf  ≅≅≅≅ 74 wt.%) [Cho]Cl/citric acid 80/2 40 316 

[Cho]Cl/oxalic acid 80/2 44 316 

[Cho]Cl/oxalic acid/ethyl acetate 80/2 50 316 

p-TsOH e/[Cho]Cl/n.u.c 90/1 57f 310 

Amberlyst-70/[Bmim]Cl/glycerol 
carbonate 

110/i 60f 302 

Amberlyst-15/[Emim]HSO4 100/0.083 65f 344 

Amberlyst-15/([Bmim]HSO4+ 
[Bmim]Cl)/n.u.c 

80/1.1 82f 

 

344 

SnCl4/[Emim]BF4 100/3 40f 374 

BHC j/[Cho]Cl/(H2O+IBMK) 100/1 19 356 

Starch (TY Hmf ≅≅≅≅  74 wt.%) HCl/[Omim]Cl/ethyl acetate 120/1 30 322 

CrCl2/HCl/[Omim]Cl/ethyl acetate 120/1 60 322 

SnCl4/[Emim]BF4/n.u.c 100/24 47f 374 

Xylan oat (TY Fur ≅≅≅≅  73 

wt.%) 
CrCl2/HCl/[Emim]Cl/n.u.c 140/2 25f 277 

Pine Wood CrCl3/[Bmim]Cl/n.u.c h/0.05 52+31f,g 337 

TFA k/[Bmim]Cl/H2O 120/2h 4 462 

Wheat straw CrCl3/LiCl/[Bmim]Cl/n.u.c 160/0.25 61f 335 

Rice straw CrCl3/[Bmim]Cl/n.u.c h/0.05 47+25f,g 337 

Corn stalk CrCl3/[Bmim]Cl/n.u.c h/0.05 45+23 f,g 337 

Corn stover CrCl3/HCl/[Emim]Cl/DMA 140/2 48+34 f,g 196 
a) Yield of 2-furaldehyde from pentose-based saccharides; yield of 5-hydroxymethyl-2-furaldehyde from hexose-based saccahrides. b) 
Theoretical yield (TY) of 2-furaldehyde or 5-hydroxyemthyl-2-furaldehyde. c) n.u. =not used. d) DMFA-dimethylformamide. e) para-
toluene sulfonic acid. f) Yield given in (mol%). g) 5-hydroxymethyl-2-furaldehyde +2-furaldehyde yield. h) Temperature not mentioned 
(MW, 400 W). i) Ipr-(1,3-bis(2,6-diisopropylphenyl)imidazolylidene) chloride. j) Time not mentioned. j) BHC- Betaíne hydrochloride, a 
co-product of carbohydrate industry. k-TFA-trifluoroacetic acid. 
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1.5.1.1. ILs coupled with homogeneous liquid acid catalysts 

 

 

A range of liquid Brönsted acid catalysts have been tested using ILs as solvents in the 

reaction of monosaccharides, mainly D-fructose (Figures 1.25 and 1.27) and D-glucose (Figure 

1.28) or polysaccharides (e.g. cellulose, Figure 1.29). The liquid Brönsted acid catalysts mostly 

used include inorganic HCl, H2SO4, HNO3, H3PO4 mineral acids (Figure 1.25)196,198,230,306,317,334,463 or 

organic acetic, citric, oxalic, malonic, and maleic acids (Figures 1.27 and 1.28).198,202,306,316,463,464  

Various ILs used as solvents with mineral acids as catalysts in the dehydration of monosaccharides 

(D-xylose, D-fructose or D-glucose), can be employed with or without a co-solvent at reaction 

temperatures in the range of 80-120 °C, reaction times from 1 min to 12 h and using MW or 

conventional heating (CH) methods.196,198,231,306 In the case of Hmf production from D-fructose    

(4-10 wt.%), high (80-95%) YHmf were obtained, using H2SO4 as catalyst coupled with different ILs 

([Emim]Cl, [Hpy]Cl or [Bmim]Cl at 80-120 °C (Figure 1.25).196,231,306,338,353,463  These results showed 

the positive effect of sulfuric acid (no Hmf was formed in the absence of the catalyst).338  

 

 
Figure 1.25- Mineral acids used as catalysts coupled with ILs as solvents in the dehydration of      

D-fructose to 5-hydroxymethyl-2-furaldehyde (Hmf). 
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  In [Hxmim]Cl and [Omim]Cl, the H2SO4 (10 mol.%) had no catalytic effect (YHmf < 10%) due 

to the bulky groups that prevent the H+ of the acid to react with D-fructose. However, increasing 

the content of H2SO4 to 25 mol.% facilitated the contact of the H+ ions with D-fructose, reaching 

82% YHmf in the case of [Hxmim]Cl  (Figure 1.25).338  

It was postulated that the anion Cl- played an important role in the enolisation step, acting 

as nucleophile and attacking a fructofuranosyl oxocarbenium ion (primary intermediate) to form a 

2-deoxy-2-halo intermediate that is less prone to side reactions, as well as reversion to                 

D-fructose; the latter intermediate then loses HCl to form the enol intermediate (Figure 1.26).196 
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Figure 1.26- Putative nucleophilic mechanism for halide participation in the dehydration of           

D-fructose into 5-hydroxymethyl-2-furaldehyde (Hmf);  X- represents a halide ion [adapted from 

196]. 

 

 

Using HNO3 resulted in a higher Hmf yield than that with H3PO4 possibly due to the 

stronger acidity of the former (based on pKa values for aqueous solutions) although this trend 

may not necessarily be in line with that for ILs as solvents.198 The use of HCl as catalyst in ILs is 

also very effectve for Hmf production from D-fructose (Figure 1.25). For a series of self-made ILs 

containing imidazolium or pyridinium cations and using HCl as catalyst (9 mol.%), Li et al.463 

reported far better results for the halide (Cl- or Br-)-containing ILs than for BF4
- and PF6

-. In line 

with this trend, better results were also found for [Emim]Cl in comparison to [Emim]BF4 for the 

[H2SO4/IL/DMA] system.196 The superior results for the Cl- containing IL compared to the 

“nonbasic” (poor coordination ability) BF4
- and PF6

- containing ILs, may be partly related to the 

lower affinity of the latter ILs towards D-fructose or cationic intermediates, in comparison to the 

Cl-containing IL.196,311,430,465-467 On the other hand, the stability of HCl may be influenced by the 

type of the IL (possibly more stable in Cl-containing ILs). The HCl/[Bmim]Cl system was effective 

even for D-fructose loadings as high as 50 wt.% (67% YHmf (78% CFru) at 80 °C/55 min).463 These 



Chapter 1 
______________________________________________________________________________________________ 

_____________________________________________________________________________ 
80 
 

results are promising in comparison to those for the aqueous phase reaction of D-fructose at 80-

95 °C, in the presence of HCl (>0.25 M) or acid resins (e.g. 20% YHmf after several h).226 The use of 

high concentrations of HCl may allow high YHmf to be reached at lower reaction temperatures and 

longer reaction times. Lai et al.432 for the reaction of D-fructose (20 wt.%) in HCl/[Bmim]Cl, with a 

HCl loading of 50 mol.%, achieved a 80% YHmf at a.t./70 h. The addiiton of tetrahydrofuran (THF) as 

immiscible co-solvent to the system HCl/[Bmim]Cl enhanced the reaction rate and gave 

comparable Hmf yields in only 24 h). Furthermore the IL was recycled in an efficient way (Section 

1.5.3).432 The use of IL-based systems instead of conventional acidic aqueous solutions (typically 

involving high temperatures) avoid Hmf loss reactions via its decomposition into formic and 

levulinic acids.201 The influence of water in the IL system on the reaction of D-fructose was 

investigated in detail for the HCl/[Bmim]Cl system at 80 °C, and it was found that the reaction rate 

decreased with increasing water concentration (up to ca. 30 wt.%). Nevertheless, increasing 

reaction times allowed similarly high Hmf yield to be reached.463 Although mineral acids have 

been used with success, Li et al.321 obtained a high  Hmf yield without using a catalyst under MW. 

At 240 W the dehydration of  D-fructose (50 wt.%) gave 98% YHmf at  80 °C/6 min; at 400 W the 

same YHmf was reached at 155 °C in only 1 min. At a potency higher than 400 W, a fast D-fructose 

consumption  (> 90% in 30 s) was observed, but a lower YHmf (80% in 20 s).321 In an oil bath and 

solely [Bmim]Cl (9 wt.% D-fructose) an inferior 82% YHmf (84% CFru) was obtained at 155 °C/5 min. 

The addition of  5 mol.% of HCl to [Bmim]Cl gave 92% YHmf (96% CFru) at 100 °C/30 min. Using H2O 

(instead of [Bmim]Cl) with 1 mol.% HCl gave a much lower YHmf of only 11% (39% CFru) at 100 

°C/420 min.321 This proved that [Bmim]Cl played an important role in promoting the reaction, and 

the combination with MW produced great benefits for the selective dehydration of D-fructose.321   

 

Organic acids have as well been sucessfully coupled with ILs as solvents for the conversion 

of saccharides into furanic aldehydes under moderate reaction conditions (Figure 1.27); they are 

more attractive in comparison to inorganic acids in that they may be obtained from renewable 

biomass and may be biodegradable. For example, the reaction of D-fructose (10 wt.%) in the 

presence of maleic acid (7.6 mol.%) in [Bmim]Cl gave 88% YHmf at 80 °C/50 min, which is similar to 

the best results reported for inorganic liquid acids (Figures 1.25 and 1.27).463 CF3SO3H in [Bmim]Cl 

provided better YHmf  (88% at 96% CFru) than H2SO4 (ca. 85% YHmf) or CuCl2 (ca. 80% YHmf) due to the 

stronger proton donor ability it presents.303  In the absence of a catalyst, the YHmf was only 48% 

indicating the excellent synergistic effect of the catalyst. The authors reported equally high YHmf 

(ca. 90%) for imidazolium cations with alkyl chain substituent groups of less than four carbon 
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atoms ([Mim]Cl, [Emim]Cl, [Bmim]Cl). Longer alkyl chains prevent the H of C-2 of the imidazolium 

cation to contact with the -OH group of D-fructose to dehydrate into Hmf (YHmf < 15% with 

[Hxmim]Cl, [Omim]Cl and [Dmim]Cl).303 Varying the anion to [Bmim]BF4, [Bmim]PF6, 

[Bmim]CF3SO3H or [Bmim]SCN also gave very poor YHmf(< 20%). Molecular simulation studies 

indicated that the Cl- anion has a stronger interaction with D-fructose. The Cl- ions in ILs may tend 

to form strong hydrogen bonds between two adjacent -OH groups in D-fructose (OH-Cl-OH).303 

 

 
Figure 1.27- Homogeneous organic Brönsted acids coupled with ILs as solvents in the dehydration 

of D-fructose to 5-hydroxymethyl-2-furaldehyde (Hmf).  

 

 

The results reported to date using liquid Brönsted acid catalysts in ILs as solvents in the 

reaction of D-fructose to Hmf (Figures 1.25 and 1.27) are, in general, more attractive than those 

for D-glucose (Figure 1.28). The reaction of D-fructose (10 wt.%) in [Emim]Cl, without adding an 

acid, gave ca. 40% YHmf (58% CFru) and 70% YHmf (100% CFru) at 100 °C and 120 °C, respectively, after 

3 h reaction. The same IL was ineffective in converting D-glucose into Hmf (YHmf< 5%, even at the 

higher temperature of 180 °C).201 Hence, D-glucose is a more demanding substrate than                

D-fructose for Hmf production. Nevertheless, for the reaction of D-glucose, considerably higher 

YHmf have been reported using Brönsted acid catalyst/IL systems (Figure 1.28) in comparison to 

acidic ILs (discussed in Section 1.5.2), possibly due to the stronger bulk acidity in the latter case. 

Different inorganic (H2SO4, HNO3, HCl, H3PO4) and organic (CH3SO3H, CF3SO3H) liquid acids have 

been tested in the conversion of D-glucose, using [Bmim]Cl as solvent (Figure 1.28).198,230,231,317,334 
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Figure 1.28- Brönsted liquid acid catalysts coupled with ILs as solvents in the dehydration of          

D-glucose (Glu) to 5-hydroxymethyl-2-furaldehye (Hmf).198 Reaction conditions: 9 wt.% sac, 1 

mol.% cat, T=120 °C, reaction time= 3 h. 

 

 

D-Sucrose,230 starch,322 cellulose317 and other biomass derived feedstocks have been 

converted into 30-60% YHmf, using HCl in imidazolium chloride ILs (Table 1.8). Similar 25 mol.% and 

29 mol.% YHmf were obtained by adding H2O or acetonitrile to the [Emim]Cl/HCl/cellulose system; 

(5 wt.% cellulose, 15 wt.% H2O or 10 wt.% acetonitrile, and 1 wt.% HCl) at 110 °C/3 h.301 Dee et 

al.301 coupled [Bmim]Cl to several mineral and organic acids (e.g. HCl, H2SO4, CH3SO3H, CF3COOH, 

CH3COOH and H3PO4) in H2O from 4.6 wt.% cellulose giving a similar ca. 20 mol.% YHmf for the first 

four acids (pka ≤ -1.9) at 90 °C in 0.9 h-2 h (Table 1.8, Figure 1.29). H3PO4 and CH3COOH (acids 

with a pKa ≥ 2 had not given Hmf).301 Using [Bmim]CH3COO  instead of [Bmim]Cl with H2SO4, the 

catalyst becomes inactive due to the strong affinity of CH3COO- for the H+ of H2SO4.
301  

 

 

Figure 1.29- Mineral and organic acid catalyts coupled with ILs as solvents in the dehydration of 

cellulose to 5-hydroxymethyl-2-furaldehyde (Hmf).  
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To obtain Fur, pentose based carbohydrates are used as feedstocks but poorer results 

were obtained. The reaction of D-xylose in H2SO4/[Bmim]Cl gave only 13% YFur (100% CXyl) at      

120 °C/1.5 h (6 mol.% H2SO4; 5 wt.% D-xylose),231 while Binder et al.277 reported 10 mol.% YFur 

from xylan (5 wt.%) using HCl (25 mol.%) and [Emim]Cl/DMA (5 wt.% IL) at 140 °C/2 h.277 

 

 

1.5.1.2. ILs coupled with homogeneous/heterogeneous solid acid catalysts 

  

 

Different types of solid acid catalysts have been investigated in the conversion of 

saccharides into Hmf/Fur, using ILs as solvents. Some are soluble (such as betaíne 

hydrochloride,356 Keggin type heteropolyacids,198 or metal chloride salts),196,201,305,306,309,313,322-324,328-

332,334-339,373,374,468-472 while others are insoluble (such as organic ion-exchange acid 

resins,302,304,306,309,311,343 carbon-based catalysts,354 microporous zeolites,309,313zirconium 

oxides,364,369 sulfated zirconia,364 other inorganic oxides (P2O5 and B2O5),
325 or hybrid organic-

inorganic, like SBA-15-SO3H 353). 

Betaíne hydrochloride-based catalyst (denoted BHC), a co-product of the sugar beet 

industry coupled to [Cho]Cl (Choline chloride), gave interesting results as a homogeneous acid 

catalyst in the dehydration of D-fructose to Hmf (Figure 1.30).356 The homogeneous system 

([Cho]Cl/BHC/H2O), with a mass ratio of [10/0.5/2] (5 wt.% BHC, 10 wt.% D-fructose), reached 

81% YHmf at 110 °C/1 h. With the addition of IBMK, a slightly improved 84% YHmf was obtained 

under the same conditions (Figure 1.30).356 [Cho]Cl was beneficial for the production of Hmf as in 

its absence lower YHmf were obtained. For the system [glycerol/BHC] with a mass ratio of [50:50] 

and [H2O/IBMK/BHC], in 2 h the YHmf was 57% at 110 °C. Hmf is less reactive with [Cho]Cl than 

with glycerol or H2O.356 The efficiency of the ([Cho]Cl/BHC/H2O) system also depended on the       

D-fructose and BHC contents. Higher amounts of D-fructose and BHC resulted in a lower 50% YHmf 

(40 wt.% fructose, 10 wt.% BHC). Higher concentrations of D-fructose led to degradation of Hmf 

to soluble and insoluble humins; BHC amounts > 5 wt.% limit the reaction due to diffusion 

problems caused by the high viscosity of the system.356 This system was especially successful for 

D-fructose. For D-glucose the presence of AlCl3 (10 mol.%) is required to promote the 

isomerisation into D-fructose, reaching 40% YHmf (temperature and time not mentioned). 

Recycling tests in order to recover the IL were applied with success (Section 1.5.3).356 A BHC 
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homogeneous catalyst (5 wt.%) coupled to ([Cho]Cl/H2O/IBMK) was also applied in the conversion 

of inulin (15 wt.%), giving a  YHmf  of 19 wt.% (52 mol.%) at 100 °C/1h (Table 1.8, Figure 1.33).356  

 

 Heteropolyacids (HPAs) are easier and safer to handle than liquid acids; HPAs of the 

keggin-type gave comparable or superior results to those observed for liquid acid catalysts in the 

reaction of D-glucose using imidazolium-chloride ILs as solvents (Figure 1.30).198 The trend in 

catalytic activity in the reaction of D-glucose (9 wt.%) in HPA/[Bmim]Cl at 120 °C/3 h correlated 

with the trend in the acidity of the HPA: 12-TPA>12-MPA>12-TSA>12-MSA; 12-TPA=12-

tungstophosphoric acid (H3PW12O40); 12-MPA=12-molybdophosphoric acid (H3PMo12O40,); 12-

TSA=12-tungstosilicic acid (H3SiW12O40); 12-MSA=molybdosilicic acid (H3SiMo12O40) (Figure 

1.30).198  

 

 

Figure 1.30- Soluble organic solid acids coupled with ILs in the dehydration of D-fructose or          

D-glucose (Glu) into 5-hydroxymethyl-2-furaldehyde (Hmf).  

 

 

With 12-MPA as catalyst, the ILs [Bm2im]Cl and [BmPy]Cl were less effective solvents than 

[Bmim]Cl and it was postulated that these differences could be due to differences in the acid-base 

properties of the IL medium.198 The formation of humins in the reaction of D-glucose (9 wt.%) 

could be suppressed by coupling the HPA/IL system with acetonitrile as co-solvent (ca. 40 wt.% in 

the IL), giving an outstanding result of 98% YHmf (99% CGlu) in the case of 12-MPA/([Bmim]Cl or 
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[Emim]Cl) at 120 °C/3 h.198 Besides decreasing the viscosity of the IL, which may improve mass 

transfer rates, acetonitrile may have an effect of leveling-off the acid strength of the reaction 

medium.198,343,449,450 On the other hand, non-protic solvents, such as acetonitrile and DMSO, may 

influence the equilibrium of mutarotation of hexoses (water concentration in the system may also 

influence the extent of this process) which may affect the selectivity of the catalytic 

system.226,473,474   

 

Several transition metal and lanthanide chloride salts as catalysts dissolved in ILs, mainly 

1-alkyl-3-methylimidazolium chloride, were investigated in the conversion of saccharides into 

Hmf, especially for D-fructose (Figure 1.31).196,201,202,230,306,322,328,330,331,334,336,374,455,457,468,470,471,475 In 

the case of D-glucose dehydration almost no catalyst besides chromium chloride (CrCl2) was 

effective (Figure 1.32).196,201,230,322,330,334,336,374,455,457,468,470,471,475 Zhao et al.201 patented the 

application of such processes, and some of these represented major breakthroughs in the 

selective conversion of D-glucose (Figure 1.32) and related di/polysaccharides into Hmf (Figure 

1.34).194,201,329 YHmf values in the range 59-83% have been reported for the reaction of D-fructose 

(10 wt.%) using metal Lewis catalysts in [Emim]Cl at (80-120 °C)/(1.5-3h) (Figure 1.31).196,201,470,471 

Chromium salts were the most used. By MW heating  Qi et al.336 obtained 78% YHmf from D-

fructose (5 wt.%) at 100 °C within only 1 min by using CrCl3/[Bmim]Cl (10 mol.% salt; IL with less 

than 1% H2O, Figure 1.31); good results were obained in recycling runs (Section 1.5.3). Yong et 

al.330 tested the CrCl2/[Bmim]Cl system in the presence of a bulky N-heterocyclic carbene (NHC), 

namely 1,3-bis(2,6-diisopropylphenyl)imidazolylidene (Ipr), and obtained 96% YHmf at 100 °C/6 h (9 

mol.% catalyst, 10 wt.% D-fructose and CH method, Figure 1.31). NHC ligands are interesting 

because they offer a great deal of flexibility as the catalytic activity can be modified by varying 

their stereo and electronic properties.330 In this study, the authors concluded that bulky NHC 

ligands such as Ipr inhibit the Cr centre from reacting with [Bmim]Cl to form a sterically crowded 

metal centre, thereby providing a higher catalytic efficiency since the initiation of the reaction by 

binding of the substrate to the metal centre will be inhibited if the centre is sterically crowded.330  

The stability of the IL was confirmed by recyling procedures (Section 1.5.3). Using DMSO instead 

of IL drastically decreased the YHmf to 41%.330,455,457,468 

Good results were obtained with ([Bmim]Cl/CrCl3.6H2O) and ([Bmim]Cl/CrCl2; 6 mol.% 

catalyst and 10 wt.% D-fructose): 80 and 60% YHmf respectively (100% CFru) at  80 °C/3 h.331 The 

higher catalytic activity of Cr3+ is due to the increased Lewis acidity compared to Cr2+, which limits 

the concentration of intermediates that are prone to bimolecular condensation reactions that 
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lead to humins.331 Other ILs were tested instead of [Bmim]Cl: [Bemim]Cl and [Bmim]TolSO3 

reached 71% and 66% YHmf, respectively, at 100 °C/2 h; [Hxmim]Cl and [Bdmim]Cl (44-49% YHmf at 

90-92% CFru); [Omim]Cl gave a very poor YHmf (< 1%).338 These results are in agreement with the 

discussion in “the ILs coupled to Brönsted catalysts Section”, in that the catalytic activity 

decreases with the length of the alkyl group.303,338 The anions of ILs used also play a role in the    

D-fructose dehydration: the interaction of the acidic H+ in [Bmim]TolSO3 with D-fructose is more 

difficult than in [Bmim]Cl, and Cl- acts as nucleophile promoting the reaction in a more favourable 

way than the p-toluenesulfonate anion.338  

Gruber et al.194 reported lower yields when the CrCl2/IL system contained acetic or 

propanoic acids as co-solvents (10 wt.% D-fructose; 6 mol.% catalyst; IL=([Emim]Cl+[Hmim]Cl);   

29 or 40% YHmf were obtained respectively. However, the main products formed were                    

5-(acetoxymethyl)-2-furaldehyde or 5-(propionyloxy)methyl-2-furaldehyde, respectively, which 

are promising fuels/fuel additives.  

Despite their contribution to important mechanistic insights, in the chromium-based 

catalytic processes, Cr6+ can be formed, posing serious risks to humam health and the 

environment, which would mean that their implementation on an industrial scale would be 

subject to very stringent regulations. Therefore several other different inorganic chloride salts 

have been tested. Zhao et al.201 reported 63-83% YHmf for FeCl2, FeCl3, CuCl, CuCl2, VCl3, MoCl3, 

PdCl2, PtCl2, PtCl4, RuCl3, RhCl3, AlCl3 as catalysts (6 mol.%), using [Emim]Cl as solvent at 80 °C/3 h 

(10 wt.% D-fructose, Figure 1.31). The best result was obtained for PtCl2.
201 Using H2SO4 as catalyst 

(1.8-18 mol.%) instead of a metal Lewis acid, under similar reaction conditions, gave similar 75-

80% YHmf.
201 Other inorganic chloride salts (SnCl4, BiCl3, ScCl3 and CeCl3 in 10 mol.%) resulted in 

YHmf less than 8% with [Bmim]Cl at 100 °C/5 min (5 wt.% D-fructose).373 However, using SnCl4 (10 

mol.%) coupled to [Emim]BF4, Hu et al.374 reported 62% YHmf (100% CFru) for the reaction of D-

fructose (20 wt.%) at 100 °C/3 h; compared to chromium chloride catalysts, SnCl4 has lower 

toxicity and in what concerns recycling tests it was successful too.374 
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Figure 1.31- Lewis acid catalysts coupled with ILs as solvents in the dehydration of D-fructose to  

5-hydroxymethyl-2-furaldehyde (Hmf);  Ipr=1,3-bis(2,6-diisopropylphenyl)imidazolylidene.  

  

 

Using GeCl4  (10 mol.% based on 3.3. wt.% D-fructose), [Bmim]Cl under very mild reaction 

conditions and DMSO (50 wt.% to the IL) as co-solvent, Zhang et al.469 obtained 70% YHmf at          

25 °C/12 h (Figure 1.31). In the absence of the IL the YHmf was only 39% within 12 h, which proved 

that the IL promotes the dehydration reaction; and are relatively easy to recover for further reuse 

(recycling tests in Section 1.5.3).469 However, not all ILs, under the same conditions, are promising 

for this type of reaction: with [Bmim]CH3COO, the YHmf  was < 5%, possibly due to side reactions 

between D-fructose and the imidazolim ring induced by the strongly basic acetate group. In the 

case of [Bmim]BF6, the low nucleophilicity of BF6
- compared to Cl- might hamper the D-fructose 

dehydration, leading to a lower 25% YHmf.
469 In the case of the salts RuCl3, WCl4 and WCl6, 45-63% 

YHmf were reached under very mild reaction conditions (at 50 °C/4 h). The best results were 

observed for the tungsten-containing systems.328 This was a very good result when compared to 

chromium chloride (CrCl2 or CrCl3) which gave YHmf< 5%.328 In the case of WCl6, the 63% YHmf at     
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80 °C was slightly lower than that at 50 °C (ca. 62% YHmf), which encouraged the authors to test 

lower temperatures (42% YHmf at 22 °C/4 h and 53% YHmf at 30 °C/4 h).328 Coupling the 

WCl6/[Bmim]Cl system (10 mol.% salt) with THF as immiscible co-solvent for the in situ extraction 

of Hmf gave 72% YHmf compared to 63% YHmf for the monophasic solvent system at 50 °C/4 h      

(20 wt.% D-fructose), meaning that THF was able to remove the water produced during the 

dehydration step. THF gave better results than IBMK, Tol, or ethyl acetate as co-solvents.328,455 The 

WCl6/[Bmim]Cl/THF biphasic solvent system could be operated in a batch, semi-batch, or 

continuous mode. The latter produced superior Hmf yield due to a continuous extraction of the 

Hmf phase, allowing the IL purification (by water removal). Further details on the recycling 

procedures are described in Section 1.5.3.328,455   

Other type of ILs, without imidazolium cations, were reported by Cao et al.,323 and Hmf 

yields in the range 64 to 81% YHmf (100% CFru) were obtained with the ILs [M4N]Cl, [E4N]Cl, [B4N]Cl, 

[M3BeN]Cl, [M3PhN]Cl, [M3HN]Cl, [M2H2N]Cl  and [Cho]Cl from D-fructose (50 wt.%) at 120 °C/     

70 min, 323 in which the best result was obtained with [E4N]Cl (recycling tests in Section 1.5.3).323 

However at 100 °C, only 33% YHmf was achieved by [E4N]Cl. To improve this result, a Lewis acid co-

catalyst (10 mol.% CrCl3.6H2O, FeCl3, CuCl2.2H2O, MoCl3, AlCl3) or NaHSO4.H2O was added, which  

led to an improvement in the YHmf to 68-83% (100% CFru) at 100 °C/70 min.323 These results are 

comparable with the results obtained by Zhao et al.201 with [Emim]Cl,  although Cao et al.323 used 

a higher concentration of D-fructose (50 wt.% compared to 10 wt.%) which seems to be preferred 

in Hmf production processes.  

For the more demanding substrate D-glucose, catalytic systems of the type 

MClx/(imidazolium), with M=chromium or tin, gave more than 60% YHmf (Figure 

1.32).196,201,230,322,330,334,336,374,455,457,468,470,471,475  

Outstanding results were reported in a pioneering work by Zhao et al.201 using various 

metal chlorides as catalysts (9 mol.% based on D-glucose) for the catalytic conversion of D-glucose 

(10 wt.%) in [Emim]Cl, in which CrCl2 was found to be the best catalyst giving nearly 70% YHmf  

(90% CGlu) at 100 °C/3 h. This proves that CrCl2 improves the YHmf, as when using [Emim]Cl in the 

absence of catalyst, no Hmf was formed and the CGlu was only 40%, and when using H2SO4 instead 

of CrCl2 very poor results were achieved (ca. 12% YHmf at 95% CGlu, Figure 1.32).201  Binder et al. 196 

added LiCl to this system and reported that it did not affect the yield of Hmf, while the absence of 

CrCl2, led to a YHmf less than 1%,196 similar to that reported by Zhao for LiCl/[Emim]Cl.201 Zhang et 

al.331 reported 55% YHmf (ca. 90% CGlu) and 58% YHmf (ca. 90% CGlu) with CrCl2 and CrCl3, 

respectively, instead of CrCl3.6H2O. These results indicate that CrCl3.6H2O is more active in the 
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isomerisation of D-glucose to D-fructose and in the dehydration of D-fructose. The difference in 

the Hmf yield between CrCl3 and CrCl3.6H2O might also be related to their different solubilities in 

[Emim]Cl which is related to their solid state structure. The dissolution in [Emim]Cl implies the 

introduction of the Cl- of the IL in the coordination sphere of chromium.331 This process is difficult 

for CrCl3 because it involves a substantial perturbation of the octahedrally coordinated chromium 

ions (of its Cl-bridged octahedral CrCl6 network), and there is not an energy benefit from the 

substitution of a bridging Cl ligand by a terminal one, which makes CrCl3 insoluble in [Emim]Cl in 

the absence of D-glucose. However, solubility tests suggested that a carbonyl moiety is necessary 

to favour CrCl3 dissolution; therefore the presence of D-glucose provides a slow dissolution.331 On 

the other hand, in CrCl3.6H2O, the Cr3+ centers are present as isolated hexa aquo-chromium 

cations (Cr-OH2) interconnected through a hydrogen-bonding network between Cl– anions and 

H2O ligands which rapidly decomposes in highly polar [Emim]Cl.331  Using other ILs, such as 

[Bmim]Cl, [Hxmim]Cl, [Bdmim]Cl, [Bemim]Cl and [Bmim]TolSO3, with CrCl3.6H2O (25 mol.% based 

on 10 wt.% D-fructose), YHmf (55-65%) were obtained at 120 °C/1 h.338 Several other chloride salts 

consisted of Na, Li, La, Al, Mn, Fe, Cu, V, Mo, Pd, Pt, Ru or Rh were tested in [Emim]Cl, but failed 

to succeed (YHmf was always less than 10%), because in general, they catalysed undesired reaction 

pathways or D-glucose conversion was negligible (which was the case with La3+, Na+, Li +, Mn3+, 

Cu2+).201 YHmf < 8% (50-70% CGlu) were also reported with the system IrCl3/[Bmim]Cl (7 mol.%  

catalyst; 10 wt.% D-glucose).324 Ståhlberg et al.391 explored lanthanide salts (CeCl3, PrCl3, NdCl3, 

DyCl3, YbCl3, Yb(CF3SO3)3 (10 mol.%) with IL=[Bmim]Cl or [Emim]Cl but the YHmf were less than 24% 

at 140 °C/6 h (10 wt.% D-glucose).391  In the presence of catalytic amounts of SnCl4 (10 mol.%) and 

using different ILs ([Bmim]X, with X=Cl-, BF4
-, PF6

-, (CF3SO2)2N
-, CF3CO2

-, CF3SO3
-, saccharine; 

[Emim]BF4) at 100 °C/3 h, Hu et al.374 reported some interesting results for the reaction of D-

glucose (10 wt.%), and the best result (for [Emim]BF4)  gave 57% YHmf (97% CGlu), which was 

considerable better than the result obtained for [Bmim]BF4 (37% YHmf  at 88% CGlu, Figure 1.32).  

Differences in acidity of the IL medium may affect the catalytic results. It has been reported that 

[Emim]BF4 tends to be more acidic than [Bmim]BF4 and that minor amounts of water in the IL may 

significantly influence the acidity of the IL medium.465 On the other hand, poorer results observed 

for the ILs containing the anions Cl-, (CF3SO2)2N
-, CF3CO2

-, CF3SO3
-, and saccharin were attributed 

to the superior coordinating ability of these species towards the Sn4+ cation, inhibiting the 

interactions of the metal with D-glucose required for the isomerisation to D-fructose to selectively 

form Hmf.374 When ethylene glycol was added to the SnCl4/[Emim]BF4 system, a five-membered 

ring chelate complex with Sn was formed inhibiting the reaction of D-glucose (CGlu < 5%). Other 
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alcohols (ethanol and 1,3-propanediol) which formed an acyclic and a six-membered ring chelate 

complex with Sn did not affect the reaction.374 Accordingly, five-membered ring chelate structures 

are more stable than the acyclic and six-membered ring chelate structures.374 More recently, 

Zhang et al.373 tested several different types of ILs ( [Bmim]Cl, [Bmim]A, with  A=CH3COO-, BF4
-, 

and (CF3SO2)2N
-, and [cation]Cl-,  with cation=[Hmim]+, [Omim]+ and [Dmim]+) with GeCl4, in which 

the best result was obtained for [Bmim]Cl (38% YHmf, Figure 1.32). The addition of 5 Å molecular 

sieves increased the YHmf to 48%.373  

 

Figure 1.32- Lewis acid catalysts coupled with ILs as solvents in the dehydration of D-glucose        

to 5-hydroxymethyl-2-furaldehyde (Hmf). Ipr=1,3-bis(2,6-diisopropylphenyl)imidazolylidene; 

HAP=hydroxyapatite. 

 

 

The results mentioned above indicate a determinant role of the CrCl2 catalyst in the 

selectivity of this reaction. The high selectivity of D-glucose to Hmf in the presence of the 
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CrCl2/[Emim]Cl system seems to be related to the metal coordination ability. 

suggested the formation of [Emim]CrCl

in proton transfer to facilitate the isomerisation of D

dehydration to Hmf (Figure 1.33).

calculations have given mechanistic insights into the D

CrCl2/imidazolium chloride ILs system. The transient self

centers into binuclear complexes containing the open form of the hexose is involved in the 

hydride shift (between C2 and C1 of the open form hexose) step, involv

intermediate (Figure 1.33), which is favoured by the dynamic nature of the chromium complexes 

and the presence of moderately basic sites in the IL (high concentration of the free basic Cl

of the IL facilitates proton transfer and forms a hydrogen

D-glucose).470,471 

 

Figure 1.33- Chromium-catalysed isomerisation of 

196,201,334,391]. 

 

 

The poorer results for other metal chlorides in comparison to the CrCl

rationalised on the basis of differences in 

complexes with imidazolium chlorides).

The multi component system Ipr/CrCl

D-glucose (10 wt.%) at 100 °C/6 h, and only 32% Y

observed that the MW method appear

production. Li et al.334 reported 91% Y

(400 W, temperature not menti
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/[Emim]Cl system seems to be related to the metal coordination ability. 

formation of [Emim]CrCl3 by CrCl2, and that the CrCl3
- anion may act as a Lewis acid 

in proton transfer to facilitate the isomerisation of D-glucose to D-fructose, followed by 

dehydration to Hmf (Figure 1.33). 196,201,334,391 Spectroscopic, kinetic, and density functional theory 

calculations have given mechanistic insights into the D-glucose isomerisation using the 

/imidazolium chloride ILs system. The transient self-organisation of the Lewis acidic Cr

centers into binuclear complexes containing the open form of the hexose is involved in the 

hydride shift (between C2 and C1 of the open form hexose) step, involv

intermediate (Figure 1.33), which is favoured by the dynamic nature of the chromium complexes 

and the presence of moderately basic sites in the IL (high concentration of the free basic Cl

of the IL facilitates proton transfer and forms a hydrogen-bonding network with the 

catalysed isomerisation of D-glucose to D-fructose [adapted 

The poorer results for other metal chlorides in comparison to the CrCl

rationalised on the basis of differences in reaction mechanisms (e.g. ytterbium less prone to form 

complexes with imidazolium chlorides).391 

ent system Ipr/CrCl2/[Bmim]Cl gave 81% YHmf 

glucose (10 wt.%) at 100 °C/6 h, and only 32% YHmf with DMSO instead of the IL.

he MW method appeared to be more favourable than the CH method for Hmf 

reported 91% YHmf from D-glucose (10 wt.%) in CrCl3/[Bmim]Cl (6 mol.%); 

(400 W, temperature not mentioned), compared to 17% YHmf when using CH at 100 °C/1 h (Figure 
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/[Emim]Cl system seems to be related to the metal coordination ability. Several authors 

anion may act as a Lewis acid 

fructose, followed by 

Spectroscopic, kinetic, and density functional theory 

glucose isomerisation using the 

organisation of the Lewis acidic Cr2+ 

centers into binuclear complexes containing the open form of the hexose is involved in the 

hydride shift (between C2 and C1 of the open form hexose) step, involving an enediolate 

intermediate (Figure 1.33), which is favoured by the dynamic nature of the chromium complexes 

and the presence of moderately basic sites in the IL (high concentration of the free basic Cl- ions 

bonding network with the -OH groups of 

 

fructose [adapted from 

The poorer results for other metal chlorides in comparison to the CrClx/IL systems may be 

reaction mechanisms (e.g. ytterbium less prone to form 

 in the reaction of              

with DMSO instead of the IL.330,468 It was also 

to be more favourable than the CH method for Hmf 

/[Bmim]Cl (6 mol.%); 

when using CH at 100 °C/1 h (Figure 
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1.32). The presence of the IL was essential because when water was used instead of the IL, less 

than 1% YHmf was obtained.334   

The expensive prices of [Emim]Cl used by Zhao et al.201 in the dehydration of D-glucose led 

to the search of cheaper ionic liquids.  Since [B4N]Cl is non-toxic and cheap it can be seen as an 

alternative to imidazolium-based ILs.313 [B4N]Cl coupled to CrCl2/DMA gave 56% YHmf (10 mol.% 

catalyst) at 110 °C/4 h (Figure 1.32).313 [E4N]Cl coupled to CrCl2 (0.03 M)/DMSO/Benzene gave 

55% YHmf at 120 °C/1 h,332 which was improved when [E4N]Cl was coupled to CrCl3.6H2O (10 

mol.%) with an outsanding result of 71% YHmf at 130 °C/10 min.305 Aprotic acids (DMSO or DMFA) 

instead of [E4N]Cl gave lower YHmf of 22 and 42%, respectively, under the same reaction 

conditions, showing the good effect of the IL.305 Other ILs ([Pcohpy]Cl, [Pcmopy]Cl and 

[E3Nmeo]Cl) were also tested with CrCl2 as catalyst (0.03 M) but lower Hmf yields were obtained 

(30, 38 and 48% respectively) at 120 °C/1 h (Figure 1.32).332 These unsatisfactory results might be 

related with the possible instability of the hydroxyl group in the IL (especially for [Pcohpy]Cl), 

which easy undergo dehydration to form a double bond, and subsequently polymerisation.332 

Cheaper ILs such as [Bpy]BF4 were also tested using SnCl4 (10 mol.% instead of chromium catalysts 

at 100 °C/3 h, but the YHmf was only 20% (80% CGlu),374 despite better than the series of inorganic 

chloride salts tested by Zhao et al.201 

The results mentioned above for chromium catalysts fostered much research in CrClx/IL 

catalytic systems for producing Hmf from D-glucose and related di/polysaccharides (Figures 1.32 

and 1.34).  

The hydrolysis/dehydration reactions of the disaccharides D-cellobiose, D-maltose, and  

D-sucrose into Hmf have been explored, using MClx/(imidazolium-IL) systems, in which M=Cr, Sn 

Ge, Ir or Au (Table 1.8).196,230,305,322,324,329,334,374 In the case of D-sucrose, the best result is reported 

from Chun et al.230 that used a Brönsted and Lewis acid catalyst system: (CrCl2 or ZnCl2)/HCl 

coupled to [Omim]Cl obtaining a maximum 82 wt.% YHmf  from D-sucrose (20 (wt/v)%) at             

120 °C/0.5 h (Figure 1.34).230 Aqueous solutions of HCl (0.0-0.5M) were used firstly to promote the 

hydrolysis of D-sucrose, and (CrCl2 or ZnCl2)/IL was added to promote the selective dehydration of 

the monosaccharides to give Hmf.230 For D-cellobiose, Hu et al.305,374 reported 22-23 wt.% YHmf 

using the system SnCl4/[Emim]BF4 at 100 °C/3 h, or [E4N]Cl /CrCl3.6H2O at 130 °C/10 min (Table 

1.8, Figure 1.34). Binder et al.253 reported that CrCl2/[Emim]Cl (6 mol.% catalyst) can also be used 

to produce Hmf from other hexoses: D-mannose, D-lactose, D-galactose and D-tagatose (10 

wt.%). 57% YHmf was obtained for D-mannose and 14-17% for the other substrates at 120 °C/2 h.  
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Figure 1.34- Soluble solid catalysts coupled with ILs as solvents in the dehydration of disaccharides 

(e.g. D-maltose, D-cellobiose and D-sucrose) and polysaccharides (e.g. cellulose and inulin) to      

5-hydroxymethyl-2-furaldehyde (Hmf).  

 

 

The conversion of polysaccharides, such as cellulose and starch, and lignocellulosic 

biomass, such as corn stover, into Hmf (in which Fur may also be formed) has been successfully 

carried out in the presence of transition metal Lewis acid catalyst/IL systems (Table 

1.8.).196,322,329,334-337,373,374 One of the main objectives would be to improve Hmf yields directly from 

cellulose because it has a rather inexpensive availability from non-food resources. Su et. al.329 

reported a one-pot catalytic of crystalline cellulose to Hmf; the cellulose was pre-dissolved in the 

(catalyst/IL) system at 100 °C/1 h before initiating the reaction (1 cm3 of H2O per gram of 

cellulose), depolymerising cellulose much faster than aqueous H2SO4. The resulting D-glucose was 

converted to Hmf under mild reaction conditions. Catalytic amounts of a pair of metal chloride 

salts (CuCl2/CrCl2) dissolved in [Emim]Cl as solvent were used; (6 total mol.% (Cu+Cr) with respect 

to  D-glucose units in the loaded cellulose (10 wt.%), mole fraction of CuCl2=0.17) and ca. 55% YHmf 

was obtained at 120 °C/8 h for twelve replicate experiments (further details on the recycling 

procedures are given in Section 1.5.3).329   

The DMA/LiCl system is good to dissolve cellulose (≥ 15 wt.% DMA/LiCl versus ≤ 0.7 wt.% 

DMA),196 as the association of the lithium cations with DMA to form DMA.Li+ macrocations results 

in high concentrations of weakly ion paired chloride ions that can form hydrogen bonds with the 

hydroxyl groups of cellulose, disrupting its intra and inter chain hydrogen bonds.476 Therefore, the 
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multicomponent catalyst consisting of CrClx (25 mol.%) and HCl (6 mol.%) was incorporated in the 

solvent system (DMA-LiCl)/[Emim]Cl (60 wt.% IL; DMA with 10 mol.% LiCl) for the production of 

Hmf from cellulose (4 wt.%) and corn stover (10 wt.%), giving 54 mol.% and 48 mol.% YHmf at     

140 °C/2 h, and 34 mol.% YFur for corn stover.196 This system proposed by Binder et al.196 is 

effective in dissolving cellulose but since (DMA/LiCl) is miscible with most other solvents, it may 

be less effective than the system (CuCl2/CrCl2/[Emim]Cl, proposed by Yu et al.329)  for the 

extraction of Hmf and reuse of the IL in further runs (detailed in Section 1.5.3). Nevertheless, the 

work of Binder et al.196 is relevant as it was the first reporting on Hmf production from raw 

lignocellulosic biomass (dry corn stover) in an IL. The authors provided a new concept for the use 

of biomass as a raw material for renewable energy, and the biomass components which were not 

converted into Hmf (such as lignin) were reformed to produce H2 for subsequent Hmf 

hydrogenolysis to give DMF. Other authors already assessed the effectiveness of the 

CrCl3/[Bmim]Cl catalytic system from cellulose giving good Hmf yield within a few minutes, using 

the MW method (Table 1.8).334,336,340 Li et al.334 reported 62 mol.% YHmf within only 2 min (400 W, 

temperature not mentioned; 10 wt.% catalyst relative to saccharide and 5 wt.% cellulose), 

demonstrating the outstanding effect of the MW heating in comparison with CH  (17 mol.% YHmf at 

100 °C/4 h).334 By adding LiCl (50 mol.% Cr+50 mol.% Li) to the CrCl3/[Bmim]Cl system, Wang et 

al.335 obtained ca. 62 mol.% YHmf from 2.5 wt.% cellulose at 140 °C/40 min, or 61 mol.% YHmf from 

2.5 wt.% wheat straw at 160 °C/15 min (Table 1.8). The (CrCl3+LiCl)/[Bmim]Cl catalytic system was 

recycled with success (Section 1.5.3) and gave better results for the conversion of cellulose to Hmf 

than the catalysts H2SO4 (20 mol.% YHmf), NKC-9 (macroporous styrene-based sulfonic acid resin; 

18 mol.% YHmf), H3PW12O40 (12 mol.% YHmf), Cs2.5H0.5PMo12O40 (10 mol.% YHmf), sulfated titania, SBA-

15 supported sulfated zirconia, Nb2O5 and Zr3(PO4)2 (< 5 mol.% YHmf) under similar reaction 

conditions (140 °C/40 min), using MW.335 

Tan et al.309 obtained 48 wt.% and 34 wt.% YHmf respectively when using [Bmim]Cl coupled 

to Ipr-CrCl2 (12 h) and CrCl2 (6 h), respectively from cellulose (6.7 wt.%) at 120 °C  in which the 

reaction with Ipr-CrCl2 was extracted two times with diethyl ether to prevent Hmf decomposition. 

The lignocellulosic feedstock, rice straw, pine wood, and corn stalk gave 45-52 mol.% YHmf 

and 23-31 mol.% YFur within 3 min.337 Wu et al.340 obtained 55 mol.% YHmf at 160 °C/6 min from 

cellulose (Table 1.8). Using the catalytic system (HCl+CrCl2)/[Omim]Cl and ethyl acetate as co-

solvent, Chun et al.322 investigated the production of Hmf from different starch sources (20 wt.%) 

using in a first stage aqueous HCl (0.5 M) to promote the hydrolysis reaction, followed by the 

addition of this mixture to CrCl2/[Omim]Cl/ethyl acetate to perform the selective dehydration into 
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Hmf. A 60 wt.% YHmf (no Fur was detected) was reached in the case of tapioca starch at 120 °C/1 h 

(Table 1.8). Hu et al.374 obtained, in a one-pot process, 40 mol% YHmf (100% of conversion) from  

inulin (20 wt.%), using the catalytic system SnCl4/[Emim]BF4 (10 mol.% SnCl4) at 100 °C/3 h.374  

For the production of Fur, Binder et al.277 investigated the reaction of D-xylose (10 wt.%) 

using the systems [Bmim]Br (20 wt.%) coupled to DMA (55% YFur at 100 °C/4 h) or [Emim]Cl          

(5 wt.%) coupled to DMA (45% YFur at 2 h ), and CrCl2 or CrCl3 as catalysts (6 mol.%). A mechanism 

was proposed, in which chromium, acting as a Lewis acid, promotes the isomerisation of D-xylose 

to xylulose though a 1,2-hydride shift, and xylulose is dehydrated to Fur. The use of 

(CrClx+HCl)/[Emim]Cl (10 mol.% each catalyst) in the reaction of xylan (5 wt.% of birchwood, 

beechwood, oat hull, or corn stover) gave 18-25 mol.% YFur at 140 °C/ 2 h.277 

The replacement of homogeneous acid catalysts by heterogeneous ones may increase the 

cost-competitiveness and decrease the environmental impact of IL-based systems for biomass 

conversion processes. 

Sulfonic ion-exchange acid resins based on a styrene-divinylbenzene copolymer, such as 

Amberlyst-15, NKC-9 (macroreticular resin) and DowexR-50WX8 (microreticular resin) have 

performed well in the dehydration of D-fructose, using ILs as solvents, giving high                            

Hmf yields (Figure 1.35).201,306,311,343 Lansalot-Matras et al.311 reported on the dehydration of         

D-fructose in the presence of  Amberlyst-15 as catalyst (2:1 mass ratio of catalyst/D-fructose) and  

([Bmim]PF6 or [Bmim]BF4) in DMSO as solvent system (5:3 v/v), reaching 70-87% YHmf, 

respectively, at 80 °C/32 h; 10 wt.% D-fructose in IL+DMSO (Figure 1.35). Under similar reaction 

conditions, in pure DMSO, only traces of Hmf yields were achieved in 44 h.311 The presence of 

[Bmim]BF4 in DMSO improved the YHmf to 36% after 32 h which illustrates the positive effect of ILs 

as solvents. In solely [Bmim]BF4, D-fructose is not completely soluble and a maximum 52% YHmf 

was achieved. DMSO was required to enhance the solubility of D-fructose in these ILs as well as to 

prevent the formation of Hmf by-products, such as humins.311  

Despite enhancing the solubility of the substrates in the IL medium, the addition of 

miscible co-solvents may also decrease the viscosity and density of the IL medium (particularly 

when the co-solvents possess higher dielectric constants).449,450 Addition of acetone, DMSO, 

methanol, ethanol or ethyl acetate (3-7 wt.% in the IL) to the system Amberlyst-15/[Bmim]Cl gave 

78-82% YHmf (91-95% CFru) at 25 °C/6 h (5 wt.% D-fructose was pre-dissolved in the IL at 80 °C/     

20 min, prior to the addition of the solid acid at a.t.; resin/D-fructose mass ratio of 1).343  
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Figure 1.35- Insoluble organic acid resins coupled with ILs as solvents in the dehydration of          

D-fructose to 5-hydroxymethyl-2-furaldehyde (Hmf).  

 

  

For rapidly reaching higher reaction temperatures MW irradiation was employed using 

Amberlyst-15/[Bmim]Cl to convert D-fructose into Hmf and 82% YHmf was achieved (ca. 100 % CFru) 

at 100 °C/3 min or 120 °C/1 min (details about recycling in Section 1.5.3).306  This work compares 

favourably with that of Swatloski et al.,436 who  tested a similar IL ([Emim]Cl) with mixtures of 

chromium(II) chloride associated with N-heterocyclic carbenes (9 mol.% based on D-fructose), at 

the same temperature of 100 °C but using CH with an external heat source (65-96% YHmf within     

6 h).  

Mixtures of ILs and glycerol or glycerol carbonate (cheap, safe, and prepared from 

renewable resources) have been identified by Benoit et al.302 as interesting solvent systems for 

the acid-catalysed conversion of D-fructose and inulin. Amberlyst-70 coupled with an IL/(glycerol 

carbonate) (65:35) solvent system gave 98% YHmf at 110 °C/35 min from D-fructose (40 wt.%) 

(Figure 1.35), while the reaction of 20 wt.% inulin in [Bmim]Cl/(glycerol carbonate) (10:90) gave 

60% YHmf at 110 °C (time not mentioned). A phosphotungstic acid (H3PW12O40) supported in a 

chromium based metal organic framework (MIL-101) coupled to [Emim]Cl gave 84% YHmf from     

D-fructose at 80 °C and 1 h, and only 21% YHmf from D-glucose even at 100 °C and 3 h, showing 

again the better efficiency of D-fructose.355 

Solid acids coupled with ILs have been poorly explored in the biomass conversion 

processes using other sources besides D-fructose or D-glucose. Nevertheless, protonic forms of 

ion-exchange acid resins (Amberlyst 15DRY, Dowex 50WX8, macroporous styrene-based sulfonic 

acid resin NK-9, perfluorinate sulfonic acid resin Nafion NR50) coupled with [Bmim]Cl as solvent 

promote the depolymerisation/hydrolysis of cellulose,477-481 and performed comparably to 
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concentrated H2SO4.
480 [Bmim]Cl coupled to sulfonated resins (Amberlyst-15  and Amberlyst-36), 

organic p-TsOH or mineral acid (H2SO4) from cellulose gave low YHmf (7-21 wt.%) at 120 °C/6 h.309 

These weak results in strongly acidic conditions speeded up cellulose hydrolysis, but also 

promoted the decomposition of Hmf into levulinic acid which explains the low Hmf yield 

obtained.309  

As an alternative to the use of ILs as solvents in the presence of an ion-exchange resin, 

acidic ILs (which will be further discussed in Section 1.5.2) have been successfully used in the one-

pot hydrolysis/dehydration of inulin. While a mixture of [Emim]HSO4 and a solid acid resin (5 wt.% 

of Amberlyst-15 in the IL) gave 65 mol.% YHmf at 100 °C/5 min, 344 82 mol.% YHmf was reported 

when using [Bmim]HSO4 and [Bmim]Cl in two different stages: primary hydrolysis of inulin            

(5 wt.%) in [Bmim]HSO4 gave 82% YFru at 80 °C/5 min, followed by the addition of a mixture of 

Amberlyst-15 and [Bmim]Cl for the subsequent dehydration of the D-fructose to Hmf at 80 °C/   

60 min (details about the recycling process in Section 1.5.3).344  

 Guo et al.354 reported reported the dehydration of D-fructose (10 wt.%) into Hmf in the 

presence of carbonaceous catalysts using [Bmim]Cl. The best result was obtained with 10 wt.% 

LCC (lignin derived carbonaceous catalyst) with 84% YHmf (98% CFru) at 110 °C/10 min, using DMSO 

as co-solvent (DMSO/IL ratio=4/6) and MW (100 W) (Figure 1.36). The addition of DMSO 

promoted the reaction, because in its absence the  yield of Hmf was lower (71% at 100% CFru).354 

Without IL the Hmf yield decreased drastically to 38% (100% CFru) at 150 °C/1 h.354 For 

comparison, with D-glucose and the LCC catalyst (5 wt.%), for the same mixture of [Bmim]Cl and 

DMSO under MW (100 W) gave a lower 68% YHmf (99% CGlu) even at a higher temperature of       

160 °C/50 min.354  

Mesoporous SBA-15 functionalised with a propylsulfonic acid group, SBA-15-SO3H in 

catalytic amounts (1 wt.%) coupled to [Bmim]Cl was very efficient in the dehydration of                

D-fructose (10 wt.%) to Hmf with 81% YHmf (100% CFru) at 120 °C/1 h (Figure 1.36), which was 

sucessfully recycled as detailed in Section 1.5.3.353  

Several solid oxides (e.g. ZrO2, B2O3 and P2O5) were tested in the dehydration of                 

D-fructose.325,364 Qi et al.364 reported for bulk ZrO2 (2 wt.% catalyst) in [Bmim]Cl, 55% YHmf (60% 

CFru) at 100 °C/0.5 h. Similar yields were also obtained from the more demanding D-glucose       

(2.5 wt.%) in the presence of ZrO2 (1 wt.%) using a mixture of [Hxmim]Cl and water (MW, 700 W), 

53% YHmf at 200 °C/10 min (Figure 1.36),369 however without water the YHmf at 200 °C/1 min was 

only 10% (70% CGlu). The addition of protic solvents (e.g. methanol or ethanol) to the IL had a 

synergistic effect (similar to water), promoting the isomerisation to D-fructose (4-23% YFru) and 
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18-53% YHmf; in contrast for aprotic solvents (e.g. DMSO, DMFA or acetone)the YHmf was less than 

10%.369 Nevertheless, in the absence of IL, either protic (butanol) or aprotic (DMSO or DMA), gave 

no Hmf, possibly due to the fact that [Bmim]Cl dissolves better the ions and disrupt H-bonds due 

to its polarity.313 

Higher Hmf yields were reported for P2O5 (5 mol.%)/[Bmim]Cl under mild conditions with 

82% YHmf at 50 °C/1 h (Figure 1.36).325 Other ILs ([Emim]Cl, [Emim]Br, [Bmim]Br) were also quite 

effective for P2O5 leading to 62-68% YHmf at 80 °C/0.5 h.325 The success of this system was mainly 

attributed to the acidic properties of P2O5, as in its absence no Hmf was formed in 1 h.325 Sulfated 

zirconium (ZrO2/SO4
2-, 2 wt.%) coupled to several ILs ([Bmim]Cl, [Emim]Cl or [Hxmim]Cl), in the 

dehydration of D-fructose (5 wt.%) under MW, reached 88% YHmf (96% CFru), 82% (88% CFru), and 

89% (100% CFru), respectively, at 100 °C/0.5 h.364 Acidic ILs ([Emim]HSO4 and [Bmim]HSO4) coupled 

to ZrO2/SO4
2- were very active (ca. 100% CFru) but less efficient (36-43% YHmf) due to the formation 

of insoluble humins promoted by the strong acidity of ILs.364 The basic [Bmim]CH3COO gave no 

Hmf (75% CFru), possibly due to the leveling-off of the acidity of ZrO2/SO4
2-.364 Nevertheless, the 

higher acitivity of ZrO2/SO4
2- in [Bmim]Cl from D-fructose (compared to ZrO2) is related to the 

higher number of acid sites (recycling details in Section 1.5.3).364  

 

 

Figure 1.36- ILs as solvents coupled with inorganic solid acids (e.g microporous H-ZSM-5,               

H-Beta and H-Mordenite, mesoporous SBA-15-SO3H, zirconium and other oxides) in the 

dehydration of hexoses to 5-hydroxymethyl-2-furaldehyde (Hmf). 
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 Degimenci et al.482 immobilised a thin IL layer (1-triethoxysilyl)-propyl-3-methyl-

imidazolium chloride, TES-[Pmim]Cl), on a mesoporous silica (SBA-15) to create a local reaction 

microenvironment on the solid support, through the silanol groups of the IL on the surface of  

SBA-15.482 Afterwards the subsequent introduction of CrCl2 led to the formation of weakly bound 

active species (Cr2+) with a high mobility (CrCl2-Im-SBA-15), which was beneficial for the selective 

conversion of D-glucose (10 wt.%) to Hmf:  the system (H2O/CrCl2/[Pmim]Cl) gave no Hmf 

whereas in the system (H2O/CrCl2-Im-SBA-15), 23% YHmf (50% CGlu) was obtained at 150 °C/3 h.482 

The immobilisied IL stabilises the active mobile [CrCl4]
2- complexes and avoids excessive 

interactions with water which may favour non-selective routes of sugar conversion and catalyst 

deactivation pathways.482 The addition of DMSO/2-BuOH/IBMK to CrCl2-Im-SBA-15, suppressed 

the production of insoluble humins and led to 35% YHmf (50% CGlu).482 

  Protonic forms of crystalline microporous zeolites of the type Faujasite Y, Beta, and  

ZSM-5, have been investigated in the hydrolysis of cellulose, using [Bmim]Cl as solvent (10 wt.% 

zeolite; 5 wt.% cellulose; MW, 240 W), giving more than 30% yield of D-glucose in less than         

10 min.474 Tan et al.309 tested the system [Bmim]Cl/H-Y/CrCl2 for the reaction of cellulose (6.7 

wt.%, 6.7 wt.% zeolite, < 1 wt.% CrCl2) and obtained 36 wt.% YHmf at 120 °C/6 h.309  Other zeolites 

(H-Beta,  H-Mordenite and H-ZSM-5) gave lower 19-23 wt.% YHmf (Figure 1.36).309 The assessement 

of the homo/heterogeneous catalytic nature of the insoluble solid acid/IL system is a critical issue, 

which will be discussed in Section 1.5.3. (“Recycling of IL-based catalytic systems”). 

 

  

1.5.2. ILs as acid solvents/catalysts (dual function) 

  

 

ILs may possess intrinsic acid properties associated with the constituent anions 

(amphoteric HSO4
-) and/or the cations (e.g. [Asbi]+, [Ascbi]+, [Hmim]+, [Sbmim]+, [Spmim]+),483 and 

may play a role as acid catalysts and solvents, where a synergy could be expected from the 

coupling of the acid and saccharide solubilisation properties of the ILs. Acidic ILs have also been 

used as catalysts with different solvents. The results shown in Figure 1.37 have been reported for 

acidic ILs used in the dehydration of D-fructose. 70-92% YHmf were obtained under quite moderate 

reaction conditions, for the dehydration of D-fructose (10-35 wt.%) at 80-90 °C, in about 30 min to 

1 h, using the ILs, [Hmim]Cl or [Sbmim]HSO4, without adding any other solvent (Figure 

1.37).202,342,463 Hu et al.202 under similar reaction conditions, reported [Hpy]Cl was similarly 
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effective in the reaction of D-fructose (31 wt.%) giving 70% YHmf (97% CFru) at 80 °C/1 h. In contrast, 

[EH3N]NO3, [TMG]CF3CO2, [TMG]Lac (Lac=lactate) and [Hpy]TolSO3 (TolSO3=p-toluenesulfonate) 

gave YHmf < 8% (14-34 wt.% D-fructose).446  Moreau et al.342 were pioneering in assessing the 

recyclability of the dual function [Hmim]Cl (detailed in Section 1.5.3).342 The use of [Bmim]HSO4 as 

catalyst instead of H2SO4, and [Bmim]Cl as solvent, gave 80% YHmf at 80 °C/30 min; (7.7 mol.% acid, 

10 wt.% D-fructose; Figure 1.37).463 Adding an immiscible co-solvent to the acidic IL reaction 

medium allows the in situ extraction of Hmf as it is formed, which promotes the reaction of         

D-fructose to Hmf and avoids decomposition of the latter through its reactions with intermediate 

products in the acidic IL phase. On the other hand, as mentioned before, the addition of an 

appropriate organic solvent may allow the viscosity of the reaction solution to be decreased 

(minimising mass transfer limitations).343,449,450 

 

 

Figure 1.37- Acidic ILs used in the dehydration of hexoses (D-fructose unless otherwise indicated) 

to 5-hydroxymethyl-2-furaldehyde (Hmf).  

 

  

It was reported that the Lewis acidic [Ascbi]CF3SO3 acts more effectively (in terms of        

Hmf yield) than its Brönsted acidic counterpart [Asbi]CF3SO3 for the dehydration of D-fructose 

(78% and 62% YHmf, respectively, under MW, 200 W, with DMSO as co-solvent and at 80 °C/4 min). 
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However, in the presence of water (formed in the dehydration reaction) the hydrolysis of 

[Ascbi]CF3SO3 into [Asbi]CF3SO3 takes place.484 Nevertheless, the Brönsted IL was quite effective 

when the temperature was raised from 80 to 160 °C (YHmf increased from 60 to 92%). Similar 

results (83% YHmf at 100 °C/2 min) were reported for the Brönsted-Lewis catalyst [Hmim]SO3Cl 

under similar conditions (MW, 200 W, DMSO), giving better results than Brönsted [Hmim]HSO4 IL 

(71% YHmf).
485  

The nature of the cation may influence the Hmf yield. For protic ILs considerably higher 

Hmf yields were reported for [NMP]HSO4 (69% YHmf at 99% CFru) and [NMP]CH3SO3 (72% YHmf at 

83% CFru) at 90 °C/2 h, than for [Hmim]HSO4 (24% YHmf at 46% CFru) or [Hmim]CH3SO3 (25% YHmf at 

40% CFru) used in catalytic amounts (7.5 mol.%) and with DMSO as solvent (ca. 7.5 wt.% D-

fructose).486 These results correlated with the higher acidity of the [NMP]+-containing ILs. For 

these ILs, the effects of the anions HSO4
- or CH3SO3

- (for each cation [NMP]+ or [Hmim]+) seemed 

less pronounced than those of the cations (for each anion).486  

An interesting “green” approach consisted of using eutectic mixtures containing [Cho]Cl 

and an organic acid (citric, malonic, and oxalic acids).202,306,311 [Cho]Cl/citric acid (30-35 mol.% 

citric acid in [Cho]Cl) gave ca. 91% YHmf (98% CFru) at 80 °C/1 h from D-fructose (7 wt.%) using ethyl 

acetate as co-solvent for in situ extraction of Hmf. 202 Ethyl acetate favours the reaction because it 

dissolves Hmf but not D-fructose and is only slightly soluble in [Cho]Cl/citric acid.202 The recycling 

of [Cho]Cl/citric acid is discussed in detail in Section 1.5.3 and Table 1.9.202 [Cho]Cl/citric acid and 

[Cho]Cl/oxalic acid were both effective in the one-pot conversion of inulin (6-10 wt.%), giving  40 

and 44 wt.% YHmf (91% and 100 mol.% of conversion), respectively, at 80 °C/2 h (Table 1.8).316 

When adding ethyl acetate as co-solvent to [Cho]Cl/oxalic acid, 50 wt.% YHmf (100 mol.% of 

conversion) is obtained at 80 °C/ 2h.316 Furthermore the system [Cho]Cl/oxalic acid was recycled 

with success as explained in Section 1.5.3.202,316  In a different approach, [Cho]Cl has been used as 

additive for preparing low melting carbohydrate mixtures with p-TsOH as catalyst (10 mol.%).  

67% YHmf at 100 °C/30 min from D-fructose, 25 mol.% YHmf from D-sucrose at 100 °C/1 h and 57 

mol.% YHmf from inulin at 90 °C/1 h were obtained.310  

Acidic IL-based systems are generally less effective for Hmf production from D-glucose 

and related di/polysaccharides than from D-fructose and related ones (Figure 1.37). Tong et al.486 

tested the protic ILs [NMP]HSO4 and [NMM]CH3SO3 and DMSO as solvent under the same 

experimental conditions as those used for D-fructose, which gave very poor results (2-3 YHmf at     

90 °C/2 h).486 The Brönsted acidic ILs [Hmim]HSO4 or [Bmim]HSO4 coupled with CrCl3 and using 



Chapter 1 
______________________________________________________________________________________________ 

_____________________________________________________________________________ 
102 
 

MW (20 mol.% catalyst, 5 wt.% D-glucose) gave poor results: YHmf < 10% at 120 °C/min. These 

results were worse than those obtained with the system [Emim]Cl/CrCl3.
336  

For the reaction of D-sucrose (25 wt.%) in [Hmim]Cl, Hmf was selectively formed from the 

fructofuranosyl units (ca. 100%); glucopyranosyl units gave essentially D-glucose at 90 °C/30 min 

(Table 1.8);342 recycling was not achieved with success (Section 1.5.3).342  

The acidic IL [Sbmim]HSO4 was poorly efficient in converting cellulose into Hmf.376 The 

poor results reported for the acidic ILs in the conversion of cellulose into Hmf may be related to 

the poor selectivity of the conversion of monosaccharides into Hmf, since the hydrolysis step has 

been effectively carried out using different acidic ILs (such as e.g. [Sbmim]HSO4 

[Bmim]HSO4/[Bmim]Cl, [Sbmim]Cl, [Spmim]Cl).300,376,487,488 The addition of an aqueous solution of 

Lewis acid FeCl2 (5 wt.%) to the acidic IL system [Sbmim]HSO4/IBMK, in the hydrolysis of 

microcrystalline cellulose (ca. 6 wt.%), was found to enhance the YHmf and YFur at 150 °C/5 h from 

15 wt.% and 7 wt.% (70 wt.% of conversion), respectively (without FeCl2) to 34 wt.% and 19 wt.% 

(84 wt.% of conversion) with FeCl2.
376 Recycling details are described in Section 1.5.3. A similar 

activity was observed when catalytic amounts of CoSO4 were coupled to the IL [Sbmim]HSO4 with 

IBMK as co-solvent in the conversion of cellulose (24 wt.% YHmf and 17 wt.% YFur for    84 wt.% of 

conversion) at 150 °C/300 min.377  In the absence of CoSO4, the YHmf and YFur decreased to 15 wt.% 

and 8 wt.% (70% of conversion), respectively.377 Kim et al.489 tested various bisulfate ILs 

[Bmim]HSO4, [Hmim]HSO4, [Morph]HSO4, [B4N]HSO4, [B4P]HSO4, [Cho]HSO4 in the conversion of 

agar using a catalytic amount of ILs in aqueous solutions at 121 °C/15 min, in which the highest 

Hmf yield was reported for [B4N]HSO4 (2 wt.% YHmf).
489  

In order to obtain Fur, acidic ILs were employed using [Sbmim]HSO4 as catalyst (50 wt.%) 

and D-xylose in a mixture of H2O/IBMK.275 An outstanding result of 91 wt% YFur (95% CXyl) was 

obtained at 150 °C/25 min, comparing favourably to Lewis acids (AlCl3, SnCl2, 72-78 wt.% YFur), 

mineral acids (HCl or H2SO4, 70-72 wt.% YFur) or HPA H3PW12O40 (48 wt.% YFur). The acidic IL 

[Bmim]HPO4 was also tested but was less effective under the same conditions (68 wt.%  YFur at 

80% CXyl). Recycling tests are detailed in the next Section (1.5.3).275  

 

 

 

 

 



Conversion of carbohydrate biomass to furanic aldehydes 
______________________________________________________________________________________________ 

_____________________________________________________________________________ 
103 

 

1.5.3. Recycling of IL-based catalytic systems 

 

 

 Several types of homogeneous IL-based catalytic systems have been reused in 

consecutive runs without observing a decrease in Fur/Hmf yields (Table 1.9), such as solid acid 

catalysts soluble in the IL (BHC/[Cho]Cl/H2O, seven runs),356 mineral acids coupled to ILs 

(HCl/[Bmim]Cl,  six runs),432 metal chlorides  (CrCl3/[Bmim]Cl, six runs),336 (Ipr-CrCl2/[Bmim]Cl, four 

runs),330,468 (GeCl4/[Bmim]Cl, five runs),373 (SnCl4/[Emim]BF4, four runs),374 (IrCl3/[Omim]Cl,         

five runs),339 (CrCl3.6H2O/[E4N]Cl, five runs),305 [(CrCl3+LiCl)/[Bmim]Cl, three runs],335  

(CuCl2/CrCl2/[Emim]Cl; twelve runs).329 Insoluble (solid acid)/IL catalytic systems have been less 

explored and can be recycled without the need for separating the solid acid from the IL,306 similar 

to that performed for soluble acid/IL systems.  Insoluble solid acids coupled to ILs commonly 

include ion-exchange resins, such as Amberlyst-15/[Bmim]Cl (seven runs).306 Although insoluble 

resins/IL catalytic systems are recycled as mixtures, an interesting recycling process for the 

regeneration of ILs was reported using an ion-exchange resin for converting [Bmim]HSO4 into 

[Bmim]Cl. The regeneration of the used ion-exchange resin (into the Cl- form) with NaCl gave 

NaHSO4 as product, which, in turn, could be used in the conversion of [Bmim]Cl to [Bmim]HSO4, 

giving NaCl as co-product (used for regenerating the used ion-exchange resin).344 Other inorganic 

oxides include ZrO2/SO4
2-/[Bmim]Cl (six runs),364 and hydroxyapatite supported chromium chloride 

coupled to [Bmim]Cl (five runs).472 Hybrid materials (organic-inorganic) coupled to IL have been 

recently tested achieving interesting results (SBA-15-SO3H/[Bmim]Cl, three times).353 Attempting 

to facilitate the separation of Hmf from the IL and recycling, silica gel-supported ionic liquids 

(ILIs),(ILIS-SO3H and ILIS-SO2Cl, seven runs) gave good results.484 In contrast, the analogous sulfuric 

acid (SiO2-SO3H) and sulfonylchloride (SiO2-SO2Cl) modified silica gels exhibited a drastic decrease 

of Hmf yield in only three runs (the authors did not explain the catalyst deactivation phenomena, 

Table 1.9).484 Bifunctional ILs (acidic ILs that work as solvents and catalysts) are yet another class 

of IL-based catalytic systems that can be reused without significant drops in the Fur/Hmf yields 

(e.g. [Hmim]Cl, five runs),342 ([NMP]CH3SO3/DMSO, five runs),486  and acidic ionic liquid coupled to 

soluble inorganic solids (FeCl2/[Sbmim]HSO4/IBMK, five runs),376 or with a co-solvent 

([Sbmim]HSO4/IBMK, five runs).275 Other types of ILs include ([Cho]Cl/citric acid/ethyl acetate), 

eight runs),202 and ([Cho]Cl/oxalic acid/ethyl acetate, six runs).316 
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 The first step of the recycling procedures commonly involves the solvent extracton of 

the target products Fur/Hmf, using organic solvents, which are poorly miscible with the IL medium 

(Table 1.9). Extracting solvents include ethyl acetate,202,275,305,306,316,335,336,364,373,374,486  IBMK,329,356 

THF,353,432 diethyl ether,330,342,376,468 and toluene (Table 1.9). The addition of ethyl acetate is 

favourable for enhancing the Hmf yield, avoiding both thermal decomposition and polymerisation 

reactions between Hmf.306 Besides presenting a low boiling point, ethyl acetate can reduce the 

energy costs and allow the IL to be easily reused because the IL and substrate are not soluble in 

ethyl acetate (Table 1.9). These solvents can as well extract small amounts of water from the 

IL/catalyst phase when used as co-solvents, working as in situ Fur/Hmf extraction.432 For example, 

for the system [NMP]CH3SO3/DMSO, DMSO was separated from the IL phase by distillation under 

reduced pressure and pure Hmf was further obtained after drying with anhydrous sodium 

sulfate.486 However the use of high-boiling point miscible co-solvents, such as DMSO (miscible 

with a wide range of polar and non-polar solvents), may require energy intensive and laborious 

separation processes to recover Hmf (b.p. 114-116 °C at 1x102 Pa) from the reaction medium. In 

this sense, low boiling co-solvents, such as acetonitrile (which gave interesting results, as 

discussed above in Section 1.5.2198), or mixing different ILs,344,463 might be preferable. 

  In the system BHC/[Cho]Cl/H2O, the Hmf (and other products) were extracted from the 

BHC/IL (D-fructose) phase, by decantation with IBMK.356A pair of metal chlorides in the IL 

(CuCl2/CrCl2/[Emim]Cl (cellulose)) was separated from the target product by IBMK.329 In other 

systems, Fur or Hmf (and other products) were extracted and separated from SBA-15-

SO3H/[Bmim]Cl (D-fructose) using THF followed by an evaporation step, 353 or simple extraction 

from HCl/[Bmim]Cl (fructose),432 by THF from CrCl3/[Bmim]Cl (D-glucose),336  GeCl4/[Bmim]Cl               

(D-fructose),373 SnCl4/[Emim]BF4 (D-glucose),374 [Cho]Cl/citric acid (D-fructose),202 [Cho]Cl/oxalic 

acid (inulin),316 [Sbmim]HSO4/IBMK (D-xylose),275 by ethyl acetate, or from Ipr-CrCl2/[Bmim]Cl     

(D-fructose and D-glucose),330,468 and acidic [Hmim]Cl (D-fructose and D-sucrose) by diethyl 

ether.342 Some authors added water to the IL-based catalytic system after the reaction to 

decrease the IL viscosity (accompained by accumulation of by-products), before the extraction: 

CrCl3.6H2O/[E4N]Cl (D-glucose) by ethyl acetate,305 (CrCl3+LiCl)/[Bmim]Cl (cellulose and wheat 

straw),335 Amberlyst-15/[Bmim]Cl (D-fructose),306 ZrO2/SO4
2-/[Bmim]Cl (D-fructose),364 and 

FeCl2/[Sbmim]HSO4/IBMK (cellulose) by diethyl ether, in which water and IBMK were added 

afterwards.376 The latter system was used with success in five consecutive runs but decreases in 

the values of the yields of Hmf and Fur were observed from the first to the second run, which 

were attributed to the incomplete extraction of by-products from the IL prior to recycling (Table 
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1.9).376 In the system [NMP]CH3SO3/DMSO (D-fructose), the biggest part of Hmf was extracted 

from the DMSO phase and the remaining IL phase was further extracted with ethyl acetate after 

water addition.486 Recently Wei et al.339 developed an interesting vacuum distillation process for 

continuous extraction of Hmf from the IrCl3/[Omim]Cl phase (D-fructose, D-glucose). The Hmf 

yield in the recycled system was sometimes higher than the one with the fresh catalyst, which 

was attributed to small amounts of D-fructose from the previous cycle.305,306,330,364,468 Prior to the 

next run, the catalyst/IL was pre-heated to water and residual solvent removal at 50 °C;432 at 50 °C 

for 24 h,202 60 °C for 24 h,275,306,336 65 °C for 24 h305 or 75 °C for 12 h486 in a vacuum oven; at 65 °C 

in a vacuum drier,335 and at 100 °C for 2 h.329,330,468 It is essential to dry the IL, or otherwise the 

Hmf yields decrease in consecutive batch runs.329 

 Many authors reported that no fresh catalyst is required in a new                                   

run.202,305,306,316,329,330,335,336,339,353,356,364,373,374,376,432,468 A comparison with a recycling test 

with/without  addition of fresh catalyst was similar, meaning the homogeneous catalyst was well 

retained in the IL.329 By pH measurements Lai et al.432 also proved that the catalyst was fullly 

retained in the IL. Heterogeneous SBA-15-SO3H catalyst was reported to be stable, low cost, low 

toxic, being quite promissing for this reaction.305,353 

 The gradual accumulation of water and other by-products in the recycled IL medium 

may eventually lead to a decay in the overall efficiency of these catalytic processes and therefore 

require the purification of the IL medium at a certain stage (Table 1.9).202,342,432 The accumulation 

of water has a negative effect on the catalytic reaction in consecutive batch runs because the IL 

may form a hydrogen bonded complex with water, possible leveling off the acidity of the IL.450,460 

Unavoidable accumulation of humins was noticed with an increasing number of recycling 

runs.336,339,356 Non-volatile by-products, including humins, may be precipitated from the IL medium 

by adding a miscible solvent to the IL with appropriate polarity (e.g. ethanol), being further 

removed by filtration316,339 (Table 1.9). The removal of dark solid known as humins by filtration 

might increase the lifetime of the catalytic system.329   

 The effectiveness of IL-based catalytic systems is also dependent on the substrate used. 

Yong et al.330,468 recycled system was efficient for D-fructose but not for D-glucose in which the    

Hmf yield decreased gradually with further runs.330,468 The different catalytic results in recycling 

runs for the two hexoses may be due to the high concentration of   by-products retained in the IL-

based catalytic system in the case of D-glucose (less selective reaction) than that of D-fructose, 

causing inhibitory effects.330,468 Moreau et al.342 also reported a less efficient separation of Hmf 

from the IL when using D-sucrose as the substrate; according to the authors D-glucose does not 
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significantly react with the IL and accumulates in the IL medium (being more difficult to extract 

from less polar solvents such as diethyl ether).342 In the case of insoluble solid acid/IL catalytic 

systems, the removal of insoluble humins from the IL medium may require the separation of the 

solid acid from the IL medium. With ZrO2/SO4
2- as catalyst, the decrease in the catalytic acitivity 

after the 10th run was attributed to a decrease of acid sites in the catalyst  (catalyst surface 

passivation) by accumulated by-products and a decrease in the contents of SO4
2- in the catalyst 

(leaching).364  Subsequently, the removal of organic matter from the used solid acid may be 

performed by thermal degradation or by chemical attack using oxidising agents. The solid acid 

may need to be regenerated to recover its initial acid properties (e.g. through ion-exchange).490  

 In general, the number of recycling runs reported in the literature is less than ten. 

Performing more runs and elemental analysis of the recovered IL medium can help to better 

assess the recycling efficiency of the different approaches of the IL-based catalytic systems.  

Certain homogeneous acid/IL catalytic systems suffer loss of catalysts during the work-up 

procedures,  possibly due to catalyst deactivation in the IL and/or the inhibitor effect of water 

(when no drying processes are mentioned). Such cases were observed in the system                    

Ipr-WCl6/[Bmim]Cl in which the separation of accumulated by-products from the IL phase (by 

filtration) and the addition of fresh catalyst was required to maintain the high Hmf yield, being 

poorly attractive with respect to the catalyst recycling.328 In IrCl3/[Bmim]Cl, the loss of IrCl3 from 

the IL medium during the solvent extraction process led to a decrease in product yield in recycling 

runs (Table 1.9).324 Degirmenci et al.482 developed a promising catalytic system by coordinating 

CrCl2 to [Pmim]Cl, avoiding  catalytic species from excessive interaction with the solvent. 

However, chromium leaching in recycling runs for the system CrCl2/[Pmim]Cl/SBA-15 led to a drop 

in catalytic activity.  
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Table 1.9- Summary of the recycling procedures and efficiency of IL based catalytic systems. a 

Substrate/IL/Catalyst added/Co-

solvent 
Separation of  the target reaction 

product 
Separation of by-products from 

the IL system 
No. 

Runs 
b 

Variation of YHmf or YFur 
c Ref 

Homogeneous Brönsted catalyst + IL 

D-Fructose/[Bmim]Cl/HCl Solvent extraction using THF Heating under vacuum (50 °C) for 
water removal after run 3 

6 ≈ (Hmf) 
432 

Homogeneous Lewis catalyst + IL 

D-Fructose/[Bmim]Cl/WCl6/THF Solvent extraction using THF 
(Continuous  or batch operation 

modes) 

Heating under vacuum 5 ≈ (Hmf) 
455 

D-Fructose/[Bmim]Cl/ WCl6/THF Solvent extraction using THF 
(Semi-batch operation mode) 

IL mixture was filtered after run 5 
to remove insoluble by-products 

8 ↓ (Hmf) after run 5 unless by-
products were removed and fresh 

catalyst WCl6 added to the IL mixture 

328 

D-Fructose/[Bmim]Cl/IrCl3 Solvent extraction using ethyl 
acetate  after addition of water 

Heating under vacuum (80 °C, 30-
60 min) for water and ethyl acetate 

removal 

5 ≈ Hmf (run1-run2), ↓ run 2 to run 5 
(loss of IrCl3 in work-up procedures) 

324 

D-Fructose/[Bmim]Cl/GeCl4 Solvent extraction using ethyl 
acetate 

 5 ≈ (Hmf) 
373 

D-Fructose/[Cho]Cl/BHC/H2O/IBMK Open vessel mode for 
continuous water removal 

Water and IBMK separation by 
decantation 

7 ≈ (Hmf). After run7↓(Hmf) due to 
accumulation of humins 

356 

D-Fructose/[E4N]Cl/NaHSO4.H2O Solvent extraction using THF Hmf is separated from THF by 
evaporation 

14 ↑ (run1-run4) system remained 
active, ↓ (run 4-run8) loss of catalyst 
in the extraction or accumulation of 
by-products, ↑ (run8-run9) addition 

of NHSO4.2H2O, ↓ (run9-run10) 
without adding NHSO4.2H2O, loss of 
catalytic activity, ↑ (run 11-run 14) 

addition of catalyst in each run 

323 

D-Fructose, D-Glucose/[Bmim]Cl/ 
Ipr/ CrCl2 

Solvent extraction using diethyl 
ether 

Pre-heating (100 °C/2 h) for water 
and diethyl ether removal 

4 For D-fructose: ≈ (Hmf) 
For D-glucose: ↓ (Hmf) 

330,468 

D-Fructose,  

D-Glucose/[Omim]Cl/IrCl3 
  5 ≈ (Hmf) for D-fructose and D-glucose 

339 
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Table 1.9- Continued. 

D-Glucose/[Emim]BF4/SnCl4 Solvent extraction using ethyl 
acetate 

 4 ≈ (Hmf) 
374 

D-Glucose/[Bmim]Cl/CrCl3 Solvent extraction using ethyl 
acetate 

Heating under vacuum (60 °C, 24 h) 
for water and AcOEt removal 

6 ≈ (Hmf) until run 5, ↓ run 5 to run 6 
336 

D-Glucose/[E4N]Cl/CrCl3.6H2O Solvent extraction using ethyl 
acetate after addition of water 

(to decrease the viscosity) 

Heating under vacuum oven (65 °C, 
24 h) for water and residual AcOEt  

removal 

5 ≈ (Hmf) 
305 

Cellulose/[Sbmim]HSO4/FeCl2/ 

IBMK 
Solvent extraction using diethyl 

ether and water 
Removal of the solvent, diethyl 

ether and water (Incomplete 
extraction of by-products from the 

IL) 

5 ↓ (Hmf, Fur) 376 

Cellulose/[Emim]Cl/CrCl2/CuCl2 Solvent extraction using IBMK Water removal 3 ≈ (Hmf) 
329 

Cellulose, Wheat Straw/ 
[Bmim]Cl/CrCl3/LiCl 

Water was added to decrease 
the viscosity of IL; Solvent 

extraction using ethyl acetate 

Heating under vacuum (65 °C) for 
water removal 

3 ≈(Hmf) 335 

Insoluble solid acid + IL 

D-Fructose/[Bmim]Cl/LCC/DMSO Solvent extraction using ethyl 
acetate 

LCC was filtered, ashed and dried in 
air for Hmf removal 

5 ≈ (Hmf) 
354 

D-Fructose/[Bmim]Cl/ZrO2/SO4
2- Solvent extraction with ethyl 

acetate after addition of water 
 10 ≈ (Hmf) until run 6, ↓ run 6 to run10 

364 

D-Fructose/[Bmim]Cl/SBA-15-SO3H Solvent extraction using THF  3 ≈ (Hmf) 
353 

D-Fructose/[Bmim]Cl/Amberlyst-15 Solvent extraction using ethyl 
acetate after addition of water 

Heating under vacuum (60 °C, 24 h) 
for water and ethyl acetate 

removal. Recycling of 
(Amberlyst+IL) mixture 

7 ≈ (Hmf) 
306 

D-Fructose/[Bmim]Cl/Amberlyst-15   10 ≈ (Hmf) 
304 

D-Glucose/Cr-HAP/[Bmim]Cl   5 ≈ (Hmf) 
472 

Acidic IL 

D-Xylose/[Sbmim]HSO4/H2O/IBMK 
 

Solvent extraction using ethyl 
acetate 

Heating under vacuum (60 °C, 24 h) 
for water and ethyl acetate 

removal 

5 ≈ (Fur) 
275 
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Table 1.9- Continued. 

D-Fructose/[Hmim]Cl Solvent extraction using diethyl 
ether 

Water removal 5 ≈ (Hmf) 
342 

D-Fructose/[Cho]Cl/citric 

acid/AcOEt 
Intermittent solvent extraction 

using ethyl acetate 
Heating under vacuum (50 °C, 24 h) 

for water removal after run 6 
8 YHmf reached the level of that in the 

first run after water removal 

202 

D-Fructose/[Cho]Cl/citric acid 

/AcOEt 
Continuous extraction with 

ethyl acetate 
Heating under vacuum (50 °C, 24 h) 

for water removal after run 4 
8 YHmf reached the level of that in the 

first run after water removal 

202 

D-Fructose/[Asbi]CF3SO3/DMSO   7 ≈ (Hmf) 
484 

D-Fructose/[Acsbi]CF3SO3/DMSO 
 

  7 ≈ (Hmf) 
484 

D-Fructose/[NMP]CH3SO3/DMSO Distillation under reduced 
pressure (to separate DMSO); 
Solvent extraction using ethyl 

acetate 

Heating under vacuum (75 °C, 12 h) 
for water and ethyl acetate 

removal 

5 ≈ (Hmf) 
486 

D-Glucose/[Hxmim]Cl/H2O/ZrO2 Solvent extraction using ethyl 
acetate 

 5 ≈ (Hmf) 
369 

Inulin/[Cho]Cl/oxalic acid/AcOEt Solvent extraction using ethyl 
acetate 

Distillation of volatiles. Extraction 
of non-volatile sugar derivatives 

using ethanol as solvent 

6 ≈ (Hmf) 
316 

Cellulose/[Sbmim]HSO4/IBMK Solvent extraction using ethyl 
acetate and water 

Water and IBMK removal 5 ↓ Hmf run 1 ro run 2 (non complete 
extraction of small by-products) 

≈ Hmf (run 2 to run 5) 

377 

a) If a procedure was not adopted or nothing was mentioned, the cell is empty. Batch operation mode, unless specified otherwise. b)Number of catalytic runs.c) Product yield (Fur or Hmf as indicated in 
parenthesis) in recycling runs increases (↑), decreases (↓) or is reasonably steady (≈). 
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 For insoluble solid acid/IL catalytic systems, an important issue is whether the catalytic 

reaction is heterogeneous or homogeneous in nature. This point is seldom addressed in the 

published literature related to solid acid/IL catalytic systems used in the conversion of 

carbohydrates into Hmf/Fur. The stability of the inorganic solid acid catalysts, in ILs is rather 

unexplored.491 Interesting results were reported for the system Cr-HAP/[Bmim]Cl, which was used 

in five consecutive batch runs of the reaction of D-glucose without drop of Hmf yield (Table 

1.9).472 In that study, the assessment of the homo/heterogeneous nature of the catalytic reaction 

was not addressed. Ion-exchange reactions between acid-form zeolites and ILs can take place 

giving homogeneous (soluble) active acid species.492-494 The same can apply for ion-exchange 

resins.477-479,490,495-497 Nevertheless, using Brönsted solid acids (possessing an insoluble anionic 

polymeric framework) instead of homogeneous acids may be advantageous in that the formation 

of by-products in reactions involving the free anions is avoided (e.g. sulfur containing by-products, 

in the case of H2SO4 as catalyst, causing downstream contaminations and affecting the yields of 

Fur/Hmf and, on the other hand, the regeneration of the acid properties of the catalytic system 

can be more efficient than that for soluble acid catalysts.490 

 

This work focuses on the conversion of saccharides into Fur and/or Hmf using 

heterogeneous catalysts in an aqueous medium (Chapters 3-7) or using an ionic liquid medium 

(Chapters 8, 9). The production of Hmf has not reached the industrial scale; the same does not 

apply for Fur. As mentioned previously, sulfuric acid is used in most of these industrial processes 

and presents several drawbacks, which can be avoided with the use of heterogeneous catalysts. 

The objectives of this work included: (i) use of heterogeneous catalysts with promising catalytic 

performances in terms of activity, selectivity and stability, leading to high Fur/Hmf yields; (ii) 

identification of the reaction (by)products in order to get mechanistic insights into the overall 

reaction mechanism; (iii) understanding of catalyst deactivation phenomena: (iv) efficient 

regeneration and reuse of the catalysts. The catalytic performance of crystalline microporous 

silicoaluminophosphates (SAPOs) with different pore sizes (Chapter 3), zeolite Beta and a 

composite material consisting of zeolite Beta nanocrystals (Si/Al=12) embedded in a purely 

siliceous TUD-1 mesoporous matrix (BEATUD-1, Chapter 5) were investigated in the dehydration 

of D-xylose to Fur. The zeolite MCM-22, delaminated ITQ-2 (Chapter 6) and mixed zirconium 

oxides (Chapter 7) were also tested. Aluminium-containing mesoporous TUD-1 (denoted Al-TUD-

1, Si/Al=21) was tested as a heterogeneous catalyst in the conversion of different types of 

saccharides to Fur/Hmf (Chapter 4).  
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The use of ionic liquid (IL) based catalytic systems aimed at obtaining high Fur/Hmf yields 

using relatively high initial concentrations of carbohydrates and mild reaction conditions. The acid 

ionic liquid [Emim]HSO4 (with solvent-catalyst dual function) was tested in the conversion of 

mono/di/polysaccharides into Fur/Hmf (Chapter 8). The dehydration of (demanding) D-glucose 

into Hmf was investigated using [Bmim]Cl as solvent and (chromium, aluminium)-containing 

silicates (Chapter 9). Special attention was given to the recovery and reuse of the IL-based 

catalytic systems. 
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2.1. Preparation of the catalysts 

 

2.1.1. Silicoaluminophosphates (SAPOs) 
 

 

The materials described herein were tested as catalysts in Chapter 3. Table 2.1 collects all 

the materials and reagents used for the synthesis of these catalysts. All materials were used as 

received. 

 

Table 2.1- List of chemicals used in the syntheses of SAPOs catalysts. 

Chemicals 

 
Abbreviation Supplier Purity 

Silicon, Aerosil A380 Si-A380-M Merck  

Silicon, Aerosil A380 Si-A380-D Degussa  

Silicon, AS40 Si-A Degussa  

Fumed Silica (Aerosil 200 Serva) Si-A200 Alfa  

Aluminium, Pural SB Al2O3 (70 wt.%) Al-SB Fluka  

Pseudoboehmite aluminium, Catapal B, Vista, Al2O3 

(70.7 wt.%) 

Al-CB Alfa  

Pseudoboehmite aluminium, Plural SB Al2O3  

(75 wt.%) 

Al-PSB Condea  

Orthophosphoric acid, H3PO4, 85 wt.%  aqueous solution  Merck 85-88% 

Organic template, tripropylamine TPA Aldrich 98% 

Organic co-template, methylamine (41 wt.% aqueous 

solution) 

MA Fluka  

Organic template, dipropylamine (99 wt.%  aqueous 

solution) 

DPA Aldrich  

Tetrapropylammonium hydroxide (40 wt.% aqueous 

solution) 

TPAOH Alfa Aesar  

 

 

Special care must be taken in the preparation of silicoaluminophosphate gels, because it 

has great influence on the nucleation process, induction period and rate of crystallisation and the 

products obtained.1,2 For example, the heating rate of the gel dramatically influences the 

crystallisation and consequently the SAPO-type phases formed: in this sense, fast heating tends to 

favour early nucleation of SAPO-5, and after starting to crystallise it is not possible to obtain pure 

SAPO-40.2 Therefore the preparation of the gels requires a strictly reproducible procedure 

(autoclaves adapted for each heating system) to avoid contamination of SAPO-40.1,2 The 

preparation of the silicoaluminophosphates (SAPOs) was performed by the group of Professor 

Filipa Ribeiro (IST, Lisbon). 
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SAPO-5 was prepared according to that described by Weyda et al.1 A mixture of an 

aluminophosphate gel and another gel containing the silica source (Aerosil A380) and the organic 

template, tripropylamine, TPA was used. The aluminophosphate gel was prepared with 85 wt.% of 

orthophosphoric acid and distilled water. To this mixture was added Plural SB Al2O3 (70 wt.%) as 

an aluminium source. The mixture was stirred for 2 h to obtain a homogeneous gel.  The Aerosil 

A380 was then added and the gel was further stirred for another 1 h, prior to template addition. 

After another 2 h of stirring, the final homogeneou gel were loaded into 40 cm3 PTFE-coated 

stainless steel autoclaves and heated under autogeneous pressure, at 170 °C during 11 h. The 

compositional molar ratio of the final reaction mixture was Al2O3:P2O5:0.45 SiO2:TPA:50 H2O. The 

solid phase was recovered by centrifugation, washed several times with distilled water, dried 

overnight at 100 °C and finally calcined at 600 °C for 8 h under air.  

Two SAPO-11 samples (SAPO-11a and SAPO-11b) with different morphologies and crystal 

sizes were prepared by hydrothermal crystallisation according to the procedures described 

earlier.3-5 SAPO-11a was synthesised using only one template (DPA), while SAPO-11b was 

obtained by using a combination of two templates (DPA as conventional template and MA as co-

template). For the preparation of the two samples, pseudoboehmite aluminium (Al-PSB), 

orthophosporic acid and silica (Si-A380-D) for the MA and DPA based sample (SAPO-11b) and 

silica (Si-A) for DPA based sample (SAPO 11a) were used as sources of aluminium, phosphorous 

and silicon, respectively.5 The compositions of the initial gels were: Al2O3:P2O5:1.5 DPA:0.66 

SiO2:40 H2O for SAPO-11a (molar ratio) and Al2O3:P2O5:DPA:0.3 MA:0.66 SiO2:50 H2O for SAPO-11b 

(molar ratio). The homogeneous gels obtained were loaded into PTFE coated stainless steel 

autoclaves and subjected to crystallisation under autogeneous pressure at 200 °C during 24 h.3,5 

The final solid phases were recovered by centrifugation, washed several times with distilled water 

and dried overnight at 100 °C. The template-free materials were obtained using a two step 

calcination: from a.t. to 500 °C at a heating rate of 5 °C.min-1 under N2 flow (5 dm3.h-1.g-1), 

followed by a 2 h isotherm at 500 °C,3,5 then up to 650 °C at the same heating rate under air flow, 

followed by an isotherm at 650 °C for 8 h. White powders were obtained.5 

SAPO-40 was synthesised accordingly to that described in the literature.2,4,6,7 The sources 

of aluminium, phosphorus and silicon used were pseudoboehmite alumina (Al-CB), 

orthophosphoric acid (85 wt.%) and fumed silica (Si-A200), respectively. Under continuous 

stirring, 5.22  g of Al-CB was added slowly to 9.22 g of H3PO4 and 5.78  g of distilled water, forming 

an extremely viscous mixture, slurry A. The solution was then homogenised for 4 h at 20 °C in a 

closed beaker. A solution B was prepared by mixing 1.04 g of Si-A200 to 40.82 g of the organic 
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template tetrapropylammonium hydroxide (TPAOH 40 wt.% aqueous solution). After 2 h of 

stirring at ambient temperature (a.t.), the solution B was poured into a dispersion of solution A 

and the two phases were vigorously stirred for 90 min. The composition of the final reaction 

mixture in molar oxide ratios was: Al2O3:P2O5:0.4SiO2:(TPA)2O:50H2O.  The gel obtained was then 

poured in a PTFE-lined stainless-steel autoclave, placed in an oven pre-heated at 200 °C and the 

crystallisation was conducted under static conditions for 160 h. The autoclaves were cooled to a.t. 

and the crystalline solid was recovered by centrifugation and washed three times with 60 cm3 of 

distilled water and dried overnight at 100 °C. Finally it was calcined at a rate of 5 °C.min-1 under N2 

flow, from 20 to 550 °C and maintained at that temperature for 8 h under dry air flow.8 

 

 

 2.1.2. Mesoporous aluminosilicate (Al-TUD-1) 

 
 

The material described herein was tested as a catalyst in Chapter 4. Table 2.2 collects all 

the chemicals used for the synthesis of this catalyst. All reagents were used as received. 

 

Table 2.2- Chemicals used in the synthesis of Al-TUD-1 catalyst. 

Chemicals 

 
Abbreviation Supplier Purity 

Tetraethylorthosilicate TEOS Sigma 99.9% 

Aluminium(III) isopropoxide AIP Fluka ≥99% 

Organic template, Triethanolamine TENA Aldrich 99.9% 

Tetraethylammonium hydroxide, 35 wt.%  aqueous 

solution 

TEAOH Aldrich 99.9% 

Isopropanol  Aldrich 99% 

Ethanol  Aldrich 99% 

 

 

Aluminosilicate Al-TUD-1 is synthesised according to its Si/Al ratio, as depending on it, 

different non-surfactant templates are used.9 These organic non-surfactant templates are 

environmentally friendly, inexpensive, stable,10,11 with high boiling point (ca. 340 °C) and good 

miscibility towards water, alkoxysilanes (Si-source) and with the silica species generated by their 

hydrolysis.11 Usually triethanolamine, TENA is used for the synthesis of Al-TUD-1 with a high Si/Al 

ratio;9,12 while for the synthesis of Al-TUD-1 possessing low Si/Al ratio tetraethyleneglycol is 

preferred.10,13 When heated, organic meso-sized aggregates can be formed as templates and silica 
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species condense forming a silica framework.10,11 The pore architecture is determined by              

co-operative organisation of inorganic species and organic templates.10 The key to a successful 

formation of mesopores is the control of intermolecular interactions between organic templates 

and inorganic species, which means to match the type of template molecule with the 

temperature regime used.11 

Al-TUD-1 (with a Si/Al atomic ratio of 25 in the synthesis gel) was prepared as described 

by Simons et al.13 using aluminium(III) isopropoxide (AIP) and tetraethylorthosilicate (TEOS) as 

aluminium and silicon sources, respectively, and using TENA as organic templating agent. The 

procedure was as follows: TEOS (17.3 g, 83 mmol) was added to AIP (0.68 g, 3.33 mmol), which 

was previously dissolved in a mixture of isopropanol (6.5 cm3) and ethanol (6.5 cm3). After stirring 

at a.t. for a few min, a mixture of TENA (12.51 g, 83.9 mmol) and water (Milli-Q, 9.4 g) was added, 

followed by the addition of tetraethylammonium hydroxide, TEAOH (35 wt.% in Milli-Q water, 

11.12 cm3, 27.0 mmol) under vigorous stirring.  

The wet gel obtained was stirred at a.t. for 24 h and dried at 98 °C for another 24 h. Then 

it was hydrothermally treated in a PTFE-lined stainless steel autoclave at 180 °C for 8 h. Finally the 

solid was calcined at 600 °C in static air for 10 h (heating rate of 1 °C.min-1). 

 

 

2.1.3. Zeolite BEA and BEATUD-1 composite 

 

 

The materials described herein were tested as catalysts in Chapter 5. Table 2.3 collects all 

the chemicals used for the syntheses of the catalysts. All reagents were used as received. 

 

Table 2.3- Chemicals used in the syntheses of zeolite BEA and BEATUD-1 catalysts. 

Chemicals 

 
Abbreviation Supplier Purity 

Tetraethylorthosilicate TEOS Sigma 99.9% 

Organic template, Triethanolamine TENA Aldrich 99.9% 

Tetraethylammonium hydroxide, 35 wt.% aqueous 

solution 

TEAOH Aldrich 99.9% 

Ethanol  Panreac PA 
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To obtain the zeolite Beta in the proton form (denoted BEA) the commercial ammonium-

form of the Beta powder (NH4BEA, Zeolyst CP814E) was calcined at 550 °C for 10 h with a heating 

rate of 1 °C.min-1 in static air. Afterwards an interconnected meso- and microporous composite 

material denoted BEATUD-1 was prepared by embedding H-Beta nanocrystallites in a 3 D 

mesoporous silica matrix (TUD-1) with a zeolite loading of 40 wt.%, following the procedure 

described by Maschmeyer et al.14,15 The high porosity of the mesoporous matrix allows a higher 

accessibility to the internal zeolite crystals by external reagents. The silica precursor, 

tetraethylorthosilicate, TEOS (5.34 g, 25.6 mmol) was added drop by drop to a stirred suspension 

of BEA (1.0 g) in a mixture of triethanolamine TENA (3.85 g, 25.8 mmol) and water (Milli-Q, 3.0 g). 

The organic templating agent, a mesopore-forming organic compound, is usually a glycol (with 

two or more hydroxyl groups) or amine compounds such as TENA (used in the present procedure) 

and triethylene pentamine with boiling points of at least 150 °C.15 Then, TEAOH (35 wt.% in    

Milli-Q water; 3.42 g, 8.2 mmol) was added rapidly under stirring for ca. 2 h. Due to the vigorous 

stirring, the zeolite particles were homogeneously dispersed in the synthesis mixture before 

gelation,14  and due to the rapid increase of the viscosity in the transition of liquid to thick gel the 

vigorous stirring was maintained during and after gelation.14 Afterwards the thick gel containing 

the homogeneous dispersion of zeolite crystals was aged at a.t. in order to complete the 

hydrolysis and poly-condensation of the inorganic oxide source for 24 h.14,15 Afterwards, the gel 

was dried at 100 °C for another 24 h.  Preferably, the organic template should remain in the gel 

during the drying stage. The dried material that still contains the organic template is heated to a 

temperature at which there is a substantial formation of mesopores which is typically between 

the boiling point of Milli-Q water and the boiling point of the organic template.15 Since the pore-

forming step can be performed hydrothermally in a sealed vessel at autogenous pressure,15 the 

solid material was transferred to a PTFE-lined autoclave and heated under static conditions at  

180 °C for 8 h. The size and volume of the mesopores in the final product depend partly on the 

temperature and duration of the hydrothermal step. If the temperature and the treatment time 

are increased, the mesopore diameter and the mesoporore volume will be enhanced.15  

 The product was recovered, washed with distilled water and dried overnight at 60 °C. 

Finally, the solid was calcined at 600 °C for 10 h with a heating ramp rate of 1 °C.min-1 in static air 

to remove organic template agent and the catalyst was finally formed.  

The purely siliceous TUD-1 material was prepared using the same procedure as the one 

described for the composite material but without zeolite.  
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The catalysts were manually ground using an agate pestle and mortar and subsequently 

sieved to give a powder with particle sizes of less than 150 µm width. 

 

 

2.1.4.  Zeolite MCM-22 and the related delaminated material ITQ-2 

 

 

The materials described herein were tested as catalysts in Chapter 6. Table 2.4 collects all 

the chemicals used for the syntheses of the catalysts. All reagents were used as received. 

 

Table 2.4- Chemicals used in the syntheses of zeolite MCM-22 and delaminated ITQ-2 catalysts. 

Chemicals 

 
Abbreviation Supplier Purity 

Silica, Aerosil 200 Si-A200-D Degussa  

Sodium aluminate  Riedel-de Häen  

Tetrapropylammonium bromide TPABr Fluka ≥99% 

Tetrapropylammonium hydroxide, 40 wt.% aqueous 

solution 

TPAOH Alfa Aesar  

Hexamethyleneimine HMEI Aldrich 99% 

Cetyltrimethylammonium bromide,  20 wt.% aqueous 

solution 

CTMABr Fluka ≥96% 

Amberlite IRA-400 (OH) AIRA-400 Supelco  

NH4NO3, 1 M  Sigma-Aldrich >98% 

NaOH  Prolab 98% 

HCl, 37 %  aqueous solution  Panreac Puriss PA 
(pro-

analysis) 

Ethanol  Panreac Puriss PA  

 

 

The layered zeolite precursors, denoted Pre-MCM-22(X), where X is the Si/Al molar ratio 

of 30 or 50 used in the synthesis gel, were prepared as described in the literature.16,17 The Si/Al 

ratios were chosen to achieve a compromise between an enhanced acid site density and a 

successful delamination. Decreasing the aluminium content of the zeolite precursor leads to a 

lower charge density, and therefore the interactions between the zeolitic layers are weaker, 

which facilitates the delamination process.18-21 In the case of Pre-MCM-22(30), sodium aluminate 

(53% Al2O3, 47% Na2O, 0.587 g, 6.10 mmol) and sodium hydroxide (1.03 g, 25.7 mmol) were 

dissolved in water (Milli-Q, 156 g, 8.67 mol). Hexamethyleneimine (8.36 g, 84.3 mmol) was then 

added and the mixture was stirred for 45 min, followed by the addition, under agitation, of silica 
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(Si-A200-D, 11.0 g, 183.1 mmol). The mixture was stirred for a further 2 h to give a gel which was 

transferred to a 250 cm3 PTFE-lined stainless-steel autoclave, rotated at 50 r.p.m, and heated at 

135 °C for 11 days. After this period of time, the autoclave was quenched in cold water. The solid 

phase was separated by centrifugation and washed thoroughly with deionised water until            

pH < 9.0, and subsequently dried at 25 °C overnight. Finally, part of the solid was calcined under 

static air at 540 °C for 6 h, giving Na-MCM-22(24) (in parenthesis, the bulk Si/Al atomic ratio 

measured by ICP-AES). A similar procedure was followed to prepare Pre-MCM-22(50), which upon 

calcination gave Na-MCM-22(38).  

The delaminated aluminosilicate, ITQ-2, was prepared from Pre-MCM-22(30) as follows: 

The Pre-MCM-22(30) (10 g) was dispersed in Milli-Q water (20 g), followed by the addition of 

aqueous cetyltrimethylammonium hydroxide/bromide (100 g, 20 wt.%; 40% exchanged Br/OH; 

prepared by ion-exchange of CTMABr using Amberlite IRA-400 (OH)) and aqueous 

tetrapropylammonium hydroxide/bromide (30 g, 40 wt.%; 50% exchanged Br/OH). 

CTMAOH/Br was prepared as follows: CTMABr (50 g) was dissolved in 375 cm3 of Milli-Q 

water (decarbonated at 100 °C for 25 min under N2). The resin AIRA-400 was pre-washed with  

300 cm3 of Milli-Q water under stirring for 1 h. This procedure was repeated twice. Afterwards, 

300 cm3 of the washed resin (measured with a graduated cylinder) was added to the aqueous 

solution of CTMABr (CTMABr (50 g)/Milli-Q water (375 cm3) under vigorous stirring for 24 h at a.t. 

Finally, the solution was separated from the resin with a cannula and the resin was further 

washed following the same procedure described above. The solution was left to evaporate in air 

to concentrate. The -OH concentration was determined through titration with 0.1 M HCl 

(standard concentration: 0.10615 M). Thus, CTMABr/OH (20 cm3) was diluted to 100 cm3, and    

25 cm3 were titrated with phenolphthalein as indicator.  

TPAOH/Br was prepared from a mixture of TPABr (1.2 g) and TPAOH (3 g) in 4 cm3 of Milli-

Q water under vigorous stirring at a.t. for 2 h). The resultant mixture possessed pH ≈ 13.5 and was 

heated at 80 °C with vigorous stirring for 16 h in order to facilitate the swelling of the layers of the 

precursor material and the final pH was 11.9. The suspension was sonicated using an ultrasound 

bath (50 W, 50 Hz) during 1 h and after decantation, the supernatant colloid was separated. The 

pH of the colloid was lowered to ca. 2.0 by adding 6 M HCl in order to facilitate the flocculation of 

the delaminated solid.  

The solid was separated by centrifugation and washed with distilled water. After drying at 

60 °C for 12 h, the solid was calcined at 540 °C for 3 h under a flow of N2 (300 cm3.min-1), and then 

during 6 h under air (300 cm3.min-1).22,23 The catalysts were manually ground using an agate pestle 
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and mortar and subsequently sieved to give a powder with particle sizes of less than 106 µm 

width.  

An ion-exchange/calcination procedure was applied to Na-MCM-22(24) and                     

Na-MCM-22(38) to give H-MCM-22(24) and H-MCM-22(38), respectively. The ion-exchange 

procedure consisted of suspending 1 g of the solid material in 15 cm3 of 1 M NH4NO3 and stirring 

the resultant suspension for 24 h at 80 °C. The ion exchanged materials were washed throughly 

with deionised water, dried at 50 °C overnight, and finally calcined in air at 540 °C (heating rate of        

1 °C.min-1) for 6 h. 

 

 

2.1.5. ZrW(X)  

 

 

The materials described herein were tested as catalysts in Chapter 7. Table 2.5 collects all 

the chemicals used for the syntheses of the catalysts. All reagents were used as received. 

 

Table 2.5- Chemicals used in the syntheses of the ZrW(X) catalysts. 

Chemicals 

 
Abbreviation Supplier Purity 

Aluminium nitrate nonahydrate  Riedel-de Häen ≥ 98.5% 

Hexadecyltrimethylammonium bromide HDTMABr Fluka ≥ 96% 

NH4OH, ca. 13.3 M, 25% of H2O  Fluka  

(NH4)2SO4   Panreac Puriss PA 

Ammonium metatungstate hydrate, 

(NH4)6W12O40.13H2O) 

AMTH Sigma-Aldrich 99% 

AgNO3  JVP  

ZrO(NO3)2.6H2O  Sigma-Aldrich 99% 

ZrOCl2.8H2O    Sigma-Aldrich 99% 

Zirconium(IV) propoxide, Zr(O-nPr)4, 70 wt.% in              

1-propanol 

 Aldrich  

HCl, 37 %  aqueous solution  Panreac Puriss PA  

Ethanol  Panreac Puriss PA  

 

 

Two samples of zirconium tungsten mixed oxides,  ZrW(X) (X=Cl, NO3) with W/Zr atomic 

ratio of ca. 0.1 were prepared by the co-precipitation method, in a similar fashion to that reported 

in the literature by Jácome et al.24 Ammonium metatungstate hydrate ((NH4)6W12O40.13H2O) was 

used as the source of tungsten and ZrOCl2.8H2O (X=Cl) or ZrO(NO3)2.6H2O (X=NO3) were used as 
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the source of zirconium. For each ZrW(X) material, three solutions were prepared: 50 cm3 of      

0.5 M ZrOCl2.8H2O or ZrO(NO3)2.6H2O in deionised water (solution A), 1 dm3 of distilled water with 

pH adjusted to 10 using an aqueous NH4OH solution (solution B), and 0.2 mmol of ammonium 

metatungstate dissolved in 20 cm3 of solution B (solution C). Solution A was added drop-wise to 

solution C, and the pH was adjusted to ca. 10 using a concentred solution of NH4OH (25 wt.% H2O, 

ca. 13.3 M). The resultant slurries were hydrothermally treated in PTFE-lined stainless steel 

autoclaves heated at 195 °C for 24 h. Subsequently, the solids were filtered. In the case of ZrW(Cl) 

the solid was washed with deionised water and the AgNO3 test was used to confirm the efficient 

removal of Cl- ions. The prepared materials were dried overnight at 110 °C and then calcined 

under air at 800 °C for 3 h (heating rate of 1 °C.min-1) , and finally ground using an agate pestle 

and mortar, and sieved to give particles of less than 150 µm width.  

A zirconium material (denoted ZrO2) was prepared in a similar fashion but without adding 

the tungsten precursor.  

Two mesoporous ZrW-MP and ZrWAl-MP materials were prepared via the incipient 

wetness impregnation method for introducing tungsten (and aluminium) on a pre-prepared 

templated zirconium hydroxide support (denoted Zr(template)). The Zr(template) solid was 

prepared by following the procedure described by Ciesla et al.25 (surfactant-based synthesis). A 

solution of 70 wt.% of zirconium(IV) propoxide (Zr(O-nPr)4) in 1-propanol (11.34 cm3, 25.64 mmol) 

was added slowly with stirring to a solution of HDTAMBr (5.0 g, 13.72 mmol) in a mixture of   

Milli-Q water (230 g) and 37 wt.% of HCl (37.6 cm3, 457.9 mmol). After stirring for 30 min, a solid 

was obtained, to which was added a solution of (NH4)2SO4 (3.40 g, 25.73 mmol) in Milli-Q water 

(46 g). The resultant mixture was stirred for 1 h, and then transferred to a polypropylene bottle 

and heated at 100 °C for 72 h. Finally, the suspension was filtered, and the solid washed 

consecutively with deionised water (200 cm3), ethanol (200 cm3) and deionised water (200 cm3), 

followed by drying at 100 °C overnight to give Zr (template).  

The alumina-doped tungstated mesoporous zirconia (denoted ZrWAl-MP) was prepared 

as follows: a solution of ammonium metatungstate hydrate (0.213 g, 0.0668 mmol) and 

aluminium nitrate nonahydrate (0.210 g, 0.560 mmol) in a mixture of Milli-Q water and ethanol 

(10 cm3, 1:1 v/v) was added drop-wise with stirring at 100 °C to Zr(template)(3.215 g).26 The drop-

wise addition of small aliquots of the solution was alternated with partial drying of the solid at 

120 °C for 1 h. After all the solution had been added, the mixture was dried in an oven at 100 °C 

for 24 h, and the solid was then calcined at 630 °C for 5 h (heating rate of 1 °C.min-1).  



Chapter 2 
__________________________________________________________________________________________________ 

_________________________________________________________________________ 
146 
 

The tungsten containing mesoporous zirconia (denoted ZrW-MP) was prepared using the 

procedure described above for ZrWAl-MP: a solution of ammonium metatungstate hydrate  

(0.150 g, 0.047 mmol) in a mixture of Milli-Q water and ethanol (10 cm3, 1:1 v/v) was added drop-

wise with stirring at 100 °C to Zr(template) (1.332 g). 

 

 

2.1.6. Chromium-incorporated nanoporous materials  

 

 

The materials described herein were tested as catalysts in Chapter 9. Table 2.6 collects all 

the chemicals used for the syntheses of the catalysts. All reagents were used as received. 

 

Table 2.6 - Chemicals used in the syntheses of Al-TUD-1, Cr-Al-TUD-1, Cr-TUD-1, BEA, BEATUD-1, 

Cr-BEA and Cr-BEATUD-1 catalysts. 

Chemicals 

 
Abbreviation Supplier Purity 

Tetraethylorthosilicate TEOS Acros 98% 

Aluminium(III) isopropoxide AIP Aldrich 98% 

Organic template, Triethanolamine TENA Acros 97% 

Tetraethylammonium hydroxide, 35 wt.%  aqueous 

solution 

TEAOH Aldrich 99.9% 

Chromium nitrate nonahydrate, Cr(NO3)3·9H2O  Acros 99% 

Isopropanol  Riedel-de Häen 99% 

Ethanol  Riedel-de Häen 99.8% 

 

 

Al-TUD-1, Cr-Al-TUD-1 and Cr-TUD-1 

 

 

The aluminium and/or chromium-containing mesoporous silicas of the type TUD-1 were 

prepared by hydrothermal synthesis. In particular, Al-TUD-1 was prepared as described previously 

in Section 2.1.2.10,12,13  

Cr-Al-TUD-1 was prepared using the following procedure: TEOS (17.3 g, 83.0 mmol) was 

added to AIP (0.509 g, 2.5 mmol) and chromium nitrate (0.333 g, 0.8 mmol) dissolved in a mixture 

of isopropanol (6.5 cm3) and ethanol (6.5 cm3); atomic ratio Si/(Al+Cr)≈25, Si/Cr≈100, Si/Al≈33. 

After stirring for 30 min, a mixture of TENA (12.5 g, 83 mmol) and Milli-Q water (5.09 g) was 
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added, followed by addition of TEAOH (35 wt.% in Milli-Q water, 17.07 cm3, 41.5 mmol) under 

vigorous stirring. The clear gel obtained was stirred at a.t. for 24 h and dried at 98 °C for another 

24 h, followed by hydrothermal treatment in a PTFE-lined stainless steel autoclave at 180 °C for 8 

h. Finally, the solid was calcined at 600 °C in static air for 10 h (heating rate of 1 °C.min-1) to give a 

yellow powder.  

To prepare Cr-TUD-1, a solution of Cr(NO3)3.9H2O (0.38 g, 0.9 mmol) in Milli-Q water        

(2 cm3) was added dropwise to TEOS (19.91 g, 95.6 mmol); atomic ratio Si/Cr≈100. While stirring, 

a solution of TENA (14.4 g, 96.5 mmol) in Milli-Q water (3.6 cm3) was added dropwise, followed by 

the dropwise addition of TEAOH (35 wt.% in Milli-Q water, 19.7 cm3, 47.8 mmol). After stirring for 

2 h, a clear and pale green gel was obtained. The mixture was aged at a.t. for 24 h, dried at 100 °C 

for another 24 h, and subsequently subjected to hydrothermal treatment in a stainless steel PTFE-

lined autoclave at 180 °C for 8 h. Finally, the solid was calcined at 600 °C for 10 h in air (heating 

rate of 1 °C.min-1), to give a yellow powder. The prepared materials were manually ground using 

an agate pestle and mortar and subsequently sieved to give a powder with particle sizes of less 

than 106 µm width. 

 

 

BEA, BEATUD-1, Cr-BEA and Cr-BEATUD-1 

 

 

Commercial zeolite ammonia BEA powder (NH4-BEA, Zeolyst, CP814) was calcined at     

550 °C (1 °C.min-1) in static air for 10 h, to give BEA. To prepare Cr-BEA, an aqueous suspension of 

NH4-BEA (2 g) in 200 cm3 of 0.01 M Cr(NO3)3.9H2O was stirred at 25 °C for 2 h. The solid was then 

filtered and the ion-exchange procedure repeated twice. Finally, the exchanged solid was filtered, 

thoroughly washed with deionised water at 60 °C, and calcined at 500 °C for 6 h in air (with a 

heating rate of 1 °C.min-1). The final solid was a yellow powder.  

The composite BEATUD-1 was prepared as described previously in Section 2.1.3. using the 

BEA zeolite, 14,15 and a similar procedure was used to prepare the composite Cr-BEATUD-1. Firstly, 

BEA was ion-exchanged with chromium using the same procedure as that described above for   

Cr-BEA, excluding the final calcination step, giving a green powder. Subsequently, TEOS (5.34 g, 

0.025 mmol) was added dropwise to a stirred suspension of this powder (1.00 g) in a mixture of 

TENA (83.85 g, 25 mmol) and Milli-Q water (2.99 g). Then, TEAOH (35 wt.% in Milli-Q water, 3.45 

g, 7.5 mmol) was added to the suspension and stirring was continued for 2 h. The gel was aged at 



Chapter 2 
__________________________________________________________________________________________________ 

_________________________________________________________________________ 
148 
 

a.t. for 24 h, followed by drying at 100 °C for 24 h. The solid material was transferred to a PTFE-

lined autoclave and heated at 180 °C for 8 h under static conditions. Finally, the solid was calcined 

at 600 °C for 10 h in air (heating rate of 1 °C.min-1). The final solid was a yellow powder. The 

prepared materials were manually ground using an agate pestle and mortar and subsequently 

sieved to give a powder with particle sizes of less than 106 µm width. 

 

 

2.2. Characterisation of the catalysts 

 

 

ICP-AES measurements for Si (with an error of ca. 7.2%), Al (error of ca. 6%), P (with an 

error of ca. 10%), Zr and W (error < 10%) and Cr (with an error of ca. 5-10%) were carried out 

using a Horiba Jobin Yvon modelo Activa M spectrometer (detection limit of ca. 20 µg.dm-3) at the 

Central Laboratory for Analyses, University of Aveiro. Prior to the ICP-AES analyses, the samples 

(10 mg) were treated with 1 cm3 of HF and HNO3 and subjected to a microwave treatment. To the 

resultant solution was added distilled water until 100 cm3 of total volume.  

C, N and S chemical analyses (for the IL [Emim]HSO4, Chapter 8) were performed using a 

LECO   CHNS-932 equipment based on infrared absorption detection method for C and S, and a 

thermal conductivity detection method for N. The gases used were helium (carrier), oxygen (for 

combustion at furnace temperature of 1075 °C) and nitrogen (pneumatic) and the analysis time 

per sample was 4 min.  

Powder XRD were collected for all samples at a.t. on a Philips X’ Pert MPD diffractometer, 

equipped with an X’Celerator detector, a graphite monochromator (Cu-Kα X-radiation, λ=1.54060 

Å) and a flat plate sample holder, in a Bragg-Brentano para-focusing optics configuration (40 kV, 

50 mA). Samples were step-scanned in 0.04° 2θ steps with a counting time of 6 s per step. 

Electron microscopies include high resolution transmission electron microscopy (HRTEM) 

and scanning electron microscopy (SEM). HRTEM was carried out on Hitachi H9000 and JEOL 

2200FS instruments. Samples were prepared by spotting continuous (BEA, Chapter 5), holey 

(BEATUD-1, Chapter 5) or holey amorphous (Na-MCM-22(24) and ITQ-2(24), Chapter 6; Cr-BEA 

and Cr-BEATUD-1, Chapter 9) carbon film-coated 400 mesh copper grids (Agar Scientific, Stansted, 

UK) with a suspension of the solid sample in ethanol. SEM images were carried out on a Hitachi 

SU-70 UHR Schottky instrument for Al-TUD-1 (Chapter 4) and (Na,H)-MCM-22 and ITQ-2(24) 
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(Chapter 6). In the case of ZrW(Cl), ZrW-MP and ZrWAl-MP, besides SEM images, EDX analyses 

and elemental mapping were carried out using a Bruker Quantax 400 (Chapter 7). 

Thermal analyses (thermogravimetric (TGA) and differential scanning calorimetry (DSC) 

were also used in the characterisation of the tested catalysts. TGA and DSC were carried out 

under air with a heating rate of 5 °C.min-1 for SAPOs (Chapter 3), Al-TUD-1 (Chapter 4) and BEA 

and BEATUD-1 (Chapter 5), and a heating rate of 10 °C.min-1 for (Na,H)-MCM-22 and ITQ-2(24) 

(Chapter 6), ZrW(Cl), ZrW(NO3), ZrW-MP and ZrWAl-MP (Chapter 7) and Cr-containing materials 

(Cr-Al-TUD-1, Cr-TUD-1, Cr-BEA and Cr-BEATUD-1, Chapter 9), using Shimadzu TGA-50 and DSC-50 

systems. 

The textural parameters were determined from the N2 adsorption isotherms measured at 

-196 °C, using a Micromeritics ASAP 2010 instrument for Al-TUD-1 (Chapter 4) and BEA, BEATUD-1 

and TUD-1 (Chapter 5), and a Micromeritics instrument Corp Germini model 2380 for (Na,H)-

MCM-22 and ITQ-2(24) (Chapter 6), ZrW(Cl), ZrW(NO3), ZrW-MP, ZrWAl-MP and ZrO2 (Chapter 7), 

and Cr-containing materials (Cr-Al-TUD-1, Cr-TUD-1, Cr-BEA and Cr-BEATUD-1, Chapter 9). Before 

the measurements the samples were outgassed at 350 °C, under vacuum for Al-TUD-1 (Chapter 4) 

and BEA, BEATUD-1 and TUD-1 (Chapter 5) or at 250 °C for (Na,H)-MCM-22 and ITQ-2(24) 

(Chapter 6), ZrW(Cl), ZrW(NO3), ZrW-MP, ZrWAl-MP and ZrO2 (Chapter 7) and Cr-containing 

materials (Cr-Al-TUD-1, Cr-TUD-1, Cr-BEA and Cr-BEATUD-1, Chapter 9). The textural properties 

include microporous volume (Vmicro, t-plot method) for SAPOs (Chapter 3), BEA (Chapter 5) and 

(Na,H)-MCM-22 and ITQ-2(24) (Chapter 6); total pore volume (Vp), using the Gurvitch equation for 

relative pressure (p/p0)≈ 0.98 for Al-TUD-1 (Chapter 4), BEA, BEATUD-1 and TUD-1 (Chapter 5), 

ZrW(Cl), ZrW(NO3), ZrW-MP and ZrWAl-MP (Chapter 7) and Cr-containing materials (Cr-Al-TUD-1, 

Cr-TUD-1, Cr-BEA and Cr-BEATUD-1, Chapter 9); microporous external specific surface area (SEXT,  

t-plot method) for SAPOs (Chapter 3), BEA (Chapter 5), (Na,H)-MCM-22 and ITQ-2(24) (Chapter 6) 

and Cr-BEA (Chapter 9); BET specific surface area (SBET, calculated for relative pressures (p/p0) in 

the range 0.01-0.10 for Al-TUD-1 (Chapter 4), BEA, BEATUD-1 and TUD-1 (Chapter 5), (Na,H)-

MCM-22 and ITQ-2(24) (Chapter 6), ZrW(Cl), ZrW(NO3), ZrW-MP, ZrWAl-MP and ZrO2 (Chapter 7) 

and in the range 0.02-0.10 for Cr-containing materials (Cr-Al-TUD-1, Cr-TUD-1, Cr-BEA and Cr-

BEATUD-1, Chapter 9); and pore width (Dp) corresponding to the maximum of the BJH pore size 

distribution curve (PSD) calculated from the adsorption branch of the isotherm  for Al-TUD-1 

(Chapter 4), BEATUD-1 and TUD-1 (Chapter 5), ITQ-2(24) (Chapter 6), ZrW(Cl), ZrW-MP and ZrWAl-

MP (Chapter 7) and Cr-containing materials (Cr-Al-TUD-1, Cr-TUD-1 and Cr-BEATUD-1, Chapter 9). 
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Solid state NMR (e.g. 27Al magic-angle spinning MAS NMR and 13C CP MAS NMR) was 

employed. 27Al MAS NMR spectra were measured at 104.26 MHz with a Bruker Avance 400 (9.4 T) 

spectrometer, using a contact time of 0.6 µs, a recycle delay of 0.8 s, and a spinning rate of 15 kHZ 

for Al-TUD-1 (Chapter 4), BEA and BEATUD-1 (Chapter 5), (Na,H)-MCM-22 and ITQ-2(24) (Chapter 

6). Chemical shifts are quoted in ppm from Al(H2O)6
3+. The 13C CP MAS NMR spectrum of the used 

BEA catalyst (washed with methanol and dried overnight at 65 °C) was collected at 100.613 MHz 

on a 9.4 T Bruker Avance 400 spectrometer with 3.5 µs 1H 90° pulses, a contact time of 1.5 ms, a 

spinning rate of 9.0 kHz, and recycle delays of 4 s (Chapter 5).  

Other spectroscopies used include Fourier transform infrared (FT-IR), attenuated total 

reflectance (ATR), Raman and diffuse reflectance UV-vis (DR UV-vis). IR spectra were collected on 

a FT-IR Unican Mattson-7000 infrared spectrophotometer using KBr pellets for BEA and BEATUD-1 

(Chapter 5), H-MCM-22(24) and ITQ-2(24) (Chapter 6). ATR FT-IR spectra were measured on a 

Mattson 7000 FT-IR spectrometer equipped with a Specac Golden Gate Mk II ATR accessory 

having a diamond top-plate and KRS-5 focusing lenses for Cr-containing materials (Cr-AlTUD-1, Cr-

TUD-1, Cr-BEA and Cr-BEATUD-1). The Raman spectra were recorded on a Bruker RFS FT-Raman 

spectrophotometer (100 s-1, λ=1064 nm, 200-5000 scans with a resolution of 4 cm-1) for ZrW(Cl), 

ZrW(NO3), ZrW-MP and ZrWAl-MP (Chapter 7). DR UV-vis spectra were recorded using a Jasco V-

560 spectrophotometer and BaSO4 as reference for Cr-containing materials (Cr-AlTUD-1, Cr-TUD-

1, Cr-BEA and Cr-BEATUD-1, Chapter 9). 

Acid properties are an important issue in the characterisation of the catalysts. It has been 

reported in the literature for dehydration reactions in aqueous solutions with solid acid catalysts 

that gas-phase characterisation of acid sites (AS) can be used for investigating the influence of the 

acid properties of solid acid catalysts and to predict catalytic activity in the aqueous phase.27,28 

The acid properties of SAPOs (Chapter 3), Al-TUD-1 (Chapter 4), BEA and BEATUD-1 (Chapter 5), 

H-MCM-22 and ITQ-2(24) (Chapter 6), ZrW(Cl), ZrW(NO3), ZrW-MP, ZrWAl-MP (Chapter 7) were 

measured at IST, Lisbon by the group of Professor Filipa Ribeiro, using a Nexus-Thermo Nicolet  

FT-IR instrument (64 scans and resolution of 4 cm-1) equipped with a specially designed cell, using 

self-supported discs (5-10 mg.cm-2) and pyridine as the basic probe molecule. Pyridine was chosen 

because its critical dimension of ca. 6.43 Å29 is comparable with the molecular dimensions of       

D-xylose (6.8 Å along the longest axis).30 After in situ outgassing at 450 °C for 3 h at 10-6 mbar (for 

SAPOs (Chapter 3), Al-TUD-1 (Chapter 4), BEA and BEATUD-1 (Chapter 5), H-MCM-22 and ITQ-

2(24) (Chapter 6) and at 400 °C for 2 h at 10-5 mbar for ZrW(Cl), ZrW(NO3), ZrW-MP and ZrWAl-MP 

(Chapter 7)), pyridine (99.99%) was contacted with the sample at 150 °C for 10 min and then 
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evacuated at 150 °C and 350 °C for SAPOs (Chapter 3), Al-TUD-1 (Chapter 4), BEA and BEATUD-1 

(Chapter 5) and ZrW(Cl), ZrW(NO3), ZrW-MP and ZrWAl-MP (Chapter 7) for 30 min or 150 °C for H-

MCM-22 and ITQ-2(24) (Chapter 6) for 30 min under vacuum at 10-6 mbar (in the case of ZrW(X) 

materials the vaccum applied was 10-5 mbar). The IR bands at ca. 1540 and 1455 cm-1 are related 

to pyridine adsorbed on Brönsted acid sites (B) and Lewis acid sites (L), respectively 31-33 and were 

used for quantification.33 In the case of H-MCM-22 and ITQ-2(24) (Chapter 6), the acid properties 

were investigated by FT-IR studies using collidine (2,4,6-trimethylpyridine) as probe molecule: the 

FT-IR spectra were recorded with a resolution of 2 cm-1 on a Nicolet Nexus spectrophotometer 

equipped with an MCT (mercury cadmium telluride) detector. Similar to the procedure applied for 

the analysis with pyridine, the powdered solids were pressed into self-supported disks                 

(10 mg.cm-2) and placed in a quartz IR cell with KBr windows. After in situ outgassing at 450 °C for 

4 h, collidine was contacted with the sample at 200 °C for 30 min and then evacuated at 200 °C for 

further 30 min under vacuum. The IR band at ca. 1635 cm-1 is related to collidine adsorbed on B. 

 

 

2.3. Catalytic tests 

 

 

The catalyst experiments can be grouped into the aqueous-phase reaction systems using a 

solid acid catalyst and the IL-based catalytic systems with or without adding a solid acid catalyst. 

Table 2.7 collects the chemicals used for the catalytic tests and calibrations. All reagents were 

used as received. 

 

Table 2.7- Chemicals used in the catalytic tests and HPLC calibrations. 

Chemicals 

 
Abbreviation Supplier Purity 

Sulfuric acid, H2SO4  J.T. Baker 95-97% 

D-(+)-Xylose  Sigma-Aldrich 99% 

D-(-)-Fructose  Aldrich >99% 

D-(+)-Glucose  Sigma-Aldrich >99% 

D-(+)-Cellobiose  Fluka ≥99% 

D-(+)-Sucrose  Fluka ≥99% 

D-(+)-Maltose monohydrate  Maltose Riedel-de Häen  

Inulin  Fluka  

4-O-methyl-D-glucurono-D-xylan Xylan Sigma  

Cellulose, powder D-natural  Cellulose Riedel-de Häen  

Starch from potato soluble Starch Panreac PA 

1-Ethyl-3-methyl hydrogen sulfate [Emim]HSO4 Merck  
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Table 2.7- Continued. 

1-Butyl-3-methyl imidazolium chloride [Bmim]Cl Fluka ≥ 98% 
1-Butyl-3-methyl imidazolium chloride [Bmim]Cl Aldrich ≥ 98% 
D-(-)-Ribose  Aldrich 98% 

D-(-)-Mannitol  Riedel-de Häen >99% 
Sorbitol  Aldrich ≥99% 

Diacetyl  Merck ≥97% 

Diacetyl  Aldrich 97% 

Phenol  Fluka ≥99.5% 

Toluene Tol Sigma-Aldrich ≥99.9% 

Milli-Q water    

Dimethylsulfoxide  Aldrich ≥ 99.9% 

Isobutylmethyl ketone IBMK Merck ≥ 99.9% 
Methanol  J. T. Baker ≥ 99.8% 

 

 

2.3.1. Aqueous –phase reaction systems 

 

 

The catalytic tests were performed under nitrogen (autogeneous pressure) in batch 

tubular glass micro-reactors (total capacity of ca. 5 cm3) with pear-shaped bottom and equipped 

with a valve for gas purging and a PTFE-coated magnetic stirring bar (Chapters 3-7). Prior to the 

catalytic reaction, the reaction mixture was stirred at a.t. for ca. 1 min to completely dissolve the 

saccharide in the aqueous phase and then it was immersed in a thermostatically controlled oil 

bath. The instant the reaction began (zero time) was taken as the instant that the micro-reactor 

was immersed in the oil bath. Each sample was taken from an individual batch run experiment.   

Typically, the dehydration of the saccharides was carried out at 170 °C, using a biphasic 

solvent system (1 cm3 total volume) consisting of Milli-Q water and toluene (0.3:0.7 v/v, Figure 

2.1). The biphasic solvent system is interesting for the simultaneous separation of Fur/Hmf from 

the aqueous phase as it is formed.34,35 The reaction of the saccharides takes place in the aqueous 

phase (where they dissolve completely) and the product Fur or Hmf is transferred into the organic 

phase, avoiding undesired reactions.36 The saccharides tested in the biphasic solvent systems 

were (monosaccharides) D-xylose (100 g.dm-3, 0.67 M) in Chapters 3-8, D-fructose and D-glucose 

(100 g.dm-3, 0.56 M) in Chapter 4, (disaccharides) D-sucrose, D-maltose and D-cellobiose (100 

g.dm-3, 0.29 M), and (polysaccharides) D-xylan, inulin and starch (33.3 g.dm-3) in Chapter 4.  The 

amount of the catalyst in the reaction medium was typically 20 g.dm-3. 
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Catalytic tests using solely water as solvent were also performed. The saccharide tested 

was D-xylose (100 g.dm-3, 0.67 M) 

using 1 cm3 of solvent). The amount of the 

 

Figure 2.1- Schematic representation of the 

saccharides into 2-furaldehyde

solvent system (A) or solely water as solvent

 

 

The stirring rates used were 

MCM-22(24) and ITQ-2(24) (Chapter 6)

reaction) were similar for stirring rates at or above 700 r.p.

MCM-22(24) and 2.1, 2.0 and 2.1 mmol.g

respectively (Chapter 6). In parallel with these results, for ZrW(Cl)

rates (based on the conversion at 30 min reaction) were 

12.1 mmol.gcat
-1.h-1 at 600, 700 and 900 r.p.m, 

BEATUD-1 catalysts (Chapter 5)
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Catalytic tests using solely water as solvent were also performed. The saccharide tested 

, 0.67 M) in Chapter 5 using 0.3 cm3 of solvent, and 

amount of the catalyst in the reaction medium was 20 g.dm

Schematic representation of the aqueous-phase acid hydrolysis and dehydration of 

aldehyde (Fur) and 5-hydroxymethyl-2-furaldehyde (Hmf)

solely water as solvent (B). 

stirring rates used were optimised to avoid internal mass transfer limitations

(Chapter 6) the initial reaction rates (based on the 

tirring rates at or above 700 r.p.m: 1.6, 2.4 and 2.3 mmol.g

2.0 and 2.1 mmol.gcat
-1.h-1 for ITQ-2(24) at 600, 

In parallel with these results, for ZrW(Cl) (Chapter 7)

conversion at 30 min reaction) were similar above 700 r.p.m

700 and 900 r.p.m, respectively. The same applies for the

(Chapter 5) in that the Xyl conversions at 30 min were similar for
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Catalytic tests using solely water as solvent were also performed. The saccharide tested 

of solvent, and in Chapters 6 and 7 

was 20 g.dm-3. 

 

acid hydrolysis and dehydration of 

(Hmf), using a biphasic 

to avoid internal mass transfer limitations. For H-

the conversion at 1 h 

2.4 and 2.3 mmol.gcat
-1.h-1 for H-

600, 700 and 800 r.p.m 

(Chapter 7) the initial reaction 

similar above 700 r.p.m: 9.4, 12.4 and 

The same applies for the BEA and 

similar for stirring rates 
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in the range 700-800 r.p.m (ca. 9.3 and 5.7 mmol.gcat
-1.h-1 respectively) and slightly lower for 600 

r.p.m in the case of BEA (a decrease in conversion of ca. 7% was observed, Chapter 5). The 

calculated initial reaction rates were typically based on conversions at 30 min for BEA and 

BEATUD-1 (Chapter 5) and at 60 min for H-MCM-22(24) and ITQ-2(24) (Chapter 6). Initially the 

reaction conditions are not isothermal. 

 

 

2.3.2. Ionic liquid-based catalytic systems 

 

 

The catalytic tests were performed under nitrogen (autogeneous pressure) in batch 

tubular glass micro-reactors and equipped with a valve for gas purging and a PTFE-coated 

magnetic stirring bar. The micro-reactors used in the studies of Chapter 8 possessed a pear-

shaped bottom (total capacity of ca. 5 cm3), and in the case of Chapter 9 round-bottomed glass 

reactors were used (total capacity of 7 cm3). As carried out in the aqueous-phase reaction 

systems, the reaction mixture was stirred at a.t. for ca. 1 min to completely dissolve the 

saccharide in the IL before the catalytic reaction, and then the reactor was heated with a 

thermostatically controlled oil bath under magnetic stirring at 600 r.p.m in the case of 

[Emim]HSO4 (Chapter 8),  and at 1000 r.p.m in the case of the Cr-containing materials with 

[Bmim]Cl  (Chapter 9). Zero time (considered as the instant the reaction began) was taken as the 

instant that the micro-reactor was immersed in the oil bath. Each sample was taken from an 

individual batch run experiment.   

The catalytic tests were performed using biphasic solvent systems consisting of the IL and 

an extracting organic solvent (Tol or IBMK) in a 0.3:0.7 v/v ratio (Chapter 8) or using a monophasic 

solvent system consisting of an acid-functionalised IL (0.3 cm3, Chapter 8) or an IL as solvent     

(0.3 cm3) coupled with a solid acid catalyst where the amount of the catalyst in the reaction 

medium was 50 g.dm-3  (Chapter 9, Figure 2.2). In Chapter 8, the saccharides tested were 

(monosaccharides) D-xylose (100 g.dm-3, 0.67 M), D-glucose and D-fructose (120 g.dm-3, 0.67 M), 

(disaccharides) D-sucrose,    D-cellobiose, and D-maltose (120 g.dm-3, 0.35 M), (polysaccharides) 

D-xylan (100 g.dm-3) and inulin, starch and cellulose (120 g.dm-3). In Chapter 9, D-glucose was the 

substrate (50 g.dm-3,   0.28 M). 
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Figure 2.2- Schematic representation of the acid hydrolysis and dehydration of saccharides into

2-furaldehyde (Fur) and 5-hydroxymethyl

under biphasic solvent conditions 

catalyst (B) or using an IL as solvent coupled with a solid acid catalyst 

 

 

In Chapter 8, the catalytic reactions were carried using solely [Emim]HSO

catalyst (without solid acid catalyst)

target product from the IL phase. An extracting solvent (Tol or IBMK), immiscible or poorly soluble 

with the IL was used, or alternatively, the reaction was carried out under reduced pressure, usi

a water aspirator, to evaporate Fur

round-bottomed glass reactor (

wt.%) and [Emim]HSO4 (5 g). The reactor was connected to a

water cooled to ca. 15 °C (Figure 2.

through a vacuum adapter to a 10 

with liquid nitrogen-frozen ice. The fed reactor was degassed under vacuum and placed in a 

water-filled ultrasound bath (50 W, 40 kHz) for ca. 15 min at a.t. prior to immersion in the oil bath 

and heating at 100 °C for 4 h.
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Schematic representation of the acid hydrolysis and dehydration of saccharides into

hydroxymethyl-2-furaldehyde (Hmf) using an IL-based catalytic system

under biphasic solvent conditions (A) or using an acid-functionalised  IL without adding a solid acid 

or using an IL as solvent coupled with a solid acid catalyst (C). 

8, the catalytic reactions were carried using solely [Emim]HSO

(without solid acid catalyst). Two methods were used to facilitate the separation of the 

target product from the IL phase. An extracting solvent (Tol or IBMK), immiscible or poorly soluble 

with the IL was used, or alternatively, the reaction was carried out under reduced pressure, usi

to evaporate Fur from the IL during the catalytic reaction

tor (total capacity of 25 cm3) was used and charged with 

(5 g). The reactor was connected to a Liebig condenser

C (Figure 2.3). The quasi-horizontally positioned condenser was connected 

through a vacuum adapter to a 10 cm3 round bottomed flask for collection, which was cooled 

frozen ice. The fed reactor was degassed under vacuum and placed in a 

filled ultrasound bath (50 W, 40 kHz) for ca. 15 min at a.t. prior to immersion in the oil bath 

C for 4 h. 
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Schematic representation of the acid hydrolysis and dehydration of saccharides into   

based catalytic system 

functionalised  IL without adding a solid acid 

8, the catalytic reactions were carried using solely [Emim]HSO4 as solvent and 

. Two methods were used to facilitate the separation of the 

target product from the IL phase. An extracting solvent (Tol or IBMK), immiscible or poorly soluble 

with the IL was used, or alternatively, the reaction was carried out under reduced pressure, using 

L during the catalytic reaction. In the latter case a 

) was used and charged with D-xylose (18 

Liebig condenser with circulating 

horizontally positioned condenser was connected 

round bottomed flask for collection, which was cooled 

frozen ice. The fed reactor was degassed under vacuum and placed in a 

filled ultrasound bath (50 W, 40 kHz) for ca. 15 min at a.t. prior to immersion in the oil bath 
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Figure 2.3- Experimental setup used for the D-xylose/[Emim]HSO4 reaction system under reduced 

pressure (Chapter 8). 

 

 

2.3.3. Recovery of the solid acid catalysts 

 

 

After each batch run at a certain reaction time, the reactor was removed from the oil bath 

and cooled to a.t. Then the reaction mixture was centrifuged to 3500 r.p.m to separate the 

catalyst (Figure 2.4 A). The separated solid catalysts were used in consecutive batch runs. Prior to 

reuse, the solids were washed with methanol (Chapters 3-6) or with deionised water in the case 

of ZrW(Cl), Zr(NO3), ZrW-MP and ZrWAl-MP (Chapter 7) and Cr-containing materials (Cr-Al-TUD-1, 

Cr-TUD-1, Cr-BEA and Cr-BEATUD-1, Chapter 9) in falcon tubes, dried at 50-60 °C overnight in an 

oven (Figure 2.4 B) and calcined in a muffle furnace (Figure 2.4 C) at 550 °C for 5 h for H-MCM-

22(24) (Chapter 6), 450 °C for 5 h for ITQ-2(24) (Chapter 6), 450 °C for 3 h (SAPOs and Cr-Al-TUD-1, 

Cr-TUD-1, Cr-BEA and Cr-BEATUD-1, Chapters 3 and 9, respectively), 450 °C for 5 h (BEA, BEATUD-

1, Chapter 5), ZrWAl-MP and ZrW-MP (Chapter 7) or 350 °C for 3 h (Al-TUD-1,  Chapter 4) with a 

heating rate of 1 °C.min-1 in air to remove the carbonaceous matter. 
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                     A)                                              B)                                                                C) 

Figure  2.4- Centrifuge (A) used to separate the solid from the liquid phases; Oven used to dry the 

recovered powdered catalysts (B) and muffle furnace used for calcination (C). 

 

 

2.4. Quantification of reaction products 

 

 

The products were analysed by high performance liquid chromatography (HPLC) in 

isocratic mode by the internal standard method using calibration curves with authentic samples of 

the reagents (of D-xylose, D-(-)-fructose, D-(+)-glucose, D-(+)-cellobiose, D-(+)-sucrose, and          

D-(+)-maltose monohydrate) and products (Fur and Hmf) as standards used for quantification of 

the calibration curves. In the case of the products present in the aqueous phase (H2O or IL) a 

Knauer K-1001 HPLC pump coupled to a Knauer 2300 differential refractive index detector (for 

sugars) and a Knauer 2600 UV detector (280 nm, for Fur and Hmf) was used. For pentose-based 

feedstocks a PL Hi-Plex H 300 nm x 7 nm (i.d.) ion exchange column (Polymer Laboratories Ltd, 

UK) was used. The mobile phase was 0.001 M H2SO4 with a 0.6 cm3.min-1 flow rate and 65 °C as 

the temperature of the column. In the case of hexose-based feedstocks, a PL Hi-Plex Ca 300 nm x 

7.7 nm (i.d.) ion exchange column (Polymer Laboratories Ltd., UK) was used: the mobile phase 

was freshly prepared distilled and deionized water; flow rate of 0.5 cm3.min-1; column 

temperature of 80 °C.  

The products present in the organic phase were analysed using a Gilson 306 HPLC pump 

and a Spherisorb ODS S10 C18 column coupled to a Gilson 118 UV/Vis detector (280 nm). The 

mobile phase with a flow rate of 0.5 cm3.min-1 for SAPOs (Chapter 3), (Na,H)-MCM-22 and ITQ-



Chapter 2 
__________________________________________________________________________________________________ 

_________________________________________________________________________ 
158 
 

2(24) (Chapter 6), ZrW(Cl), ZrW(NO3), ZrW-MP and ZrWAl-MP (Chapter 7) and of 0.7 cm3.min-1 for 

[Emim]HSO4 (Chapter 8), Al-TUD-1 (Chapter 4), BEA and BEATUD-1 (Chapter 5) consisted of a 

mixture of 37% (v/v) of methanol and 63% (v/v) of H2O. 

The reproducibility of the catalytic results was tested by performing two to three 

replicates of an individual experiment. The reported results are the average values. A good 

reproducibility of the results requires “real-time” sampling and HPLC analysis. The maximum 

average absolute deviation in these values was in the range 3-5%. 

The conversion of the substrate (Csub) at a reaction time t was calculated using equation 

(2.1) in the cases of mono/disaccharides (expressed as mol. %): 

 

                                          Csub (%) = 
�� ������	
����� ������	
���

��������	
���
× 100                                               (2.1)          

 

where n0 (substrate) and nt (substrate) are the initial moles of substrate and the moles of 

substrate at reaction time t, respectively. 

 For monosaccharides, the yield (Y) and selectivity (S) of the product Fur or Hmf (F) at a 

reaction time t were calculated using equations (2.2) and (2.3), respectively (expressed as mol .%): 

 

                                                        Y (%) =  
�� ���

����
���
	����
× 100                                                           (2.2)             

 

                                                 S (%) =   nt�F�

�no �substrate�−nt �substrate��
 × 100                                           (2.3) 

 
      
where nF is the number of moles of F at a reaction time t. 
  

For disaccharides and polysaccharides the F yield at a reaction time t was calculated using 

equation (2.4) (expressed as mol.%) and (2.5) (expressed as wt.%), respectively: 

   

                                               YF (mol.%) =  nt�F�

2x �n0 disaccharide�
 ×  100                                                   (2.4) 

 

                                                 YF (wt.%)=
mass of F formed

m0 of polysaccharide
×  100                                                      (2.5) 

 

where n0(disaccharides) is the initial number of moles of the disaccharide substrate and 

m0(polysaccharides) is the initial mass of the polysaccharide substrate. 
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2.5. Identification of the reaction products 

 

 

In order to identify possible by-products present in the aqueous-phase, 1H NMR and 13C 

NMR spectra in the liquid state were employed for the reaction solution after the reaction of D-

xylose in the presence of BEA (Chapter 5) and ITQ-2(24) (Chapter 6), and for the solvent used for 

washing the catalyst BEA (Chapter 5). These spectra were recorded on a Bruker DRX 300 MHz 

spectrometer at 20 °C. The chemical shifts are quoted in parts per million from tetramethylsilane, 

TMS. The identification of the by-products present in the organic phase was performed by using 

gas chromatography-mass spectrometry (GC-MS) applied in a Trace GC 2000 Series (Thermo 

Quest CE Instruments)-DSQ-II (Thermo Scientific)) equipped with a capillary column (DB-1MS,     

30 m x  0.32 mm), using He as carrier gas (Chapter 8). 

 In Chapter 7, solid-phase microextraction coupled with comprehensive 2 D gas 

chromatography with time-of-flight mass spectrometry (SPME/GCxGC-ToFMS) analyses were 

carried out for the liquid phase of the reaction mixture (after separating the solid phase by 

centrifugation) on the same day that the respective catalytic test was perfomed. The vial 

containing the reaction solution was immersed in a thermostated bath adjusted to 40.0 ± 0.1 °C 

for 5 min. Then, a solid-phase microextraction (SPME) device with a fused silica fibre coating 

(50/30 µm divinylbenzene-carboxen-poly(dimethylsiloxane)) was immersed in the reaction 

solution for 20 min. After the extraction/concentration step, the SPME coating fibre was manually 

introduced into the GCxGC-ToFMS injection port at 250 °C and kept for 30 s for desorption. The 

injection port was lined with a 0.75 mm I.D. splitless glass liner and splitless injections were used 

(30 s). The LECO Pegasus 4 D (LECO, St. Joseph, MI, USA) GCxGC-ToFMS system consisted of an 

Agilent GC 7890A gas chromatograph with a dual stage jet cryogenic modulator (licensed from 

Zoex) and a secondary oven. The detector was a high-speed time of flight (ToF) mass 

spectrometer. A non-polar/polar set of columns was used: a HP-5 column (30 m x 0.32 mm I.D., 

0.25 µm film thickness, J&W Scientific Inc., Folsom, CA, USA) was used as first-dimension column 

and a DB-FFAP (0.79 m x 0.25 µm thickness, J&W Scientific Inc., Folsom, CA, USA) was used as 

second-dimension column. The carrier gas was helium at a constant flow rate of 3.0 cm3.min-1. 

The primary oven temperature was programmed from 50 °C (3 min) to 230 °C (10 min) at a 

heating rate of 10 °C.min-1. The secondary oven temperature was programmed from 70 °C (3 min) 

to 250 °C (10 min) at 10 °C.min-1. The MS transfer line temperature and the MS source 

temperature was 250 °C. The modulation time was 5 s, and the modulator temperature was kept 
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at 20 °C offset (above primary oven). The ToFMS was operated at a spectrum storage rate of     

100 spectra.s-1. The mass spectrometer was operated in the EI mode at 70 eV using a range of m/z 

33-500 and the voltage was -1626 V. Total ion chromatograms (TIC) were processed using the 

automated data processing software ChromaToF (LECO) at signal-to-noise threshold of 100. 

Contour plots were used to evaluate the separation general quality and for manual peak 

identification; a signal-to-noise threshold of 50 was used. Two commercial databases (Wiley 275 

and US National Institute of Science and Technology (NIST) V 2.0-Mainlib and Replib) were used. 

The majority (86%) of the identified products showed mass spectral similarity matches > 850. 

Furthermore, a manual inspection of the mass spectra was done, combined with the use of 

additional data, such as the retention index (RI) value, which was determined according to the 

Van den Dool and Kratz RI equation.37 For the determination of the RI, a C8-C20 n-alkanes series 

was used, and as some volatile compounds were eluted before C8, the solvent n-hexane was used 

as C6 standard. The experimentally calculated RI values were compared, when available, with 

values reported in the literature for similar chromatographic columns employed as the first 

dimension. The results were analysed qualitatively and thus the relative amounts of the products 

were not considered. 

In the case of the recovered humins in Chapter 8, the solid state 13C NMR spectrum was 

recorded at 11.75 T on a Bruker DRX 500 spectrometer operating at 125.76 MHz, using a 4 mm BL 

CP MAS VTN probe. The sample was spun at 9.0 kHz and the contact time was 8 ms.  
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3.1. Introduction 

 

 

Two of the most commonly studied types of microporous solid acids are zeolites 

(aluminosilicates) and silicoaluminophosphates (SAPOs), which are important aluminosilicate-

based zeolites.2-5 SAPOs can be briefly defined as molecular structures that consist of tetrahedral 

oxides of silicon, aluminium and phosphorous forming Si-O-Al, P-O-Al and Si-O-Si but no Si-O-P 

bonds.6 The discovery of SAPOs appeared through aluminophosphates (AlPO). The first report on 

aluminophosphates (AlPO) is dated from 1982 by Wilson.7,8 Since then, the synthesis of these 

materials has been widely studied and a wide range of these types of materials has been 

developed.9-11 Microporous AlPO structures have an alternation of Al3+ and P5+ ions. These ions 

can be isomorphically replaced by heteroatoms through substitution mechanisms (Figure 3.1). A 

typical mechanism is the replacement of Al3+ by a divalent metal leading to a negatively charged 

framework which is compensated by the organic cationic molecules that act as structure directing 

agents.9 However, Si4+ can also be incorporated in AlPO networks, giving origin to SAPOs in 

1984.7,12 The incorporation of silicon can be employed by two different substitution 

mechanisms:13,14 By substitution of phosphorous (SM2 substitution mechanism) or of an 

aluminium-phosporous pair (SM3 substitution mechanism, Figure 3.1).10,15 The SM2 mechanism 

consists of the substitution of P5+ for Si4+ in the AlPO4 frameworks leading to the appearance of a 

negative charge per each silicon ion which is balanced by the positive charge of the organic 

molecules inside the micropores, or protons at the Si-O-Al bridges (originating Brönsted acidity in 

the latter case).9,10 The SM2 mechanism gives an environment of a silicon atom surrounded by 

four aluminium atoms in the second coordination sphere (Si(OAl)4).
9 The amount of silicon 

incorporated via SM2 is limited and above certain silicon contents, both mechanisms occur.9,10,15 

The incorporation of two Si4+ occurs via the substitution of a pair of aluminium and phosphorous 

ions and no charge is formed. Due to the instability of Si-O-P bonds (based on a computational 

study on SAPO-5),16 this mechanism is always accompanied to a certain extent by SM2 which 

prevents the formation of those unstable bonds.9 Therefore the coexistence of the SM3 and SM2 

mechanisms is able to generate isolated pairs of silicon atoms with Si in Si (1Si3Al) and Si (1Si3P) 

configurations,17 leading to extended Si islands (silica domains) in the AlPO network, and various 

acid environments (Si(OAl)n(OSi)4-n (1<n<3)) located at the border of the Si island (in the interface 

between the islands and the Al-O-P framework). The size and concentration of the Si islands 

depend on the extension of SM3 to SM2;9 their formation is thermodynamically favoured because 
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high temperatures in SAPO molecular sieves promote a solid-state transformation due to the 

mobility of atoms (isolated silicon atoms migrate to form silicon islands in the framework).18 

Although a higher number of acid sites (AS) are generated through the SM2 mechanism, the SM3 

gives less amount but stronger AS that increase as the value of n in those environments decreases 

and as the island size increases.10,19 SM1 is another possible mechanism of silicon insertion which 

implies the substitution of aluminium for silicon, but it is not a favourable mechanism due to the 

formation of the unstable Si-O-P bridges.10  
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Figure  3.1-  SM1, SM2 and SM3 mechanism in the transformation of AlPOs to SAPOS [adapted 

from 10]. 

 

 

In terms of catalysis, the SAPO-type materials are considered to be middly acidic, since 

they are more acidic than the corresponding AlPO4 systems but less than acid zeolites.7 However, 

since the control of the acidity of these materials can be controlled by the different mechanisms, 

the acidity of SAPOs is sometimes considered to be more tuneable than that of zeolites,10,20 which 

is very desirable for designing new and efficient catalysts for specific reactions.21,22 The 
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introduction of silica into the aluminophosphate structure induces ion exchange capacity and 

catalytic activity.23 Therefore SAPOs are acid catalysts with very interesting properties and 

potential industrial applications. They have already been investigated in the isomerisation of 

xylene,24-26 transalkylation,27 isomerisation of 1-pentene,28 isopropylation of benzene,29 methanol-

to-hydrocarbons reaction,30 and to olefins (MTO),31-33  n-alkane cracking and hydrocracking,20,21 

oligomerisation of propylene,34 oxidative dehydrogenation of alkanes,17 transformation of 

alkanes,35-37 and other complex hydrocarbon transformations.38  

In a study of zeolites with different framework types (BEA, FAU, MFI and MOR) as 

catalysts for the dehydration of monosaccharides, favourable shape selective effects were 

reported for H-Mordenite (MOR), which possesses sufficiently large channels (6.5x7.0 Å) running 

in one direction.39,40 Besides, it is known that the size control of SAPOs is crucial to improve the 

catalytic activity and lifetime of the catalysts.11,41 These findings were relevant to screen the 

catalytic performance of SAPOs containing medium or large pore channels, namely SAPO-5, SAPO-

11 and SAPO-40, in the dehydration of Xyl to Fur. 

 

 

3.1.1. SAPO-5 

 

  

The numbering of structure types of SAPO is done according to the numbering of their 

corresponding non-silicon substituted AlPO4 structure. Therefore, SAPO-5 possesses the topology 

of AlPO4-5 with the same framework structure,26,42 which is of AFI type with a hexagonal 

symmetry and 1 D channels (according to the International Zeolite Association, Figure 3.2).43-45 

The AFI framework is composed of aluminium, phosporous and oxygen.46 SAPO-5 is obtained by 

replacing at least two phosphorous atoms per unit cell in the AFI framework,26,47,48 being 

composed of alternating four and six-membered rings (4-MR and 6-MR) as secondary building 

units with a P6cc space group (which is a space group characteristic of hexagonal crystal systems  

with a C6v point group that has 6 fold rotation axis and 6 minor vertical plane groups m containing 

the axis of rotation).21 The pore system consists of non-connected parallel channels of 12-MR 

(interconnected by 6-ring windows).26,42 Furthermore, in SAPO-5 each 12-MR channel is circular 

with pore openings of (7.3x7.3 Å).42 Accordingly to IUPAC, 12-MR pore apertures, SAPO-5 

possesses a large pore structure.49-51  
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Figure 3.2- AFI framework type viewed along [001]

 

 

3.1.2. SAPO-11 

 

 

SAPO-11 has medium pores

pore structure and possesses the topology of AlPO

the International Zeolite Association

ring-six-ring-four-ring (S6R-S6R

non-intersecting 10-MR channels

(6.4x4.4 Å).26 The Brönsted acid sites (B)

mainly inside the 10-MR channels

are connected to each other 

Al and Al to P.1   

 

Figure 3.3- AEL framework type viewed along [001]
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SAPO-11 can be found with different crystal sizes by controlling the aging time and 

temperature. The formation of crystal nuclei 

aging pre-treatment of the synthesis gel 

temperature of SAPO-11 to form a large number of nuclei with a longer time. 

preferred because short aging times lead to impure SAPO

time only gives big pseudo-sp

molecular sieves.11,54 Final products

obtained during the aging process

composition and structure of the initial gel, because the nucleation of molecular sieves and the 

growth of crystals are affected.

 
 

3.1.3. SAPO-40 

 

 

SAPO-40 was synthesis

framework topology (according 

established by crystallographic me

structure with two types of intersecting

channels parallel to the y-axis.

openings of 6.7x6.9 Å and 3.

direction (Figure 3.4).44,55,58 SAPO

The acidity of SAPO-40 is related to the content and distribution of the silicon in the framework.
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HMOR

Figure 3.4- AFR framework type viewed along [001]
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11 can be found with different crystal sizes by controlling the aging time and 

temperatures; therefore the 

employed below the normal crystallisation 

11 to form a large number of nuclei with a longer time.  Longer time is 

11. On the other hand, longer aging 

gates, leading to small crystal size of SAPO-11 
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3.2. Results and discussion 

 

3.2.1. Catalyst characterisation 

 

 

In this Chapter SAPO-5, SAPO-11a, SAPO-11b and SAPO-40 materials were prepared 

following the procedures reported in the literature (Chapter 2). SAPO-5 was prepared as 

described by Weyda et al.,48 using a mixture of an aluminophosphate gel, a gel containing the 

silica source and TPA as organic template. SAPO-11a and SAPO-11b were prepared by 

hydrothermal crystallisation according to the procedures described earlier, using pseudobohemite 

aluminium, orthophosporic acid  and silica as source of aluminium, phosphorous and silicon 

respectively and  MA and DPA as templates (for SAPO-11b) or only DPA (for SAPO 11a).3,59,60 

SAPO-40 was prepared using pseudoboehmite alumina, orthophosphoric acid and fumed silica as 

aluminium, phosphorous and silicon sources as reported in the literature.3,61-63 

The chemical formulae of the four samples (SAPO-5, SAPO-11a, SAPO-11b and SAPO-40) 

are given in Table 3.1 (based on ICP-AES measurements). 

 

Table 3.1- Structural and textural properties of the SAPOs samples. 

Sample Formula SBET 
a

 

(m
2
.g

-1
) 

SEXT 
b 

(m
2
.g

-1
) 

Vmicro 
c 

(cm
3
.g

-1
) 

Particle size 

(µµµµm) 

SAPO-5 Al0.49P0.47 Si0.04O2 312 25 0.13 - 

SAPO-11a Al0.45P0.42 Si0.13O2 274 43 0.10 1-5  

SAPO-11b Al0.49P0.471Si0.10O2 241 43 0.08 20-30 

SAPO-40 Al0.46P0.471Si0.07O2 670 60 0.27 - 
a) SBET was estimated from the N2 isotherms. b) SEXT obtained using the t-plot method. c) Vmicro obtained using the t-plot method. 

 

 

Figure 3.5 shows the powder XRD patterns for the as-synthesised and calcined SAPO-5, 

SAPO-11 and SAPO-40 samples. The XRD patterns of the as-synthesised materials are identical to 

those reported in the literature,3,8 and confirmed by others for SAPO-5,9,21,22,26,37,38,47,64-70 SAPO-

11,6,26,37,64,65,71-74 and SAPO-40.56,57,62,75,76  
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Figure 3.5- Powder XRD patterns of the fresh and used SAPO materials. 

 

 

The textural properties of SAPOs were determined by nitrogen adsorption measurements 

at -196 °C and are collected in Table 3.1 and Figure 3.6. The adsorption isotherms of SAPO 

samples were of type I, which is characteristic of microporous materials.77-81 An increase in 

adsorbed N2 is observed at very low values of relative pressures (p/p0 < 0.01) which is associated 

with the micropores filling mechanism.77-82 As relative pressure approached unity a gradual 

increase in N2 uptake was observed, possibly due to multi-layer adsorption in intercrystallite void 

spaces. The textural properties of the SAPOs are in agreement with literature data, such as  Vmicro 

(0.09-0.14 cm3.g-1),9,64,67,68,83,84  SBET (325-359 m2.g-1),21,66,67 for SAPO-5, and Vmicro (0.09 cm3.g-1),64,85 

SBET (235-263 m2.g-1)11,64,71,85 for both SAPOs 11. Although Danilina et al.67 reported a similar SBET 

(325 m2.g-1) and Vmicro (0.10 cm3.g-1) for SAPO-5, a higher SEXT was detected (93 m2.g-1) probably 

due to the presence of mesoporous domains (Vmeso=0.12 cm3.g-1). Rather smaller specific surface 

areas (SBET=141-182 m2.g-1) were obtained for SAPO-5,22,26 and for SAPO-11 (SBET=140-                 

208 m2.g-1),26,74,86 which might be correlated with the lower acid properties it revealed, which will 

be discussed in the next Section.86  
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Figure 3.6- N2 adsorption-desorption isotherms measured at -196 °C curves for SAPO-5 (orange), 

SAPO-11a (green), SAPO-11b (red) and SAPO-40 (blue). 

 

 

SEM images of these samples are shown in Figure 3.7.  Both SAPO-11 samples exhibited 

pseudospherical aggregates: SAPO-11b, prepared using a methylamine (MA)-based procedure, 

possessed aggregates with sizes between 20 and 30 µm, while SAPO-11a prepared using the    

MA-free procedure possessed smaller aggregates in the range 1-5 µm. These results are 

consistent with those reported for SAPO-11 materials prepared using the same 

procedure.64,65,71,74,85,87,88 Hexagonal prism-shaped crystals of size 3-10 µm were observed for   

SAPO-5, prepared with tripropylamine (TPA) as template and characteristic of AlPO4 with an AFI 

topology (similar to that previously observed using as template dipropylamine (DPA),22 DPA in 

ethylene glycol,26 or triethylamine (TEA)84). The same morphology was obtained by other authors 

for SAPO-5 although with some differences in the crystal sizes (40 µm) using TPA,64 or 15-20 µm 

using diethylamine (DEA).21 Although the organic template was not necessarily always the same, 

the syntheses of SAPO-5 in the mentioned works were similar and all involved hydrothermal 

treatment. Other morphologies have been obtained for SAPO-5 when applying different 

conditions, such as spherical aggregates of small crystals (with benzyl pyrrolidine and mixtures of 

it with TEA as structure directing agents),9 or rod-shaped crystals (using eutectic mixtures based 

on pentaerythritol and choline chloride as reaction medium by MW).68  Spherical shapes were 

obtained by other authors when employing synthetic procedures similar to those used in the 
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present work (with TPA as template).65,66  Flat tabular crystals of length 2-10 µm were observed 

for SAPO-40, in agreement with the literature.55,89,90   

 

 
Figure 3.7- SEM images of the SAPO materials. 

 

 

The introduction of silicon atoms into the framework of AlPO4 induces Brönsted 

acidity.21,38 The acid strength is governed by the occupation of Al, Si and P atoms of the first and 

second shell of tetrahedral atoms around a central Si atom, their electronegativity and 

connectivity of tetrahedral units.19,91 It depends on many factors such as, bond angles, bond 

lengths and electrostatic potential around the AS and within the cages.10 The acid strength tends 

to increase with the amount of Si in the first shell and the amount of P in the second. The 

presence of Si islands also leads to the formation of stronger AS by forming Si(nAl) species (n < 4) 

at the borders of the islands.10 

The acid properties of solid acids can be measured by pyridine adsorption followed by    

FT-IR, allowing the determination of Brönsted and Lewis acid concentrations ([B] and [L] 

respectively).92,93 The [B] is calculated by integrating the peak area of the band at 1545 cm-1 (C-N 

stretching)  that results from adsorbed pyridinium ions (Hpy+) formed by adsorption of pyridine 

on Brönsted acid sites (B).94-111 The area of the band at 1450 cm-1 is attributed to the vibration of 

the physical adsorbed pyridine complex formed by pyridine interactions with Lewis acid sites (L), 
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and is used to determine the [L].95 The [B] and [L] were determined through equations 3.1 and 

3.2, respectively. 

   

                                                      �B� =
����	× �

 	× �
                                                                 (3.1) 

      

                                                      �L� =
�����× �

� ×�
                                                                  (3.2) 

 

in which AAbsB and AAbsL are the absorbances areas of Brönsted and Lewis respectively, ƐB and ƐL 

are the Brönsted and Lewis extinction coefficients, S is the surface area of the self-supported 

sample discs given by equation 3.3, and m is the mass of the sample used in the pyridine 

adsorption technique.   

 

                                                             S = πr�                                                                          (3.3) 

 

in which the diameter of the discs is 1.6 cm. 

 

The molar absorption coefficients of the infrared absorption bands of pyridine adsorbed 

on acid sites in Si/Al-based catalysts were set equal to those determined for zeolites by Emeis.112  

In that study the infrared spectra of the zeolites were recorded during quantitative dosing of 

pyridine gas at 150 °C. The resulting values were 1.67 cm.µmol-1 for the 1545 cm-1 B band and  

2.22 cm.µmol-1 for the 1455 cm-1 L band. Since there was no evidence that these integrated molar 

coefficients were dependent on the catalyst or the strength of the acid sites, these values could 

be adopted herein.                                 

The quantitative variation of [B] and [L] in the zeotypes (SAPOs) after gas phase pyridine 

adsorption was analysed through the ratio shown in equation 3.4 and the amounts of AS in SAPOs 

are given in Table 3.2.  

 

                                                         
���

���
= 

����	/	

�����/�
                                                                    (3.4) 

 

All prepared samples showed both B and L, confirmed by their interaction with pyridine 

after outgassing at 150 °C. The total acidity was around 120 µmol.g-1 for SAPO-5 (similar to that 

described in previous works)22 and SAPO-11 samples, and 459 µmol.g-1 for SAPO-40. However, 
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whereas [B] increased greatly on going from SAPO-5 and SAPO-11 to SAPO-40, [L] decreased. 

Although L are probably due to defective framework and/or extra-framework aluminium species, 

the possibility that L may arise from changes in the coordination of framework aluminium atoms 

upon interaction with the basic probe cannot be excluded.113  At 350 °C, pyridine desorbed more 

easily from the B than from the L. Thus, the ratio moderate+strong to total B (based on 

[B]350/[B]150) was in the range of 0.07-0.19 for all the four materials, indicating that most of the AS 

were of a rather weak nature. The weak Brönsted acidity is in agreement with previous studies for 

SAPO-11,65,72-74,86 SAPO-521,66 and SAPO-40,58 although stronger B have been determined for SAPO-

40,75,56,57 SAPO-5,37,38,65 and SAPO-11.71 The L ratio [L]350/[L]150 was nearly 0.5 for the SAPO-5 and 

SAPO-11 samples, and unity for SAPO-40.  

 

Table 3.2- Acid properties of SAPOs measured by FT-IR of adsorbed pyridine. 

Sample 

 
[L]+[B] 

(µµµµmol.g
-1

) 
a 

[B]  

(µµµµmol.g
-1

) 
b 

[L]  

(µµµµmol.g
-1

) 
c 

[L]/[B] [L]350/[L]150 
d, e [B]350/[B]150 

d,
 
e 

SAPO-5 124 78 46 0.58 0.48 0.07 

SAPO-11a 119 52 67 1.30 0.45 0.12 

SAPO-11b 111 75 36 0.48 0.46 0.19 

SAPO-40 459 452 7 0.01 1 0.12 
a) Concentration of total acid sites measured at 150 °C. b) Concentration of Brönsted acid sites. c) Concentration of Lewis acid site.     
d) Concentration of acid sites ratio quantified after desorption of pyridine at 150 °C ([L]150, [B]150). c) Concentration of acid sites ratio 
quantified after desorption of pyridine at 350 °C ([L]350, [B]350). 

 

 

3.2.2. Catalytic dehydration of D-xylose 

 

3.2.2.1. Catalytic performance of SAPOs  

 

  

In the conversion of D-xylose (Xyl) to 2-Furaldehyde (Fur), three water molecules are 

formed per molecule of Fur formed as discussed in Chapter 1 (Figure 3.8). 
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Figure 3.8- Simplified representation of the dehydration of D-xylose (Xyl) to 2-furaldehyde (Fur). 

 

 

The reaction of Xyl at 170 °C in the presence of SAPO samples and under biphasic water 

(Wt) and toluene (Tol) conditions gave 58-65% SFur at 100% CXyl reached within 16-24 h (Figures 

3.9 and 3.10, Table 3.3). In the case of the SAPO-11 samples, the higher YFur (at 100% CXyl) was 

reached for the sample possessing smaller particle sizes and higher L/B ratio (Table 3.2).  Usually 

higher catalytic activity correlated with higher total acidity. An exception is SAPO-40 which was 

essentially a Brönsted acid catalyst and possessed the highest total acidity, which did not 

correlate with its lower catalytic activity compared to the remaining SAPO samples, possibly due 

to differences in pore structure and surface polarity (competitive adsorption effects) and rate of 

catalyst deactivation by coking (catalyst surface passivation and partial pore blockage).  A similar 

63% YFur was reported for the aqueous-phase reaction of Xyl (with an initial concentration of    

0.05 M) in the presence of 0.03 M of H2SO4 at 250 °C.114 Under similar reaction conditions to those 

used in the present study, H2SO4 (0.03 M) gave 2% SFur at 98% CXyl within 4 h of reaction. For SAPO 

samples, factors which may favour Fur production are shape selectivity, acid properties (e.g. L/B 

ratio, discussed in the previous Section) and competitive adsorption effects. The reaction in the 

presence of the SAPO-11 samples gave YFur of 34-38% at 4 h of reaction, which are comparable 

with that obtained for the H-Mordenite zeolite with Si/Al ≈ 6 (34% YFur at 4 h), under similar 

conditions.115 The catalytic results for SAPOs were fairly good compared with those for other solid 

acids tested previously as catalysts in the same reaction under similar conditions (Table 3.3).115-119 
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Table 3.3- Catalytic results for the SAPOs samples for the conversion of D-xylose (Xyl) to                

2-furaldehyde (Fur) and comparison with literature data for other solid acid catalysts tested under 

similar conditions.  

Sample Reaction 

time (h) 
Temperature 

(°C) 
CXyl (%) 

d YFur (%) 
e Ref 

SAPO-5 
a 6/24 170 50/99 27/62 this work 

SAPO-11a 
a 4/16 170 78/100 34/65 this work 

SAPO-11b 
a 4/16 170 68/100 38/61 this work 

SAPO-40 
a 6/24 170 49/100 29/58 this work 

H-Mordenite 4 170 - 34 115 

MSAZ  
b 4 160 95 39 116 

MCM-41-SO3H 24 160 72 69 117 

del-Nu -6 6 170 87 46 115 

H-Nu-6 6/24 170 88/98 28/52 115 

H-AM-11  6 160 85 46 118 

e-H-AM-11
 c 6 160 85 39 118 

Nb-50-MCM-41  6 160 99 39 118 

e-Nb-50-MCM-41 
c 6 160 92 39 118 

Al-MCM-41 6 160 96 47 119 
a) Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 20 gcat.dm-3, 0.67 M Xyl. b) Alumina modified mesoporous sulfated 
zirconia. c) Microporous (e-H-AM-11) and mesoporous (e-Nb-50-MCM-41) niobium silicates prepared by ion-exchange method 
(denoted “e-“). d) Conversion of D-xylose (CXyl). e) Yield of 2-furaldehyde (YFur). 

 
 

 
 
Figure 3.9- Kinetic profile of the D-xylose (Xyl) reaction in the presence of SAPO-5 (−), SAPO-11a 

(▲), SAPO-11b (●) and SAPO-40 (♦). Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent 

system, 170 °C, 600 r.p.m, 20 gcat.dm-3,0.67 M Xyl. 
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Figure 3.10- Kinetic profile of the dependence of the selectivity of 2-furaldehyde (SFur) on 

conversion of D-xylose (CXyl), in the presence of SAPO-5 (−), SAPO-11a (▲), SAPO-11b (●) and 

SAPO-40 (♦). Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 170 °C, 600 r.p.m, 

20 gcat.dm-3, 0.67 M Xyl. 

 

 

The materials used in this work have different crystalline structures: SAPO-5 (AFI 

structure) and SAPO-11 (AEL structure) that consist of 1 D channel systems with pore openings of 

7.3x7.3 Å and 6.4x4.4 Å, respectively, while SAPO-40 with the AFR structure consists of a 2 D 

channel system with pore openings of 6.7x6.9 Å and 3.7x3.7 Å. In the liquid phase the solute 

diffuses as a solute-solvent assemblage and catalyst-solvent interactions may reduce the effective 

diffusivity of Xyl within the liquid-filled pores of the SAPO materials. On the other hand, diffusivity 

depends on factors such as reaction temperature and viscosity of the fluid, and diffusion may be 

facilitated at higher temperatures. The molecular diameters (along the longest axis) of Xyl and Fur 

are 6.8 and 5.7 Å, respectively.120 Considering that the “catalytic pore sizes” of zeolites are often 

found to exceed the crystallographic ones (by as much as 2 Å in the case of H-Mordenite, for 

example),121 the Xyl molecules may be able to diffuse into the channels of all three framework 

types, under the reaction conditions used for catalysis. Indeed, according to literature, the critical 

diameter (longest axis) of 8.6 Å in the D-glucose molecule is able to diffuse into the water filled 

7.4 Å H-Y zeolite pore,122 even though in theory it is too large to enter in the H-Y zeolite. Besides 

the size of the solute (that affect its diffusion through the pores), other factors must be taken into 
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consideration, such as the structure of the substrate

and at 30 °C  approximates 

Deen et al.123 showed that branched and spherical polysaccharides

membranes than linear polysaccharides

D-glucose could deform and become sma

to penetrate into the intracrystalline matrix. 

and β anomers of D-glucose in aqueous solutions proceeds thro

another possibility is the presence

acyclic 1,2-enediol which can 

100 °C)124 and thus is able to penetrate into the 7.4 Å H

Smaller crystallite particle sizes may enhance the overall reaction rate 

number of accessible AS and decreasing the intracrystalline diffusion path length

existence of such effects, the catalytic activities of two SAPO

particle sizes have been compared.

SAPO-11b (20-30 µm) were roughly coincident 

11a and SAPO-11b solids did not show significant morphological changes (Figure 3.11, exemplified 

for SAPO-11a). These results suggest

It was noticeable that the similar reaction rate correlate

for conversions up to about 75%, the 

for SAPO-11a (Figure 3.10). 

differences in the L/B ratio (Table 3.2). 

strengths between the SAPO

double that of SAPO-11b, and the amount of B detected for SAPO

SAPO-11a.  

 

Figure 3.11- SEM images of SAPO
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tructure of the substrate. The form of the D-glucose 

that of a sphere due to its polarity and equal equatorial leng

showed that branched and spherical polysaccharides diffused faster through tracked 

than linear polysaccharides. Netrabukkana et al.122 thought that the cyclic ring of 

cose could deform and become smaller when interacting with the pore opening, allowing it 

to penetrate into the intracrystalline matrix. Since it is established that equilibrium between the 

glucose in aqueous solutions proceeds through an acyclic intermediate

is the presence of H-Y to favour ring-opening of D-glucose into the unstable 

enediol which can diffuse through the pore (possibly only at 

e to penetrate into the 7.4 Å H-Y zeolite pore.122 

Smaller crystallite particle sizes may enhance the overall reaction rate 

and decreasing the intracrystalline diffusion path length

existence of such effects, the catalytic activities of two SAPO-11 materials possessing different 

particle sizes have been compared. The conversion versus time curves for SAPO

roughly coincident (Figure 3.9). SEM images for the recovered SAPO

11b solids did not show significant morphological changes (Figure 3.11, exemplified 

These results suggested that the overall reaction is not strongly dif

noticeable that the similar reaction rate correlated with the similar total acidity,

for conversions up to about 75%, the Fur selectivities were somewhat higher for 

 The differences in the Fur selectivities may be partly due to the 

s in the L/B ratio (Table 3.2). While there were no major differences in terms of acid 

strengths between the SAPO-11 samples, the number of L detected for SAPO

11b, and the amount of B detected for SAPO-11b was ca. 1.5 times that for 

SEM images of SAPO-11a fresh and after catalysis. 
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lucose molecule in water 

and equal equatorial lengths.122 

diffused faster through tracked 

thought that the cyclic ring of      

when interacting with the pore opening, allowing it 

Since it is established that equilibrium between the α 

ugh an acyclic intermediate,122 

glucose into the unstable 

 temperatures above     

Smaller crystallite particle sizes may enhance the overall reaction rate by increasing the 

and decreasing the intracrystalline diffusion path lengths. To probe the 

11 materials possessing different 

The conversion versus time curves for SAPO-11a (1-5 µm) and 

SEM images for the recovered SAPO-

11b solids did not show significant morphological changes (Figure 3.11, exemplified 

that the overall reaction is not strongly diffusion limited.  

with the similar total acidity,125 and that 

somewhat higher for SAPO-11b than 

selectivities may be partly due to the 

no major differences in terms of acid 

SAPO-11a was nearly 

ca. 1.5 times that for 
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In the reaction temperature range of 160-180 °C, the reaction rates (based on conversions 

at 2 and 4 h) increased with the temperature and the two SAPO-11 materials gave comparable 

conversions (Table 3.4). Similar to that observed for 170 °C, when the reaction is carried out at 

160 °C or 180 °C, the Fur selectivities at similar conversions of Xyl were somewhat higher for 

SAPO-11b than for SAPO-11a.  

 

Table 3.4- Reaction of D-xylose (Xyl) in the presence of SAPOs-11, at 160-180 °C.a) 

Samples Temperature (°C) CXyl (%) 
b 

at 2 h/4 h reaction 
SFur (%) 

c 
at 2 h/4 h reaction 

SAPO-11a 160 29/46 31/50 

170 49/74 33/48 

180 76/99 26/42 

SAPO-11b 160 26/49 47/58 

170 46/69 40/55 

180 73/96 36/53 
a) Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 170 °C, 600 r.p.m, 20 gcat.dm-3, 0.67 M Xyl. c) Conversion of           
D-xylose (CXyl). c) Selectivity of 2-furaldehyde (SFur). 

 

 

The SAPO-11b and SAPO-5 samples exhibited comparable textural and acid properties, 

but the reaction was slower for SAPO-5 (Figure 3.9). When calculated on the basis of the surface 

area, the reaction rates (mmol.h-1.mcat
-2) after 30 min and after 4 h of reaction followed the order 

(rates at 30 min; 4 h): SAPO-5 (0.13; 0.06) < SAPO-11a (0.41; 0.13)≈ SAPO-11b (0.46; 0.14). As 

could be expected (since the specific surface areas were comparable), a similar trend was 

observed for rates calculated at the same time points on the basis of the catalyst mass       

(µmol.h-1.gcat
-1): SAPO-5 (41; 17) < SAPO-11a (111; 37) ≈ SAPO-11b (111; 35). Although SAPO-40 

possessed the highest total acidity and the highest number of moderate+strong AS (those 

retaining pyridine at 350 °C), as well as the highest SBET, SEXT  and Vmicro, the reaction rate (on the 

basis of  the mass of catalyst) was comparable with that observed for SAPO-5. Given the 

complexity of the catalytic systems it is difficult to correlate the different reaction rates with the 

strengths and densities of the AS for the different framework structures, and it is thus preferable 

to restrict the correlations to a specific structure type, as discussed above for SAPO-11. 

The observed increase in the Fur selectivity with conversion for all the catalysts has been 

noted with other solid acid catalysts (exfoliated nanosheets,125 layered zeolite Nu-6(1),115 micro 

and mesoporous sulfonic acids,117 micro and mesoporous niobium silicates,118  mesoporous silica 

supported catalysts,126 modified sulfated zirconium116). The complex reaction mechanism of the 

conversion of Xyl to Fur involves a series of elementary steps, and the primary step of the reaction 
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of Xyl is possibly not rate limiting.114,127 On the other hand, the influence of competitive 

adsorption effects and changes in the surface properties of the catalysts during the reaction 

cannot be ruled out. 

 

 

3.2.2.2. Catalyst stability 

 

 

The SFur was always less than 100% (until 100% CXyl) and the originally white powders 

turned light brown during the reactions. No by-products were detected by gas (GC-MS of the 

toluene phase) or liquid (with a differential refractive index detector and an UV diode-array 

detection mode for the aqueous phase) chromatography, possibly because they were essentially 

insoluble and “non-volatile” organic compounds which were responsible for the brown colour. For 

the SAPO-11 materials the amount of this insoluble matter formed after 16 h reaction was 

estimated by removing all solids from the reaction medium by centrifugation, washing with 

methanol and a 50% v/v mixture of water and ethanol, drying at 65 °C and subsequently weighing 

and subtracting from the initial amount of catalyst. The “excess” weight corresponded to ca. 20 

wt.% of the initial amount of Xyl. Using this result, the material mass balance nearly closed: (wt.% 

solid by-products)+ (wt.% YFur)= (20 wt.%) + (39-42 wt.%)=59-61 wt.% Fur, compared with the     

64 wt.% theoretical yield. 

Differential scanning calorimetry (DSC) analyses of the fresh and used solids showed 

endothermic bands below 200 °C assigned to physisorbed water and volatiles. Above 200 °C, all 

the used catalysts exhibited exothermic bands not presented by the original catalysts (Figure 3.12 

represents the curves for the two SAPO-11 samples).A small exothermic curve at ca. 330 °C 

appears for the unused catalysts (two SAPO-11 samples) which may be due to organic template 

which was not completely removed during the preparation procedures. TGA analyses of used 

catalysts in the temperature range of 200-550 °C indicated weight losses of 2.8-5.1%, confirming 

the presence of organic by-products in the washed and dried solids. The specific surface areas of 

the used/washed/dried SAPO-11 materials decreased significantly by a factor of ca.12. When the 

washed/dried SAPO-11a was used in a second run of the Xyl reaction, the YFur at 4 h decreased ca. 

10%.  Hence, the efficient regeneration of the SAPOs required removal of the organic matter, 

which may be accomplished by thermal treatment under air to promote the complete oxidation 

of the carbonaceous matter.  
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Figure 3.12- DSC curves for the two SAPO-11 samples, fresh and after 4 h of reaction: SAPO-11a 

fresh (pink); SAPO-11a recovered (red); SAPO-11b fresh (green); SAPO-11b recovered (blue). 

Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 170 °C, 20 gcat.dm-3, 0.67 M Xyl. 

 

 

The stability of the catalysts was further investigated by applying a thermal treatment     

(1 °C.min-1 until 450 °C for 3 h, under air) after washing/drying the materials and prior to their 

reuse; three consecutive 4 h batch runs were performed for each sample. No significant decrease 

in the yield of Fur and in the conversion of Xyl was observed for any of the samples in the three 

consecutive runs (Figures 3.13 and 3.14 respectively). The powder XRD patterns of the fresh and 

recovered catalysts were quite similar indicating that the respective crystalline structures are 

preserved (Figure 3.5). ICP-AES analyses for the recovered SAPO-5, SAPO-11b and SAPO-40 

samples showed no decrease in Si, P or Al contents (experimental error: ca. 10%). Hence the SAPO 

solid acids seem to be fairly stable under the reaction conditions used. 
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Figure 3.13- Yields of 2-furaldehyde (YFur) in recycling runs in the presence of the SAPOs samples 

(4 h, 170 °C): Run 1-black bar, run 2-orange bar, run 3-green bar. Reaction conditions used: 0.3 

Wt:0.7 Tol (v/v) biphasic solvent system, 170 °C, 20 gcat.dm-3, 0.67 M Xyl. 

 

  

Figure 3.14- Conversions of D-xylose (CXyl) in recycling runs in the presence of the SAPOs samples 

(4 h, 170 °C): Run 1-black bar, run 2-orange bar, run 3- green bar. Reaction conditions: 0.3 Wt:0.7 

Tol (v/v) biphasic solvent system, 170 °C, 20 gcat.dm-3, 0.67 M Xyl. 
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3.3. Conclusions 

 

 

In this work it has been demonstrated that medium pore and large pore SAPO molecular 

sieves can be used as recyclable solid acids for the dehydration of Xyl into Fur under aqueous-

organic biphasic conditions. The similar reaction rate for the SAPO-11 materials correlated with 

the similar total acidity, and the differences in Fur selectivities may be partly due to the difference 

in the L/B ratio. Although the SAPO-11 system seems to be the most promising in this study 

(giving YFur at 4 h of 34-38%, comparable with the H-Mordenite zeolite with Si/Al ≈ 6), it is possible 

that others exhibit superior catalytic performances. On the other hand, for a specific SAPO 

material, the catalytic performance may be fine-tuned, based on detailed systematic 

investigations of the effects of the preparation method, crystallinity, morphology, silicon content 

and acidity on the catalytic performances: these studies may also provide insights into the factors 

that influence the target versus undesired reaction pathways (selectivity). When compared with 

other solid acids investigated previously (namely Nb-MCM-41,118 cesium salts of 12-

tungstophosphoric acid and mesoporous silica-supported 12-tungstophosphoric acid,126,128 bulk 

and mesostructured sulfated zirconium,116 the investigated SAPO materials presented superior 

stability towards leaching (were more water-tolerant) when tested in the same reaction under 

comparable reaction conditions. When moving from monosaccharides to (bulkier molecules) 

di/polysaccharides as substrates, diffusion inside the microporous may be severely hindered. In 

this sense, the use of mesoporous solid acids as catalysts for the conversion of saccharides to 

furanic aldehydes may be preferable. 
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4.1. Introduction 

 

 

Of the studied catalysts, microporous zeolites or zeotype materials (such as the SAPOs 

samples studied in the previous Chapter) are quite promising.2-5 However, the transformation of 

relatively bulky saccharides may be hindered in a microporous structure because the accessibility 

of the pores is limited to small molecules. Hence there was an increased interest in obtaining 

molecular sieves with larger pore sizes and the use of mesoporous aluminosilicates may be 

preferable.6  The discovery of nanostructured mesoporous materials (M41S) came about with the 

introduction of supramolecular assemblies as templating agents by Mobil Oil researchers.7-9 The 

so-called M41S materials possess high specific surface areas and pore volumes with a uniform and 

ordered arrangement of mesopores, and controllable pore size distributions between 2 and        

10 nm and the pore walls are made of amorphous silica.9 These features make them interesting 

candidates as catalysts or catalyst supports.  

 The first synthesis of a mesoporous silicate with a regular arrangement of pores was 

obtained in 1992 by the Mobil Oil Corporation.9 This material is known as MCM-41 (Mobil 

Composition of Matter number 41). It has an ordered mesostructure with 1 D hexagonal porous 

arrangement. It is the most widely studied of the M41S family of materials (Figure 4.1). Many 

other types of mesoporous materials have since then been described, such as cubic MCM-48 

(Figure 4.2).  

 

 

                                                                                 A 

Figure 4.1- Representative structure of MCM-41.10
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                                                                                   B  
 
Figure 4.2- Representative structure of MCM-48.11                                                                  
 

 

The choice of the organic template is a key step in the synthesis of porous materials. In 

the case of mesoporous oxides it usually consists of supramolecular arrays such as micellar 

systems formed by surfactants or block copolymers as structure-directing agents.8,9  Economic 

and environmental concerns have motivated the search for low-cost and non-surfactant 

templating routes to mesoporous materials. An important discovery was the straightforward 

synthesis of the 3 D mesoporous (siliceous) oxide TUD-1 (Technische Universital Delft), which was 

firstly synthesised by Shan et al.12 in 2000.  

TUD-1 can be synthesised using a silica source, water and a small and non-surfactant 

organic template (either triethanolamine (TENA) or tetraethyleneglycol as organic templates).13 

The synthesis involves the polycondensation of inorganic species upon a temperature increase. 

Care must be taken regarding the intermolecular interaction among organic templates and 

inorganic species in order to have a successful formation of mesopores. For this purpose, the type 

of template must match with the temperature range used.14  Jansen et al.14 characterised TUD-1 

as a well-defined porous material with a pore size distribution (25-250 Å in diameter), 3 D 

connectivities with a sponge-like or worm-like pore structure, high specific surface area (ca.     

1000 m2.g-1) and high thermal and hydrothermal stability (at least until 1000 °C for 2 h). These 

features allow the access of bulky reagents to active acid sites (AS) and make TUD-1 a promising 

material for catalytic applications.13 The high specific surface area, pore volume and pore width of 

TUD-1 and related materials coupled with the 3 D mesoporous channel system, may facilitate a 
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relatively faster diffusion of molecules inside the channels, compared to 1 D pore systems in 

materials such as MCM-41.8  

The purely siliceous TUD-1 may be furnished with Brönsted (B) and Lewis (L) acidity 

and/or redox properties by the incorporation of different metals into the framework,15 via a     

one-pot procedure based on the sol-gel technique.16-21 Some examples of such materials are: 

titanosilica (Ti-TUD-1),22-28 Co-TUD-1,23,29-34 Zr-TUD-1,20,35-37 Al-TUD-1,16-18,20,21,37-40 Cu-TUD-1,41  Fe-

TUD-1,23,31,42-44 Cr-TUD-1,23,45 Mn-TUD-1,46,47  Mo-TUD-1,48 V-TUD-1,49,50 Hf-TUD-1,51 Ga-TUD-1,52,53 

Pd-TUD-1,54 and Ce-TUD-1,55  or yet bimetallic incorporation, such as Al-Zr-TUD-1.15 The high 

degree of framework incorporation is due to the use of a TENA in the synthesis of TUD-1, forming 

atrane complexes with different metals (M) which guarantees the incorporation as isolated 

metals instead of metal oxide clusters.15,48 Different metals acted similarly in the synthesis of 

several M-TUD-1 (M=metal).15-18,20-55  In this Chapter, aluminium-containing mesoporous TUD-1 

(denoted as Al-TUD-1) was investigated as a solid acid catalyst in the acid-catalysed conversion of 

saccharides to Fur and Hmf, at 170 °C. The substrates used were D-xylose, D-fructose and             

D-glucose as typical monosaccharides, D-sucrose and D-cellobiose as examples of disaccharides, 

and D-xylan (a polymer composed mainly of D-xylose units) and inulin (a polymer of D-fructose 

units) as polysaccharides. 

 

 

4.2. Results and discussion 

 

4.2.1. Catalyst characterisation 

 

 

In this Chapter Al-TUD-1 was synthesised as reported previously by Simons et al.18, using 

aluminium(III) isopropoxide and tetraethylorthosilicate (TEOS) as aluminium and silicon sources, 

respectively, and using TENA as organic templating agent (Chapter 2).  

Elemental composition and textural properties of the prepared Al-TUD-1 are given in 

Table 4.1. After calcination, ICP-AES analysis indicated a Si/Al ratio of 21 for Al-TUD, which is close 

to the ratio of 25 used in the synthesis gel. 

The powder X-ray diffraction (XRD) pattern obtained for Al-TUD-1 is characterised by the 

presence of a broad peak in the low angle region (around 1.4° 2θ). At higher angles the pattern 
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exhibited only a very broad peak centred around 24° 2θ (Figure 4.3), indicating that the material is 

amorphous,37 but had characteristics of a mesostructured material.14,16-18,21,22,29-31,35-38,44 No 

evidence of crystalline Al2O3 phases (γ-, δ-,η-,θ-) was detected in the pattern, in accordance with 

the literature for the mesoporous material Al-TUD-1.16-18,20,21,37-40 

 

 
Figure 4.3- Powder XRD pattern for Al-TUD-1. 
 

 

SEM analysis of Al-TUD-1 showed particles with an uneven shape and size (Figure 4.4), 

which is in accordance with that described in the literature for sponge or worm-like typical 

structures for TUD-1,13 in particular Al-TUD-1.17 

 

 
 
Figure 4.4- Representative SEM image of Al-TUD-1. 
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TEM images showed characteristics of the porous system of TUD

4.5). Probably, scaling the images, 

(mesoporous) measured by nitrogen adsorption

nanoparticles of Al2O3 were detected

framework, similar to previously reported studies.

 

 

Figure 4.5- Representative TEM image of 

 

 

The textural properties of Al

measurements at -196 °C (Figure 4.

isotherm with a hysteresis loop at p/p

of a disordered mesoporous material with an interconnected (worm

hysteresis loop for Al-TUD-1 seem

was steeper than the desorption one (almost vertical).

with broad pore sizes and shape, when the mechanism between condensation and evaporation is 

different,56,58,59 such as porous materials

mesoporosity of Al-TUD-1 was also evident from the increase in nitrogen uptake at p/p

0.7, as a result of the capillary condensation inside the mesopores.

adsorption branch levels off and no more adsorption takes place in the higher relative pressure 

region indicating that the external surface area 

previously for purely siliceous and metal

52,57,60  

______________________________________________________________________________________________
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showed characteristics of the porous system of TUD-1 (type sponge, 

caling the images, the existence of channels with approximately the width of D

measured by nitrogen adsorption at 77 K could be revealed

were detected, which indicated that the Al was in

previously reported studies.15,16  

Representative TEM image of A) TUD-1 and B) Al-TUD-1. 

properties of Al-TUD-1 were determined by nitrogen adsorption 

C (Figure 4.6 and Table 4.1). Al-TUD-1 exhibited a type IV N

isotherm with a hysteresis loop at p/p0 > 0.5 (Figure 4.6), which was consistent with the presence 

of a disordered mesoporous material with an interconnected (worm-like) pore network.

1 seemed to be of type H-2 as it was broad, and the 

orption one (almost vertical).56-58 It usually occurs in

with broad pore sizes and shape, when the mechanism between condensation and evaporation is 

such as porous materials with wormhole structures (TUD-1,19 and Al

1 was also evident from the increase in nitrogen uptake at p/p

0.7, as a result of the capillary condensation inside the mesopores.16 For p/p

adsorption branch levels off and no more adsorption takes place in the higher relative pressure 

region indicating that the external surface area was negligible. Similar results were r

previously for purely siliceous and metal-incorporated TUD-1 samples.16-19,21
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1 (type sponge, Figure 

existence of channels with approximately the width of Dp 

could be revealed. No crystalline 

that the Al was incorporated into the 

 

1 were determined by nitrogen adsorption 

a type IV N2 adsorption 

consistent with the presence 

like) pore network.19,56-58 The 

the adsorption branch 

It usually occurs in porous adsorbents 

with broad pore sizes and shape, when the mechanism between condensation and evaporation is 

and Al-TUD-1 38). The 

1 was also evident from the increase in nitrogen uptake at p/p0 of ca. 0.5-

For p/p0 > 0.7, the 

adsorption branch levels off and no more adsorption takes place in the higher relative pressure 

negligible. Similar results were reported 

21,27-31,33,35-39,41,43,45-47,49-
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Table 4.1- Si/Al molar ratio and textural properties of the prepared Al-TUD-1, and 

comparison with literature data for this type of material tested as catalyst in different reaction 

systems (liquid or gas-phase). 

a) Determined by ICP-AES. b) nf = information not found. c) Average pore diameter calculated from the adsorption branch using BJH 
method and the value in parentheses calculated from the desorption branch. d) Vp is measured at p/p0=0.99. Value in parenthesis refer 
to Vmicro which was calculated by the t-method. e) Values in parenthesis refer to Vmicro/Vmeso in which the Vmeso was calculated using the 
t-plot method.16,20 f) Vp determined by BJH method.15 g) Smeso calculated by the t-method. h) SBET determined by BET equation. The 
calculations for the values without an indication are not mentioned in the respective works. 

 

 

Figure 4.6- N2 adsorption-desorption isotherm measured at -196 °C of Al-TUD-1. Green line is the 

adsorption branch; red line is the desorption branch. 

 

Si/Al  
(before/after  catalysis) 

Dp  
 

(nm) 
Vp  

(cm
3
.g

-1
) 

Smeso  

(m
2
.g

-1
) 

Surface area 
(m

2
.g

-1
) 

Ref 

21/22
 a

 4.3 (3.9) c 0.77 735 757 h this work 

(0.5-1.5)/- 4.0-18 0.60-1.70 - 375-528 h 39 

3.5/- 1.4 c 0.41 (0.08) d 189 g 357 h 13,38  

4/- 15 1.11 - 495 h 21 

4/- 15 1.1 - 600 18 

4.9/- 2.4 c 0.2 d 204 g 204 h 13,38  

10/14 3.9 c -(-/0.60) e - 686 h  16 

25 3 0.75 - 760 h 21 

25/27 3.7 c 0.95 e, f - 956 h 15,16,20  

33.3/- 3.7 c 0.62 d - 726 h  44 

nf 
b
 4 c 0.63 - 528 h 17 

50/51 3.9 c -(-/0.99) e - 970 h 16  

50/- 4.3 c -(-/0.7) - 629 h 51 

75/78 3.7 c 0.88 e - 984 h 13,16   

100/106 3.7 c 0.91 e - 880 h  13,16 
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The introduction of aluminium into the TUD-1 matrix generally creates hexa-, penta- and 

tetrahedrally coordinated aluminium.21 The nature of aluminium in Al-TUD-1 was investigated by 

using 27Al-NMR spectroscopy (Figure 4.7). The spectrum obtained was very similar to that 

described before for Al-TUD-1 with Si/Al=4, prepared using TENA as the template,21 and for Al-

TUD-1(30).60 It was possible to observe the presence of aluminium species with tetrahedral 

coordination due to the existence of a strong resonance at δ=53 ppm and hexacoordinated 

aluminium due to the presence of a high-field signal at δ=0 ppm (Figure 4.7). An additional signal 

at δ=31 ppm was attributed to pentacoordinated species for Al-TUD-1 with Si/Al=4.18 Anand et 

al.16 also obtained this third peak in an Al-TUD-1 with Si/Al=25, which they attributed to 

pentacoordinated aluminium or highly distorted tetrahedral sites. Other authors have reported 

the co-existence of the three types of aluminium species.16,39 These species might also be present 

in the Al-TUD-1 sample studied, as there is an enlargement of the peak that appears at δ=53 ppm, 

which can overlap the signals due to pentacoordinated aluminium species.  

  

 

Figure 4.7-  27Al MAS NMR spectrum of Al-TUD-1. 

 

 

The acid properties of Al-TUD-1 were measured by adsorption of pyridine followed by FT-

IR spectroscopy as explained before in Section 3.2.1.2 in Chapter 3, and [B] (band at 1545 cm-1) 

and [L] (band at 1450 cm-1) were quantified according to equations 3.1 and 3.2 described therein. 

The sample of Al-TUD-1 showed both L and B interacting with pyridine after outgassing at 150 °C 

(Table 4.2). 



Chapter 4 
______________________________________________________________________________________________ 

_____________________________________________________________________________ 
202 
 

Table 4.2- Acid properties of Al-TUD-1 measured by FT-IR of adsorbed pyridine and comparison 

with literature data. 

Sample (Si/Al) [L]
a
     

(µµµµmol.g
-1

) 

[B]
b
    

(µµµµmol.g
-1

) 

[L]+[B] 
c 

(µµµµmol.g
-1

) 

[L]/[B] [L]350/[L]150 [B]350/[B]150 Total 

acidity 
d
 

(µµµµmol.g
-1

) 

Ref 

Al-TUD-1(21) 138 59 197  2.3 0.6 0.02 - this 
work 

Al-TUD-1(25) 24 4 28   6 - - 370 16 

Al-TUD-1(25) 
 - - - 2.4 c - - 400  15 

Al-TUD-1(50) 17 2 19  2.2 - - 220  16 

Al-TUD-1(50) 133 59 192  2.2 - - - 51 

Al-TUD-1(75) 8 2 10 4.3 - - 210  16 

Al-TUD-1(100) 8 1 9 5.4 - - 130  16 
a) Concentration of Lewis acid sites (L) based on pyridine FT-IR spectroscopic data. b) Concentration of Brönsted acid sites (B) based on 
pyridine FT-IR spectroscopic data. c) Total amount of acid sites based on pyridine FT-IR spectroscopic data. d) Determined by TPD-NH3 
at 200 °C.   

 

  

Although the L are probably due to defective framework and/or extra-framework 

aluminium species, the possibility that L may also arise from tetrahedral aluminium cannot be 

excluded. Indeed, in a study of the adsorption of pyridine on mesoporous aluminosilicate SBA-15 

molecular sieves, Luan and Fournier reported that the tetrahedral aluminium centres contributed 

only to L acidity.61 Normally, in crystalline zeolite materials, tetrahedral aluminium is expected to 

form bridging hydroxyl groups (Si-OH-Al), contributing to B acidity. However, Luan and Fourier 

reasoned that tetrahedral aluminium in mesoporous aluminosilicates with amorphous pore walls 

could contribute to L acidity due to crystallographic disorder at the atomic level.16,61  This can 

explain why the concentration of B was lower than that of L, similar to that described in the 

literature for Al-TUD-1 with different Si/Al ratios.15,51 Nevertheless, it is worth mentioning that the 

number of B in Al-TUD-1 may be underestimated since pyridine is a weak base (compared with, 

for example, ammonia) and may not be able to deprotonate the weaker AS present in the sample. 

However ammonia was not chosen because it may lead to an overestimate of the effective 

number of AS because of its smaller molecular dimensions in comparison to the saccharide 

molecules.62 

For Al-TUD-1, at 350 °C pyridine desorbed more easily from the B than from the L.  Thus, 

the molar ratio of moderate and strong to total B ([B]350/[B]150) was 0.02, indicating that most of 

the AS were of a rather weak nature, which means that for Al-TUD-1 at 350 °C, the B desorbed 

nearly all the pyridine. The L ratio ([L]350/[L]150) was 0.6.  
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4.2.2. Hydrolysis/dehydration of carbohydrates to Fur/Hmf 

 

 

The liquid phase conversion of different saccharides (D-xylose, D-fructose, D-glucose,      

D-sucrose, D-cellobiose, D-xylan and inulin) under nitrogen in the presence of Al-TUD-1 was 

investigated at 170 °C using a water (Wt): toluene (Tol) biphasic solvent system. The biphasic 

solvent system was used because as mentioned in Chapter 1, the Fur and Hmf selectivities are 

improved by using an organic extracting solvent since the reaction of the saccharides takes place 

in the aqueous phase, and the product Fur or Hmf is partially transferred into the organic phase 

avoiding its decomposition.63,64 Unless otherwise specified, product yields are reported in mol.%. 

The acid hydrolysis of polysaccharides gives monosaccharides, while the dehydration of pentoses 

and hexoses gives Fur and Hmf, respectively, via the elimination of three water molecules per 

molecule of monosaccharide (Figure 4.8).65-67 

 

O
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Saccharides (D-xylan, inulin, D-sucrose, D-cellobiose)

Pentoses (D-xylose) Hexoses (D-fructose, D-glucose)

-3 H2O -3 H2O

Fur Hmf

HO

 

 
Figure 4.8- Simplified representation of the acid hydrolysis and dehydration of saccharides to       

2-furaldehyde (Fur) and 5-hydroxymethyl-2-furaldehyde (Hmf). 

 

 

 

 

 



Chapter 4 
______________________________________________________________________________________________ 

_____________________________________________________________________________ 
204 
 

4.2.3. Catalytic reactions of pentose-based carbohydrates to Fur 

 

 

The reaction of Xyl in the presence of Al-TUD-1 gave 56/60% YFur at 4 h/6 h (Figure 4.9). 

These results compared favourably with microporous silicoaluminophosphates (34-38% and         

41-48% YFur for SAPO-11 at 4 h and 6 h), used as solid acid catalysts in the same reaction, under 

similar conditions (Chapter 3), and with those previously reported for a delaminated zeolite      

del-Nu-6 (Si/Al=29), obtained by swelling and ultrasonication of a layered precursor of Nu-6(2) 

(46% YFur at 6 h),68 and zeolite H-Mordenite (Si/Al≈6, 34% YFur at 4 h).68 The reaction of Xyl with Al-

TUD-1 also compared favourably with microporous H-AM-11 and ion-exchanged e-H-AM-11 (39-

46% YFur in 6 h),5 modified mesoporous MCM-41 materials (Al-MCM-41,69 Nb-50-MCM-41 and ex-

Nb-50-MCM-41,5 ca. 39-47% YFur at 6 h),69 and alumina modified mesoporous sulfated zirconia 

(MSAZ, with a YFur of 39% in 4 h,70 although in these cases a slightly lower temperature of 160 °C 

was used instead of 170 °C (Table 3.3 in Chapter 3). Comparable results were reported previously 

for the exfoliated material eH4Nb6O17 in which a 53% YFur (at 97% CXyl) was achieved within 6 h of 

reaction at 160 °C.71 Nevertheless, the synthesis of Al-TUD-1 is simpler and possibly cheaper than 

that of the transition metal exfoliated material. 

 

 

 
Figure 4.9- Dehydration of D-xylose in the presence of Al-TUD-1: (•) conversion of D-xylose (CXyl); 

(X) yield of 2-furaldehyde (YFur). Reaction conditions:  0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 

170 °C, 20 gcat.dm-3, 0.67 M Xyl. 
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The one-pot conversion (hydrolysis and dehydration) of 4-O-methyl-D-glucurono-D-xylan 

(D-xylan) in the presence of Al-TUD-1 gave Xyl (hydrolysis product) and Fur (dehydration product) 

in increasing amounts reaching 27 wt.% and 18 wt.% yield, respectively, at 6 h of reaction     

(Figure 4.10). The theoretical YFur is ca. 73 wt.%. 

 

 

Figure 4.10- Dehydration of D-xylan in the presence of Al-TUD-1: (•) yield of D-xylose (YXyl); (X)             

yield of 2-furaldehyde (YFur). Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent system,       

170 °C, 20 gcat.dm-3, 33.3 g.dm-3 D-xylan. 

 

  

4.2.4. Catalytic reactions of the hexose-based carbohydrates to Hmf 

 

 

Figures 4.11 and 4.12 show the catalytic results obtained for the reactions of D-fructose 

and D-glucose in the presence of Al-TUD-1, under similar conditions used for Xyl and D-xylan. For 

both hexoses, the isomers D-glucose (Glu), D-fructose (Fru) and D-mannose (Man) were 

simultaneously present, with the Man yield always being less than 3%. With Fru as the substrate, 

Glu was formed in negligible amounts (less than 3% yield). However, when the substrate was Glu, 

the yield of Fru reached a maximum of 16% at 61% of conversion. These results suggested that, 

under the applied reaction conditions, Glu has a higher tendency to isomerise to Fru than the 

reverse reaction, in agreement with the literature.63,72 
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Figure 4.11- Dehydration of D-fructose in the presence of Al-TUD-1: (●) conversion of                    

D-fructose (CFru), (▲) yield of glucose (YGlu), (◊) yield of 5-hydroxymethyl-2-furaldehyde (YHmf),       

(-) yield of D-mannose (YMan) and (X) yield of 2-furaldehyde (YFur). Reaction conditions: 0.3 Wt:0.7 

Tol (v/v) biphasic solvent system, 170 °C, 20 gcat.dm-3, 0.67 M Fru. 

 

  

Figure 4.12- Dehydration of D-glucose in the presence of Al-TUD-1: (▲) conversion of D-glucose 

(CGlu), (●) yield of D-fructose (YFru), (◊) yield of 5-hydroxymethyl-2-furaldehyde (YHmf), (-) yield of  

D-mannose (YMan), and (X) yield of 2-furaldehyde (YFur). Reaction conditions used: 0.3 Wt:0.7 Tol 

(v/v) biphasic solvent system, 170 °C, 20 gcat.dm-3, 0.67 M Glu. 
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Based on the kinetic profiles, it was evident that the reactivity of Fru is higher than that of 

Glu, giving somewhat higher YHmf, at least until ca. 75% conversion (20% and 17% respectively). In 

the case of Glu, Hmf may be formed from Fru (the isomerisation product), and this pathway may 

be in competition with major Glu degradation pathways.72-74 Somewhat in parallel with those 

observed for Al-TUD-1, the published results for microporous zeolites used as solid acid catalysts 

in the conversion of hexoses to Hmf seem better for Fru than for Glu as substrate (Table 4.3). 

Generally, better results are then reported for the production of Hmf by the dehydration of Fru in 

comparison to that of Glu.75,76 The reaction of Glu in the presence of the zeolite H-Y (Si/Al=6.5) 

gave less than 10% YHmf at ca. 75% CGlu, 160 °C.76 In contrast, the reaction of Fru in the presence of 

H-Beta, H-ZSM-5, H-Mordenite and H-Y Faujauste zeolites with Si/Al ratios in the range of 10-100 

was quite selective towards Hmf, with one of the best results being 91% SHmf at 76% CFru for H-

Mordenite(11)3,76(Table 4.3). Moreau et al.3,76 reported that the Si/Al ratio for the zeolite catalysts 

influenced the rate of the reaction of Fru to Hmf, most likely due to changes in the acid properties 

and/or the surface polarity of the catalyst.  

 

Table 4.3- Performance of Al-TUD-1 in the reaction of D-fructose (Fru) or D-glucose (Glu) using the 

biphasic solvent system (Wt:Tol) a and comparison with literature data for zeolites as catalysts. 

Catalyst Temperature (°C)  Time (h) CFru/CGlu (%) 
d YHmf (%) 

e Ref 

Al-TUD-1(21) 170 6 100/75 20/17 this work 

H-Mordenite(11) 
b 165 1 76/- 69/- 76,77 

H-Mordenite(100) 
b 165 1 48/1 39/- 77 

H-Beta(15) 
b 165 1 85/- 34/- 77 

H-Y Faujasite(10) 
b 165 1 74/- 41/- 77 

H-ZSM-5(25) 
b 165 1 90/- 53/- 77 

H-Y Faujasite(6.5) 160 3 -/68 -/7 2 

H-Y Faujasite 
c 150 24 -/78 -/11 78 

a) Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 170 °C, 20 gcat.dm-3, 0.67 M Fru/Glu. b) Wt:IBMK= 1:5 (v/v). c) nf= 
information not found. d) Conversion of D-fructose( CFru)/conversion of D-glucose (CGlu). e) 5-Hydroxymethyl-2-furaldehyde yield (YHmf). 

 

 

The one-pot conversion of the disaccharides D-sucrose (Glu and Fru linked by an ether 

bond between C-1 on the Glu unit and C-2 on the Fru unit, denoted by a β-(1-2) glycosidic bond) 

and D-cellobiose (two Glu units linked by a β-(1-4) glycosidic bond) in the presence of Al-TUD-1 

gave 100% of conversion at 1 h of reaction and 98% of conversion at 6 h of reaction, respectively, 

indicating that D-sucrose (Suc) is more reactive than D-cellobiose (Cel) (Figures 4.13 and 4.14). A 

similar relation of the substrate reactivity may be established for the zeolite H-Y Faujasite 
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(Si/Al=15) used as acid catalyst in the same reactions (YGlu > 88% at 90% of conversion was 

obtained from Cel and a quantitative yield of Fru and Glu was obtained from Suc).79,80  

The Si/Al ratio may have an important effect on the hydrolysis reaction rate of Suc.81 

Buttersack et al.81 studied the hydrolysis over dealuminated H-Y Faujasite in which the Suc 

molecule adopts a conformation that allows its diffusion into the pores of the zeolite due to 

intensive hydrophobic interaction and adsorption over the zeolite surface. The same authors 

reported 90% CSuc into a mixture of Fru and Glu with a selectivity close to 90% in the presence of 

H-Y Faujasite zeolite possessing Si/Al molar ratio of 110.81 Moreau et al.,79 in a classical screening 

with different dealumination extents, demonstrated that the better compromise between 

catalytic activity, selectivity and by-products formation was obtained for H-Y Faujasite with a Si/Al 

ratio of 15 (ca.100% CSuc at 152 h/100 °C, 98 wt.% Suc and ca. 100% of Fru and Glu).79  

 

  

Figure 4.13- Hydrolysis and dehydration of D-sucrose in the presence of Al-TUD-1: (*) conversion 

of D-sucrose (CSuc): (●) yield of D-fructose (YFru), (▲) yield of D-glucose (YGlu), (◊) yield of                 

5-hydroxmethyl-2-furaldehyde (YHmf), (-) yield of D-mannose (YMan), (x) yield of 2-furaldehyde 

(YFur). Reaction conditions:  0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 170 °C, 20 gcat.dm-3,     

0.29 M Suc. 
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Figure 4.14- Hydrolysis and dehydration of D-cellobiose in the presence of Al-TUD-1:                     

(*) conversion of D-cellobiose (CCel), (●) yield of 2-furaldehyde (YFur), (▲) yield of D-glucose (YGlu), 

(◊) yield of 5-hydroxymethyl-2-furaldehyde (YHmf), (-) yield of D-mannose (YMan), (x) yield of            

2-furaldehyde (YFur). Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 170 °C,     

20 gcat.dm-3, 0.29 M Cel. 

 

 

The reaction of Suc in the presence of Al-TUD-1 gave Glu and Fru as the main products in 

ca. 40% yield each at 30 min of reaction, indicating that a relatively fast hydrolysis took place 

(Figure 4.13). After 30 min of reaction, the monosaccharide yields decreased, especially for Fru. 

This is consistent with the Fru reactivity being higher than that for Glu, as referred above and a 

maximum 17% YHmf was reached.  In the case of Cel, Glu is the main product (50% YGlu) at 6 h of 

reaction. The YFru and YHmf were 10% and 12%, respectively (Figure 4.14). For both disaccharides 

minor amounts of Man and Fur were formed during the 6 h of reaction (as observed with Fru and 

Glu as feedstocks). The undesirable reaction pathways may be similar to those occurring for Fru 

and Glu, as Suc and Cel are hydrolysed into these monosaccharides, giving similar results in terms 

of Hmf yield to those obtained with the monosaccharides (a maximum 20% and 17% YHmf, 

respectively, Table 4.4). 
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Table 4.4- Catalytic performance of Al-TUD-1 in the conversion of D-sucrose (Suc) or D-cellobiose 

(Cel) to D-fructose (Fru), D-glucose (Glu) and 5-hydroxymethyl-2-furaldehyde (Hmf), and 

comparison with the literature data for zeolite H-Y. a 

Catalyst 
 

Substrate t(h) 
c T (°C) 

d C (%) 
e YFru+Glu (%) 

f YHmf (%) 
g Ref 

Al-TUD-1 D-Sucrose 0.5 170 85 39+41 4 this work 

Al-TUD-1 D-Sucrose 1 170 100 26+29 12 this work 

Al-TUD-1 D-Sucrose 6 170 100 11+20 17 this work 

H-Y (Si/Al=15) 
b D-Sucrose 0.67 85 100 100  Traces 80 

Al-TUD-1 D-Cellobiose 0.5 170 26 0 0 this work 

Al-TUD-1 D-Cellobiose 6 170 60 10+50 12 this work 

H-Y (Si/Al=15) 
b 

D-Cellobiose nf e 150 90 88  nf e 80 
a) Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 170 °C, 20 gcat.dm-3, 0.67 M Xyl. b) Using only water as solvent.       
c) Reaction time. d) Reaction temperature. e) Conversion at a given time. f) Total yield of D-fructose and D-glucose (YFru+Glu). g) Yield of 
5-hydroxymethyl-2-furaldehyde (YHmf). e) nf= information not found. 

 

  
 
Figure 4.15- Hydrolysis and dehydration of inulin in the presence of Al-TUD-1: (●) yield of              

D-fructose (YFru), (▲) yield of D-glucose (YGlu), (-) yield of D-mannose (YMan), and (◊ ) yield of 5-

hydroxymethyl-2-furaldehyde (YHmf). Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent 

system, 170 °C, 20 gcat.dm-3, 33.3 g. dm-3 inulin.. 

 

 

The one pot conversion of the polysaccharide inulin (a fructan, used in 33.3 wt.%) in the 

presence of Al-TUD-1 gave mainly Fru at 30 min of reaction (67 wt.% yield, Figure 4.15). A fast 

drop in the YFru with time was accompanied by the formation of Hmf, reaching 20 wt.% yield at 6 h 

of reaction (the theoretical yield is ca. 78 wt.%). Glu and Man (formed by reversible isomerisation) 
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were also identified as minor products (< 5 wt.% yield). In face of these results it seemed that 

inulin could be rather selectively hydrolysed into Fru using Al-TUD-1 as catalyst, as the YHmf at 30 

min was only 9 wt.%. The selective hydrolysis of inulin (avoiding Hmf formation) was successfully 

carried out using H-Y zeolite (Si/Al=15) at lower reaction temperatures (ca. 92% YFru, at 90 °C).80 

The YFur at 91% CXyl was 60%, indicating a substantial amount of by-products (31% yield). 

During the reaction of Xyl the initially colourless Wt:Tol phases turned yellow-orange and the 

white powdered catalyst turned brown, suggesting the presence of organic by-products. 

However, these organic by-products were not detected in significant amounts by HPLC of the 

aqueous phase and GC-MS of the Tol phase. Possibly, these by-products are essentially 

oligo/polymeric products, formed via fragmentation and/or condensation reactions as explained 

in Chapter 1.65,82 

Similar to that observed for the Xyl dehydration, the presence of by-products in the case 

of the hexoses dehydration was evident by the colour build-up in the liquid phases and in the 

catalyst, although no significant amounts of by-products were detected. Fur was always detected 

in minor amounts (< 2% yield within 6 h in the reaction of each hexose), and may be formed via 

consecutive tautomerisation and retro aldol reactions from Glu.72-74 It was proposed that Glu in 

the cyclic form suffers consecutive tautomerisations (tau) to give 3-ketose (1,2,4,5,6-

pentahydroxy 3-hexanone), which then suffers a retro aldol (RA) reaction giving arabinose, 

followed by dehydration to give Fur (Figure 4.16).83 Another possible by-product resulting from 

the Hmf hydrolysis is levulinic acid.  However, it was not detected by HPLC, possibly because the 

AS of Al-TUD-1 were not strong enough. Usually more acidic conditions are required for 

converting Hmf into levulinic acid than for Hmf formation.84 According to the literature, Hmf may 

be involved in the formation of coke deposits on the microporous surface of aluminosilicates.76 

Taking into consideration that polymerisation reactions may be enhanced under relatively weak 

acidic conditions,84 and that Al-TUD-1 possessed mainly Lewis and weak Brönsted acidity, it is 

possible that by-products were essentially polymers. 
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Figure 4.16- Reaction mechanism proposed by Aida et al.74 for the conversion of D-glucose (Glu) 

to 2-furaldehyde (Fur); tau= tautomerisation, RA= retro aldol [adapted from 74,85]. 

 

 

4.2.5. Catalyst stability 

 

 

To test the stability and possible reusability of Al-TUD-1, the catalytic performance of the 

catalyst was studied for four consecutive 6 h batch runs of the Xyl reaction. The catalyst 

regeneration procedure is described in the experimental part (Chapter 2). The conversions of        

D-xylose and Fur yields in the recycling runs were quite similar (87-96% and 56-60%, respectively) 

(Figure 4.17). The Si/Al mole ratio of the recovered solid was 22, which is comparable to that of 

the fresh catalyst (Si/Al=21, Table 4.1). These results suggested that Al-TUD-1 was fairly stable 

under the reaction conditions used. 
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Figure 4.17- Catalytic performance of Al-TUD-1 in four consecutive 6 h batch runs at 170 °C. 

Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 20 gcat.dm-3, 0.67 M Xyl. 

 

 

4.3. Conclusions 

 

 

The reaction of monosaccharides in the presence of Al-TUD-1, under the reaction 

conditions used, gave Fur (from Xyl) and Hmf (from Glu and Fru). However, the reaction of 

hexoses (Fru and Glu) did not seem to be selective to Hmf (17-20% YHmf at 6 h of reaction) in 

comparison to the reaction of Xyl, which gave 60% YFur at 6 h. A possible explanation might be 

associated to the acid properties of Al-TUD-1 (mainly L acidity and weak B acidity) being more 

favourable to convert Xyl into Fur than hexoses into Hmf. The one-pot hydrolysis/dehydration of 

the disaccharides (Suc and Cel) in the presence of Al-TUD-1 gave mainly the monosaccharides via 

hydrolysis, which are subsequently dehydrated into Hmf obtained in 17% and 12% YHmf from Suc 

and Cel, respectively. At the maximum YHmf, the monosaccharide yields were 31 and 59%, 

respectively. In the case of polysaccharides D-xylan and inulin, Fur and Hmf were formed in 18 

and 20 wt.% yield within 6 h of reaction, respectively.  

Based on the colour build-up of the solvents (colourless water/toluene phases turned 

yellow-orange) and of the catalyst (white-brown-black) during the course of the reactions, and 
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the fact that no significant amounts of by-products were detected, it is postulated that the 

formation of polymers and coke deposits may be important competitive reactions, affecting the 

yields of Fur and Hmf. The stability of Al-TUD-1 with Xyl as the substrate was confirmed by the 

approximately constant values of Xyl conversions and Fur yields (in the range of 56-60%) for at 

least four consecutive 6 h batch runs.  

The catalytic performance of Al-TUD-1 may be improved by fine-tuning the acid 

properties (varying the Si/Al ratio)16 and optimising the reaction conditions. Alternatively, the 

mesoporous inorganic oxide matrix could be used to embed and disperse zeolite nanocrystals, 

which may allow enhanced acid strength (associated with the zeolite component) whilst 

improving the accessibility of the substrate to the AS in comparison to the bulk zeolite. 
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5.1. Introduction 

 

 

As mentioned previously, heterogeneous porous solid catalysts present several 

advantages over homogeneous catalysts mainly due to the easier catalyst separation after the 

reaction, leading to a reduction in the costs of separation techniques, which are quite demanding 

for homogeneous systems.2 However there are critical requirements to be considered such as 

thermal stability and water-tolerance. SAPOs and Al-TUD-1 demonstrated to be water-tolerant 

porous solid acid catalysts used in the conversion of saccharides to furanic aldehydes. Successfully 

investigated materials include crystalline inorganic oxides, namely the zeolites H-Y Faujasite,       

H-Mordenite,3 H-ZSM-5,4 microporous niobium silicates,5,6 titanoniobate nanosheets,7 and a 

delaminated zeolite obtained by the swelling and ultrasonication of a layerered precursor of     

Nu-6(2)8. It is possible to fine-tune the acid properties of microporous or mesoporous materials, 

to improve the catalytic performance in Fur production for making them excellent catalysts for 

one-pot multi-step processes.9  The number of acid sites (AS) can be maximised per unit weight of 

catalyst and the acid strength of those sites can be modified by changing the composition, such as 

the Si/Al ratio. It is also desirable to increase their accessibility to the reactant molecules by 

producing a material with the appropriate surface area and porosity. In the case of multistep 

reactions the solid catalysts should preferably possess large surface areas and optimum 

adsorption characteristics.9 To achieve these characteristics the initial concentration of reactants 

in the synthesis mixture, the pH and aging time of the synthesis gel are important parameters.9,10  

Aluminosilicate catalysts are known to be more attractive in terms of production costs 

and/or availability in comparison to transition-metal containing ones. They can be amorphous or 

crystalline in which the presence of tetrahedrally coordinated aluminium generates a negatively 

charged framework, which in turn is compensated by cations, such as hydronium cations (Figure 

5.1).9 Zeolites are crystalline aluminosilicates with well-defined structures that contain aluminium, 

silicon and oxygen in their regular framework. They are built up of a 3 D array of tetrahedral units 

TO4 (T=Si, Al) with each apical oxygen atom bridging two adjacent tetrahedra. Zeolites are one of 

the most important families of crystalline microporous solids. Since zeolite frameworks are 

typically anionic (network of SiO4 tetrahedra is neutral while AlO4 bears a negative charge), charge 

compensating cations (Na+, K+ or NH4
+) populate the pores to maintain electrical neutrality.11 The 

general formula of a zeolite is Mx/m[(AlO2)x(SiO2)y]zH2O, where M is the cation with valence m, z is 

the number of water molecules in each unit cell, and x and y  are integers.12 
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Figure 5.1- Structure of an amorphous and crystalline aluminosilicate [adapted from 9]. 

 

 

Zeolites belong to a class named tectosilicates although they have the particularity of 

having open channels and cavities of molecular dimensions which does not happen with other 

members of the tectosilicate family (e.g. SiO2 groups, Feldspathoid group). The dimensions of the 

cavities and channels (ca. 0.3 to 1.5 nm) in their structures give these materials unique properties 

such as, the ability to adsorb molecules of various sizes and shapes.13 Zeolites can be classified 

into small pore zeolites with 8 membered rings (MR) pore apertures (3.0-4.5 Å), medium pore 

zeolites with 10-MR pore apertures (4.5-6.0 Å) and large pore zeolites with 12-MR apertures   

(6.0-8.0  Å) of which zeolite Beta is an example, represented in Figure 5.2.11 

 

                                                                                                          

                         A                                                         B                                                    C 

Figure 5.2- Structure of zeolite BEA viewed along [100] (A and B) and along [001] (C).1 

 

 

Despite all the advantages, an important drawback is the formation of coke, which may 

lead to drops in Fur selectivity. Reducing the crystallite size of the catalyst to the nanoscale would 

increase the surface area to micropore volume ratio and decrease the diffusion path lengths, 
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which may avoid severe coking. On the other hand, the reduction in crystallite size may enhance 

the L/B ratio, which may be beneficial since Lewis acids may stabilise intermediate species and 

enhance selectivity towards Fur.14 However, nanosized materials tend to pose concerns related to 

health, the environment, and technical issues (e.g. ease of handling, high pressure drops, up-flow 

clogging of equipment, and demanding separation techniques such as nanofiltration). Composite 

materials consisting of zeolite nanocrystals embedded in a mesoporous inorganic oxide matrix 

may benefit from the catalytic properties associated with the zeolite nanocrystals, while 

minimising the nanoscale-related drawbacks.15-24 

Taking into account these considerations, the dehydration of Xyl into Fur in the presence 

of zeolite H-Beta and a micro/mesoporous BEATUD-1 composite material as catalysts was 

investigated and the results are compared with those for bulk nanocrystalline zeolite H-Beta 

(denoted BEA). 

 

 

5.1.1. Zeolite Beta (BEA) 

 

 

Zeolite BEA is included in the group of high silica zeolites (with a Si/Al ≥ 10). This group of 

zeolites was described between the late 1960s and early 1970s and is synthesised at the Mobil 

Research and Development Laboratories of the “high silica zeolites”.25-27 Beta has a specific 

strength and density of AS that allow achieving superior levels of conversion at lower reaction 

temperatures than catalysts based only on silica,28 and it was the first zeolite to be discovered by 

R. L. Wadlinger, G. T. Kerr and E. J. Rosinski in 1967.26,27 However its complex structure was only 

completely determined in 1988.28-30 The most interesting property is its highly disordered 

framework.31 It consists of an intergrowth of three distinct polymorphs32: polymorph A, B and C, 

built from different stacking of the same building layer.32 The structure of polymorph C was 

determined by several different techniques (SEM, powder XRD and TGA).33 The structures of 

polymorphs A and B were proposed on the basis of high resolution electron microscopy (HREM) 

images and electron diffraction (ED) patterns.34 At first, zeolite Beta was accepted as a highly 

faulted intergrowth of only two polymorphs A and B in a 60:40 ratio that grew as 2 D sheets 

randomly alternated between each other.33 Both polymorphs have a 3 D network of 12-MR pore 

systems in which the intergrowth does not significantly affect the pores in two of the dimensions, 

where two mutually perpendicular straight channels with elliptical pore apertures of (6.4x7.6 Å) 



Chapter 5 
______________________________________________________________________________________________ 

_____________________________________________________________________________ 
224 
 

run in the x and y directions (Figures 5.2 A and B).35 However in the crystallographic faulting 

direction, the pore system might become tortuous, where a sinusoidal channel of 5.5x5.5 Å runs 

parallel to the z direction (Figure 5.2 C).36  The third polymorph C has a 3 D pore system formed by 

linear channels of nearly circular 12-MR (ca. 6.9 Å).32 In the case of the other two polymorphs (A 

and B) one of the channels is sinusoidal.33 Polymorph C also differs from A and B polymorphs 

because it contains double 4-MR (D4-MR) per unit cell as secondary building units that do not 

appear in polymorphs A or B.33 The different polymorphs consist of layers formed by 5- and 6-MR 

that may be stacked in different sequences forming 12-MR pores (Figure 5.3).31,32,37,38  

 

 

                     A                                                          B                                                        C  

Figure 5.3- Framework structures of A) polymorph A, B) polymorph B and C) polymorph C of 

zeolite Beta, showing the different stackings of the 12-MR pores as A) ABAB (shears with 

alternating translations), B) ABCABC (shears in the same direction) and C) AA.32 

 

 

The surface of the zeolite BEA studied herein with a Si/Al=12 allows organophobic-

hydrophilic selectivity, in contrast to zeolites with higher Si/Al ratios.39 It favours the adsorption of 

polar molecules (such as the substrate studied, Xyl) and interacts weakly with organic molecules, 

like the product Fur. Therefore zeolite Beta is adequate for converting Xyl to Fur. 

 

 

5.1.2. Microporous/mesoporous BEATUD-1 

 

 

The micro/mesoporous composite material consisting of BEA zeolite nanocrystals 

embedded in a TUD-1 type mesoporous inorganic oxide matrix was denoted as BEATUD-1. The 

features of TUD-140 have been described in detail in Chapter 4. The composites can be prepared 
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by blending pre-formed zeolite nanocrystals into the synthesis mixture of a mesoporous carrier. 

Additional advantages of these composites may include the ability to maintain stable the catalyst 

component on the carrier, improving its lifetime, and its use for catalyst formulations allowing 

enhanced porosity of extrudates and fairly good control over composition, size and morphology of 

the catalyst component. The choice of a 3 D mesoporous silica matrix of the type TUD-1 is 

attractive since its preparation is based on a relatively low cost, non-surfactant templating route, 

and may be advantageous in relation to a 2 D material in terms of facilitated internal diffusion. 

 

 

5.2. Results and discussion 

 

5.2.1. Catalysts characterisation 

 

 

In this Chapter zeolite BEA and composite BEATUD-1 were prepared in accordance with 

the procedure described by Maschmeyer et al. (Chapter 2).15,16 Zeolite Beta in the proton form 

(BEA) was obtained by calcination of the commercial ammonium-form of the Beta powder. The 

composite BEATUD-1 was prepared by embedding H-Beta nanocrystallites (40 wt.%) in the 3 D 

mesoporous silica TUD-1.15,16 

The powder XRD patterns are shown in Figure 5.4. From this Figure it is possible to see 

that the XRD patterns of the bulk nanocrystalline zeolie BEA and the composite BEATUD-1 were 

similar, showing the characteristic diffraction peaks of zeolite BEA at 2θ=7.2° and 22.3°.15,24,35,41-157 

The low angle peak was broadened due to the presence of an intergrowth of different 

polymorphs (mainly A and B) in the crystals. 
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Figure 5.4- Powder XRD patterns of the fresh and recovered catalysts. 

 

 

TEM images of the zeolite BEA and the composite BEATUD-1 were collected in order to 

determine the size and morphology of the crystals or aggregates (Figure 5.5).158 These images of 

zeolite Beta showed that the sample consisted of small crystallites with a size of about 20-30 nm, 

which were clustered to give larger particles with dimensions in the range of 100-200 nm        

(Figure 5.5a). Comparable results for crystallite sizes from 15 to 60 nm, which further aggregated, 

are described in the literature.24,48,56,69,71,93,157,159 

The high resolution (HR) TEM image shown in Figure 5.5 b clearly showed that the 

aggregates of Beta crystals had lattice fringes uniformly aligned with the aggregates. Lattice 

fringes are characteristic of the zeolite Beta, and are in agreement with that described by Kuechl 

et al.,62 and others.42,91,143,158,160,161 Some authors had obtained irregular spherical H-Beta 

particles,24,55,159,162,163 or cubic-shape particles.164 According to Kuechl et al.62 the parallel nature of 

the lattice fringes for adjacent crystals might have two different interpretations. One of them says 

that the individual crystals are nucleated in solution and then attached later in an oriented 

fashion which lowers the overall free energy of the synthesis medium (the crystals attach to one 

another in an energetically favourable manner). The multiple nucleation sites on a gel particle is 

the other hypothesis that may explain the adjacent crystals formed in parallel fringes.62 The highly 

faulted structure of zeolite Beta observed in the TEM images (Figure 5.5 b) is in good agreement 

with the XRD data (the boarder peak at 2θ=7.2°), suggesting the presence of two polymorphs 
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typical for zeolite BEA.41 For BEATUD-1, TEM characterisation showed a 3 D sponge- or wormlike 

mesoporous matrix with some dark gray domains that may be attributed to the embedded zeolite 

particles (Figure 5.5 c) in accord with the literature for a BEATUD-1 composite with a zeolite 

loading of 16-20 wt.%.15,157 HRTEM images (Figure 5.5 d) confirmed that BEATUD-1 is a composite 

of nanocrystalline BEA particles and an amorphous mesoporous matrix (TUD-1), whereby the 

microporosity is resulting from the crystalline zeolite particles and the mesoporous phase from 

the amorphous component. The TEM studies generally revealed aggregates (about 50-200 nm) of 

nanocrystals surrounded by the mesoporous matrix. Areas containing isolated BEA nanocrystals 

(about 20-30 nm) embedded in the matrix were also observed. The presence of small aggregates 

is in agreement with previous findings for a BEATUD-1 composite with a zeolite loading of            

40 wt.%,15 and can be attributed to the combined effect of the synthesis conditions and the high 

zeolite loading. Despite the presence of these aggregates, the TEM studies (Figure 5.5 d) indicated 

that the nanocrystalline BEA particles were fairly evenly distributed in the mesoporous matrix, 

similar to that reported by Waller et al.15 for these types of materials.  

 

 

Figure 5.5- TEM images of BEA (a and b) and BEATUD-1 (c and d). The amorphous carbon support 

film used for BEA (b) appears as the mottled background in the upper and lower right-hand parts 

of the micrograph; a holey carbon film was used for BEATUD-1 to clearly distinguish the 

mesoporous silica matrix of the composite from the background of the support. 
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Elemental composition and textural properties of the zeolite BEA, BEATUD-1 and TUD-1 

are given in Table 5.1. To assess the textural properties of these materials (BEA, BEATUD-1 and 

TUD-1), nitrogen adsorption measurements were performed at -196 °C (Figure 5.6). The 

adsorption isotherm of BEA clearly showed a significant increase in N2 uptake at p/p0 < 0.01, 

typically associated with the filling of micropores (characteristic of type I adsorption isotherms). 

165-169 Afterwards a gradual increase in N2 uptake was observed as p/p0 approached unity, most 

likely due to multilayer adsorption on the external surface of the nanocrystallites, accounting for a 

significant external surface area (SEXT=176 m2.g-1,Table 5.1). The pore size distribution (PSD) of BEA 

shows a very broad and weak maximum centred on a pore width of ca. 7 nm, which probably 

arises from the inter-nanocrystallite empty void spaces. BEATUD-1 and purely siliceous TUD-1 

exhibited type IV isotherms, typical of mesoporous materials and a hysteresis loop at     p/p0 > 0.4 

which is associated with capillary condensation/evaporation in mesopores.165,166,168-175 The PSDs 

showed maxima at pore widths of ca. 4.5 nm for BEATUD-1 and 7.0 nm for TUD-1. In contrast to 

TUD-1, BEATUD-1 possesses microporosity arising from the zeolite component, although the 

composite is essentially mesoporous. This is consistent with the literature data for zeolite 

nanocrystals BEA,15,52,111,128,140,176,177and the composite BEATUD-1 (Table 5.1).15 
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Table 5.1- Elemental composition and textural properties of BEA, BEATUD-1 and TUD-1 and comparison with literature data. 

Sample Al 

(mmol.g
-1

) 

Si/Al  

(before/after catalysis) 

Vmicro 

(cm
3
.g

-1
) 

Vp 

(cm
3
.g

-1
) 

Surface area 

(m
2
.g

-1
) 

SEXT 

(m
2
.g

-1
) 

Dp(meso) 

(nm) 

Average size 

(µµµµm)  

Ref 

BEA 0.96 12/13 c 0.18 e 0.69 643 m 176 - 0.02 (crystals) * this work 

BEA - nf d 0.12 e - 598(399/199) n - 0.7 - 15 

BEA 1.14 10.6/- 0.21 (0.63) f 0.84 k 662 o - - 0.02-0.03 (crystals) 62 

H-Beta  12.5/- - - 674 p - - 0.1 (particle) 178 

H-Beta - 12.5/- 0.22  0.68 k 741 m - - - 67 

H-Beta - 12.5/- 0.18 (0.04) f - 517 (367/29) n - - 0.01 (crystals) 163 

H-Beta - 12.5/- 0.22 (0.89) i - 582 m - - - 179 

H-Beta - 12.5/- 0.11   0.63 k 667 (329/-) q - 3.8 0.5 (particle) 93 

H-Beta  12.5/- 0.11  0.86 k 734 (346/-) q - 4.7 0.03 (crystals) 93 

H-Beta - 12.5/- 0.19 (0.45) f 0.64 k - 245 u - 0.03-0.05 (crystals) and  
0.3-1 (particles) 

180 

H-Beta - 12.5 - 0.23 k 574 r - 0.65 w - 74 

H-Beta - 12.5 0.21 g - 538 m - - - 126 

H-Beta - 12.5 0.16 0.59 k 558 (350/-) m - - - 129 

H-Beta - - 0.14 h - - 431 v - - 111 

H-Beta - nf d - 0.84 k 615 m - - - 181 

H-Beta - nf d 0.18 e - 633 m - - - 182 

H-Beta - nf d - 0.22 k 442 p - 4.5 - 183 

H-Beta - 12.4/- 0.21 e - - 220 x - 0.5-0.8 (particles) 177 

H-Beta - 12.0/- 0.16 - 627 (303/-) s - - 0.1-0.4 (crystals) 52 

H-Beta - 12.0/- 0.22 e 0.65 k 696 m 170 x - 1-10 (crystals) 184 

H-Beta - 12.0/- 0.24(0.05) - 563 m - - - 185 

H-Beta - 11.6/- 0.22 (0.89) i - 582 m - - 0.07 (crystals) 186 

H-Beta - 10.8/- - 0.91 739 p - - - 187 

H-Beta - 10/- - - 573 m - - - 188 

H-Beta - 10/- - - 360 m - - 0.05 (crystals) 101 

H-Beta - 8/- 0.25 (2.42) j - 651 m 168 x >50 y 0.05-0.15 (crystals) 143 

H-Beta - 14.5/- - - 578 m - - - 51 
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Table 5.1- Continued. 
H-Beta - 15/- - 0.23 575 m    113 

H-Beta - 20/- - 0.26 l 585 m - - - 189 

H-Beta - 21/- - 0.27 l 625 m - - - 138 

H-Beta - 22/- - 0.24 750 p - - - 114 

H-Beta - 24.4/- 0.20 (0.58) - 663 m - - - 190 

H-Beta - 25.0/- - - 608 m - 0.67 - 191 

H-Beta 
a
 - 27.5/ - 0.74 613 m 228 x 

 
- 0.0002-0.0008 

(particles) 

192 

H-Beta - 32/- 0.29 - 319 m 185 x - - 90 

H-Beta 
a
 - 33/- 0.23 - 713 m 102 x - 0.015 (crystals) 91 

H-Beta - 35 0.26 e 0.26 k  563 m 27 - 0.2 (crystal) 193-195 

H-Beta - 220/- 0.20 e - - (-/82)t - - - 43 

BEATUD-1 0.38 34/33 c 0.05 e 0.70 712 m - 4.5 y 15 (particles) * this work 

BEATUD-1           

(16 wt.%)
 b

 

- nf d - 1.1 710 m - 9.1 - 157 

BEATUD-1            

(20 wt.%) 
b
 

- nf d 0.07 1.1 725 (161/564) 
n 

- 7.4 
(0.7) z 

- 15 

BEATUD-1           

(40 wt.%) 
b
 

- nf d 0.09 1.1 642 (289/353) n - 9.1(0.7) 
z 

0.08-1.4 (crystals) 15 

BEATUD-1           

(60 wt.%) 
b
 

- nf d 0.1 1 639 (377/262) n  9.0(0.7) 
z 

- 15 

TUD-1 - - - 0.83 617 m - 7.0 y >20 (particles) this work 

TUD-1 - nf d - 1.0 757 (61/696) n  6.3 - 15 
a) Determined by TPD (temperature programmed desorption of ammonia). b) Loading of zeolite Beta in the composite. c) Determined by ICP-AES. d) Information not found. e) Vmicro determined by t-plot. f) Vmicro 
determined by the t-plot method and the value in parentheses refers to Vmeso which was calculated as Vp-Vmicro.g) Vmicro determined by t-plot. h) Vmicro determined by αs-plot. i) Vmeso determined by the BJH method 
at 0.1 <p/p0 < 1 and Vmeso (value in parenthesis) was calculated using Dubinin-Astakhov method (n=4) at p/p0 < 0.1. j) Vmicro and Vmeso determined by BJH method. k) Vp calculated by the maximum adsorption 
amount of nitrogen at p/p0  ca 0.99 . l) Vp determined by Dubinin-Radushkevich method. m) SBET calculated by the BET equation and values in parentheses refers to Smicro/Smeso. n) SBET calculated by the BET 
equation and the values in parenthesis refers to Smicro/Smeso, in which the Smicro was determined by the t-plot method and Smeso= SBET-Smicro. o) Surface area determined by N2 isotherms. p) Determination of the 
surface area not mentioned. q) SBET calculated with the multipoint BET equation with linear region in the p/p0 range of 0.05-0.35 and the values in parentheses refers to Smicro/Smeso. r) SBET calculated using 
adsorption data in the p/p0 range of  0.05 to 0.20. s) SBET calculated by the BET equation and the value in parentheses refers to Smicro/Smeso in which Smicro determined by t-plot method. t) Smeso determined by the t-
plot method. u) SEXT determined by t-plot curves for the relative pressures p/p0 in the range 0.1-0.3. v) SEXT determined by the αs-plot. x) SEXT determined by  t-plot method. w)  Dp (average pore diameter) 
determined by Horvath-Kawazoe method.y) Dp determined by the BJH method. z) Value in parenthesis refers to microporous average diameter. *) Estimated by electron microscopy.  ����  The calculations for the 
values without an indication are not mentioned in the respective works. 
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Figure 5.6- N2 adsorption-desorption isotherms measured at -196 °C and pore size distribution 

curves for BEA (Δ), BEATUD-1 (О) and TUD-1 (−). 

 

 

When comparing with the literature data, similar significant external surface areas were 

obtained for zeolite Beta (SEXT=168-185 m2.g-1, Table 5.1).90,143,184 Other authors achieved even 

higher external surface areas (SEXT=220-245 m2.g-1).177,180,192 Lower external surface areas were also 

obtained (SEXT=27-102 m2.g-1); however in those cases, the specific surface areas were similar to 

that obtained in the present work (SBET=563-713 m2.g-1 compared to 643 m2.g-1, Table 5.1).91,193-195 

In the work of Waller et al.,15 as the amount of zeolite in the composite BEATUD-1 decreased, an 

increase in the mesoporous surface area was observed due to the mesoporosity of TUD-1 

(Smeso=262 m2.g-1 for BEATUD-1 with 60 wt.% of BEA compared to 564 m2.g-1 for BEATUD-1 with  

16 wt.% of BEA, Table 5.1).15,157 

 

Based on the aluminium contents of BEA and BEATUD-1 measured by ICP-AES (Table 5.1) 

it was possible to estimate that the amount of zeolite BEA in BEATUD-1 was 40 wt.% (by 

comparing the aluminium contents of BEA and the composite BEATUD-1), which was the same as 

that used in the synthesis gel. This result suggested that the zeolite was completely incorporated 

in the final material. 
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27Al MAS NMR is important because it is an effective tool for characterising the structure 

of zeolites. It allows differentiating aluminium-containing species with different structures or 

different chemical environments because they have different chemicals shifts in the 27Al MAS 

NMR spectra.112,196 It has been widely used to determine the coordination number,87,197,198 and 

local structure of specific aluminium species in zeolites.87According to crystallographic data, 

zeolite Beta contains three or nine different T-sites, depending on the type of polymorphs 

present.28,29,199-201 Nevertheless, these T-sites in the Beta framework can be resolved into only two 

or three due to small differences in the chemical shifts of the T-sites.197 The regular coordination 

of aluminium in the zeolite framework is tetrahedral.197 Figure 5.7 shows the 27Al MAS NMR 

spectra of BEA and BEATUD-1. Both of them exhibited two groups of peaks at about 55 ppm and a 

larger peak at 0 ppm, which were attributed to aluminium species in tetrahedral framework (Altet) 

and octahedral coordination (Aloct), respectively, in agreement with the literature data for zeolite 

Beta.84,95,112,113,125,150,154,182,196,200,202-205 Normally the peak at 0 ppm is ascribed to extra-framework 

octahedral aluminium species which are formed during calcination.206,207 However, in the case of 

the acid zeolite Beta octahedral framework aluminium might also be present.197 Specific 

framework tetrahedral T-sites tend to convert to framework-associated octahedral sites during 

the calcination.200 Bourgeat-Lami et al.208 were the first to suggest the existence of octahedral 

framework aluminium species at 0 ppm in zeolite Beta. This type of framework octahedral 

aluminium can only be formed in the presence of water. 202,206,209 According to Bokhoven et al.197 

the Brönsted acid zeolite attracts water molecules to stabilise the strong electric field induced by 

the proton, delocalising the cationic charge. Since the zeolite is not able to accommodate many 

strong electrical field centers throughout the framework, the water molecules are attracted and 

part of the framework tetrahedral aluminium may be converted to octahedral aluminium, 

reducing the electrical field in the framework.197 It was proposed by the authors that this 

aluminium might be connected to the framework via one or two oxygen atoms. 197 Alternatively, 

an aluminium atom may be connected via four oxygen atoms to the framework and coordinated 

by one water molecule and one hydronium ion.155,202,208,210,211 The aluminium in octahedral 

coordination might result from the hydrolysis of the Al-O bond.206 Abraham et al.200  verified that 

in zeolite H-Beta, octahedrally coordinated framework-associated aluminium atoms could be 

quantitatively reverted into tetrahedral coordination, and that the amount of these octahedral 

aluminium species decreases with increasing Si/Al ratio, and are absent in samples with very high-

Si/Al ratios.200 This theory was confirmed by Woolery et al.212 that reported that the peak in the 

region of 0 ppm corresponding to octahedral aluminium can be converted to the tetrahedral 
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coordination by alkali ion-exchange or by treatment with NH3; and by Bockhoven et al.213,214 

reporting that all the octahedral aluminium of an acid zeolite was converted to tetrahedral 

aluminium by heating above 100 °C.  

The 27Al MAS NMR spectrum obtained for BEA was very similar to that reported by Beers 

et al.215 for a commercial zeolite Beta in the H+-form with a bulk Si/Al ratio of 13 (ref CP 814 E-22), 

and Li et al.112 for Beta (Si/Al=15). Besides the sharp peak at 0 ppm that can be assigned to a 

framework connected octahedral aluminium (reported for acidic zeolite Beta ), there is a broad 

centred around  - 18 ppm that could be due to extra-framework (octahedral) aluminium oxide 

amorphous species left over from the synthesis (Figure 5.7).215 Furthermore a few authors had 

obtained a third signal at ca. 25 ppm, which was attributed to pentacoordinated aluminium or to 

an aluminium atom in highly distorted tetrahedral coordination.145,216-218 However this was not 

verified in the present work (Figure 5.7). 

 

 

Figure 5.7- 27Al MAS NMR spectra of BEA (green) and BEATUD-1 (blue). 

 

 

  Engelhardt et al.219 considered that the peak at 0 ppm was due to extra-framework 

octahedral aluminium and proposed that relative proportions of tetrahedral framework and 

octahedral aluminium could be directly determined from the peak intensities (I) of the tetrahedral 

aluminium, Altet, and the octahedral aluminium, Aloct, signals.219 According to the authors, the Si/Al 

ratio of the tetrahedral framework species (Si/Al)fr could be calculated using the equation 5.1 

((Si/Al)tot is the total ratio of Si/Al ): 
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                                                     (5.1) 

 

A(Si/Al)fr of 15.8 was obtained which was higher than the value of 12 obtained from ICP-

AES (Table 5.1). The difference between the NMR and ICP-AES results represents the contribution 

from octahedral aluminium in the sample (that can be framework and extra-framework as 

discussed above) assuming that all the aluminium were detected by 27Al MAS NMR spectrum.125 

According to the literature, octahedral species in zeolite BEA might be associated with Lewis acid 

sites (L).197,212,220,221  

 

The acidity of aluminosilicates investigated by FT-IR may be associated with bridging 

hydroxyl groups (Si-OH-Al) formed by tetrahedral aluminium,222 (ca. 3600 cm-1 on the FT-IR 

spectra),223,224 hydroxyl groups, such as internal or terminal silanol Si-OH groups                     

(3740 cm-1),223,224 and Al-OH groups (3780 and 3680 cm-1)208,224 on the surface of the 

aluminosilicate which are usually weakly acidic.155,238 The measurement of the acid properties of 

the prepared catalysts (BEA and BEATUD-1) was performed by FT-IR studies of adsorbed 

pyridine after outgassing at 150 °C. In the case of zeolite BEA and composite BEATUD-1 the 

presence of Si-OH terminal groups was evident by the presence of an intense band at ca. 3745 

cm-1 (Figure 5.8), similar to reported in the literature.205,222,225-228 

 

 

Figure 5.8- FT-IR spectra of BEA and BEATUD-1 after pyridine adsorption and outgassing at      

150 °C. 
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BEA and BEATUD-1 possessed both B and L interacting with pyridine after outgassing at    

150 °C. The concentrations of B and L were determined as explained previously in Section 

3.2.1.2 of Chapter 3. In this sense, the [B] (band at ca. 1545 cm-1) and [L] (band at ca. 1450 cm-1) 

for the zeolite BEA and composite BEATUD-1 were determined through equations 3.1 and 3.2, as 

specified in Chapter 3 (Table 5.2). Figure 5.9 shows the FT-IR spectra of the catalysts with 

adsorbed pyridine, after outgassing at 150 °C. The band at ca. 1490 cm-1 is attributed to L and B,  

1620 cm-1 to L and 1640 cm-1 to B, which is similar to the literature.70,222,229 Other authors did not 

made reference to the bands at 1620 and 1640 cm-1.226,230,231  

 

 

Figure 5.9- FT-IR spectra of BEA and BEATUD-1 after pyridine adsorption and outgassing at 150 °C. 

 

 

The total amount of AS was greater for BEA than for BEATUD-1 (Table 5.2). The total 

amount of AS found in the literature for zeolite BEA was also higher than the total amount of AS 

found for BEATUD-1 reported herein (Table 5.2).70,92,163,178,191,222,225-227,229,231-236  The [B] was lower 

than the [L]. A similar behaviour was verified for zeolite Beta with a Si/Al of ca. 13-31,70,178,225-

227,229,234 but the opposite was also obtained for zeolite Beta samples with a similar Si/Al ratio 

(11-13),163,222,227,233-235 or higher Si/Al ratio of 42-60.92,232 In BEA the positively charged extra-

framework aluminium species may neutralise the negative charge of AlO4 tetrahedra and 

decrease the [B].155 In terms of the L/B molar ratio and acid strengths, the acid properties of BEA 

and BEATUD-1 were somewhat comparable.  

The effect of the outgassing temperature on the [L] and [B] was also investigated, and it 

was observed a decrease in the amount of detected AS with an increase in the outgassing 

temperature (Figure 5.10). The ratios of the amounts of AS were measured at 150 °C and 350 °C. 

At 350 °C, pyridine desorbed more easily from the B than from the L. The molar ratio of 



Chapter 5 
______________________________________________________________________________________________ 

_____________________________________________________________________________ 
236 
 

moderate and strong to total B at 350 °C and 150 °C ([B]350/[B]150) was in the range of 0.2-0.3 (for 

both samples), indicating that most of the B were of a rather weak nature. In the case of L ratio 

([L]350/[L]150) this value was 0.8, which means that these were stronger due to the fact that they 

almost did not desorb the pyridine at a temperature of 350 °C. 

 

 

Figure 5.10- Effect of the outgassing temperature on BEA and BEATUD-1 after pyridine 

adsorption. 

 

 

Table 5.2- Acid properties measured by FT-IR of adsorbed pyridine of BEA and BEATUD-1 and 

comparison with literature data. 

Sample (Si/Al) Tads (°C) 
b
 T

 
des (°C) 

c
 [L]

d 

µµµµmol.g
-1

 

[B]
e 

µµµµmol.g
-1

 

[L]+[B] 

µµµµmol.g
-1

 

[L]/[B] 

 

Ref 

BEA(12) 150 150 199 152 351 1.31 this work 

Beta(11.1) 
a
 147 147 382  513 895 0.75 222 

BEA(12.5) 150 150 240 580 820 0.41 163 

BEA(12.5) 450  450  400 320 720 1.25 178 

BEA(12.5) 
a
 170  170  190 153 343 1.23 227 

BEA(12.5) 350  350  - - - 0.16 233 

Beta(12.5) 150 150 248 96 344 2.58 234 

Beta(13.0) 250 250 128 180 308 0.71 235 

Beta(15.0) 
a
 200  200  469 372 841 0.83 (1.2) f 226 

Beta(16.5) 
a
 180  180  100 194 294 0.52 (0.95) f 231 

Beta(25) 200  200  - - - 1.33 236 

Beta(25) 152  152  151 150 301 0.50 191 

Beta(26.4) 150  150  340 315 655 1.08 225 

Beta(30) 200  200  269 66 335 4.08 229 
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Table 5.2- Continued. 

Beta(30.6) 200  200  - - - 2.99 70 

Beta(42) 150  150  107 189 296 0.57 92 

Beta(60) 350  350  - - - 0.66 232 

BEATUD-1(34) 150  150  114 95 209 1.19 this work 
a) These values were converted to mmol.g-1 considering that the values reported for unit cell were given per moles and considering 
that the unit cell is dehydrated. b) Temperature of pyridine adsorption (Tads) used to determine Brönsted and Lewis acid sites 
concentrations. c) Temperature of pyridine desorption (Tdes) used to determine Brönsted and Lewis acid sites concentrations. 
d) Concentration of Lewis acid sites, [L]. e) Concentration of Brönsted acid sites [B]. f) Values in parenthesis were calculated according 
to the equation: (1.5x(AAbsB/AAbsL), where AAbsB/AAbsL is the absorbance area ratio and 1.5 is the extinction coefficient ratio (εL/εB). 

 

 

The aluminium concentration in zeolite BEA (960 µmol.g-1, Table 5.1) was higher than the 

total number of AS (351 µmol.g-1, Table 5.2). This is consistent with the literature, which 

indicated that the number of AS is different from the total number of aluminium atoms present 

in the zeolite even when all their centres are accessible to pyridine.227 Gil et al.227 reported that 

this can be due to the fact that zeolites are not perfect structures and therefore part of the 

aluminium does not form the protonated Si-O-Al bridges: some form weak Al-OH groups or are 

present as Lewis acid sites.  Lewis acid sites do not have infrared absorption bands however they 

can be detected after adsorption of base molecules, e.g. pyridine.227 On the other hand, pyridine 

is a relatively strong base that can be protonated by Si-OH-Al groups, Si-OH or Al-OH.237 These 

two facts (possible formation of Al-OH groups or Lewis acid sites; and protonation of pyridine) 

act in opposite directions and the number of Brönsted acid sites detected by pyridine adsorption 

depends on the domination of one factor over the other.227 

 

 

5.2.2. Catalytic dehydration of D-xylose 

 

5.2.2.1. Catalytic performance of zeolite BEA and composite BEATUD-1  

 

 

The reaction of Xyl in the presence of BEATUD-1 under water-toluene biphasic solvent 

conditions (denoted Wt:tol), at 170 °C (Figure 5.11), gave 74 % YFur at 98% CXyl (reached at 8 h of 

reaction, Table 5.3). At 6 h of reaction, the CXyl was 94%, compared with only 20% of purely 

siliceous TUD-1, and 23% without a catalyst, indicating that the zeolite component was 

responsible for accelerating the reaction of Xyl. These results compared favourably with 
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microporous silicoaluminophosphates (

6 h), and Al-TUD-1 (Chapter 4: 60% 

under similar conditions. 

 

Figure 5.11- Schematic representation of the reaction of D

under aqueous-organic biphasic solvent conditions. The dots represent the powdered solid acid 

catalyst. 

 

Table 5.3- Catalytic performance of 

using the biphasic solvent system (W

Catalyts  T (°C

BEA1.0 (Si/Al=12) 
a
 170

BEA0.4 
a
 170

BEA0.4/TUD0.6 
a
 170

BEATUD-1 (Si/Al=34) 
a
 170

TUD-1 
a
 170

Al-TUD-1 (Si/Al=21) 170

No catalyst 170

H-Y Faujasite (Si/Al=5) 160

H-Y Faujasite (Si/Al=15) 
b
 170

H-Nu-6(2) 170

del-Nu-6(1) 170

H-Mordenite (Si/Al=6) 160

H-Mordenite (Si/Al=11) 
b
 170

a) The amount of the catalyst in the reaction medium 
BEA0.4/TUD0.6 it was used 8 g of BEA0.4
was 0.5 M Xyl and the amount of the catalyst 
D-xylose conversion at the specified reaction time
rate was determined for 30 min of D-xylose conversion
20 gcat.dm-3, 0.67 M Xyl. 

______________________________________________________________________________________________

_____________________________________________________________________________

microporous silicoaluminophosphates (Chapter 3: 34-38% and 41-48% YFur for SAPO

1 (Chapter 4: 60% YFur at 6 h) used as solid acid catalysts in the same reaction, 

Schematic representation of the reaction of D-xylose (Xyl) to 

organic biphasic solvent conditions. The dots represent the powdered solid acid 

erformance of BEA, BEATUD-1 or TUD-1 in the reaction of 

he biphasic solvent system (Wt:Tol) and comparison with literature data 

C) c t (h) 
d
 CXyl (%) 

e
 YFur(%) 

f
 Initial reaction rate

(mmol.gcat
-1

170 4/6 98/100 54/49 9.3 (CXyl (30 min)=46.3%

170 6 97 56 9.6 (CXyl (30 min)=19.2%)

170 6 94 58 4.3(CXyl (30 min)=21.5%)

170 6/8 94/98 69/74 5.7 (CXyl (30 min)=28.3%)

170 6 20 13 5.6 (CXyl (30 min)

170 6 91 60 3.7 (CXyl(30 min)=18.6%)

170 6 23 12 - 

160 6 94 39 - 

170 0.83 51 42 24 (CXyl (30min)

170 6 90 45 1.1 (CXyl (30 min)

170 6 90 48 2.3 (CXyl (30 min)=11.4%)

160 6 79 28 - 

170 0.83 37 33 15 (CXyl (30min)

amount of the catalyst in the reaction medium was always 20 gcat.dm−3 except for BEA0.4 (8 g
BEA0.4/TUD0.6 it was used 8 g of BEA0.4 with the remaining of TUD-1 to give a total of 20 g cat.dm-3. b) The concentration of 

catalyst in the reaction medium was 20 gcat.dm-3. c) Temperature of reaction
at the specified reaction time (CXyl). f) 2-Furaldehyde yield at the specified reaction time

xylose conversion (CXyl)..Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent system

______________________________________________________________________________________________ 

_____________________________________________________________________________ 

for SAPO-11 at 4 h and 

used as solid acid catalysts in the same reaction, 

 

to 2-furaldehyde (Fur) 

organic biphasic solvent conditions. The dots represent the powdered solid acid 

in the reaction of D-xylose (Xyl) 

with literature data for other catalysts. 

Initial reaction rate 
1
.h

-1
)

 g
 

Ref 

=46.3%) this work 

=19.2%) this work 

=21.5%) this work 

=28.3%) this work 

n)=28%) this work 

=18.6%) Chapter 4 

this work 
5,238 

(30min)=48%)  3 

(30 min)=5.7%) 8 

=11.4%) 8 
5,238 

(30min)=30%) 3 

except for BEA0.4 (8 gcat.dm−3). In the case of 
The concentration of D-xylose 

of reaction. d) Reaction time. e) 
at the specified reaction time (YFur). g) Initial reaction 

biphasic solvent system, 170 °C, 
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Other water tolerant crystalline inorganic solid acids (containing Al and Si) have already 

been tested in the reaction of Xyl using water and toluene as solvents. A few examples are shown 

in Table 5.3. After comparing these results, it seems that the composite BEATUD-1 exhibited 

superior catalytic performance in the dehydration of Xyl to Fur under similar reaction conditions 

(0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 160-170 °C). The catalytic performance of BEATUD-1 

in terms of Fur yield compares quite favourably with all of the previously tested catalysts (74% YFur 

compared to 28-48% YFur), even for H-Y Faujasite(5), H-Nu-6(2) and the delaminated zeolite del-

Nu-6(2) with similar CXyl (90-94%) at which 39-48% YFur were reached (Table 5.3). Decreasing the 

amount of the catalyst in the reaction medium from 20 gBEATUD-1.dm-3 to 5 gBEATUD-1.dm-3 led to 

somewhat lower YFur at 6 h (69 and 59%, respectively). More recently, Kim et al.239 reported for 

zeolite BEA(25) in the same reaction at 140 °C and under similar biphasic solvent conditions, 40% 

YFur (90% CXyl) at 4 h, exhibiting superior activity than that for zeolites H-Ferrierite(20), and H-

Mordenite(20), which gave 35% YHmf (ca. 80% CXyl) under similar reaction conditions. 

The dehydration of Xyl in the presence of BEATUD-1 was carried out using solely water as 

the solvent for comparison with the biphasic solvent system (Wt:Tol). A high CXyl of 81% was 

obtained at 6 h, but the YFur was poor (25%) in comparison to the Wt:Tol solvent system (69%, 

Figures 5.12- 5.14). Hence, the biphasic solvent system is beneficial, because the reaction of Xyl 

(insoluble in Tol) takes place only in the aqueous phase, and the in situ extraction of Fur from the 

aqueous phase (containing Xyl and polar intermediates) into the organic phase may enhance       

Fur yields by avoiding its decomposition through consecutive reactions with intermediates in the 

aqueous phase. The partition ratio of Fur (PRFur) calculated as indicated in equation 5.2 varied in 

the range 8-10 for different reaction times (measured at a.t.). Hence, changes in the product 

distribution with time did not significantly affect the partition ratio of Fur. Increasing the reaction 

temperature in the range of 160-180 °C for the Wt:Tol system had a beneficial effect on initial 

reaction rate and Fur yield. Initial reaction rate (mmol.gcat
-1.h-1) followed the order: 3.4 (160 °C) < 

5.7 (170 °C) < 8.2 (180 °C), and Fur yield at 30 min of reaction followed the order: 4% (160 °C) < 

14% (160 °C) < 14% (170 °C) < 27% (180 °C).  Hence, increasing the reaction temperature may be 

advantageous for process intensification. 

 

                                           PRFur= 
����� �� ��� �� ���
����� �� ��� �� ��

                                                               (5.2)  
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Figure 5.12- D-xylose conversion (CXyl) in the presence of BEA1.0 (Δ), BEA0.4 (▲), physical mixture 

BEA0.4/TUD0.6 (X), or BEATUD-1 (О) for 0.3 Wt:0.7 Tol (v/v) biphasic solvent system ; BEATUD-1 

(●) or BEA (−) for solely Wt (0.3 cm3), 170 °C, 0.67 M Xyl . Amount of catalyst in the reaction 

medium: 20 gcat.dm-3 for BEA1.0 and BEATUD-1; 8 gBEA.dm-3 for BEA0.4 and 8 gBEA.dm-3 +                 

12 gTUD-1.dm-3 for BEA0.4/TUD0.6. 

 

 

Figure 5.13- Dependence of the yield of 2-furaldehyde (YFur) on time for the reaction of D-xylose in 

the presence of BEA1.0 (Δ), BEA0.4 (▲), physical mixture BEA0.4/TUD0.6 (X), or BEATUD-1 (О) for 

0.3 Wt:0.7 Tol (v/v) biphasic solvent system; BEATUD-1 (●) or BEA (−) for solely Wt (0.3 cm3),    

170 °C, 0.67 M Xyl. Amount of catalyst in the reaction medium: 20 gcat.dm-3 for BEA1.0 and 

BEATUD-1; 8 gBEA.dm-3 for BEA0.4 and 8 gBEA.dm-3 + 12 gTUD-1.dm-3 for BEA0.4/TUD0.6.  
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Figure 5.14- Yield of 2-furaldehyde (YFur) versus the conversion of D-xylose (CXyl) for the reaction of 

D-xylose in the presence of BEA1.0 (Δ), BEA0.4 (▲), physical mixture BEA0.4/TUD0.6 (X), or 

BEATUD-1 (О) for 0.3 Wt:0.7 Tol (v/v) biphasic solvent system; BEATUD-1 (●) or BEA (−) for solely 

Wt (0.3 cm3) 170 °C, 0.67 M Xyl. Amount of catalyst in the reaction medium: 20 gcat.dm-3 for 

BEA1.0 and BEATUD-1; 8 gBEA.dm-3 for BEA0.4 and 8 gBEA.dm-3 + 12 gTUD-1.dm-3 for BEA0.4/TUD0.6. 

 

 

The reaction of Xyl in the presence of BEA, used in the same quantity (20 mg) as   

BEATUD-1, at 170 °C (experiment denoted BEA1.0) gave 42% YFur at 1 h (Figures 5.12 and 5.13), 

which was somewhat comparable to that reported by Moreau et al.3 for dealuminated H-Y 

Faujasite and H-Mordenite zeolites possessing similar Si/Al ratio (10-15), used as catalysts in the 

same reaction and under similar conditions (33-42% YFur at 50 min, Table 5.3).  

The beneficial effects of using Wt:Tol biphasic solvent system instead of solely water as 

solvent mentioned above for BEATUD-1 were also observed for BEA: 17 and 54% YFur at 4 h 

reaction for the Wt and Wt:Tol solvent systems, respectively (Figures 5.12-5.14). 

The reaction of Xyl using the biphasic system (Wt:Tol) was faster for BEA1.0 than for 

BEATUD-1 (Figures 5.12-5.14). It is possible that the catalytic reaction took place on the internal 

and external surface of the BEA nanocrystallites (micropore volume was much lower than the 

total pore volume, Table 5.2). The initial reaction rate calculated on the basis of the mass of 

catalyst (9.3 and 5.7 mmol.g-1.h-1 for BEA and BEATUD-1, respectively, Table 5.3) correlated with 

the amount of AS in the catalysts, which was higher for BEA than for BEATUD-1 (351 and 209 

µmol.g-1, respectively, Table 5.2);7 possibly the silica embedding the nanocrystallites may limit the 
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access to some of the AS. On the other hand, the initial reaction rate calculated on the basis of 

the total amount of AS [L]+[B] was similar for BEA1.0 and  BEATUD-1 (26 and 27 mol.molL+B
-1.h-1, 

respectively). A 2.5-fold decrease in the mass of BEA used (experiment BEA0.4) led to lower CXyl at 

6 h than that for BEA1.0 (Figures 5.13 and 5.14), but a similar initial reaction rate (9.6 mmol.g-1.h-1 

for BEA0.4 compared to 9.3 mmol.g-1.h-1 for BEA1.0, Table 5.3). In the studied range of the 

amount of the catalyst in the reaction medium (8-20 gBEA.dm-3), the plots of the Fur yield against 

Xyl conversion were roughly coincident (Figure 5.14).  The reaction in the presence of the physical 

mixture BEA0.4/TUD0.6 took place at a similar rate to that for BEA0.4, suggesting that the 

reaction rate was essentially governed by the acid properties of the zeolite fraction. Furthermore, 

considering the plots of Fur yield against the conversion of Xyl, BEA0.4/TUD0.6 and BEA0.4 gave 

similar Fur yield for CXyl up to ca. 80%, and for higher conversions of Xyl slightly higher yields of Fur 

are reached for the physical mixture: 60 and 56% YFur at 97-98% CXyl for BEA0.4/TUD0.6 and 

BEA0.4, respectively. A significant improvement in the yield of Fur at higher conversion of Xyl, was 

observed for the composite BEATUD-1, which gave 74% YFur, while BEA gave 54% for the same CXyl 

of 98% (Table 5.3). These improvements might be due to favourable competitive adsorption 

effects caused by the surrounding silica matrix in the zeolite nanocrystallites, minimising 

undesired reactions (the used BEATUD-1 catalyst contained a lower amount of carbonaceous 

matter than BEA as discussed ahead in Section 5.2.3). 

 

 

5.2.2.2. Identification of the reaction products 

 

 

During the reaction under study in the presence of BEATUD-1, the water and toluene 

phases turned yellow, suggesting the formation of by-products. As detailed in the Introduction 

Section 1.3, the reaction mechanism of the acid-catalysed conversion of Xyl to Fur involves a 

series of elementary steps with the formation of three molecules of water per molecule of Fur 

formed, and several undesired side reactions may take place. 

The HPLC analysis of the aqueous phase showed some minor peaks, which may include 

formic acid (based on the comparison of peak retention times with that for an authentic sample) 

formed by fragmentation reactions of Xyl.240 Oligo/polymeric by-products are also expected to be 

formed by condensation reactions through Fur intermediates.241 To test the stability of Fur under 
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the reaction conditions used, the reaction was carried out with Fur as the substrate (instead of 

Xyl) in the presence of BEA and gave 3% CFur at 6 h, suggesting that Fur is relatively stable.4  

In order to identify other possible by-products, the aqueous-phase was extracted with 

dichloromethane, giving a yellow solution, and then both of the organic phases were analysed by 

GC-MS. However, no major by-products were detected in the Tol phase or in the dichloromethane 

extract, which could be due to the soluble by-products being essentially of low volatility. To get 

some insight into the nature of the soluble/low volatile by-products formed, the reaction of Xyl 

was carried out in the presence of BEA using D2O as solvent instead of H2O, at 170 °C for 8 h. After 

separating the solid catalyst, the reaction solution was analysed by 1H (Figure 5.15) and 13C NMR 

spectroscopy (Figure 5.16). 

 
 

 

Figure 5.15- 1H NMR spectra of the solution obtained after separation of the solid phase from the 

reaction mixture of D-xylose (Xyl) in the presence of BEA using D2O as solvent (C). The spectra of          

2-furaldehyde, Fur (A) and D-xylose, Xyl (B) are given for comparison. Reaction conditions: D2O    

(1 cm3), 8 h, 170 °C, 20 gBEA.dm-3, 0.67 M Xyl. 
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Figure 5.16- 13C NMR spectrum of the reaction solution obtained after the reaction of D-xylose 

(Xyl) in the presence of BEA using D2O as solvent (C). The spectra of D-xylose, Xyl (A) and                      

2-furaldehyde, Fur (B) are given for comparison. Reaction conditions: D2O (1 cm3), 8 h, 170 °C,            

20 gBEA.dm-3, 0.67 M Xyl. 

 

 

As expected, the 1H NMR spectrum of the reaction mixture showed four characteristic  

peaks of Fur at 9.3 (H-1´), 7.8 (H-4), 7.4 (H-2) and 6.6 ppm (H-3) (Figure 5.15 C). In the 13C NMR 

spectrum, the five characteristic peaks of Fur were 184 (C-1’), 157 (C-4), 155 (C-1), 128 (C-2) and 

116 ppm (C-3). According to Antal et al.240 Fur is probably formed from the cyclic form of Xyl, and 

the open chain forms fragmentation products such as organic acids (e.g. lactic and formic) and 

glyceraldehyde. The 1H NMR spectrum of lactic acid is characterised by the presence of a signal at 

1.41±0.1 ppm (as a doublet generated by the 3 protons of –CH3 coupled to the proton -CH) and 

another at 4.37 ppm (as a quartet generated by the proton –CH coupled to the 3 protons of           

–CH3).
242-245 In the 1H NMR spectrum obtained herein (Figure 5.15) signals appear at 1.2 ppm and 

4.2 ppm, which are more closely with those reported by Francisco et al.,246 who did not specify 

the pD (~pH+0.41) (1.25 ppm due to the doublet and 4.21 ppm due to the quartet). Although the 

quartet resonance of lactic acid arising from its α-proton is more sensitive to pD changes than the 

doublet arising from the methyl group protons,243  the possibility that the signal at 1.2 ppm 

(Figure 5.15) is due to lactic acid cannot be ruled out. Nevertheless, to be more certain, the pD of 
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the reaction solution could have been measured and compared against a spectrum of lactic acid 

obtained at the same pD. 

The intense signals at 8.07 ppm in the 1H NMR (Figure 5.15) and 168.9 ppm in the           

13C NMR (Figure 5.16) can be assigned to formic acid. This is in agreement with the literature.247,248 

In sub/supercritical water conditions, organic acids may act as homogeneous catalysts in the 

reaction of Xyl.4,240,249 However it has been reported that even though formic acid and lactic acid 

are formed under sub/supercritical water conditions, they do not seem to play an important role 

in the decomposition of Fur because no noticeable changes in the Fur concentrations or solid 

deposition were observed an hour after the formic acid was detected.4 

 Xyl, which is essentially in the pyranose form in D2O (Figure 5.15), was not detected in the 

catalytic reaction mixture, indicating that the CXyl was 100%, consistent with the kinetic data 

(Table 5.3). 

 Apart from the resonances due to Fur, formic acid and possibly lactic acid, the spectra of 

the reaction mixture still exhibit numerous weak to very weak signals in the range of 3.3-4.3 ppm 

(δH) and 65-85 ppm (δC), which are typical regions for carbohydrate H-C-O or H2C-O groups; weak 

peaks at δH < 2 ppm may be assigned to methyl or methylene carbon atoms. These signals were 

probably due to fragmentation products of Xyl; however product identification was complicated 

by the overlapping of individual signals, especially in the 1H NMR spectrum. 

 The presence of organic by-products was evident in the catalysts as the originally white 

colour of BEATUD-1 and BEA powders changed to brown during the catalytic reaction, and 

remained so after washing with toluene, methanol, ethanol and acetone.  In a study of the 

reaction of Xyl in the presence of H-ZSM-5, O’Neill et al.4 concluded that H-ZSM-5 sample tested 

possessed relatively large pores of 1.2 nm. According to the authors this value does not represent 

the effective pore size of H-ZSM-5 but represents an estimate of the average pore size, reflecting 

the contribution of the external surface to the total surface (internal plus external). The high value 

of the pore size could possible indicate the co-existence of two phases: one crystalline with 

microporous characteristics and the other with more open porosity.4 Consequently Fur (0.57 nm) 

would have a longer residence time in the pore structure, allowing Fur rearrangements to form 

oligomers (with possible furan-ring cleavage). These oligomers led to large molecules (coke) not 

able to diffuse easily in and out of the channels becoming entrapped in the porous structure, and 

causing pore blockage and passivation of the catalyst surface (“poisoning” of AS).4 Accordingly, 

Fur loss reactions can lead to the formation of bulky by-products. In the case of zeolite 
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nanocrystallites it is possible that coke was formed on the internal (strongly adsorbed and/or 

entrapped) and external surfaces (strongly adsorbed). 

In order to get more insight into the nature of the carbonaceous matter (verified by DSC 

and TGA measurements discussed in detail in the Section 5.2.2.3 “Catalytic stability”), the used 

BEA catalyst was characterised by 13C CP MAS NMR spectroscopy (Figure 5.17 C). The spectrum 

showed peaks characteristic of Fur at 113, 117-137, 151 and 178 ppm. Besides Fur it was 

noticeable the existence of other compounds by the presence of two very broad peaks centred at 

33 and 208 ppm, and several relatively narrow and weak peaks in the region 60-80 ppm. The two 

broad peaks may correspond to saturated carbon-carbon bonds and aldehyde/ketone groups, 

respectively, while the narrow peaks may be due to fragments related to Xyl. 

 

   

Figure 5.17- 13C NMR spectrum of 2-furaldehyde (Fur) in DMSO-d6 (A); 13C NMR spectrum of the 

solution obtained after washing the used BEA with DMSO-d6 (B); 13C CP MAS NMR spectrum of 

BEA after catalysis using D2O as solvent (C). Reaction conditions: D2O (1 cm3), 8 h, 170 °C,                

20 gBEA.dm-3, 0.67 M Xyl. 

 

 

Attempts were made to remove organic compounds from the used BEA by further 

washing the catalyst with DMSO-d6 (giving DMSO-d6 catalyst wash), obtaining the 13C NMR 

spectrum of the resultant solution (Figure 5.17 B). A comparison with the liquid and solid 13C NMR 
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spectra indicated that the compounds which gave rise to the peaks centred at 33, 60-80 and      

208 ppm in the MAS NMR spectrum of used BEA were not removed by washing with DMSO-d6, 

and were therefore essentially insoluble products. The liquid-state 13C NMR spectrum (DMSO-d6 

catalyst wash, Figure 5.17 B), exhibited the characteristic resonances of Fur (Figure 5.17 A) and 

extra lines at 21.4, 125.7, 128.6, 129.3 and 163.4 ppm. The signals between 125 and 130 ppm can 

be assigned to alkenyl groups (RCH=CHR), while the single line at 21.4 ppm can be assigned to a 

methyl or methylene carbon atom. These results were congruent with the appearance of several 

overlapping signals or multiplets in the region 7.1-7.3 ppm and a singlet at 2.30 ppm in the 1H 

NMR spectrum of DMSO-d6 catalyst wash (Figure 5.18).  

 

 

Figure 5.18- 1H NMR spectrum of the solution obtained after washing the used BEA with      

DMSO-d6. Reaction conditions: D2O (1 cm3), 8 h, 170 °C, 20 gBEA.dm-3, 0.67 M Xyl.  

 

 

More elaborate characterisation studies are needed to identify the product(s) responsible 

for these signals. Furthermore, the weak line that appears at 163.4 ppm in the 13C NMR spectrum 

for the catalyst wash (Figure 5.17 B) and at 8.1 ppm in the 1H NMR spectrum for the same sample 

(Figure 5.15) was assigned to a residual amount of formic acid. It was noteworthy that the 

resonances between 125 and 130 ppm (13C NMR spectrum of DMSO-d6 catalyst wash) matched 

with the fairly narrow peak at 128.5 ppm and the shoulder at 125.7 ppm in the 13C CP MAS NMR 

spectrum of the used BEA (prior to washing with DMSO-d6, Figure 5.17 C). 
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The FT-IR spectra of the as-prepared and used BEA were quite similar (Figure 5.19) with 

the main difference being the appearance of a new band centred at ca. 1700 cm-1 which may be 

assigned to the aldehyde/ketone groups that gave rise to the broad signal at ca. 208 ppm in the  

13C CP MAS NMR spectrum of the recovered BEA (Figure 5.17 C). A very weak band at                   

ca. 1470 cm-1 was also observed which may be due to Fur or related by-products. The failure to 

observe additional IR bands from by-products may be due to the overlap of these bands with the 

more intense bands of the aluminosilicate matrix, as well as to the low concentration and/or the 

amorphous and complex chemical nature of the by-products. The comparison of the FT-IR spectra 

of the as-prepared and used BEA suggested that the chemical nature of BEA was essentially 

preserved under the applied hydrothermal reaction conditions. 

 

  

Figure 5.19- FT-IR spectra of BEA before and after reaction of D-xylose (Xyl) using D2O as solvent. 

Reaction conditions: D2O (1 cm3), 8 h, 170 °C, 20 gBEA.dm-3,0.67 M Xyl. The spectra of D-xylose (Xyl) 

and 2-furaldehyde (Fur) are given for comparison. 

 
 

Overall, it seems that the carbonaceous matter contained aldehyde/ketone groups, 

fragments related to Xyl and (un)saturated carbon-carbon bonds, which were possible to extract 

with DMSO. 
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5.2.2.3. Catalyst stability 

 

 

Thermal analyses (TGA, DSC) were performed under air for the solids recovered (washed 

and dried at 65 °C overnight) from the reaction in the presence of BEATUD-1, BEA1.0, BEA0.4 and 

BEA0.4/TUD0.6 after reaching ca. 98% CXyl. Figure 5.20 shows the DSC curves for BEATUD-1 and 

BEA. The presence of organic matter in the four samples was confirmed by DSC, which showed 

exothermic features above 200 °C (not observed for the as-prepared samples). An endothermic 

peak was detected below 200 °C, attributed to desorption of physisorbed water and volatiles. 

 

 

Figure 5.20- DSC curves for fresh BEA and BEATUD-1 and after 98% of D-xylose conversion (CXyl). 

Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 170 °C, 20 gBEA.dm-3,  0.67 M Xyl. 

 

 

The amount of carbonaceous matter of the samples recovered, washed and dried at       

65 °C, was estimated from the TGA curves in the temperature range of 200-600 °C by calculating 

the weight loss in this range. No significant variation in mass was observed for the as-prepared 

materials, whereas for the recovered solids, these values gave 24, 31 and 15 wt.% for BEA0.4, 

BEA1.0 and BEATUD-1 solids, respectively. Hence, BEATUD-1 possessed the lowest amount of 

carbonaceous matter and gave the highest YFur (74%) at high CXyl (98%). 
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To examine the reusability of BEA and BEATUD-1 catalysts, a total of four consecutive  6 h 

batch runs were carried out (details about the catalyst regeneration procedure applied after each 

batch run are described in the experimental part, Chapter 2). As shown in Figure 5.21, the 

conversion of Xyl and the yield of Fur at 6 h reaction remained fairly constant for the consecutive 

runs. The powder XRD patterns of the as-prepared and used catalysts were similar (Figure 5.4), as 

were the Si/Al ratios determined by ICP-AES (33 and 13 for recovered BEATUD-1 and BEA, 

respectively). These results suggested that BEA and BEATUD-1 were quite stable under the 

applied reaction conditions. The total Fur productions for the four runs were of 20 and 29 

mmolFur.gcat
-1 for BEA and BEATUD-1, respectively (theoretical value, 100% YFur=40 mmolFur.gcat

-1). 

When BEATUD-1 was recovered without applying the thermal treatment and reused in a second 

run, the yield of Furr at 6 h decreased by a factor of ca. 1.8, revealing the negative effect of coke 

on Fur production. 

 

 

Figure 5.21- Catalytic performance of BEA and BEATUD-1 in four consecutive 6 h batch runs. 

Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 8 h, 170 °C, 20 gBEA.dm-3,        

0.67 M Xyl. 
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5.3. Conclusions 

 

 

The composite BEATUD-1 consisting of commercial nanocrystalline zeolite BEA in the 

protonic form incorporated in a TUD-1 mesoporous matrix (denoted BEATUD-1) was an efficient 

catalyst for the acid catalysed conversion of Xyl into Fur, without the need for catalyst 

replacement during at least four runs (similar yields of Fur were reached). In comparison to the 

bulk nanocrystalline zeolite BEA, BEATUD-1 gave a lower reaction rate (on the same catalyst mass 

basis), which correlated with the lower total amount of AS ([L]+[B]) of BEATUD-1 in comparison to 

BEA. Initial reaction rate was ca. 9.3 mmol.gcat
-1.h-1 for BEA and 5.7 mmol.gcat

-1.h-1 for BEATUD-1 

(on the basis of total amount of acid sites, the initial reaction rates were similar for the two 

catalysts, ca. 27 mol.molL+B
-1.h-1).  

The catalyst stability of BEA seemed as good as that for BEATUD-1. However, the yield of   

Fur at very high CXyl (98%) was higher for BEATUD-1 (74%) than for bulk BEA (54%) or the physical 

mixture consisting of BEA plus TUD-1 silica (60%). On the other hand, the amount of 

carbonaceous matter was lower for BEATUD-1 than for BEA. Based on solid- and liquid-state NMR 

studies it seemed that carbonaceous matter contained aldehyde/ketone groups, Xyl-related 

fragments and (un)saturated carbon-carbon bonds.  

The improved performance of the composite BEATUD-1 may be due to favourable 

competitive adsorption effects caused by the surrounding silica matrix. Catalytic tests showed 

that the strong adsorption/entrapment of organic matter in the catalyst had a major negative 

effect on the catalytic performance, although this drawback can be successfully overcome by, for 

example, thermally regenerating the catalyst. 

Further improvements in the catalytic performance for composites of the type BEATUD-1 

may be possible by fine-tuning properties such as the Si/Al ratio, which can change the total 

amount of AS and catalyst surface polarity, and the zeolite loading, which may affect the 

dispersion and the number of accessible AS of the zeolite. Alternatively, the preparation of zeolite 

catalysts with significantly enhanced external specific surface area may allow improved catalytic 

performances. In this sense in the next Chapter it was studied the catalytic performance of the 

high external surface area ITQ-2, obtained by delamination of a layered precursor of zeolite MCM-

22. 
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6.1. Introduction 

 

 

Porous aluminosilicates are promising solid acid catalysts in the dehydration of Xyl to Fur. 

They exhibit catalytic activity in acid catalysed reactions and fulfill important requirements that 

are put on solid acid catalysts, such as being water-tolerant (minimal levelling-off of the acid 

strength in water), hydrothermally stable (crystalline structure integrity and stability towards 

metal leaching) and presenting a good thermal stability when the catalyst regeneration requires 

thermal decomposition of accumulated carbonaceous deposits (typically in the range 350-550 °C), 

or chemical stability if carbonaceous deposits are to be removed by harsh chemical treatments 

(e.g. liquid-phase oxidising conditions),2,3 as mentioned in Chapter 1. From the literature data, 

other families of porous inorganic solids can be pointed as fairly robust materials for this catalytic 

application, but aluminosilicates (bulk catalysts) in particular are relatively cheap and versatile 

materials with respect to the type of crystallinity and pore structures (micro/meso/macropores;   

1 D, 2 D or 3 D pore systems), acid properties and surface polarity (varying the Si/Al ratio), and 

possibility of being prepared with particle/crystallite sizes down to the nano-scale.  

Microporous 3 D structures impose size constraints on the reactants, intermediates and 

products.  In a pioneering work by Moreau et al.,4 zeolites revealed to be effective solid acids for 

the conversion of saccharides into Fur; in the case of H-Mordenite and H-Y Faujasite with Si/Al 

atomic ratio in the range 2-15, 90-96% SFur was reached at 27-37% CXyl at 170 °C, although 

selectivity dropped considerably as conversion increased.4 O’Neill et al.5 found a similar trend in 

Fur selectivity with conversion of Xyl for zeolite ZSM-5 as catalyst, and explained these results on 

the basis of enhanced Fur loss reactions inside the pore system, which may eventually cause pore 

blockage and deactivation of the catalyst. Accordingly, efforts have been focused on increasing 

pore sizes, allowing a wider application of these materials in fine chemicals, pharmaceuticals and 

petrochemical industries. Various synthetic approaches have improved the catalytic performance 

of zeolites, such as decreasing the zeolite crystallite sizes to the nano scale to increase the specific 

surface/pore volume ratio (as discussed in previous Chapter 5) and delaminating lamellar 

precursors of zeolites into aggregates of sheets with zeolitic nature and enhanced specific surface 

area.6  In this Chapter, H-MCM-22 zeolite possessing a medium-pore framework (MWW) and its 

delaminated counterpart, were tested as catalysts in the dehydration of Xyl into Fur. 
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6.1.1. Zeolite H-MCM-22  

 

 

The zeolite H-MCM-22 possesses a 3 D MWW-type framework (Figures 6.1 and 6.2) and 

was discovered by Mobil in 1990.7 Like zeolite beta (discussed in the previous Chapter) MCM-22 

belongs to the group of high silica zeolites (Si/Al ≥ 10) and crystallises in the form of thin 

platelets.1,8 It presents a complex pore system characterised by the presence of both medium and 

large pores,9 in which the internal MWW-type structure consists of two independent pore 

systems, both accessible only through 10-membered ring apertures (10-MR),1,8,10,11 and specific 

surface area is commonly in the range11 300-500 m2.g-1. The first pore system is 3 D, formed by 

MWW large super cages (with an inner free diameter of ca. 7.1 Å and with an unusually large 

inner height of 18.2 Å) and composed of 12-MR, only accessible through elliptical 10-MR 

apertures (4.0X5.5 Å).1,11-13 The [001] plane of MCM-22 crystals are terminated by open (half-cut) 

MWW cages (pores in the form of cups).8 The aluminium sites in these cups give rise to strong 

acid sites on the external surface, similar to the Brönsted acid sites on the internal surface.12-16 

The second pore system is defined by a 2 D circular 10-MR sinusoidal channel system with a 

uniform diameter (4.1x5.1 Å) throughout the structure (medium-pore),1 and does not contain 

cages.13 The two pore systems are independent.13  

The acid sites on the external surface of MCM-22 can be accessed by relatively bulky 

organic molecules, making MCM-22 an interesting catalyst for a wide variety of reactions.13 

Hence, the distribution of the framework aluminium atoms and acidic hydroxyl groups of the 

MWW-type framework structures are particularly interesting.1 The properties of MCM-22 zeolite 

may be influenced by several factors, such as the synthesis method and conditions (variation of 

the silica gel composition),10,17 having a strong impact on crystal size and morphology.18  

MCM-22 had been proposed with both hexagonal and orthorhombic forms;10,19 Kennedy 

et al.20 determined by NMR studies that for highly-siliceous zeolites the orthorombic one is 

favoured with 13 non-equivalent tetrahedral sites, that can be Si or Al. According to Kennedy et 

al.19 the Al-O bonds (1.75 Å in length) are longer than Si-O (1.61 Å in length).  

MCM-22 zeolite can be formed via two different synthesis methods,21 either by 

calcination of a lamellar precursor herein denoted as Pre-MCM-22, during which, the OH groups 

condense in the lamellar layers to form the 3 D MWW-type framework structure;22 or 

alternatively by direct hydrothermal synthesis from a synthesis gel (which is typical for zeolites).21 

The Pre-MCM-22 already contains the sinusoidal system within hexagonal individual layers 
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(thickness of ca. 25 Å) perpendicularly aligned to the central axis z and separated by the organic 

template hexamethyleneimine.

 

Figure 6.1- Structures of MWW

[100] (B).26 

 

Figure 6.2- Structure of MWW
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perpendicularly aligned to the central axis z and separated by the organic 

template hexamethyleneimine.7,22-25 

  

Structures of MWW-type framework projected along [001] (A), and 

    

Structure of MWW-type framework viewed normal to [001].26 
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type framework projected along [001] (A), and projected along 
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6.1.2. Delaminated ITQ

 

 

The maximum diameter of the pore

or Norman radii, respectively

diameter of 6.8 Å,28 access to the internal catalyst surface of MCM

apertures may be impeded. In order to enhance the 

catalytic reactions, Corma et al

Pre-MCM-22 into the first dela

ITQ-2 (Figure 6.3).29 ITQ-2 is obt

randomly but predominantly edge

AS.23 When Pre-MCM-22 is ca

 

Figure 6.3- Schematic representation of 

HMI- hexamethyleneamine, CTMA

 

 

ITQ-2 is a material  with a 

consists of 2.5 nm thick sheets possessing a hexagonal array of 

open pores) facing out each side of the sheets (with a diameter of ca. 7.1 Å

______________________________________________________________________________________________

_____________________________________________________________________________

ITQ-2 

diameter of the pore-rings of MCM-22 is ca. 5.5 Å or 6.2 

or Norman radii, respectively.1,11,27 Since Xyl molecules possess an approximate molecular 

access to the internal catalyst surface of MCM-22 through the 10

impeded. In order to enhance the external surface area available for the 

catalytic reactions, Corma et al.29-32 developed a delamination procedur

delaminated material obtained through zeolite p

2 is obtained when Pre-MCM-22 layers are exfoliated and oriented 

antly edge-to-face,5 allowing easier access of the reactants to the zeolite 

22 is calcined, then MCM-22 is obtained (Figure 6.3).33,34

Schematic representation of MCM-22 and ITQ-2 obtained 

CTMAOH- cetyltrimethylammonium hydroxide [adapted from

 

is a material  with a very high external specific surface area (ca. 600

consists of 2.5 nm thick sheets possessing a hexagonal array of half-open supercages (

facing out each side of the sheets (with a diameter of ca. 7.1 Å, formed by

______________________________________________________________________________________________ 

_____________________________________________________________________________ 

or 6.2 Å based on atomic 

molecules possess an approximate molecular 

22 through the 10-MR 

external surface area available for the 

a delamination procedure to transform               

rial obtained through zeolite precursors, known as 

22 layers are exfoliated and oriented 

access of the reactants to the zeolite 

34 

 

 from Pre-MCM-22;         

[adapted from 35,36]. 

very high external specific surface area (ca. 600-800 m2.g-1) and 

open supercages (cup-shaped 

, formed by a 12-MR). 
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The cups have a height of 7.0 Å with bottoms connected by a double 6-MR unit, and a circular   

10-MR sinusoidal channel system running between the cups, inside the sheet (Figure 6.4).29-32,35,37  

ITQ-2 is a promising catalyst with possible advantages compared to amorphous oxides and 

microporous zeolites; it retains its shape selectivity; reduced diffusion or pore-size limitations in 

accessing the active sites; possesses short range order and is disordered in long range;38,39 narrow 

distribution of the pores and well defined microporosity.39 It has a corrugated  surface structure 

allowing the chemical reactions to occur at active sites located in the half cage.40 ITQ-2 can be 

more active and more selective than MCM-22, as shown by Corma et al.29  The lack of long-range 

periodic order makes conventional analysis of XRD data not suitable for determining the structure 

of ITQ-2.39 The proposed structure of ITQ-2 was determined on the basis of high-resolution 

electron microscopy, gas adsorption isotherms and infrared spectroscopy.29,35,40 

 

 

Figure 6.4- Schematic representation of the structure of ITQ-2.41 

 

 

In this work, the dehydration of Xyl to Fur was investigated in the presence of MCM-22 

and ITQ-2 catalysts, using a biphasic Wt:Tol solvent system or solely water as solvent, at 170 °C. 
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6.2. Results and discussion 

 

6.2.1. Catalyst characterisation 

 

 

In this Chapter (Na,H)-MCM-22(X) and ITQ-2(24) materials were prepared as described in 

the literature (Chapter 2).31,32 Na-MCM-22(X) materials were obtained through calcination of the 

previously prepared Pre-MCM-22(X), which were prepared as described in the literature,30,31 using 

sodium aluminate and silica (as aluminium and silicon sources) and hexamethyleneimine as the 

organic template; X (the atomic ratio of Si/Al) was determined to be of 24 and 38 by ICP-AES 

measurements. ITQ-2(24) was prepared by delamination of Pre-MCM-22(30), by the addition of 

aqueous cetyltrimethyl-ammonium hydroxide/bromide (prepared by ion-exchange of CTMABr 

using Amberlite IRA-400 (OH)) and aqueous tetrapropylammonium hydroxide/bromide. 

 The ion-exchange and calcination treatments applied to Na-MCM-22(24) and Na-MCM-

22(38) to give H-MCM-22(24) and H-MCM-22(38), respectively, did not affect the Si/Al atomic 

ratio.  

The delamination procedure applied to Pre-MCM-22(30) gave the material ITQ-2(24) with 

a slightly lower Si/Al atomic ratio, possibly due to slight dissolution of silica during the 

delamination process.42,43 

 

The powder XRD patterns of the (Na,H)-MCM-22 samples obtained are in good agreement 

with the literature data for a MWW-type framework topology (Figure 6.5).10,12,13,17,23,29,31,36,39,44-98 

The XRD pattern of ITQ-2(24) revealed a significant reduction in the long-range order as a result of 

the delamination procedure, in agreement with the literature data. 29,31,36,41-43,46,51,53,56,73,83,93,99-101 
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Figure 6.5- Powder XRD patterns of as-prepared H-MCM-22(24) and ITQ-2(24) and the 

corresponding used/calcined (after catalysis) solids. 

 

 

The SEM analyses showed that the (Na,H)-MCM-22 samples consisted of thin plate-like 

crystallites of a few hundreds of nanometers to ca. 1 µm wide, and ITQ-2(24) consisted of 

particles of irregular shapes (exemplified for Na-MCM-22(24) and ITQ-2(24), Figure 6.6 and for H-

MCM-22(24) and H-MCM-22(38), Figure 6.7). A platelet-like morphology for MCM-22 was also 

observed by other authors. Some of them reported sizes ≤  1 µm in length,46,74,85,87,88,102,103 in 

agreement to the findings in this work. Others found the same platelet-like morphology for MCM-

22 but for sizes >1 µm.17,47,55,61-63,72,75,90,95,96,104-111 Smiešková et al.112 reported that MCM-22 

consisted of clusters composed of platelet type particles of about  ≤ 1 µm in length. Other 

morphologies were observed by other authors for MCM-22 such as circular crystals, with 

diameters of 0.8-1 µm for MCM-22(50) and much smaller (0.03-0.05 µm) for MCM-22(15), in 

accordance with the higher crystallinity of MCM-22(50) and higher external surface area of MCM-

22(15) (141 m2.g-1 compared to 97 m2.g-1 for MCM-22(50)),88 hollow spheres with 6-7 µm in 

diameter,51 spheres with a hole inside with diameters from 1-2 µm,60,77 3-10 µm,100,113 and 13-16 

µm, 67,68 hexagonal lamellar crystals with lengths of ca. 0.5-0.6 µm,74 and crystal chips with 

diameters of 5-10 µm.59 A not well defined sheet for MCM-22 with 5 µm in length was reported.13 

The irregular particle shapes typical of ITQ-2 were confirmed before (with loss of the platelet 
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morphology of MCM-22(P)).43,54 In contrast, ITQ-2 consisted of thin platelets similar to MCM-22, 

but with the formation of more agglomerates or more fragments.46,114 Similar to what some 

authors observed for MCM-22, hollow spheres were also observed for ITQ-2 but with more 

fragments,51 or spheres with smaller diameters of 1 µm when compared to MCM-22 (3-10 µm).100  

 

  

Figure 6.6- SEM images of a) Na-MCM-22(24) and b) ITQ-2(24). 

 

 

Figure 6.7- SEM images of a) H-MCM-22(24) and b) H-MCM-22(38). 
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Figure 6.8 shows a representative HRTEM image of Na-MCM-22(24) crystallite viewed 

along the 10-MR channels (bright spots), perpendicular to the z-direction. The images generally 

showed the stacking of MWW sheets with a thickness ranging from 150 to 300 nm, corresponding 

to the thickness of the platelet crystals. As expected, the 10-MR channels were separated by         

1.2 nm, and the thickness of the layers was ca. 2.5 nm. MWW sheets with different ranges of 

thickness were reported. A few authors reported sheets with thickness of 100-500 nm (similar to 

the obtained in this work),55,75,96,108 others in the range of 1000-2500 nm,63,105 others reported 

sheets with less than 100 nm of thickness,74,87,88,102 or even smaller ( ≥50 nm).74,85,103 HRTEM 

images of ITQ-2(24) showed much more fragmented crystals consisting of fewer sheets than Na-       

MCM-22(24), and even single layers of 2.5 nm thickness (Figure 6.8 b). Similar results for ITQ-2 

were reported earlier by Corma et al.35 

 

 

Figure 6.8- HRTEM images of a) Na-MCM-22(24) and an b) ITQ-2(24) layer, viewed along the      

10-MR channels, perpendicular to the z-direction.  

 

 

The (Na,H)-MCM-22 materials exhibited type I adsorption isotherms, typical of 

microporous materials,115-119 with an enhanced increase in the amount of adsorbed N2 at high 

relative pressures (p/p0) which is most likely due to multilayer adsorption on the external surface 

of the crystallites (exemplified for Na-MCM-22(24) and ITQ-2(24) in Figure 6.9); H-MCM-22(24), 

Na-MCM-22(38) and H-MCM-22(38) (Figure 6.10). These results are in agreement with the 

literature data.17,31,54,56,60,73,75,101,111,120,121 
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Figure 6.9- N2 adsorption-desorption isotherms measured for Na-MCM-22(24) and ITQ-2(24), at    

-196 °C. 

 

 

Figure 6.10- N2 adsorption-desorption isotherms measured for H-MCM-22(24), Na-MCM-22(38) 

and H-MCM-22(38), at -196 °C. 

  

 

The external surface areas (SEXT) of these samples were significant (48-74 m2.g-1, Table 

6.1), which was consistent with the rather small crystallite sizes observed by electron microscopy 

(Figure 6.6). The ion-exchange/calcination treatments did not affect significantly the textural 
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properties of the Na-MCM-22 samples. The adsorption-desorption isotherms for ITQ-2(24) 

exhibited a hysteresis loop at p/p0 > 0.5, indicating the presence of mesoporosity and the pore 

size distribution curve (PSD) exhibited a maximum pore diameter (Dp) at ca. 3.7 nm (Figure 6.9), in 

agreement with the literature data.31,41,54,56,73,101,121 The much higher SEXT (611 m2.g-1) obtained for 

ITQ-2(24) compared to the (Na,H)-MCM-22 materials (48-74 m2.g-1), was consistent with a 

successful delamination procedure.  

 

Table 6.1- Elemental composition and textural properties of (Na,H)-MCM-22 and ITQ-2(24) 

catalysts and comparison with literature data for other delaminated zeolites. 

Sample (Si/Al) 
a
 Vp 

(cm
3
.g

-1
) 

Vmicro /Vmeso 

(cm
3
.g

-1
) 

Surface area 

(m
2
.g

-1
) 

SEXT  

(m
2
.g

-1
) 

Dp 

(nm) 

Ref 

Na-MCM-22(24) 0.28 0.12 e /-  361 j 52 r - this work 

H-MCM-22(24) 0.34 0.10 e/-  333 j 74 r - this work 

Na-MCM-22(38) 0.22 0.19 e/-  564 j 62 r - this work 

H-MCM-22(38) 0.33 0.18 e/- 497 j 48 r - this work 

MCM-22(7) - 0.14 f/- 518 k - - 75 

MCM-22(12) - 0.16 e/0.24 481 l 106 r - 46 

MCM-22(12) - - 432 l - - 122 

MCM-22(14) 0.19 - 689  - - 91 

MCM-22(15) - - 453 m - - 123,124 

MCM-22(15) 0.31 0.16 e/- 451(310/-) n 141 s - 93,125 

MCM-22(15) - 0.16/0.61 503 l - - 126 

MCM-22(15) 0.47 - 654 l - - 44 

H-MCM-22(15) 0.65 c 0.15 e/0.48 h 501 l - - 52,61 

H-MCM-22(15) - - 458 l - - 127 

MCM-22(15) - - 487 l - - 59 

MCM-22(16) - - 432 o - - 84 

H-MCM-22(16) 0.31 0.21 e or 0.20 h 
/0.10 g 

566 l 132 r - 128 

H-MCM-22(16) - 0.16 f/- 553 l - - 55 

H-MCM-22(17) - - 460 (350/-) l 110 r - 129 

MCM-22(18) - 0.16 e/- - 110 r - 73 

MCM-22(18) 0.17 d 0.14 e/- 435 (303/-) n 132 s - 130 

H-MCM-22(19) 0.28 d 0.23 e/- 524 l 127 r - 56 

MCM-22(21) 0.27 0.21 e/0.06 g 586 l - - 83 

MCM-22(21) - 0.18 f or 0.21 h/- 597 p - - 17 

H-MCM-22(22) 0.43 0.18/- 493 l - - 131 

H-MCM-22(23) 0.22 d 0.14 e/0.08 g 401 (318/-) n 83 s - 51 

H-MCM-22(28) 0.16  - 530  - - 91 

MCM-22(29) - - 481 l - - 1 

H-MCM-22(30) - - 451 l - - 132 

H-MCM-22(31) 0.41  - 452  - - 133 

MCM-22(40) 0.52 0.16 e/0.36 g 418 (337/-) 93 - 107 

MCM-22(40) - - 329 l - - 1 

MCM-22(46) - 0.11 e or 0.13 h/- 356 p - - 17 

H-MCM-22(46) 0.18 d 0.11 e/0.07 g 396 (311/-) n 85 s - 51 
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Table 6.1- Continued. 

MCM-22(50) 0.52 d 0.18 e/- 451 (355/-) n 96 s - 36 

MCM-22(50) - 0.12/- 400 l 150 -  134 

MCM-22(50) - 0.12/- 400 l 82   135 

MCM-22(50) - - 453 (244/-) l 111 r - 31 

MCM-22(50) - 0.18/- 456 l (342/-) 114 - 25 

MCM-22(50) 0.22 0.14/- 358 l (290/-)  68 2.4  62,64 

ITQ-2 

ITQ-2(24) 1.12 0.01 e/- 623 j 611 r 3.7 t this work 

ITQ-2(14) - 0.12 e/- 560 (239/-)n 331 s - 93 

ITQ-2(15) - - 573 m - - 123 

ITQ-2(17) - 0.16 e/0.57 679 l 268 r - 46 

ITQ-2(17) - - 730 (60/-) l 670 r - 129 

ITQ-2(18) - 0.05 e/- - 529 r - 73 

ITQ-2(18) - 0.25 e/0.03 g 772 l - - 83 

ITQ-2(19) 0.69 d 0.03 e/- 676 l 625 r  56 

ITQ-2(24) 0.66 d 0.08 e/0.58 g 859 n 657 s - 51 

ITQ-2(24) 0.47 0.04 e/- 562 n 430 s - 125 

ITQ-2(25) - - 632 m - - 124 

ITQ-2(30) 0.38 -/0.24 i 468 m (-/175) q - 3.3 100 

ITQ-2(50) 0.95 d 0.02 e/- 854 (45/-) n 756 s - 36 

ITQ-2(50) - - 840 (50/-) l 790 r - 31 

ITQ-2(50) 0.99  0.04/- 895(60/-) n - - 136 

ITQ-2(58) - 0.01/- 806 l 750 - 134 

ITQ-2(58) - 0.01/- 806 l 706   135 

ITQ-2(nf)b 0.77  - 835 l - - 137 

ITQ-2(nf)b 0.60 - 884 m - - 138 

ITQ-2(pure silica) 0.76 d - 822 l - 3.7 t 41 

ITQ-2(pure silica) - 0.01/- 700 m - - 139 

H-Nu-6(2)(32) 0.01  - 20 l - - 6 

del-Nu-6(1)(29) 0.07  - 151 l 6 r - 6 
a) The bulk Si/Al atomic ratio of the catalysts is given in parenthesis. b) nf= information not found. c) Total pore volume for p/p0 <0.9.  
d) Vp determined by BJH adsorption method. e) Vmicro calculated by t-plot. f) Vmicro calculated by αs plot. g) Vmeso= Vp- Vmicro. h) Vmicro 
calculated by Dubinin-Raduskevitch method. i) Vmeso calculated by BJH method. j) SBET calculated for p/p0 in the range 0.01-0.10.            
k) Specific surface area calculated from the B point of the isotherm. l) SBET; values in parenthesis refers to Smicro/Smeso in which Smicro=SBET-
SEXT. m) Not mentioned how the surface area was calculated. n) SBET; values in parenthesis refers to Smicro/Smeso in which Smicro is 
calculated by t-plot.  o) SBET determined from N2 adsorption data for the proton form of each zeolite. p) Surface area determined by 
Dubinin-Raduskevitch method. q) Smicro determined by BJH method. r) SEXT calculated from the t-plot method. s) SEXT calculated by the 
difference between SBET and Smicro. t) Average pore diameter (Dp) determined by BJH method. The calculations for the values without an 
indication are not mentioned in the respective works. 

 

 

The delamination process is better succeeded for lower Si/Al ratios as can be seen for the 

values reported in the literature data (Table 6.1). The higher specific surface area was always 

observed for the delaminated ITQ-2 (623-895 m2.g-1) compared to (Na,H)-MCM-22 materials (401-

597 m2.g-1 and Si/Al ratio between 7-29; 329-456 m2.g-1 and Si/Al ratio between 40-50). Even the 

lower ITQ-2 surface areas reported (468-560 m2.g-1) were higher than the MCM-22 counterparts 

(e.g. 560 m2.g-1 obtained for ITQ-2 and 451 m2.g-1 for MCM-22)93 (Table 6.1). Exceptionally, a 
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higher surface area was observed for MCM-22 (654 m2.g-1) by  Laredo et al.44 In general, the SEXT 

for ITQ-2 (268-790 m2.g-1) was high compared to (Na,H)-MCM-22  materials (68-150 m2.g-1), and 

the Vmicro values were normally higher for MCM-22 materials (0.11 to 0.24 cm3.g-1) than in ITQ-2 

(0.01-0.08 cm3.g-1). Liu et al.100 reported a low Smeso of 175 m2.g-1 for ITQ-2, which probably is an 

indication of an unsuccessful delamination. Yang et al.46 reported the same value of Vmicro for    

ITQ-2 and MCM-22 (0.16 cm3.g-1), however the Vmeso of the former was ca. 2.3 times greater   

(0.57 cm3.g-1) than the latter (0.24 cm3.g-1), which is consistent with the mesoporosity associated 

with ITQ-2 and observed through the nitrogen adsorption isotherms (Figure 6.9).  

 

The 27Al MAS NMR spectra of the Na-MCM-22 samples exhibited an asymmetric peak with 

maximum at ca. 56 ppm and a shoulder at ca. 50 ppm (Figure 6.11), assigned to tetrahedrally 

coordinated framework aluminium (denoted Alfr), which may have non-equivalent chemical 

environments with different T-O-T angles.19,37,41,99,140 The tetrahedral aluiminium at ca. 50 ppm 

was assigned to aluminium atoms in sites T6 and T7,1,17,37,51 while the peak at 56 ppm was 

assigned to T1-T5 and T8, since T6 and T7 have larger T-O-T angles,51 or only T1, T3, T4, T5 and T8           

(Figure 6.12).1,17,19,37  The average Al-O-Si angles in the zeolite framework of 152° and 164° were 

assigned for the chemical shifts at ca. 55 ppm and ca. 48 ppm respectively.141 This spectrum is in 

agreement with the literature for MCM-22 before calcination.1,10,19,23,37,43,49,51,59,76,98,140,142 Other 

authors observed a single peak at 54 ppm, associated with Alfr  in tetrahedral environment and 

indicating that aluminium was effectively incorporated in the silica framework.143,144 In the 

present work, the spectra of the H-MCM-22 samples exhibited an additional (narrow, weaker) 

peak at ca. 0 ppm, assigned to extra-framework aluminium species (denoted Alext-fr) formed during 

the ion-exchange/calcination treatments,91,99,133 which is similar to that reported in the 

literature.17,19,23,47,51,61,78,79,91,94,132,133,142,145-147 An additional peak at 61 ppm was reported 

sometimes as a shoulder of the ca. 50 and 55 ppm peaks assigned to tetrahedrally coordinated 

Alfr,
19,23,142,147,148 and to T2 sites.7 Delitala et al.17 identified a peak at ca. 30 ppm that was 

attributed to distorted tetrahedral or pentacoordinated Alext-fr. Similar peak at ca. 30 ppm was also 

observed by other authors.78,94,148  

The relative amounts of the Alfr and Alext-fr species were determined from the areas of the 

respective peaks (A(Alfr)= area of the peak in the range of 35-70 ppm; A(Alext-fr)= area of the peak 

centred at 0 ppm). The ratio A(Alfr)/A(Alext-fr) equals 8.4 for H-MCM-22(24) and 9.4 for H-MCM-

22(38). These results are in agreement with the literature data in that higher Si/Al ratios of H-

MCM-22 can lead to higher relative amounts of tetrahedral aluminium.1,43,133 The 27Al NMR 
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spectrum of ITQ-2(24) revealed the presence of Alfr (ca. 55 ppm) and Alext-fr species (0 ppm), in 

agreement with the literature data.43,51,99  

The A(Alfr)/A(Alext-fr) ratio for ITQ-2(24) was equal to 8.5 which was similar to that 

observed for its counterpart H-MCM-22(24).  

 

 

Figure 6.11- 27Al MAS NMR spectra of the prepared catalysts (Na,H)-MCM-22 and ITQ-2(24). 

 

 
Figure 6.12- Schematic representation of non-equivalent tetrahedral positions in one layer of 

MCM-22 . The  T1 and T3-T8 sites may be occupied by Al and Si, while T2 sites contain only Si.1   
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The FT-IR spectrum of ITQ-2(24) showed a band at ca. 956 cm-1 assigned to terminal Si-OH 

groups, which was poorly resolved in the case of H-MCM-22(24), further suggesting that 

delamination occurred to a significant extent in the preparation of ITQ-2(24) (Figure 6.13).29,31,99 

 

  
 
Figure 6.13- FT-IR spectra, in the framework region of H-MCM-22(24) and ITQ-2(24). 

 

 

As mentioned in Section 5.2.1.2. from Chapter 5, the acidity of aluminosilicates 

investigated by FT-IR may be associated with bridging hydroxyl groups (Si-OH-Al) formed by 

tetrahedral aluminium.149 (ca. 3600 cm-1 in the FT-IR spectra),150,151 hydroxyl groups, such as 

internal or terminal silanol Si-OH groups (3740 cm-1),150,151 and Al-OH groups (3780 and             

3680 cm-1)151,152 on the surface of the aluminosilicate which are usually weakly acidic.155,238 The 

measurement of the acid properties of the prepared catalysts was performed by FT-IR studies of 

adsorbed pyridine after outgassing at 150 °C. In the case of ITQ-2(24) the presence of Si-OH 

terminal groups was evident by the presence of an intense band at 3743 cm-1 (Figure 6.13). The 

presence of Si-OH groups was also observed in the case of the zeolite H-MCM-22(24) and             

H-MCM-22(38), although with much lower relative intensities (Figure 6.14). The ratio between the 

intensities of FT-IR bands due to acidic groups depends on the zeolite composition, preparation 

procedure, and subsequent thermal treatment conditions.153,154  
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Figure 6.14- FT-IR spectra of ITQ-2(24), H-MCM-22(24) and H-MCM-22(38) after pyridine 

adsorption and outgassing at 150 °C. 

 

 

All the prepared materials possessed both B and L interacting with pyridine after 

outgassing at 150 °C. The concentration of B and L were determined as explained previously in 

Section 3.2.1.2 of Chapter 3. In this sense, the [B] (band at ca. 1545 cm-1) and [L] (band at ca. 1450 

cm-1) for ITQ-2(24) and H-MCM-22 were determined through equations 3.1 and 3.2, specified in 

Chapter 3 (Table 6.2). Figure 6.15 shows the FT-IR spectra of the catalysts with adsorbed pyridine, 

after outgassing at 150 °C. The band at ca. 1490 cm-1 is attributed to L and B,  1620 cm-1 to L and 

1640 cm-1 to B, which is in accordance with the literature.44,56,61,62,132,155  
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Figure 6.15- FT-IR spectra of ITQ-2(24), H-MCM-22(24) and H-MCM-22(38) after pyridine 

adsorption and outgassing at 150 °C. 

 

 

The H-MCM-22 materials possessed mainly Brönsted acid sites (B), and comparable ratio 

of [L]/[B] (0.4-0.6, Figure 6.15). The H-MCM-22(24) sample possessed higher total amount of 

([L]+[B]) in comparison to H-MCM-22(38), which was consistent with the lower Si/Al ratio for the 

former (Table 6.2), and with the literature for two MCM-22 samples with different Si/Al ratios 

(total acidity of 78.2 mmol.g-1 for MCM-22(15) and of 41 mmol.g-1 for MCM-22(50) after pyridine 

outgassing at 250 °C).88 The ITQ-2(24) sample possessed a similar total amount of acid sites (AS) to                         

H-MCM-22(24), while the [L]/[B] ratio was higher for ITQ-2(24) (a similar trend has been reported 

in the literature30). 

The effect of the outgassing temperature on the [L] and [B] was also investigated, and a 

decrease in the amount of detected AS was observed with an increase in outgassing temperature. 

The ratios of the amounts of AS measured at 150 °C and 250 °C ([L]150/[L]250 and [B]150/[B]250) were 

both equal to 1.1 for H-MCM-22(24), whereas for ITQ-2(24) [L]150/[L]250=1.4 and [B]150/[B]250=2.6. 

Hence, the surface acidity (particularly the Brönsted acidity) for ITQ-2(24) was weaker. 

The [L]/[B] ratio for these types of materials reported in the literature (pyridine 

adsorption in a temperature range of 100 to 200 °C) is given in Table 6.2; in general for                 

H-MCM-22, [B] was greater than [L]; exceptions were reported by Ling et al.,132 and Wang et al.56 

The higher [L]+[B] seemed to be correlated to the higher aluminium content, as observed for H-

MCM-22(24)(204 µmol.g-1) in comparison to H-MCM-22(38) (168 µmol.g-1), and literature data for 
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H-MCM-22 with lower Si/Al ratios of 15-19 (411-457 µmol.g-1).44,56,61  The same trend was reported 

for ITQ-2(24) and ITQ-2(19),56 in which the total amount of AS were 198 and 276 µmol.g-1, 

respectively (Table 6.2). Meloni et al.155 reported a considerably higher acidity for H-MCM-22(30) 

(371 µmol.g-1) when compared to the results reported in this Chapter (204 µmol.g-1 for H-     

MCM-22(24)).  

 

Table 6.2- Acid properties measured by FT-IR of adsorbed pyridine of (Na,H)-MCM-22 and ITQ-

2(24) catalysts and comparison with literature data. 

Catalyst (Si/Al)
a
 Tads (°C) 

b
 Tdes (°C) 

c [L]+[B]
 d 

(µµµµmol.g
-1

) 

[L] 
e
 

(µµµµmol.g
-1

) 

[B] 
f
 

(µµµµmol.g
-1

) 

[L]/[B]
g Ref 

H-MCM-22(24) 150 150 204 58 145 0.4 this work 

H-MCM-22(38) 150 150 168 63 105 0.6 this work 

H-MCM-22(15) 200 200 457 106 351 0.3 44 

H-MCM-22(15) 110 110 411 159 252 0.6 61 

H-MCM-22(19) 100 100 424 160 264 0.6 56 

H-MCM-22(30) 200 200 383 217 166 1.3 132 

H-MCM-22(30) 150 150 371 43 328 0.13 155 

H-MCM-22(49) 200 200 - - - 0.4 62 

ITQ-2(24) 150 150 198 99 99 1.0 this work 

ITQ-2(19) 100 100 276 158 118 1.3 56 
a) The Si/Al atomic ratio of the catalyst is given in parenthesis. b) Temperature of pyridine adsorption (Tads) used to determine 
Brönsted and Lewis acid sites concentrations. c) Temperature of pyridine desorption (Tdes) used to determine Brönsted and Lewis acid 
sites concentrations. d) Sum of the total de Brönsted acid sites [B] plus Lewis acid sites [L]. e) Concentration of Lewis acid sites. f) 
Concentration of Brönsted acid sites. g) Ratio of the amounts of Lewis to Brönsted acid sites. 

 

 

For comparison, the acid properties of ITQ-2(24) and H-MCM-22(24) were measured using 

collidine as the base probe molecule. Due to its steric bulk (ca. 7.4 Å), the collidine molecule is not 

expected to enter the pores of the MWW-type framework structure,156,157 meaning it should only 

interact with B (giving [B]col) located on the external surface or at the pore entrances. On the 

other hand, collidine is a stronger base (pKa ca. 7.4) than pyridine (pKa ca. 5.3).158 The [B]col for    

H-MCM-22(24) and ITQ-2(24) was 45 and 153 µmol.g-1, respectively (the reproducibility was 

checked in duplicate experiments). The lower [B]col for H-MCM-22(24) than for ITQ-2(24) is most 

likely due to steric constraints (inaccessibility of the AS on the internal surface to the bulky 

collidine molecules). For ITQ-2(24), [B]col was greater than [B] determined using pyridine, most 

likely due to the fact that collidine is a stronger base than pyridine and thus it interacts with AS 

which were too weak for interaction with pyridine. Based on the above results, it seems that 

while the delamination procedure led to enhanced surface area of ITQ-2(24), the surface acidity 

became relatively weak. 
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6.2.2. Catalytic dehydration of D-xylose 

 

6.2.2.1. Catalytic performance of H-MCM-22 and ITQ-2(24) in water-organic 

biphasic solvent system 

 

 

The catalysts were tested in the aqueous-phase reaction of Xyl to give Fur, using a 

biphasic solvent system (0.3 water:0.7 toluene (v/v), denoted Wt:Tol), at 170 °C. As mentioned 

before, Xyl dissolves completely in water and is insoluble in toluene, whereas Fur is distributed in 

the two liquid phases with a partition ratio in the range of 8-10, at a.t. calculated through 

equation 5.2 described in Chapter 5. Hence, the use of Tol as co-solvent allows the simultaneous 

extraction of Fur as it is formed, into the upper organic phase, which may avoid consecutive Fur 

loss reactions. The reaction of Xyl in the presence of H-MCM-22(24) gave 70% of YFur at 92% CXyl, 

reached at 16 h (Figures 6.16 and 6.17). The kinetic curves for H-MCM-22(24) and its parent basic 

form, Na-MCM-22(24), were roughly coincident (Figure 6.16); the initial reaction rate for                 

H-MCM-22(24) and Na-MCM-22(24) was 2.4 and 2.9 mmol.gcat
-1.h-1, respectively (based on the 

conversion of Xyl after 1 h of reaction). However, higher yields of Fur were reached for                     

H-MCM-22(24) than for Na-MCM-22(24) (Figure 6.17). In the case of Na-MCM-22(38) the initial 

reaction rate was very poor (only 0.84 mmol.gcat
-1.h-1; slower than Na-MCM-22(24)). At 24 h of 

reaction the CXyl/YFur was 98%/47% for Na-MCM-22(24), 87%/51% for Na-MCM-22(38) and 

82%/60% for H-MCM-22(38). 
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Figure 6.16- Kinetic profiles of the reaction of D-xylose (Xyl) in the presence of Na-MCM-22(24) 

(▲), H-MCM-22(24) (x), H-MCM-22(38) (+) or ITQ-2(24) (●). Reaction conditions: 0.3 Wt:0.7 Tol 

(v/v) biphasic solvent system, 170 °C, 20 gcat.dm-3, 0.67 M Xyl. 

 

 

Figure 6.17- Dependence of the yield of 2-furaldehyd (YFur) on the conversion of D-xylose (CXyl) 

curves for Na-MCM-22(24) (▲), H-MCM-22(24) (x), H-MCM-22(38) (+) or ITQ-2(24) (●). Reaction 

conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 170 °C, 20 gcat.dm-3, 0.67 M Xyl. 
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The influence of the Si/Al ratio of the catalyst on the reaction of Xyl was investigated by 

comparing the catalytic performances of H-MCM-22(24) and H-MCM-22(38). For H-MCM-22(38), 

the initial reaction rate was 1.0 mmol.gcat
-1.h-1 (compared to 2.4 mmol.gcat

-1.h-1 for H-MCM-22(24)), 

and a 71% CXyl was reached at 16 h of reaction (Figure 6.16). The higher catalytic activity observed 

for H-MCM-22(24) (92% CXyl at 16 h compared to 82% CXyl at 24 h for H-MCM-22(38)) correlated 

with the higher total amount of acid sites determined by FT-IR studies of adsorbed pyridine 

(Tables 6.2 and 6.3). The yield of Fur reached at ca. 98% CXyl was 68% for H-MCM-22(38) and 71% 

for H-MCM-22(24) (Figure 6.17). Hence, the decrease in the Si/Al ratio of the H-MCM-22 zeolite 

led to an increase in the total amount of AS which, in turn, improved the catalytic activity in the 

reaction of Xyl, without affecting significantly the Fur selectivity. 

The catalytic activity of (medium-pore) H-MCM-22(24) was intermediate (92% CXyl, 16 h) 

between that previously reported for the small-pore zeolite H-Nu-6 (2) (Si/Al=32), (59% CXyl, 6 h),6 

and large-pore zeolite BEA (Si/Al=12) (98% CXyl at 4 h, in Chapter 5), used as catalysts in the same 

reaction under similar conditions (Table 6.3). Nevertheless, the maximum yield of Fur reached 

was highest for H-MCM-22(24). For comparison, the reaction of Xyl was carried out, under similar 

reaction conditions, in the presence of the protonic form of a commercial sample of ZSM-5 (Alfa 

Asear; ammonium form; Si/Al=11.5, 425 m2.g-1), which is a medium-pore zeolite with the MFI 

framework type. The acquired zeolite was heated under static air at a rate of 1 °C.min-1 to 550 °C, 

and maintained at this temperature for 10 h, giving the tested H-ZSM-5(11.5). The CXyl and YFur at  

6 h/16 h were 88%/98% and 60%/61%, respectively. Compared with the prepared H-MCM-22  

samples, the H-ZSM-5(11.5) catalyst was more active (for the more active H-MCM-22(24), 

73%/92% CXyl at 6 h/16 h), but led to lower yields of Fur at high conversions (at ca. 98% CXyl: 71%, 

69% and 61% YFur for H-MCM-22(24), H-MCM-22(38), and H-ZSM-5(11.5), respectively). O’ Neill   

et al.5 investigated the reaction of Xyl in the presence of H-ZSM-5 with Si/Al=28. In that study, a 

maximum of ca. 33% YFur was reached within 60 min, at 180 °C, and afterwards the yield of Fur 

tended to drop with time (reaction conditions: 0.67 M Xyl and 30 gcat.dm-3) under pressurised He 

atmosphere. The yield of Fur reported for the reaction temperature of 160 °C was lower (ca. 12% 

YFur at 1 h).  

The presence of basic sites in the catalysts can promote undesirable reactions such as the 

aldolisation decomposition of the saccharide into oligomeric acid products.159,160 Particularly in 

the investigated catalyst H-ZSM-5, the average pore size was ca. 1.2 nm which is far greater than 

the molecular diameters of both Xyl and Fur, and this was considered as a possible cause of the 

formation of considerable amounts of by-products (oligomers).5   
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The results obtained for (Na-H)-MCM-22 samples compared favourably in terms of yield 

of Fur to the zeolites H-Mordenite or H-Y Faujasite tested under similar conditions in previously 

reported works (Table 6.3). 

 

Table 6.3- Catalytic performance of prepared catalysts in the reaction of D-xylose (Xyl), using a 

biphasic solvent system (Wt:Tol) at 170 °C, and comparison with literature data for other 

aluminosilicate catalysts. 

 Catalyst (Si/Al)
a
 time (h) CXyl (%) 

b
 YFur  (%) 

c
 Ref 

Na-MCM-22(24) 24 98 47 this work 

H-MCM-22(24) 16 92 70 this work 

Na-MCM-22(38) 24 87 58 this work 

H-MCM-22(38) 24/32 82/97 60/68 this work 

ITQ-2(24) 6/16 60/99 66 this work 

H-ZSM-5(11.5) 6/16 88/98 60/61 this work 

Al-TUD-1(21) 6 91 60 Chapter 4 

BEA(12) 4/6 98/100 54/49 Chapter 5 

BEATUD-1(34) 6/8 94/98 69/74 Chapter 5 

H-Nu-6(2) (32) 6 59 28 6 

del-Nu-6(1) (29) 6 87 46 6 

H-Y Faujasite(15) 0.83 51 42 4 

H-Mordenite(11) 0.83 37 33 4 
a) The Si/Al atomic ratio of the catalyst is given in parenthesis. b) Conversion of D-xylose (CXyl) at a specified reaction times.                    
c) 2-Furaldehyde yield (YFur) at specified reaction times. Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 170 °C,        
20 gcat.dm-3, 0.67 M Xyl. 

 

 

The reaction of Xyl was further investigated in the presence of ITQ-2(24), using the 

biphasic Wt:Tol solvent system at 170 °C, which gave a YFur of 66% at 99% CXyl reached at  16 h 

(Figures 6.16 and 6.17). In terms of the maximum yield of Fur reached, these results were superior 

to those reported previously for a delaminated solid acid (denoted del-Nu-6(1)) prepared by 

exfoliation of the lamellar precursor Nu-6(1) (46% YFur),
6 comparable to a mesoporous Al-TUD-1 

material (60% YFur, Chapter 4), and lower than that for a BEATUD-1 composite (74% YFur, Chapter 

5), used as catalysts in the same reaction under similar conditions (ITQ-2(24) possessed 

comparatively lower catalytic activity, Table 6.3). It is difficult to establish clear structure-activity 

relationships between different types of aluminosilicate catalysts. The catalytic performances may 

be due to an interplay of different factors such as morphology, crystalline structure, porosity, 

surface polarity and acid properties. A common feature, however, was the apparent fairly high 

stability of the aluminosilicate catalysts investigated, under the applied reaction conditions 

(discussed in Section 6.2.2.4 for H-MCM-22 materials and ITQ-2(24)). It is worth mentioning that 
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these comparisons merely summarise literature data obtained under similar reaction conditions, 

and do not serve to “rate” the different families of catalysts (the physical-chemical properties of 

different types of catalysts may be optimised).  

A comparison of the catalytic results for ITQ-2(24) and H-MCM-22(24) showed no major 

differences in terms of reaction rate (Figure 6.16): ITQ-2(24) gave an initial reaction rate of          

2.0 mmol.gcat
-1.h-1 and a CXyl at 8 h of 78%, while H-MCM-22(24) gave 2.4 mmol.gcat

-1.h-1 and a CXyl 

of 83%. The catalytic performances of ITQ-2(24) and H-MCM-22(24) were similar despite their 

considerably different SEXT (611 m2.g-1 for ITQ-2(24) and 52 m2.g-1 for H-MCM-22(24) (Figure 6.17 

and Table 6.1). The catalytic results correlated fairly well with the similar total concentration of AS 

([L]+[B]) measured for the two catalysts using pyridine as probe molecule (Tables 6.2 and 6.3). The 

catalytic activity did not correlate with the [B]col which was higher for ITQ-2(24) (153 µmol.g-1) 

than for H-MCM-22(24) (45 µmol.g-1); possibly the stronger base collidine interacts with some AS 

which were too weak for catalysing the reaction of Xyl. The Fur yield versus Xyl conversion curves 

were also comparable for the two catalysts, and the YFur reached at ca. 99% of CXyl was 71% for H-

MCM-22(24) and 66% for ITQ-2(24) (Figure 6.17). Hence ITQ-2(24) standed on a similar footing to 

H-MCM-22(24) (the Si/Al ratio was the same for the two materials) in terms of catalytic 

performance in the reaction of Xyl.  

A clear assessment of the location (external/internal surfaces) of the effective AS was not 

trivial. As mentioned in Section 6.1.1., the intrazeolite void space of the MWW pore structure is 

accessible through the 10-MR apertures,29 and the maximum pore diameter is 5.5 Å or 6.2 Å 

based on atomic or Norman radii, respectively.27 It is reported that the Xyl molecules (in which the 

hemiacetal isomers are predominant in solution) possess an approximate molecular diameter of 

6.8 Å,28 and the critical, maximum and kinetic diameters of Fur are reported to be 4.56 Å, 5.99 Å 

and 5.5 Å, respectively.27 Based on these data, and taking into consideration that in the liquid 

phase the solute molecules are solvated by the solvent, the access of Xyl (and possibly Fur) 

molecules to the internal surface of the MWW-type framework may be severely hindered. It has 

been reported for benzene as substrate and zeolite MCM-22 as catalyst that the reaction takes 

place essentially on the external surface.156,161 Molecular dynamics simulations indicated that 

benzene (kinetic diameter of 5.85 Å)162 presents low diffusivity in either of the two pore systems 

of the MWW-type structure.163 Assuming that the reaction of Xyl takes places essentially on the 

external surface of the catalysts, the similar catalytic performances of ITQ-2(24) and                      

H-MCM-22(24) despite their considerably different SEXT, may be due to weaker overall acidity in 

the former case (some AS may be inactive or possess relatively low intrinsic catalytic activity). 
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The reaction of Xyl in the presence of ITQ-2(24) at 155 °C was slower (an initial reaction 

rate of 0.8 mmol.gcat
-1.h-1) and led to a lower 55% YFur (at 98% CXyl, reached at 24 h of reaction) 

than that observed at 170 °C (initial reaction rate of 2.0 mmol.gcat
-1.h-1; 66% YFur at 99% CXyl, 

reached at 16 h reaction). For the reaction temperature of 170 °C, and at constant amount of the 

catalyst (ITQ-2(24)) in the reaction medium, total volume of liquid phases and catalyst/Xyl mass 

ratio, changing the 0.3 Wt:0.7 Tol (v/v) solvents ratio affects the yield of Fur: for a Wt:Tol of 1:1 

v/v, 51% YFur was reached at 98% CXyl and 16 h of reaction, which is lower than that observed for a 

Wt:Tol of 0.3:0.7 v/v, 66% YFur.  

 

 

6.2.2.2. Catalytic performance of H-MCM-22 and ITQ-2(24) using solely 

water as solvent 

 

 

The reaction of Xyl was further investigated in the presence of ITQ-2(24) and                     

H-MCM-22(24), using solely water as solvent (Wt), at 170 °C. The amount of the catalyst in the 

reaction medium, catalyst/ Xyl ratio, and the initial concentration of Xyl in water were the same 

for the Wt:Tol biphasic system and solely water. The kinetic profiles for ITQ-2(24) and H-MCM-

22(24) were very similar until 8 h of reaction (Figure 6.18), which correlated with the similar total 

concentration of AS ([L]+[B]) for the two catalysts (Table 6.2). The yield of Fur versus Xyl 

conversion curves were comparable, giving 52-54% YFur at 97% CXyl (Figure 6.19). The comparable 

performances for these two catalysts using the Wt system paralleled that observed for the 

biphasic Wt:Tol system. For the two solvent systems, at reaction times longer than 8 h, ITQ-2(24) 

gave slightly higher conversions than H-MCM-22(24), possibly due to slower catalyst deactivation 

(coking) in the former case. The maximum yields for Fur reached at high conversions of Xyl were 

somewhat lower when the simultaneous extraction of Fur was not performed, due to the 

enhanced formation of by-products (discussed in Section 6.2.2.3). 
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Figure 6.18- Kinetic profiles of the reaction of the conversion of D-xylose (CXyl) for H-MCM-

22(24)(x), ITQ-2(24) (●) and H2SO4 (▲), used as catalysts. Reaction conditions: 1 cm3 Wt or 4 mM 

H2SO4, 170 °C, 20 gcat.dm-3, 0.67 M Xyl. 

 

 

Figure 6.19- Dependence of the yield of 2-furaldehyde (YFur) on the conversion of D-xylose (CXyl) 

for H-MCM-22(24) (x), ITQ-2(24) (●) and H2SO4 (▲), used as catalysts. Reaction conditions: 1 cm3 

Wt or 4 mM H2SO4, 170 °C, 20 gcat.dm-3, 0.67 M Xyl. The kinetic profile for H2SO4 was measured 

until 72 h of reaction.  
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For comparison, the reaction of Xyl was carried out in the presence of 4 mM of H2SO4 as 

catalyst instead of the solid acids. The initial amount of liquid acid was comparable to the total 

amount of AS in the loaded solid acid catalysts. Although the kinetic profile until 8 h reaction was 

similar for H2SO4 and the solid acid catalysts, H2SO4 gave much lower conversions at longer 

reaction times (Figure 6.18). The pronounced retardation of the reaction of Xyl in the presence of 

H2SO4 may be due to the partial decomposition of the catalyst through its possible participation in 

the formation of sulfur-containing by-products,164-166 and/or to the decrease in the concentration 

of active Brönsted acid species due to the protonation of Fur.165,166 The yield of Fur versus the      

Xyl conversion profile for H2SO4 (55% YFur at 93% CXyl at 72 h) was comparable to those for the 

solid acid catalysts (Figure 6.19). 

 

 

6.2.2.3. Identification of the reaction products 

 

 

To get insight into the type of by-products formed, the reaction of Xyl was carried out in 

the presence of ITQ-2(24) using D2O as solvent at 170 °C for 24 h, and the reaction mixture was 

analysed by 1H and 13C NMR spectroscopy, similar to that described in Chapter 5. The presence of 

Xyl in the reaction solution was hardly detected in the spectra (Figure 6.20), which was consistent 

with the catalytic results (97% CXyl at 24 h). The main peaks were relative to Fur: 9.4 (H-1´), 7.8   

(H-4), 7.5 (H-2) and 6.6 ppm (H-3) in 1H NMR; 183.6 (C-1’), 155 (C-4), 153.1 (C-1), 128.7 (C-2) and 

116.2 ppm (C-3) in 13C NMR (Figure 6.21). Formic acid was detected (169 ppm and 8.1 ppm in the 

13C and 1H NMR spectra, respectively), which may be formed via the decomposition of Fur.5,167-169 

The 1H NMR spectrum exhibited weak to very weak signals in the range of 3-4.5 pm which may be 

due to carbohydrate H-C-O or H2C-O groups. The absence of 1H NMR signals near 1.4 ppm and   

4.3 ppm rules out the presence of significant amounts of lactic acid in the reaction solution of the 

reaction of Xyl with ITQ-2(24) as the catalyst, similar to that discussed in Chapter 5 for BEA tested 

as catalyst in the same reaction, under similar conditions. Weak peaks below 2 ppm may be 

assigned to methyl/methylene carbon atoms. Fragmentation reactions of Xyl can take place to 

form oxygenated aliphatic compounds.169,170   
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Figure 6.20-1H NMR spectrum of the solution obtained after separation of the solid phase from 

the reaction mixture of D-xylose (Xyl) in the presence of ITQ-2(24) using D2O as solvent. The 

spectra of 2-furaldehyde (Fur) and D-xylose (Xyl) are given for comparison. Reaction conditions: 

D2O (1 cm3), 24 h, 170 °C, 20 gITQ-2.dm-3, 0.67 M Xyl.  

 

 

 
Figure 6.21-13C NMR spectrum of the reaction solution obtained after the reaction of D-xylose 

(Xyl) in the presence of ITQ-2(24) using D2O as solvent. The spectra of 2-furaldehyde (Fur) and     

D-xylose (Xyl) are given for comparison. Reaction conditions: D2O (1 cm3), 8 h, 170 °C,                    

20 gITQ-2.dm-3, 0.67 M Xyl. 
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Figure 6.22 summarises possible pathways 

conversion of Xyl to Fur. 

 

Figure 6.22- Possible pathways for the formation of by

reaction systems.5,167-169,171,172

 

 

6.2.2.4. Catalyst stability

 

 

After at least 98% C

separated from the reaction mixture by centrifugation, wash

overnight, giving pale brown powders. For each solid, the DSC analysis showed an endothermic 

band below 200 °C assigned to desorption of physisorbed water and strong exothermic bands 

above 200 °C (which were not observed for the fresh catalysts) assigned to the combustion of 

organic matter (Figure 6.23).

TGA by the weight loss in the temperature range of 220

and ITQ-2(24) (ca. 12 wt.%). However, the DSC profiles 

chemical nature of the carbonaceous matter was

by-products formed may be influenced by the [L]/[B] acid site ratio,

(by-products may become strongly adsorbed/entrapped inside the MWW

structure). TGA analyses of H

organic deposits using the solely Wt 

24 h of reaction) in comparison to the Wt:

decomposition of Fur was minor: less than 5%, obtained in separate catalytic tests using Fur as 
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ummarises possible pathways involved in the formation of by

  

Possible pathways for the formation of by-products in the D-xyl

172 

. Catalyst stability 

Cxyl was reached, the H-MCM-22(24) and ITQ-2(24) catalysts were 

separated from the reaction mixture by centrifugation, washed with methanol and dried at 

overnight, giving pale brown powders. For each solid, the DSC analysis showed an endothermic 

C assigned to desorption of physisorbed water and strong exothermic bands 

C (which were not observed for the fresh catalysts) assigned to the combustion of 

). The amount of organic matter in the used catalysts (measured by 

the weight loss in the temperature range of 220-700 °C) was similar for H

2(24) (ca. 12 wt.%). However, the DSC profiles were different, suggesting that the 

re of the carbonaceous matter was different for the two catalysts. 

products formed may be influenced by the [L]/[B] acid site ratio,173 and/or textural properties 

products may become strongly adsorbed/entrapped inside the MWW

H-MCM-22(24) and ITQ-2(24) catalysts revealed higher amounts of 

solely Wt reaction system (18-21 wt.% for the solids recovered after 

eaction) in comparison to the Wt:Tol one (12 wt.%). The catalytic contribution to the 

decomposition of Fur was minor: less than 5%, obtained in separate catalytic tests using Fur as 
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2(24) catalysts were 

ed with methanol and dried at 50 °C 

overnight, giving pale brown powders. For each solid, the DSC analysis showed an endothermic 

C assigned to desorption of physisorbed water and strong exothermic bands 

C (which were not observed for the fresh catalysts) assigned to the combustion of 

The amount of organic matter in the used catalysts (measured by 

similar for H-MCM-22(24) 

different, suggesting that the 

different for the two catalysts. The spectrum of 

and/or textural properties 

products may become strongly adsorbed/entrapped inside the MWW-type microporous 

2(24) catalysts revealed higher amounts of 

21 wt.% for the solids recovered after   

talytic contribution to the 

decomposition of Fur was minor: less than 5%, obtained in separate catalytic tests using Fur as 
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the substrate instead of Xyl. Hence, Fur loss reactions may be essentially due to its reaction with 

Xyl or intermediates of the reaction of Xyl. 

  

 

Figure 6.23- DSC curves for the as-prepared H-MCM-22(24) (green line) and ITQ-2(24) (red line) 

catalysts, and the respective solids recovered from the reaction of D-xylose (Xyl) after ca. 98% of 

conversion was reached (used catalysts). Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent 

system, 170 °C, 20 gcat.dm-3, 0.67 M Xyl. 

 

 

The stability of the H-MCM-22(24) and ITQ-2(24) catalysts was investigated by recycling 

the solid acids, under biphasic solvent conditions, at 170 °C. The washing of the used catalysts 

with different solvents (methanol, acetone, toluene, water) failed to efficiently remove the 

organic matter from the catalysts. Therefore, prior to reuse, the solids were calcined at either  

450 °C (ITQ-2(24)) or 550 °C (H-MCM-22(24)) for 5 h with a heating rate of 1 °C.min-1 to leave a 

residual amount of organic matter of less than 1 wt.%. The higher temperature required (550 °C) 

for the complete combustion of the organic matter in the case of H-MCM-22(24) was consistent 

with the thermal analyses data. The yields of Fur in four consecutive 6 h batch runs were similar 

for H-MCM-22(24) and ITQ-2(24) (Figure 6.24). When the used H-MCM-22(24) catalyst was 
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treated at 450 °C instead of 550 °C, the yield of Fur decreased in recycling runs (Figure 6.24), most 

likely due to the incomplete removal of organic matter (the calcined solid was very light brown in 

colour and contained ca. 4 wt.% organic matter). 

 

 

Figure 6.24- Yield of 2-furaldehyde (YFur) in four consecutive 6 h batch runs of the reaction of       

D-xylose (Xyl) in the presence of regenerated catalysts H-MCM-22(24) or ITQ-2(24). Reaction 

conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 170 °C, 20 gcat.dm-3, 0.67 M Xyl. 

 

 

The powder XRD patterns (Figure 6.5) and the Si/Al ratios (measured by ICP-AES) of the 

used/calcined H-MCM-22(24) and ITQ-2(24) catalysts were similar to those of the respective fresh 

catalysts (Si/Al=25 and 24, respectively). 

 

 

6.3. Conclusions 

 

 

The aqueous phase dehydration of Xyl into Fur was investigated under batch mode in the 

presence of H-MCM-22 zeolite or its delaminated counterpart (ITQ-2) possessing enhanced 
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external surface area, using a biphasic water:toluene solvent mixture or solely water as the 

solvent (Wt:Tol and Wt reaction system, respectively), at 170 °C. YFur of up to 71% and 56% were 

reached at more than 96% of CXyl for the Wt:Tol and Wt systems, respectively for H-MCM-22(24). 

Sulfuric acid as catalyst (4 mM; Wt reaction system) gave comparable YFur (55% at 93% CXyl) to H-

MCM-22(24) in the Wt system (56% YFur at 91% CXyl). Decreasing the Si/Al ratio (in the range of 38-

24) of H-MCM-22, increased the total amount of ([L]+[B]), which led to an improvement in the 

catalytic activity, without affecting significantly the Fur selectivity. For the two Wt and Wt/Tol 

solvent systems, the ITQ-2(24) catalyst exibited comparable catalytic performance to its H-MCM-

22 counterpart (with the same Si/Al of 24), which correlated with the similar total amounts of 

[L]+[B] AS of these materials. No structural modifications or leaching phenomena were detected 

for the used catalysts (thermally regenerated to remove organic deposits), and the yields of Fur in 

consecutive batch runs are similar. A difference between H-MCM-22(24) and ITQ-2(24) was the 

less energy intensive conditions required for the thermal regeneration of ITQ-2(24) (450 °C 

compared to 550 °C for H-MCM-22(24)), which might be related with some differences in the 

chemical nature of the carbonaceous matter, based on DSC analyses, and an apparently slower 

catalyst deactivation by coking in the case of ITQ-2(24). Although the enhanced SEXT/SBET ratio was 

effectively accomplished for ITQ-2(24) through the delamination procedure, a concomitant 

weakening of the surface acidity seemed to have occurred, which should be avoided in order to 

optimise the catalytic performance and take the highest value/profit possible out of the 

application of a more refined catalyst preparation procedure. 
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7.1. Introduction 

  

 

The complex mechanism for the dehydration of D-xylose involves a series of elementary 

steps, and it may be accompanied by several types of undesirable side reactions                          

(e.g. fragmentation of Xyl and reactions of Fur with other products or with itself).1-11 The 

understanding of the influence of the acid and textural properties of porous solids on the catalytic 

reaction is not straightforward. Due to the complex reaction systems (many types of side 

reactions may occur, leading to complex mixtures of by-products), each elementary step may 

depend differently on the catalytic properties of porous solids. The development of new solid acid 

catalysts has been essential to replace homogeneous catalysts (disadvantages described in 

Chapter 1), and other solid acids that present certain limitations. For example, the small pores     

(< 2 nm) of zeolites make them difficult to use in reactions that involve the use of high molecular 

weight components.12 Sulfated zirconia catalysts, known as super acids, become deactivated 

during reactions (release of volatile sulfur containing pollutants).13,14 Solid acids based on 

supported metal oxides such as tungstated zirconia (ZrW) are potential candidates to replace 

mineral acids, or sulfated zirconia, which are harmful to the environment.15-17 Although ZrW is 

much less active than sulfated zirconia, it offers a very important advantage as the WOx units in 

ZrW are much more stable than sulfate groups in sulfated zirconia at high temperatures and in 

reductive atmospheres.18 ZrW materials are almost 100% selective for branched alkanes and 

undergo only slow deactivation,19 which is not irreversible when the catalyst is properly 

prepared.20 ZrW was very active for isomerisation of C4 and C8 alkanes.21-23 Recently, Weingarten 

et al.,6 in a comparative study using different types of solid acids as catalysts in the aqueous-phase 

dehydration of Xyl, reported that a commercial zirconium-tungsten mixed oxide catalyst (XZO 

1251, MEL Chemicals, WO3 content of 15 wt.%), with relatively high concentration of Lewis acid 

sites, was more active (and less selective to Fur) than an amorphous (mainly Brönsted type) 

zirconium phosphate catalyst, and less active than Brönsted microporous H-Y zeolite (Si/Al=30) in 

Fur loss reactions (strong adsorption and subsequent decomposition of Fur on the catalyst’s 

microporous surface).6 A specific family of catalysts may be focused on to help establish structure-

activity relationships by modifying the physicochemical properties. ZrW catalysts have attracted 

interest, presenting an advantage over heteropolytungstates in that they retain structural 

integrity during high temperature oxidative treatments (> 600 °C), in contrast with 

heteropolytungstates that decompose to bulk WO3 at much lower temperatures (400 °C).24 In this 
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sense, in this Chapter mixed zirconium tungsten oxides pre-prepared by co-condensation (ZrW(X), 

X=NO3, Cl; X is related to the type of zirconium precursor), or impregnation (with or without 

aluminium) on mesophases of mesoporous zirconia (ZrW-MP, ZrWAl-MP), were investigated as 

solid acid catalysts in the aqueous phase dehydration of Xyl into Fur, at 170 °C. 

 

 

7.1.1. Mixed zirconium-tungsten materials, ZrW(X) (X=Cl, NO3) and ZrWAl 

 

 

Zirconium-tungsten mixed oxides (ZrW) are fairly stable (thermally and chemically),21,22 

versatile solid acid catalysts and several types are commercially available. The tungsten atoms in 

the surface  of zirconium-tungsten oxides may be octahedrally coordinated,25 interconnected via 

W-O-W bridges,25,26 or anchored to the support by W-O-Zr bonds.25 Tungstated zirconias were 

first discovered in 1988 by Hino and Arata,21,27 as strong solid acids, and demonstrated to be 

active catalysts at low-temperature (30-50 °C). Since then, these types of materials have received 

much attention, due to the good combination of activity and selectivity in acid catalysed 

reactions,16,18,21,28-30 and particular interest arose in the catalysis literature due to their industrial 

application for converting C4-C8 paraffins to highly branched species that upgrade the gasoline 

octane number. 21,22,29,31-39 The good correlation between activity and selectivity can be explained 

as  a consequence of balanced surface acid properties, density of acid sites (AS),40-44and high 

thermal stability.16,18,20,22,24,25,30,39,42,43,45-49 12-Tungstophosphoric acid (H3PW12O40) and ZrW present 

the strongest acid sites among tungsten oxide-based materials.24 For ZrW materials, it is accepted 

that the strong acidity is due to the strong interaction between zirconia and tungstate (WO3 

species on ZrO2 support surfaces create strongly acidic sites18,21-23,25) or by the presence of ZrW 

clusters.17,18 XRD patterns indicated that distorted octahedral W6+ species dominate on the ZrO2 

surface,23,50 and UV-vis spectra demonstrated that WO3 domain sizes increase with loading.23 WO3 

clusters formed on ZrW materials have the ability to delocalise negative charges (caused by the 

slight reduction of W6+ centers) among several surface oxygen atoms, which allows hydrogen 

atoms in OH surface groups and hydrocarbons to interact, retaining the cationic 

character.16,24,25,30,42,43,45,46 The temporary negative charge imbalance might lead to the formation 

of Brönsted acid centers on the support (WO3)m, [W6-nO3] [n-H+] (Figure 7.1).24 The formation of B 

acid sites by H2 requires L acid sites in the form of W6+ centers within neutral WOx domains. These 

L acid sites can be titrated by H adatoms to produce active Brönsted acid sites.43 Several authors 
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had confirmed the presence of Lewis acid sites on these materials by infrared studies of adsorbed 

ammonia and pyridine.18,51,52 A balance between Brönsted and Lewis acidity may be required for a 

high activity. 22,47,48  

 

 

Figure 7.1- Mechanism for the formation of Brönsted acid site.43 

 

 

ZrW(X) materials are used in different types of catalytic reactions, including dehydrations, 

such as those of 2-butanol,42,53 tert-butanol,54 methanol ,30,53,55 1-propanol and 2-propanol,54        

2-propenol,56 and of glycerol to acrolein.57-65 The acid-base behaviour of solids is a crucial 

parameter in a catalytic reaction.28 Structure-activity relationships of ZrW-type materials have 

also been applied in the study of different types of acid-catalysed reactions (the textural and acid 

properties of ZrW(X) materials may be finely tuned through different synthetic 

approaches/conditions). The acidity of these types of oxides depends on various parameters after 

the preparation procedures such as the nature of the precursors, precipitation procedures, 

concentration of dopant, and calcination temperature.48,66,67 Galano et al.28 found that the Lewis 

acidity of the ZrW system decreases with the W loading which was consistent with their 

theoretical calculations.28 Not all the Brönsted acid sites in the WO3 domain are equally acidic. The 

sites at the edge of the domain are the most acidic ones. In that study of Galano et al.28, the 

Brönsted (B) acidity also decreased with the increase in the number of units in the polymeric 

domains, as the B acid sites disappear due to the condensation phenomenon of superficial 

tungstate monomeric species.28 Despite the extensive research on the active AS, the methods to 

improve the activity of ZrW catalysts still need to be developed. One disadvantage is the low 

surface area of ZrO2 (< 100 m2.g-1) in catalytic reactions, especially liquid phase reactions.  

In the case of the dehydration of Xyl into Fur, it may be advantageous to prepare 

mesoporous versions (denoted MP) of ZrW catalysts with enhanced amounts of effective AS and 

higher surface area, similar to other procedures.17 Catalyst preparation approaches in this 
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direction can involve using a templating agent (for generating mesoporosity) and/or doping the 

catalyst with aluminium (attempting to enhance acidity).68,69 

 

 

7.2. Results and discussion 

 

7.2.1. Catalyst characterisation 

 

 

In this Chapter ZrW(X) (X=Cl, NO3) materials were prepared by the co-precipitation 

method as reported in the literature (Chapter 2).70 The mesoporous ZrW-MP and ZrWAl-MP 

materials were prepared via incipient wetness impregnation on a pre-prepared templated 

zirconium hydroxide support which was prepared by following the procedure described by Ciesla 

et al.71 (a surfactant-based synthesis). 

The elemental composition and specific surface area (SBET) of the prepared catalysts are 

given in Table 7.1.  

The semi-quantitative analyses of the crystalline phases were performed using the 

Reference Intensity Ratio (RIR) method applied to the XRD data of the prepared materials    

(Figure 7.2). The RIR method is based upon scaling all diffraction data to the diffraction of 

standard reference materials. The intensity of a diffraction peak is a combination of many factors, 

which by using the RIR method are scaled to a common reference and reduced to a constant, with 

the exception of concentration of the analyte. The scale factor is determined by equation 7.1. 

 

                                        
��������� (
������)

��������� (���������)
=

�

��
=

( μ×� × ��)

(μ�×��×�)
                                          (7.1) 

 

in which µ is the linear attenuation coefficient, γ is the absolute scale factor and ρ is the density of 

crystalline phase. The subscript r corresponds to the reference. The variables in the equation 7.1 

are calculated by single crystal determinations from atomic and unit cell parameters with the use 

of atomic scattering factors and published constants.72 Experimentally, I/Ir can be determined by 

taking the ratio of the strongest line of the pattern to the intensity of the strongest line of the 

reference in a 50/50 weight mixture. The fraction of phase a, Xa, can be calculated by applying the 

equation 7.2. 
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                                                                          I��=
���×��

��×μ�
                                                                     (7.2) 

 

in which Iia is the intensity of reflection i of phase a, Kia contains structure factor, multiplicity, 

Lorentz-polarisation factor, temperature factor and scale factor for reflection i of phase a, ρa is 

the density of phase a, and µa is the linear attenuation coefficient of phase a. The variables Kia, ρa 

and µa are calculated by single crystal determinations from atomic and unit cell parameters. In an 

alternatively way, Reddy et al.73 reported that the percent composition of each phase could be 

calculated from the Gaussian areas hxw in which h is height and w is the width at half-height as 

described in equations 7.3 and 7.4:  

 

                                            %Monoclinic=
∑  (� �  )!"�"������

∑  (� �  )!"�"������ ��# �����$"���
                                      (7.3) 

  

                                           %Tetragonal=
∑( � �  )�����$"���

∑  (� �  )!"�"������ ��# �����$"���
                                        (7.4) 

 

The ZrW(X) materials were composed predominantly of tetragonal zirconia (t-ZrO2) and 

contained ca. 20 wt.% of (thermodynamically stable) monoclinic zirconia (m-ZrO2). The ZrO2 

material prepared for comparison was predominantly monoclinic (contains 8 wt.% of t-ZrO2). 

These results are in agreement with the literature data for the bulk ZrO2 (monoclinic),73-77and 

ZrW(X) type materials (tetragonal).22,31,73,74,76-78 

 When tungsten is incorporated, the monoclinic phase tends to disappear due to 

stabilisation of the tetragonal phase.16,30,54,69,76,79-81 Only t-ZrO2 was detected for the ZrW-MP and 

ZrWAl-MP materials, similar to that reported previously for ZrWAl materials.31,69,82 For all 

prepared materials no crystalline phases of WOx were detected.16  

 

Table 7.1- Elemental composition and specific surface area of the prepared materials ZrW(Cl), 

ZrW(NO3), ZrW-MP, ZrWAl-MP and bulk ZrO2. 

Sample Calcination 
Temperature 

(°C) 

  Crystalline (wt.%) 
m-ZrO2           t- ZrO2 

W/Zr  SBET  

(m
2
.g

-1
)

 
Dp 

(nm) 

 

Ref. 

ZrW(Cl) 
a
 800 19 

f
 81 

f
 0.11 (0.10)

 h
 48  17 

h
 this work 

ZrW(NO3) 
a
 800 23 

f
 77 

f
 0.09 

h
 51  - this work 

ZrW3.6  650 - - - 54  - 
18

 

ZrW8.6  825 - - - 46
 
 - 

18
 

ZrW10.5  825 - - - 46
 
 - 

18
 

ZrW13.6  825 - - - 42  - 
18
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Table 7.1- Continued. 
ZrW5.1(OH) 

b
  600 - - - 52  - 

30
 

ZrW10.1(OH) 
b
 800 - - - 42  - 

30
 

ZrW15(OH) 
b
 800 - - - 46  - 

30
 

ZrW19.5(OH)
 b

 800 - - - 48  - 
30

 

ZrW23.3(OH)
 b

 800 - - - 43  - 
30

 

ZrW26.6(OH) 
b
 700 - - - 57  - 

30
 

ZrW11.3(OH)
 b

 800 26 
g
 74 

g
 - 66  23 

i
 

83
 

ZrW10(NO3)
 a

 900 - - - 56  15 
h
 

31
 

ZrW10(NO3)
 a

 950 - - - 49  15 
h
 

31
 

ZrW18(NO3)
 a

 850 - - - 57  15 
h
 

31
 

ZrW18(NO3) 
a
 900 - - - 47  15 

h
 

31
 

ZrW
 b 

 500 - - - 53
 
 - 

80
 

ZrW
 b

 800 - - - 36  2 
h
 

84
 

ZrW10.6
 b

 800 - - - 51
 
 - 

85
 

ZrW18.2 
 b

 800 - - - 48  - 
85

 

ZrWSi 
b
 800 - - - 44  - 

86
 

Zr-W
 b

 800 - - - 44  4-18 
j
 

78
 

ZrW10 
b
  825 - - - 54  3 

h
 

87
 

ZrW12 
 b

  825 - - - 51  3 
h
 

87
 

ZrW  
b
  850 - - - 54  - 

88
 

ZrW 
b
  650 32 68 - 35  - 

77
 

Zr63W15.5 
a
 500 - - 0.25

 i
 62  5 

22
 

ZrW6 
b 

 650 - - - 63 - 
89

 

ZrW 
 b

 650 - - - 64
 
 - 

73
 

ZrW-MP 
b
 800 0 

f
 100 

f
 0.10 (0.13) 

h
 102  4.5 

h 
this work 

ZrW15
 b 

 470 - - - 70  - 
74

 

ZrW10.5  650 - - - 82  - 
18

 

ZrW13.6  650 - - - 88  - 
18

 

ZrW19.0  650 - - - 96  - 
18

 

ZrW10.1(OH) 
b
  500 - - - 89  - 

30
 

ZrW15(OH) 
b
 500 - - - 96

 
 - 

30
 

ZrW19.5(OH) 
b
 600 - - - 91  - 

30
 

ZrW26.6(OH) 
b
 500 - - - 98  - 

30
 

ZrW23.3(OH) 
b
 500 - - - 113

 
 - 

30
 

ZrW10 
b
  700 - - - 89  8 

h
 

31
 

ZrW19.8 
c
 700    91 - 

76
 

ZrW10 
 b 

 700 - - - 100  8 
h
 

31
 

ZrW12
 b

 700 - - - 105  - 
90

 

ZrW18 
b
 700 - - - 101  - 

90
 

Zr1.0W7.5Si  800 - - - 107  >2 
h
 

84
 

ZrW19.6 
c
 600 - - - 121  - 

76
 

ZrW10 
 d

 500 - - - 130  3 
h
 

87
 

ZrW10Si20 
 b 

 800 - - - 94  9-10 
j
 

91
 

ZrW14Si20 
 b

 800 - - - 89  9-10 
j
 

91
 

ZrW5-MP 
 e

 550 - - - 477  5.5 
j
 

17
 

ZrW-MP nf - - 1.03 275  3.7 
h
 

92
 

ZrWAl-MP 
b
 800 0 

f
 100 

f
 0.09 (0.07) 

j
 133

 
 3.8 

h
 this work 

ZrW7.91Al1.34 
b
 630 - - - 134  3.1 

69
 

ZrWAl
 a, b

 650 - - - 114  - 
82

 



Zirconium tungstate 

________________________________________________________________________________ 

_____________________________________________________________________________ 
315 

 

Table 7.1- Continued. 
ZrW27.4AlSi 

b
 nf - - - 126  5.8 

k
 

93
 

ZrO2 800 92 
f
 8 

f
 - 12

 
 - this work 

ZrO2 800 - - - 8  - 
94

 

ZrO2  800 - - - 12 - 
84

 

ZrO2  700 - - - 12  - 
90

 

ZrO2  470 - - - 16  - 
74

 

ZrO2  1025 - - - 18  - 
18

 

ZrO2  800 - - - 18  - 
85

 

ZrO2 nf - - - 57-60  - 
80

 
a) Synthesised by co-precipitation. b) Synthesised by impregnation. c) Synthesised by ion-exchange. d) Activated by temperature. e) 
Synthesised by condensation. f) Semi-quantitative analyses of the constituent crystalline phases (monoclinic zirconia, m-ZrO2; 
tetragonal zirconia, t-ZrO2) determined by Reference Intensity Ratio (RIR) method applied to the XRD data. g) Semi-quantitative 
analyses of the constituent crystalline phases (monoclinic zirconia, m-ZrO2; tetragonal zirconia, t-ZrO2) determined by Rietveld method. 
h) Surface atomic ratio of W/Zr determined by EDX. Values in brackets are for the bulk elemental analyses using ICP-AES. i) W/Zr 
determined by elemental analysis. j) (W+Al)/Zr=0.15 (EDX) or 0.14 (ICP-AES). h) Maximum pore diameter (Dp) by BJH equation from the 

adsorption branch of the isotherm.i) Medium pore diameter. j) Average pore size distribution. k) Calculated by XRD lines at ca. 50° 2θ. 

 

 

 

Figure 7.2- XRD patterns of the unused and recycled catalysts. For ZrW(Cl) and ZrW(NO3) the main 

peaks of the ZrO2 crystalline phases are marked as (■) m-ZrO2 and (●) t-ZrO2. 

 

 

The SEM images showed that the ZrW(X) materials were composed of particles (ca. 1-50 

µm size) with irregular morphologies, and the mesoporous materials (ZrW-MP and ZrWAl-MP) 

consisted of spherical particles with ca. 3 µm diameters (Figure 7.3). SEM-EDX and chemical 

mapping showed fairly homogeneous dispersions of Zr, W and Al (in the case of ZrWAl-MP), and 
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the atomic ratio W/Zr was ca. 0.1 for all the prepared materials (Figure 7.3 and Table 7.1). In the 

case of ZrWAl-MP the atomic ratio (W+Al)/Zr was 0.15 (Al/W=0.07). The bulk atomic ratios 

measured by ICP-AES were comparable to those obtained by EDX (Table 7.1), further supporting 

fairly homogeneous dispersions of the constituent elements (W, Zr, Al), and consistent with the 

absence of crystalline WOx phases in the XRD patterns of all the prepared materials. 

 

 

Figure 7.3- SEM images (top) and chemical mapping (Zr-red; W-dark blue; Al-light blue) for: a) 

ZrW(Cl), b) ZrW-MP, c) ZrWAl-MP. 

 

 

The N2 sportion isotherms measured at -196 °C for the ZrW(X) materials exhibited a 

hysteresis loop at high relative pressures (above 0.6) and very broad pore size distributions (ca. 2-

52 nm, Figure 7.4 for ZrW(Cl)). The values of SBET for these materials (48-51 m2.g-1) were similar 
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and are in agreement with those reported in the literature for related ZrW materials (SBET=35-     

66 m2.g-1, Table 7.1).18,22,30,31,73,77,78,80,83-89 The ZrW-MP and ZrWAl-MP materials exhibited type IV 

isotherms (in accordance with the literature data for these types of materials),17,87,92,93 higher                         

SBET =100-133 m2.g-1 (Table 7.1) and narrower pore size distributions (between ca. 2 and 7 nm 

width), inset of Figure 7.4, when compared to the ZrW(X) materials. Similar pore sizes were 

reported previously for a commercial zirconia-tungstate material,87 and other types of ZrW      

(3.7-5.5 nm),17,92 ZrWAl (3.1 nm),69 and ZrWAlSi93 (5.8 nm) catalysts. Similar specific surface areas 

were reported for materials of the type ZrW (SBET=82-130 m2.g-1),18,30,31,76,87,90 ZrWAl (SBET=114-     

134 m2.g-1),69,82,93 ZrWSi (SBET=89-107 m2.g-1),84,91 and ZrWAlSi (SBET=126 m2.g-1)93 (Table 7.1). Other 

authors reported different specific surface area values for ZrW  type materials, which were higher 

than the values obtained in this work  (SBET=365-477 m2.g-1),17,92 or lower (SBET=70 m2.g-1)74 than 

ZrW-MP materials obtained herein (SBET=102-133 m2.g-1). 

 

 

 
Figure 7.4- Nitrogen adsorption-desorption isotherms measured at -196 °C for ZrWCl (■), ZrW-MP 

(unused (▲); recycled (X)) and ZrWAl-MP (●). The inset shows the respective pore size 

distribution curves using the same symbols. 

 

 

According to the literature,69,76,87,95 the calcination temperature of the prepared materials 

may influence the surface area which tends to decrease with the increase in the temperature of 
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calcination, and consequently, the tungsten surface density increases.76 Melezhyk et al.95 reported 

that the decrease in the specific surface area may be related to the growth of the crystals of 

zirconia, which was consistent with the narrowing of the intense peak attributed to t-ZrO2 at      

ca. 2θ=35°.95 The type of the calcination atmosphere also seems to influence the surface area of 

the materials, in which static air (in comparison with nitrogen or oxygen) gave the highest specific 

surface area.87 The low SBET verified in some cases may be related to the penetration of the doped 

W-oxide into the pores of the zirconia.77 The SBET value for the bulk ZrO2 was inferior to the 

modified zirconia,84,90 and similar to literature data (SBET=8-18 m2.g-1).18,74,84,85,90,94  

The Raman spectra of the prepared materials are shown in Figure 7.5. The results for the 

essentially monoclinic ZrO2 were given for comparison. The spectra of the tungsten-containing 

materials showed similarities between each other and were very different from that of monoclinic 

ZrO2, partly due to the predominant t-ZrO2 phase in the former materials.30 The characteristic 

band of t-ZrO2 at ca. 625-640 cm-1 was present, which is in accord with the literature.18,76,77,92  

Bands characteristic of crystalline WO3 (typically at ca. 800-810 cm-1, 710-720 cm-1 and   

ca. 270 cm-1) were hardly detected (consistent with the XRD data),25,31 suggesting that crystalline 

WO3 was not formed on the surface of W-ZrO2.
73 This is in accord with the literature for ZrW type 

materials.73,74,76,77,88,89,96 However, in exceptional cases these typical WO3 bands were observed for 

ZrW type materials.31,80 Broad bands in the region 930-1020 cm-1 may be assigned to the terminal 

W=O bonds which may be isolated or polymeric mono oxo tungsten species.30,49,73,77,89,92,96,97 

Geometrically different WOx species on the surface may be present when the bands in the region 

930-1020 cm-1 present shoulder peaks.25 These may be octahedrally and tetrahedrally 

coordinated WOx species. According to a few authors, the band at ca. 930 cm-1 was attributed to a 

symmetric vibration mode of (WO4)
2- anions in tetrahedral symmetry.76,78,80,98,99 These anions are 

thought to form an amorphous phase after exchange with the hydroxyl groups of the zirconium 

precursor, in which Zr4+cations become surrounded by WO4
2-,76 allowing the crystallisation of 

zirconia in the tetragonal phase during calcination.25,76  Another possibility to obtain WO4
2- in 

tetrahedral symmetry occurs when the interaction of W surface species with the support is weak 

and these species are surrounded by protons.76 
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Figure 7.5- Raman spectra of unused and recycled catalysts. 

 

 

Raman bands assigned to ν(W=O) depend on the base strength of the ligands to which the 

W atom is coordinated and therefore might suffer slight shifts. The stronger the basicity of the 

oxide ligands is, the weaker is the W=O bond and the lower is the frequency of ν(W=O).100 The 

presence of water can also lead to a shift of the band of the W=O groups to lower frequencies, 

due to the strong interaction with water by hydrogen bonding; the band of W-O-Zr stretching 

cannot be unequivocally assigned due to the overlap with other broad signals.89 The W-O-W 

characteristic band remains unchanged in the presence of water.89 Additionally, the bands at    

840 cm-1, 900-910 cm-1 and 820-830 cm-1 can also be present and they were attributed to the 

antisymmetric stretching vibration of tetrahedral W6+,78 W-O-Zr stretching vibration of WOx 

species anchored to the support,78,89,97,101and W-O-W, respectively.76,78,88,89,97,101 A low intensity 

band at ca. 800-820 cm-1 was observed in the case of ZrW(X) and ZrW-MP materials which may be 

attributed to W-O-W vibrations. The presence of W-O-W stretching modes is indicative that the 

WOx surface structure consists of poorly defined oligomeric or polymeric species that are 

influenced by their interaction with the ZrO2 surface, and most likely cover the support 
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surface.89,101 Sunita et al.74 had also observed a band at ca. 825 cm-1 but the authors here had 

attributed this absorption to W-O-Zr vibrations instead of W-O-W.74 

All the prepared materials possessed both B and L interacting with pyridine after 

outgassing at 150 °C.  The concentrations of B and L were determined as explained previously in 

Section 3.2.1.2 of Chapter 3. In this sense, the [B] (band at ca. 1545 cm-1) and [L] (band at ca.  

1450 cm-1) for ZrW(X) materials were determined through equations 3.1 and 3.2 as specified in 

Chapter 3 (Figure 7.6). Besides the characteristic bands at 1545 cm-1 and at 1450 cm-1, bands at 

1490 cm-1 (sum of L and B), 1620 cm-1 (due to L) and 1640 cm-1 (due to B) were also observed, 

similar to that observed for H-MCM-22(24) and ITQ-2(24) in Chapter 6. FT-IR spectra of all 

prepared catalysts exhibited similar bands (Figure 7.6), and the ratio [L]/[B] varied in the range 

1.2-1.4 (Table 7.2). Similar FT-IR spectra of adsorbed pyridine were obtained for ZrW type 

materials.28,31 Sunita et al.74 only obtained bands at 1490 cm-1 and 1545 cm-1. 

 

 

Figure 7.6- FT-IR spectra of ZrWAl-MP, ZrW-MP, ZrW(NO3) and ZrW(Cl) after pyridine adsorption 

and outgassing at 150 °C. 

 

 

The effect of the temperature in the [L] and [B] was also analysed (Figure 7.7). 
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Figure 7.7- Effect of the outgassing temperature on ZrWAl-MP after pyridine adsorption. 

 

  

The acid properties of the ZrW(X) materials were similar in terms of the total amount of 

AS ([L]+[B]) and acid strengths (based on the molar ratios of [L] and [B] measured at 350 °C and     

150 °C, denoted as [L]350/[L]150 and [B]350/[B]150, respectively). The total amount of [B]+[L] was 

considerably greater for ZrW-MP than for the ZrW(X) materials which may be partly related to the 

higher SBET in the former case, enhancing the accessibility of the AS to the base probe (the W/Zr 

molar ratios were similar for the three materials). The ZrW-MP possessed similar acid strengths to 

the ZrW(X) materials. In comparison to ZrW-MP, the ZrWAl-MP material possessed somewhat 

higher [B]+[L] (and SBET), and slightly stronger Brönsted acidity. These results compared favourably 

with those for ZrW type material (W/Zr of ca. 0.10, Table 7.2). 

 

Table 7.2- Acid properties measured by FT-IR of adsorbed pyridine of the prepared materials 

(ZrW(Cl), ZrW(NO3), ZrW-MP and ZrWAl-MP) after outgassing at 150 °C. 

Sample [B]+[L] 
a
 

(µµµµmol.g
-1

)  

[L] 

(µµµµmol.g
-1

) 

[B] 

(µµµµmol.g
-1

) 

[L]/[B] [L]350/[L]150 
b
 [B]350/[B]150 

c
 Ref 

ZrW(Cl) 38 22 16 1.4 0.2 <0.1 this work 

ZrW(NO3) 39 21 18 1.2 0.2 <0.1 this work 

ZrW-MP 111 61 50 1.2 0.2 <0.1 this work 

ZrWAl-MP 127 74 53 1.4 0.2 0.2 this work 

PdZrW 55 - - 0.8 - - 
102

 
a) Sum of the total Brönsted acid sites [B] plus Lewis acid sites [L]. b) Ratio between the concentration of Lewis acid sites [L] at 350 °C 
and at 150 °C. c) Ratio between the concentration of Brönsted acid sites [B] at 350 °C and at 150 °C. 
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7.2.2. Catalytic dehydration of D-xylose 

 

7.2.2.1. Catalytic performance of ZrW(X), ZrW-MP and ZrWAl-MP materials 

 

 

The mesoporous ZrW-MP and ZrWAl-MP catalysts led to higher yields of Fur at 

comparable reaction times, in comparison to the ZrW(X) catalysts (Figure 7.8), which correlated 

with the higher total amounts of AS of the former two catalysts (Table 7.2). In comparison to  

ZrW-MP, the ZrWAl-MP catalyst led to higher yields of Fur at high conversions of Xyl (52% YFur at 

98% CXyl for ZrWAl-MP compared to 41% YFur at 100% CXyl for ZrW-MP, Figure 7.9), suggesting that 

the combined effects of enhanced SBET and surface acidity favoured the dehydration of Xyl into 

Fur. 

 

  

Figure 7.8- Yield of 2-furaldehyde (YFur) versus reaction time for the catalysts ZrW(Cl) (■), 

ZrW(NO3) (▲), ZrW-MP (●), and ZrWAl-MP ((+) for 0.3 Wt:0.7 Tol (v/v) biphasic solvent system 

and (X) for solely Wt (1 cm3). Reaction conditions: 170 °C, 20 gcat.dm-3, 0.67 M Xyl. 
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Figure 7.9- Yield of 2-furaldehyde (YFur) versus conversion of D-xylose (CXyl) for the catalysts 

ZrW(Cl) (■), ZrW(NO3) (▲), ZrW-MP (●), and  ZrWAl-MP ((+) for 0.3 Wt:0.7 Tol (v/v) biphasic 

solvent system and (X) for solely Wt (1 cm3). Reaction conditions: 170 °C, 20 gcat.dm-3, 0.67 M Xyl. 

 

 

For comparison with the biphasic solvent system, the reaction of Xyl in the presence of 

ZrWAl-MP was carried out using solely water as solvent, at 170 °C (the amount of catalyst in the 

reaction medium and the total volume of reaction mixture were the same for the two sets of 

reaction conditions). The yield of Fur at similar Xyl conversions was lower for the water system 

than for the biphasic solvent system (Figure 7.9). The water and biphasic solvent systems led to 

comparable yields of Fur until ca. 90% CXyl (46-48% YFur). Afterwards the YFur dropped to 36% when 

CXyl reached 100% in the case of the water system, whereas in the case of the biphasic solvent 

system, the YFur increased to 52% at 98% CXyl (Figure 7.9). In a previous study for the dehydration 

of Xyl in the presence of tungstated zirconia (ZrW, XZO 1251 with WO3 content 15 wt.%, supplied 

by MEL Chemicals) using solely water it was reported that 16% YFur was reached at 96% CXyl, 160 °C 

(0.33 M Xyl; 7.5 gcat.dm-3).6
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7.2.2.2. Identification of the reaction products 

 

 

The identification of by-products may help to identify factors influencing the side 

reactions, important for tailoring the properties of solid acid catalysts for the target reaction.  

The InsolOrg products identification (also known as humins) is not trivial, as discussed in 

Chapter 5 for the reaction of Xyl in the presence of micro/mesoporous composite BEATUD-1 and 

in Chapter 6 for ITQ-2(24) under similar conditions to those used in the present work. The FT-IR 

and 13C MAS NMR spectra were quite complex and it was only possible to identify clearly Xyl, Fur 

and formic acid (the organic matter possessed aldehyde/ketose groups, fragments related to Xyl 

and (un)saturated carbon-carbon bonds) as shown in Chapters 5 and 6. 

With respect to the water soluble by-products, only formic acid was detected by HPLC 

(using a UV diode array detector), which according to the literature, may be formed via 

fragmentation of sugars under acidic hydrothermal conditions,103,104 or hydrolytic fission of the 

aldehyde group of Fur.7-9,105 However, the yellow colour of the liquid phases of the reaction 

mixtures indicated the presence of other types of by-products besides formic acid. Therefore, a 

more detalied study to identify water soluble by-products of the reaction of Xyl in the presence of 

ZrWAl-MP, using water as solvent, at 170 °C, was carried out by employing solid-phase 

microextraction (SPME) coupled with comprehensive two-dimensional gas chromatography 

(GCxGC) with time-of-flight mass spectrometry (ToFMS). The SPME/GCxGC-ToFMS technique 

allowed the separation and identification of water soluble reaction products which were 

sufficiently volatile under the applied analytical conditions (details given in the experimental part, 

Section 2.4 of Chapter 2). For comparison, the analysis was performed for the reaction of Fur in 

the presence of ZrWAl-MP, at 170 °C.  

The identified reaction by-products are listed in Table 7.3 (many more products were 

detected, which were not clearly identified). Figures 7.10 and 7.11 show the 1 D and 3 D TIC 

GCxGC-ToFMS obtained. A complex mixture of reaction products was obtained for the reaction of 

Xyl in the presence of ZrWAl-MP, at 170 °C and 4 h. When using Fur as the substrate instead of Xyl 

a much narrower spectrum of reaction products was detected (Figure 7.12). 
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Figure 7.10- Products formed in the reaction of 

solely water (1 cm3) as solvent, at 170 

 

 

Figure 7.11- TIC GCxGC-ToFMS representation (

(Xyl) as substrate. Reaction conditions: s
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Products formed in the reaction of D-xylose (Xyl) in the presence of ZrW

nt, at 170 °C, identified by GCxGC-ToFMS.   

ToFMS representation (1 D and 3 D) of the reaction mixture 

Reaction conditions: solely Wt (1 cm3), 170 °C, 20 gcat.dm-3, 
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in the presence of ZrWAl-MP, using 

 

) of the reaction mixture with D-xylose 

 0.67 M Xyl, 4 h. 
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Table 7.3- Reaction products detected by GCxGC-ToFMS for the reaction of D-xylose (Xyl) in the 

presence of ZrWAl-MP, at 170 °C.a 

Reaction Product Similarity RI 
b
 RI [ref] 

c
 

Molecular structure Name of compound 
O

OH  

acetic acid 997 - - 

O

 

Acetaldehyde 979 564 ≅500 
106

 

O

O

H

 

1-hydroxy-2-propanone 999 824 - 

O

O

 

2,3-butanedione 994 585 
 

592 
107

 

O  

2-butanone 892 589 602
108

 

O O  methoxy methyl vinyl ether 963 863 - 
O

 

3-penten-2-one 959 702 735
109

 

O

O

 

2,3-pentanedione 886 652 696 
110

 

O

O  

3,4-hexanedione 993 801 800 111,112 

O

O  

2,5-hexanedione 971 980 93 
109

 

O

O  

2,3-hexanedione 961 777 786
113

 

O O  

3-methyl-2(5H)-furanone 942 1022 983
114

 

OO  

5-methyl-2(5H)-furanone 950 990 954
115

 

O

O

 

2-Furaldehyde 975 
 

863 852
116

 

O

O

 

(1-(furan-2-yl)-propan-2-one 948 963 952
117

 

O

O  

1-(5-methylfuran-2-yl)butan-1-one 844 1255 - 

O

O  

1-(2-furyl)-butan-3-one 943 1083 - 

O

O

 
 

1-(2-furanyl-2-butanone) 967 1063 - 
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Table 7.3- Continued. 

O

O

O  

2-propenyl ester 2-furancarboxylic acid 875 1087 - 

O

OH

 

1-(5-methylfuran-2-yl)butan-2-ol 829 1226 - 

O  

2-propyl–furan 880 874 861
118

 

O

O

H

 

3-furaldehyde * 
d
 967 849 849

119
 

O

OO  

2,5-furandicarboxaldehyde *
d
 802 1040 1079

120
 

O

O

O  

methyl furan-2-carboxylate * 
d
 947 984 983

119
 

O

O

 

1-(5-methyl-2-furyl)-2-propanone *
d
 956 1063 1056

121
 

O  

2-methyl-furan *
d
 970 

 
601. 

 
603

122
 

O  

vinylfuran * 
d
 959 677 723

123
 

O

O  
 

1-(2-furanyl)-2-propanone * 
d
 948 963 952

117
 

O  

2-pentylfuran * 
d
 816 1039 1001

124
 

O O

O O

 

di-2-furanyl-ethanedione  930 1599 - 

O

O

 

2,2'-bifuran 953 1044 
 

1047
123

 

O

O

 

2,2'-methylenebis-furan 948 1092 1090
125

 

O

O

 

2,2'-ethylidenebis(5-methylfuran) 920 1320 - 

O

O

 

2-(2-furanylmethyl)-5-methyl-furan 933 1191 1195 
126

 

O O  

2,2'-methylenebis-(5-methyl-furan) 785 1272 1290
126

 

O

O

H

 
 

benzo[b]furan-6-carboxaldehyde 994 1291 - 
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Table 7.3- Continued. 

O

CH3

CH3

 

2,3-dimethylbenzofuran 838 1237 1199
127

 

O

O  

2-methyl-3(2H)-benzofuranone 890 1243 - 

O

O

 

4-methyl-3(2H)-benzofuranone 949 1302 - 

O

O  

2,7-dimethyl-3(2H)-benzofuranone 858 1321 - 

O

OH

O

 

2-acetyl-7-hydroxybenzofuran 895 1443 - 

O

HO

 

2-methyl-5-hydroxybenzofuran 908 1384 - 

O

O

 

2-methyl-benzofurane-3-carboxaldehyde 919 1409 - 

O

O

OH

 

benzo[b]furan-5-carboxylic acid 867 1668 - 

O O  

3-methyl-2H-chromen-2-one 932 1443 1493 
128

 

OO  

2H-chromen-2-one 880 1390 1376 
128

 

O

O

 

2,5-dimethyl-1,4-benzoquinone 
 

945 1128 1129 
129

 

O

OH O  

2-hydroxy-3-methoxybenzaldehyde 
 

897 1299 1298
128

 

O

O  

(1-(3-methoxyphenyl)-ethanone) 937 1261 1297
128

 

O

 

2-methyl-3-phenyl-2-propenal 899 1219 1207
109

 

O

-O

 

4-(1-methylethyl)-phenyl acetate 764 1450 1454
130

 

HO

O  
 

1-(4-hydroxyphenyl)-2-methyl-1-propanone 886 1321 - 
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Table 7.3- Continued. 

O

O

HO OH  

2,3-dihydroxy

O

O

 
 

(E)-3,4

H3CO

H3CO

 
a) Reaction conditions: solely Wt (1 cm3), 170 
was detected for 2-furaldehyde as substrate. 
index reported in the literature for one dimensional GC with 5

 

 
Figure 7.12- TIC GCxGC-ToFMS representation (

2-furaldehyde (Fur) as substrate, in the presence of ZrW

Reaction conditions: Solely W

 

 

The products formed in the reaction of 

compounds (Figure 7.10). A major chromatographic peak was identified as Fur. The aliphatic 

products consisted of linear carbon chains of up to six carbon atoms, possessing hydroxyl, 

carbonyl and/or carboxylic acid functional groups. According to the literature, monosaccharid

may undergo fragmentations through comple

hydrolysis and/or oxidative fission pathways, which may be accompanied by enolisation and 

dehydration reactions leading to a variety of 

________________________________________________________________________________

________________________________________________________________

dihydroxy-4-methylacetophenone 907 1397

3,4-dimethoxy-1-propenylbenzene 814 1547

1,2-dimethoxybenzene 863 1123

), 170 °C, 20 gcat.dm-3, 0.67 M Xyl, 4 h reaction. b) The symbol * indicates that the same product 
as substrate. c) Retention index (RI) obtained through the modulated chromatogram. 

ted in the literature for one dimensional GC with 5% phenylmethylpolysiloxane GC column or equivalent.

ToFMS representation (1 and 3 D) of the reaction mixture for 

as substrate, in the presence of ZrWAl-MP using solely 

Wt (1 cm3), 170 °C, 0.67 M Fur, 6 h. 

 

The products formed in the reaction of Xyl may be grouped into aliphatic and

). A major chromatographic peak was identified as Fur. The aliphatic 

of linear carbon chains of up to six carbon atoms, possessing hydroxyl, 

carbonyl and/or carboxylic acid functional groups. According to the literature, monosaccharid

may undergo fragmentations through complex reaction mechanisms involving 

hydrolysis and/or oxidative fission pathways, which may be accompanied by enolisation and 

actions leading to a variety of compounds.132-139 The aliphatic by
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1397 - 

1547 1500 
109,131

 

1123 1147 128
 

yl, 4 h reaction. b) The symbol * indicates that the same product 
ugh the modulated chromatogram. d) Retention 

phenylmethylpolysiloxane GC column or equivalent. 

 

) of the reaction mixture for                     

MP using solely water as solvent. 

may be grouped into aliphatic and aromatic 

). A major chromatographic peak was identified as Fur. The aliphatic by-

of linear carbon chains of up to six carbon atoms, possessing hydroxyl, 

carbonyl and/or carboxylic acid functional groups. According to the literature, monosaccharides 

x reaction mechanisms involving retro aldolisation, 

hydrolysis and/or oxidative fission pathways, which may be accompanied by enolisation and 

The aliphatic by-products 
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possessing less than five carbon atoms identified in the reaction of Xyl include acetic acid, 

acetaldehyde, 1-hydroxy-2-propanone, 2,3-butanedione and 2-butanone (Table 7.3). The first four 

of these are possible sugar fragmentation products,103 and were not detected with Fur as the 

substrate.  

2,3-Pentadione and hexadione products were formed in the reaction of Xyl and not of Fur. 

According to the literature 2,3-pentadione may be formed through a series of reactions involving 

aldol reactions of butanedione (detected in this work) with formadehyde or of acetaldehyde 

(detected in this work) with 1-hydroxy-2-propanone.140 The mechanism of formation of the 

hexadiones is not clear. It has been reported that 2,5-hexadione is a possible product of the 

reaction of 2,5-dimethylfuran (not detected in this work) with water.141 It is worth mentioning 

that the by-products may react with Xyl (e.g. Xyl bound to a non-carbohydrate moiety) and/or 

Fur, and fragmentation and recombination of carbohydrate fragments may take place, further 

enhancing the complexity of the overall reaction mechanism.  

Furanone products were detected, namely 3-methyl-2(5H)-furanone and 5-methyl-2(5H)-

furanone, for Xyl and not for Fur as substrate. A similar compound identified as 5-methyl-3(2H)-

furanone was previously reported as the product of the reaction of 2-deoxy- D-erythro-pentose in 

aqueous acidic medium.142 

Several compounds possessing one furan ring were detected and some (noted with the 

symbol * in Table 7.3, e.g. methyl-furan-2-carboxylate) were common to the reactions of Xyl and 

Fur. Furan derivatives possessing two furan rings were formed (e.g. di-2-furanyl-ethanedione), 

and related by-products have been reported previously for the reactions of pentoses 143,144 and 

hexoses.132 2,5-Dimethyl-1,4-benzoquinone was detected for the reaction of Xyl and not of Fur, as 

well as a variety of aromatic by-products possessing a benzene ring, suggesting that the formation 

of these by-products involved intermediates of the reaction of Xyl. Monocyclic compounds 

included hydroxyacetophenones and hydroxybenzaldehydes, and bicyclic compounds were 

benzopyrone and benzofuran derivatives. It is worth mentioning that phenolic compounds can be 

readily transformed into coloured products (as mentioned above the reaction solutions were 

yellow). Aromatic compounds of the type benzopyrone and acetophenone possessing hydroxyl 

functional groups have been identified as by-products of the reaction of Xyl under acidic 

conditions.145,146 

The reaction of Fur (as the substrate) in the absence or presence of ZrWAl-MP, at 170 °C 

(water system), gave 16% and 24% CXyl at 4 h reaction, respectively. In the case of the biphasic 
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solvent system no measurable conversion of Fur was observed, which was consistent with the 

favourable effects of the biphasic solvent system in avoiding Fur loss reactions. 

 

 

7.2.2.3. Catalyst stability 

  

 

DSC analyses (exemplified for ZrWAl-MP in Figure 7.13) of the used catalysts exhibited 

two exothermic bands in the temperature range 200-550 °C which did not appear for the 

respective unused catalysts and were therefore attributed to the decomposition of InsolOrg.  

The amount of water-insoluble organic matter (designated as InsolOrg) was determined 

by TGA of the washed/dried solids (after reaching a CXyl of 98-100%), based on the mass loss in the 

temperature range 200-600 °C, and expressed as  
!��� "� ���"�%�$

������� !��� "� ���
 (mg.gXyl

-1) (Figure 7.13). 

The amount of InsolOrg was similar for ZrWAl-MP (154 mg.gXyl
-1) and ZrW-MP                

(133 mg.gXyl
-1). A greater amount of InsolOrg was formed for the water system (197 mg.gXyl

-1) in 

comparison to the biphasic solvent system (154 mg.gXyl
-1, Figure 7.13).  These results are in 

agreement with the partition ratio of Fur (PRFur) that was calculated as specified in equation 5.2 in 

Chapter 5 and measured at a.t., and gave a variation in the range 7±0.7 throughout the reaction. 

Hence, as Fur is formed it is dissolved favourably in the organic phase, which does not dissolve Xyl 

(or similarly polar intermediates). Therefore the higher yield of Fur and lower amount of InsolOrg 

formed at high conversions in the case of the biphasic solvent system may be partly due to: 

i) reduction in the concentration of Fur in the aqueous phase and consequently the lower 

extension of Fur loss reactions involving Xyl and/or polar intermediates,1,7-9,11  

ii) competitive adsorption effects minimising consecutive reactions of Fur (mainly Tol 

solvated) on the catalyst surface (polar, hydrophilic).  
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Figure 7.13- TGA (represented as (mass of InsolOrg)/(initial mass of D-Xylose) and DSC curves for 

the ZrWAl-MP catalyst separated (washed/dried) from the reaction mixture after reaching at least 

98% of D-xylose conversion (CXyl), using the 0.3 Wt:0.7 Tol (v/v)  biphasic solvent system (red lines) 

or solely Wt (1 cm3) (green lines). Reaction conditions: 170 °C, 20 gcat.dm-3, 0.67 M Xyl. 

 

 

The thermally regenerated ZrW-MP and ZrWAl-MP catalysts (details given in the 

experimental part, Section 2.3 in Chapter 2) were reused in three consecutive 4 h batch runs 

(similar conditions have been reported previously for efficiently regenerating a zirconia catalyst 

used in the conversion of cellulose at 180 °C).147 The used catalysts were brownish in colour and 

the solvent washing procedures failed to restore the original white colour of the as-prepared 

catalysts (in contrast to that observed for the thermal treatment). For each catalyst, the yields of 

Fur in recycling runs were comparable (Figure 7.14). It is worth mentioning that for the 

washed/dried ZrW-MP catalyst which was not subjected to the thermal treatment, the yield of        

Fur dropped considerably from 41% for the first batch run to 13% for the second one, possibly 

due to the catalyst surface passivation by adsorbed organic compounds. 
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Figure 7.14- Yield of 2-furaldehyde (YFur) in recycling runs of the reaction of D-xylose (Xyl) in the 

presence of ZrWAl-MP or ZrW-MP. Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent 

system, 170 °C, 20 gcat.dm-3, 0.67 M Xyl, 4 h. 

 

 

The XRD patterns and Raman spectra for the used/regenerated ZrW-MP catalysts were 

similar to those for the respective unused catalysts (Figures 7.3 and 7.6). The Raman spectra for 

the used/regenerated catalysts exhibited higher background noise. 

The stability of the mesoporous structure was confirmed by the similar textural properties 

(type IV isotherms, SBET and pore size distribution) of the used/regenerated ZrW-MP                 

(109-133 m2.g-1; pore size distribution between ca. 2 and 7 nm width) and ZrWAl-MP (133-143 

m2.g-1; pore size distribution between ca. 2.5 and 6 nm width) catalysts (Figure 7.4). 

ICP-AES analyses of the aqueous phase of the reaction mixtures indicated no measurable 

leaching of Zr, W or Al. Based on these results it seems that ZrW-MP and ZrWAl-MP were fairly 

stable catalysts. 
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7.3. Conclusions 

 

 

Zirconium-tungsten mixed oxides were relatively active catalysts in the aqueous phase 

reaction of Xyl, at 170 °C. The catalysts prepared by co-condensation (ZrW(X)) led to more than 

90% CXyl within 2 h of reaction, but YFur were less than 35%. The yield of Fur at a similar conversion 

of Xyl could be improved by using a templating agent to give ZrW-MP with enhanced specific 

surface area and amount of accessible AS (41% YFur at 100% CXyl), and furthermore by doping the 

inorganic material with aluminium to give ZrWAl-MP (51% YFur at 98% CXyl).  

SPME/GCxGC-ToFMS analyses were carried out for the reaction of Xyl, showing that a 

complex mixture of water soluble by-products was obtained. Detailed systematic studies using 

this technique may give valuable insights into the overall reaction mechanisms of the conversion 

of carbohydrate biomass, important for identifying factors (catalyst properties, reaction 

conditions) affecting product selectivities. 

Catalyst recycling tests and characterisation of the recovered solids revealed that        

ZrW-MP and ZrWAl-MP were fairly stable catalysts under the applied reaction conditions. For the 

ZrWAl-MP catalyst, the yields of Fur were higher when using the biphasic Wt:Tol solvent system 

instead of solely water as the solvent (40% at 93% CXyl). On the other hand, the yields of Fur 

reached for ZrWAl-MP using solely water as the solvent (cheaper, cleaner), were higher than 

those for the ZrW(X) catalysts coupled with the biphasic solvent system. 

 By fine-tuning the catalytic properties of these types of solid acid catalysts it may be 

possible to further improve their catalytic performances. Furthermore, tungsten/aluminium 

modified zirconias may be promising (versatile) catalysts for converting cellulose/glucose (most 

abundant terrestrial poly/monosaccharides) to added value products such as Hmf. The product 

distribution obtained in the aqueous reaction of Glu in the presence of aluminium-zirconium 

mixed oxides at 180 °C was found to be dependent on the acid-base properties of the catalysts. 68  

ZrO2 is effective in the isomerisation of Glu using water as solvent, at 200 °C.148  McNeff  

et al.147 demonstrated the feasibility of using a continuous process coupled with stable porous 

heterogeneous metal oxide catalysts (zirconia, titania) for the conversion of cellulose to Hmf in 

fairly good yields.147 More recently, Chambon et al.59 reported that tungstated zirconia and 

tungstated alumina exhibited remarkable catalytic activity and stability in the depolymerisation of 

cellulose. A major limitation of the aqueous phase conversion of cellulose is the reduced solubility 
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of the polysaccharide in water. In this sense, high expectations have been put on the use of ionic 

liquids as solvents (investigated in the next two Chapters using different approaches). 
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8.1. Introduction 

  

 

Ionic liquids (ILs) have been tested as solvents and/or catalysts, due to the interesting 

properties they display when compared to common organic solvents used in carbohydrate 

chemistry.
1
 ILs have several advantages as mentioned in Chapter 1, fulfilling some of the green 

chemistry requirements, like having almost no vapour pressure (avoiding atmospheric pollution 

problems typically associated with volatile organic solvents and product contamination with 

solvents in distillation processes), and some can be quite stable at high temperatures. 

Furthermore, IL solvents open up a window of opportunities for the dissolution of carbohydrates.
1
 

For example, cellulose, which is one of the most abundant natural polymers and attractive 

renewable feedstock, is pratically insoluble in water and most organic solvents. In an early study, 

Swatloski et al.
2
 reported that cellulose could be dissolved in ILs. Cellulose dissolves in [Bmim]Cl 

under conventional (100 °C) or microwave-assisted heating.
2
 When cellulose is dissolved in an IL 

the β-glycosidic bonds are more susceptible to acid-catalysed hydrolysis at relatively low 

temperatures (100 °C) and low catalyst loading.
1,3-5

 Different studies have demonstrated the 

potential of hydrophilic ionic liquids (ILs) for the conversion of saccharides to Fur and Hmf. The 

state of the art of IL based catalytic systems used in the conversion of carbohydrates to furanic 

aldehydes under mild reaction conditions, is described in detail in Chapter 1. Most of the 

published work on the use of ILs for the conversion of saccharides has focused on the hexose 

monosaccharides D-fructose (Fru) and D-glucose (Glu). The published work with ILs using D-xylose 

to obtain Fur has been less studied.   

Lansalot-Matras et al.
6
 firstly reported on the dehydration of D-fructose in the presence of 

Amberlyst-15 or p-TsOH as catalysts, using solvent mixtures of DMSO (the latter enhanced 

dissolution of D-fructose in the IL medium) and [Bmim]BF4 or [Bmim]PF6, which gave 75-80% YHmf 

within 24 h, at 80 °C. In another study, the dehydration of fructose in 1-H-3-methyl imidazolium 

chloride, [Hmim]Cl gave 92% YHmf within 15-45 min at 90 °C.
7
 The acidic IL 3-allyl-1-(4-

sulforylchloride butyl) imidazolium trifluoromethanesulfonate was also effective in converting Fru 

to Hmf, using DMSO as solvent, at 100 °C, under microwave radiation: ca. 85% YHmf was reached 

within 4 min.
8
 Immobilisation of this IL in silica gel gave an effective and reusable solid catalyst, 

with no decay in Hmf yields after seven runs.
8
 Zhang et al.,

9
 reported on the use of several metal 

chlorides in 1-alkyl-3-methylimidazolium chloride ([Amim]Cl, A=alkyl) ILs for dehydration of Glu, a 

more demanding saccharide than Fru for Hmf production at 100 °C. These authors found that 
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CrCl2 in [Emim]Cl (E=ethyl) was a singularly effective catalytic system, affording up to 70% YHmf at 

ca. 95% CGlu (3 h reaction), and negligible amounts of levulinic acid were formed. Several 

explanations of the high Hmf yield achieved in imidazolium chloride ILs have been put forward, 

such as the low concentration of water present in the reaction medium (avoiding the subsequent 

hydration of Hmf to levulinic acid), the formation of complexes between the IL and the sugar 

(decreasing the activation barrier for Hmf formation),
7
 and the formation of complexes between 

the sugar and the metal chlorides in the ILs.
9
  

This Chapter focuses on the dehydration of pentose (D-xylose) and hexose (D-fructose 

and D-glucose) monosaccharides, and the one-pot hydrolysis of di/polysaccharides and 

subsequent dehydration of the corresponding monosaccharides into Fur or Hmf, using the acidic 

IL 1-ethyl-3-methyl imidazolium hydrogen sulfate supplied by Merck KGaA ([Emim]HSO4) (Figure 

8.1), at 100 °C. A comparative study with 1-butyl-3-methyl imidazolium chloride ([Bmim]Cl) 

(Figure 8.1) or ([Emim]HSO4/[Bmim]Cl) mixtures was also carried out and the effect of adding 

chromium chloride was investigated, with the aim of enhancing the selectivity of the dehydration 

of Glu to Hmf. 

 

                   

NN
H3CH2C

HSO4

                   

NN
H3CH2CH2CH2C

Cl

 

Figure 8.1- Molecular structures of [Emim]HSO4 and [Bmim]Cl. 

 

 

More recent studies have been reported for the conversion of Xyl and related 

polysaccharides to Fur using IL-based catalytic systems. Sievers et al.
10

 reported 14% YHmf using 

[Bmim]Cl and H2SO4 as catalyst at 120 °C/94 min. Binder et al.
11

 improved the YFur to 45% using 

DMA/CrCl2 coupled to [Emim]Cl at 100 °C/2 h. 

 

 

8.2. Results and discussion 

 

8.2.1. [Emim]HSO4 characterisation 

 

 

The 
1
H NMR and 

13
C NMR spectra of [Emim]HSO4 are given in Figures 8.2 and 8.3. 
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Figure 8.2- 
1
H NMR  spectra of fresh and recovered

 

 

The 
1
H NMR data for [Emim]HSO

summarised as follows : δ= 1.41 (t, 3 H, C

(s, 1H, CH), 7.81 (s, 1H, CH) and

 

 

Figure 8.3-
 13

C NMR spectra of fresh and recovered

 

 

The 
13

C NMR data for [Emim]HSO

as follows: δ=15.2 (CH3CH2), 35.7 (N

 

 

 

 

 Acidic ionic liquid, [Emim]HSO

_____________________________________________________________________________________________________________________________

_____________________________________________________________________________

  

H NMR  spectra of fresh and recovered (from a catalytic test) [Emim]HSO

data for [Emim]HSO4 (300.13 MHz, 20 °C, DMSO

= 1.41 (t, 3 H, CH3CH2), 3.86 (s, 3H, N-CH3), 4.20 (q, 2H, N

) and 9.19 (s, 1H, CH). 

pectra of fresh and recovered (from a catalyst test) [Emim]HSO

C NMR data for [Emim]HSO4 (75.47 MHZ, 20 °C, DMSO-d6, TMS)

), 35.7 (N-CH3), 44.1 (N-CH2), 122 (CH), 123.6 (CH) and
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[Emim]HSO4. 

C, DMSO-d6, TMS) can be 

), 4.20 (q, 2H, N-CH2CH3), 7.72 

 

[Emim]HSO4. 

TMS) can be summarised 

and 136.4 (CH). 
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8.2.2. Dehydration of monosaccharides in ionic liquids 

 

8.2.2.1. Reaction using [Emim]HSO4-based catalytic systems under N2 

atmosphere  

  

 

The reaction of Xyl in [Emim]HSO4 (0.67 M Xyl) at 100 °C gave 86% CXyl and 72% SFur at30 

min (Table 8.1). These results were fairly good, for example, in comparison to that reported for 

the reaction of Xyl carried out in the presence of Keggin-type heteropolytungstate (ca. 0.07 M) or 

sulfuric acid (0.01 M), using DMSO as solvent (a commonly used solvent to promote selectivity to 

the furan derivative).
12

 After 4 h at 140 °C, these reaction systems gave 58-63% YFur.
13

  

When toluene (Tol) was used as a co-solvent with [Emim]HSO4, a liquid-liquid biphasic 

solvent system was obtained, which gave approximately half of the YFur (33%) achieved without a 

co-solvent (62% YFur), at 30 min. However, the YFur for the biphasic solvent system reached 84% at 

6 h (Figure 8.4, Table 8.1), which was higher than the maximum observed without a co-solvent 

(62% YFur at 30 min). 

 

 

Figure 8.4- Conversion of D-Xylose (CXyl) (O) and yield of 2-furaldehyde (YFur) (+) versus time for the 

reaction carried out in [Emim]HSO4/Tol. Reaction conditions: 0.3 Wt:0.7 Tol (v/v) biphasic solvent 

system, 100 °C, 0.67 M Xyl. 
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Table 8.1- Conversion of mono/disaccharides to 2-furaldehyde (Fur) and/or 5-hydroxymethyl-2-furaldehyde (Hmf) in the ionic liquids [Emim]HSO4 or 

[Bmim]Cl under nitrogen atmosphere. 

Substrate IL/co-solvent/temperature Concentration 
a 

(g.dm
-3

) Reaction time (h) Csub 
b
(%) YFur 

c
(%) YHmf

 c
(.%) 

D-Xylose [Emim]HSO4/none/100 °C 100 0.5 86 62 - 

D-Xylose [Emim]HSO4/Tol/100 °C 100 0.5 80 33 - 

D-Xylose [Emim]HSO4/Tol/100 °C 100 4 95 82 - 

D-Xylose [Emim]HSO4/Tol/100 °C 100 6 96 84 - 

D-Xylose [Emim]HSO4/Tol/100 °C 33 4 71 71 - 

D-Xylose [Emim]HSO4/Tol/100 °C 167 4 93 60 - 

D-Xylose [Emim]HSO4/Tol/120 °C 100 0.5 100 58 - 

D-Xylose [Bmim]Cl/Tol/100 °C 100 4 0 - - 

D-Xylose [Bmim]Cl/Tol/100 °C+H2SO4 100 4 83 44 - 

D-Fructose [Emim]HSO4/Tol/100 °C 120 0.5 100 - 79 

D-Fructose [Emim]HSO4/IBMK/100 °C 120 0.5 100 - 88 

D-Fructose [Bmim]Cl/Tol/100 °C 120 0.5 23 - 16 

D-Glucose [Emim]HSO4/Tol/80 °C 120 0.5 86 - 1 

D-Glucose [Emim]HSO4/Tol/80 °C 120 4 95 - 3 

D-Glucose [Emim]HSO4/Tol/80 °C 120 24 97 - 8 

D-Glucose [Emim]HSO4/Tol/100 °C 120 0.5 95 - 3 

D-Glucose [Emim]HSO4/Tol/100 °C 120 4 95 - 9 

D-Glucose [Bmim]Cl/Tol/100 °C 120 4 0 - - 

D-Glucose [Bmim]Cl/Tol/100 °C+CrCl3 
d
 120 4 91 - 91 

D-Glucose [Bmim]Cl/IBMK/100 °C+CrCl3 
d
 120 4 79 - 79 

D-Glucose [Bmim]Cl/none/100 °C+CrCl3 
d
 120 4 83 - 81 

D-Sucrose [Bmim]Cl/IBMK/100 °C+CrCl3 
d
 120 4 - - 100 

D-Cellobiose [Bmim]Cl/IBMK/100 °C+CrCl3 
d
 120 4 - - 50 

a) Initial concentration expressed as g feedstock/dm
3
 ionic liquid. b) Conversion of the substrate at time t (CSub). c) 2-Furaldehyde or 5-hydroxymethyl-2-furaldehyde yield (YFur or YHmf) at the specified reaction 

time t. d) 0.04 M CrCl3. 
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In contrast to that observed for the biphasic system, without a co-solvent the yield of      

Fur decreased with time, reaching 40%/28% after 4 h/6 h. These results paralleled those reported 

in the literature,
14,15

 for reactions of saccharides in aqueous phase, concerning the beneficial 

effect of using a co-solvent for improving Fur and Hmf yields. 

Increasing the Xyl concentration from 0.22 to 0.67 M (or 33 to 100 g.dm
-3

 of IL) led to an 

increase in CXyl at 4 h reaction from 71 to 95% and in YFur from 71 to 82%, under biphasic 

conditions (Table 8.1). A further increase in the amount of Xyl to 1.11 M (167 g.dm
-3

 IL) resulted in 

a decrease in the Fur yield at high conversions (60% at 93% CXyl, compared with 82% at 95% CXyl for 

0.67 M Xyl). Increasing the reaction temperature from 100 °C to 120 °C (for 0.67 M Xyl) in 

[Emim]HSO4/Tol accelerated the reaction, giving 100% CXyl within 30 min, and a YFur of 58% (Table 

8.1). At higher reaction temperatures, the reaction was probably so fast that the effect of the        

co-solvent on product selectivity became less pronouced. As the reaction proceeded the mixture 

became darker and increasingly viscous, and thus mass transfer limitations were expected to be 

important and may affect the overall reaction. Several side reactions may contribute to the loss of 

Fur, such as condensation reactions between Fur and intermediates of the conversion of Xyl to 

Fur.
16

 The identification of reaction products is addressed in Section 8.2.2.5. More recently, Tao et 

al.
17

 reported for the acidic IL [Sbmim]HSO4 (50 wt.% based on the amount of the solvent mixture) 

in a solvent mixture of H2O/IBMK used in the reaction of Xyl (0.70 M) that 91 wt.% YFur was 

reached at 95% CXyl at 150 °C/25 min using conventional heating.
17

 The IL [Bmim]HPO4 was also 

tested but was less effective than [Sbmim]HSO4 under similar conditions (68 wt.% YFur at 80% 

CXyl).
17

 

For comparative purposes the reaction of Xyl was carried out in [Bmim]Cl, using Tol as   

co-solvent at 100 °C, with or without H2SO4. No reaction took place in [Bmim]Cl/Tol without 

H2SO4, at least until 4 h (Table 8.1). These results showed that the Brönsted acidity associated 

with the anion in [Emim]HSO4 was responsible for Xyl dehydration to Fur. The reaction of Xyl in 

aqueous H2SO4 (0.4 M, approximately equivalent to half of the number of moles of charged 

[Emim]HSO4) gave less than 5% YFur at 38% CXyl, after 4 h at 100 °C. When H2SO4 (0.04 M) was 

added to the [Bmim]Cl/Tol mixture, 83% CXyl and 44% YFur were reached at 4 h. For the same 

residence time, [Emim]HSO4/Tol gave 82% YFur (Figure 8.4). Fur selectivity increased with time 

possibly due to the fact that the reaction mechanism involves a series of elementary steps.
13
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8.2.2.2. Reaction using [Emim]HSO4-based catalytic systems under reduced 

pressure  

 

 

The use of volatile solvents for extraction of the target furan compounds seems less 

“clean” than extraction using supercritical CO2 or reduced pressure for evaporation.
18-20

  The use 

of supercritical CO2 requires special expensive equipment for containment and pressure. In this 

work, a simple reaction-vacuum evaporation setup was used for performing the reaction of Xyl in 

[Emim]HSO4 without a co-solvent at 100 °C. A control experiment carried out at 100 °C using the 

IL without Xyl showed that only residual water was distilled out of the IL as demonstrated in the 

FT-IR spectra (Figure 8.5). Since the FT-IR spectra of the IL before and after the control experiment 

were similar, and no colour changes were observed, the IL was stable under the applied reaction 

conditions. 

 

 

Figure 8.5- FT-IR spectra of [Emim]HSO4 as acquired (blue line), [Emim]HSO4 after the control 

experiment (vacuum drying, pink line) and the distillate obtained in that experiment (red line). 

 

 

After 4 h of reaction of Xyl in [Emim]HSO4 under reduced pressure, 84% CXyl and 15% SFur   

were obtained, which compared unfavourably to the results obtained under nitrogen 
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atmosphere, in which the SFur was 72% at a similar conversion of Xyl (86% CXyl) in only 30 min. 

Similar to that observed with the reaction mixture in the presence of Tol, the initially transparent 

mixture of the IL and Xyl became gradually darker and more viscous with increasing residence 

time, suggesting the formation of heavy products.  

 

 

8.2.2.3. Reaction of hexoses using [Emim]HSO4/co-solvent systems under 

N2 atmosphere 

 

 

The efficiency of the [Emim]HSO4/Tol system was further investigated for the reaction of 

the hexoses, Glu and Fru, using an initial concentration similar to that used for Xyl (0.67 M, or    

120 g.dm
-3

 IL). The reactivity of the monosaccharides (based on conversion at 30 min, Table 8.1) 

followed the order: Fru (100%) > Glu (95%) > Xyl (80%). As mentioned above, the yield of                  

Fur from the reaction of Xyl increased up to 84% reached at 6 h (Figure 8.2). The reaction of Fru 

gave 79% YHmf within 30 min. When [Bmim]Cl/Tol was used instead of [Emim]HSO4/Tol, the 

reaction of Fru gave 16% YHmf at 30 min, under similar conditions. Hence, the Brönsted acidity 

associated with [Emim]HSO4 played a major role in the dehydration of Fru, similar to that 

observed for Xyl as substrate. For [Bmim]HSO4, Hu et al.
21

 reported 56% YHmf without a co-solvent, 

at 80 °C and 1 h, and very recently, Shi et al.
22

 reported 70% YHmf, at 120 °C and 1 h. Another types 

of acidic ILs with hydrogen sulfate (HSO4
-
) have been tested and gave lower Hmf yield, such as 

[Hmim]HSO4 (24% YHmf with DMSO as co-solvent at 90 °C/2 h, 0.46 M Fru),
23

 or [NMM]HSO4 (23% 

YHmf with DMF-LiBr as co-solvent at 90 °C/2 h, 0.56 M Fru).
24

 

While Hmf may be formed in significant amounts from the reaction of Fru in [Emim]Cl at 

100-120 °C, previous studies have shown that the same does not apply for the reaction of Glu in 

this IL, under similar reaction conditions.
9
 These results were reproduced in this work for 

[Emim]HSO4 at 100 °C (Table 8.1).   

For the Glu/[Emim]HSO4/Tol system, the Hmf selectivity was very low (<9% up to 100% 

CGlu, reached within 6 h). In a later study, Tong et al.
23

 reported a similar behaviour for Glu  (0.46 

M) dehydration (2% YHmf at 90 °C and 2 h using DMSO as co-solvent and [NMP]HSO4 as solvent). 

The decrease in the reaction temperature from 100 to 80 °C led to lower CGlu at 30 min (86% 

compared with 85% at 100 °C, Table 8.1), and the Hmf yield was less than 8% up to 97% CGlu 

(reached within 24 h). More recently, Qi et al.
25

 reported a moderate YHmf of 37%  in the absence 
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of a co-solvent but at a higher temperature of 200 °C and 10 min using [Bmim]HSO4 under 

conventional heating.  

Moreau et al.
7
 reported that the hydrolysis of Suc in 1-H-3-methyl imidazolium chloride 

([Hmim]Cl) at 90 °C resulted in the very rapid cleavage of the disaccharide into Fru and Glu. 

However, while Fru was selectively dehydrated into Hmf in a consecutive pathway, Glu practically 

did not react. It has been postulated that the efficient in situ isomerisation of Glu to Fru is 

important to obtain high Hmf yield.
9,26-29

 In the case of the Glu/[Emim]HSO4/Tol system, no Fru 

was detected by HPLC, suggesting that Glu to Fru isomerisation hardly took place, which may 

explain the much lower Hmf selectivities from Glu than from Fru (notwithstanding the similar 

reactivity of both hexoses).  

Zhang et al.
9
 obtained outstanding results for the conversion of Glu into Hmf (nearly    

70% YHmf after 3 h at 100 °C) by adding CrCl2 (0.04 M) to [Emim]Cl without a co-solvent. A series of 

other metal halides was tested, but the results were much poorer. As mentioned in Chapter 1, the 

authors proposed that a chromium chloride anion facilitates mutarotation of Glu (from                 

α-glucopyranose to β-glucopyranose anomer) in the IL, followed by isomerisation into a 

fructofuranose intermediate via a chromium enolate intermediate.
8
 For comparative purposes, 

the reaction of Glu was carried out in [Bmim]Cl/Tol/CrCl3 at 100 °C. CrCl3 was chosen instead of 

CrCl2 since it is more stable and easily handled under air (less toxic), much cheaper, and, on the 

other hand, it is very likely that Cr
2+

 is oxidised to Cr
3+

 in the IL system containing dissolved air and 

water (at least from the dehydration reaction). After 4 h at 100 °C, the Glu/[Bmim]Cl/CrCl3 

reaction system (without co-solvent) led to 81% YHmf, which was much higher than that reported 

by Zhao et al.
9
 for the system Glu/[Emim]Cl/CrCl3 (45% YHmf at 100 °C/3 h). In that work when CrCl2 

was used instead of CrCl3, an improvement to 67% of YHmf was reached.
9
 A few other authors 

obtained lower 55-70% YHmf at the same temperature and 6 h of reaction.
9,30-34

 The use of Tol as a 

co-solvent further improved YHmf at 4 h to 91% (Table 8.1).  

The influence of using IBMK instead of Tol as the extracting co-solvent was investigated 

for the Fru/[Emim]HSO4 and Glu/[Bmim]Cl/CrCl3 systems. The mixtures of these ILs with Tol or 

IBMK are biphasic. Control experiments performed without monosaccharides and analysed by  

GC-MS did not reveal the decomposition of the co-solvents. Whereas the use of IBMK instead of 

Tol led to a higher Hmf yield in the Fru/[Emim]HSO4 reaction system, the opposite occured for the 

Glu/[Bmim]Cl/CrCl3 system (Table 8.1). These results may be due to differences in the solubility of 

the co-solvent in each IL (which may not be totally immiscible) and the distribution ratio of the 

target product in the two liquid phases. Nevertheless Li et al.
35

 reported that the mixture of 
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[Bmim]HSO4 (in catalytic amounts of 1 mol.%) and [Bmim]Cl as solvent, without the addition of a 

co-solvent used in the reaction of Fru (10 wt.%; 0.62 M), led to 80% YHmf at 80 °C in 30 min.  

 

 

8.2.2.4. One-pot hydrolysis/dehydration of di/polysaccharides in ionic 

liquids 

 

 

The efficiencies of the [Emim]HSO4/co-solvent and [Bmim]Cl/IBMK/CrCl3 systems were 

further investigated in the one-pot conversion of different carbohydrate feedstocks, namely the 

disaccharides Suc and Cel, and the polysaccharides D-xylan, inulin, starch, and cellulose, into Hmf 

or Fur under nitrogen, using conditions which were chosen on the basis of preliminary catalytic 

tests and to facilitate comparative studies (for Xyl and di/polysaccharide, 100 gfeedstock. dm
-3

 in the 

IL; for hexoses, 120 gfeedstocks.dm
-3

 in the IL). The molecular structures of the different types of 

substrates tested are represented in Table 1.1 of the Introduction (Chapter 1). The results are 

shown in Figure 8.6 and were calculated on the basis of wt.% YFur or YHmf, and for comparative 

purposes the yields were also calculated for the monosaccharides. The theoretical yields (TY) are 

approximately 64 wt.% YFur for Xyl, 70 wt.% YHmf for Fru and Glu, 74 wt.% YHmf for Suc, Mal or Cel, 

ca. 73 wt.% YFur for D-xylan, and ca. 78 wt.% YHmf for inulin. The D-xylan/[Emim]HSO4/Tol reaction 

system gave nearly half the Fur TY at 4 h, and inulin/[Emim]HSO4/IBMK gave nearly the full Hmf 

TY at 30 min (Figure 8.6). These results were somewhat congruent with the observed higher 

reactivity of Fru in comparison to Xyl in [Emim]HSO4 (Table 8.1, Figure 8.4). 

For the [Bmim]Cl/IBMK/CrCl3 system, the reaction of Suc (a disaccharide with a  β-(1-2) 

glycosidic bond between Glu and Fru units) gave approximately Hmf TY (73%) at 4 h. The reactions 

of Mal (a disaccharide with two Glu units linked by a α-(1-4) glycosidic bond) and Cel (a 

disaccharide with two Glu units linked by a β-(1-4) glycosidic bond) in [Bmim]Cl/IBMK/CrCl3 gave 

approximately half of the Hmf TY and negligible amounts of Glu were detected (Figure 8.6). The 

reactions of starch (a polymer of Glu units containing α-(1-4) glycosidic bonds in a linear fashion 

(amylose) and α-(1-6) in a branched fashion (amylopectin)) and cellulose (a polymer of Glu units 

linked by β-(1-4) glycosidic bonds) in [Bmim]Cl/IBMK/CrCl3 gave negligible Hmf yield, for residence 

times up to 4 h. No hydrolysis products were detected and the appearance of the reaction 
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mixture remained unchanged, suggesting that pratically no reaction of these polysaccharides took 

place. 

 

 

Figure 8.6- Yields of 2-furaldehyde, YFur (from Xyl/D-xylan) or 5-hydroxymethyl-2-furaldehyde, YHmf 

(from the remaining substrates) obtained in IL co-solvent biphasic system at 100 °C (initial 

concentration of feedstock of 100 g.dm
-3 

or 120 g.dm
-3

 for pentose or hexose-based 

carbohydrates, respectively, in the IL). In general, theoretical yields vary between 70 and 80 wt.%. 

 

 

The dissolution of cellulose in [Amim]Cl ILs was greatly assisted by the high chloride ion 

concentration, which led to disruption of the extensive hydrogen bonding network present in its 

macrostructure.
2,36-38

 Accordingly, the sluggish reaction for cellulose/[Bmim]Cl/IBMK/CrCl3 was 

probably not due entirely to solubility limitations. A possible explanation is that the hydrolysis 

step is rate limiting and demands a stronger acidity (Brönsted rather than Lewis type). Li and 
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Zhao
39

 reported that cellulose hydrolysis takes place in [Bmim]Cl in the presence of HCl or H2SO4 

as catalysts at 100 °C, under atmospheric pressure and without pretreatment.  

After stirring the IL/cellulose mixtures for 5 min at 100 °C, a solution was obtained in the 

case of [Emim]HSO4 (and the mixture was light brown), whereas a heterogeneous mixture was 

obtained for [Bmim]Cl (apparently cellulose did not completely dissolve, and no colour change in 

the reaction mixture was observed), suggesting that cellulose dissolved better in [Emim]HSO4. 

Prior to the reaction at 100 °C, the mixtures were treated in an ultrasound bath (50 W, 40 KHz) for      

15 min, at a.t. Based on these findings and those by Zhang et al.,
9
 an attempt was made to 

simultaneously enhance the hydrolysis reaction rate of cellulose (using [Emim]HSO4 for enhancing 

polysaccharide solubility and giving Brönsted acidity) and enhance selectivity of the reaction of 

Glu to Hmf using ([Bmim]Cl/IBMK/CrCl3) in a single reactor, at 100 °C. Hence, a mixed IL system 

consisting of [Bmim]Cl/[Emim]HSO4 (2:1 v/v)/IBMK/CrCl3 was used and led to 8 wt.% YHmf  after 4 h 

at 100 °C (Figure 8.6). Similar results were obtained when H2SO4 (0.04 M) was added to the 

[Bmim]Cl/IBMK/CrCl3 system: 9 and 12% YHmf for the reactions of cellulose and starch, 

respectively. The acidic IL [Sbmim]HSO4 was tested by Tao et al.
40

 in the one pot 

hydrolysis/dehydration of cellulose to Hmf in which the YHmf was 15-24 wt.% using IBMK as         

co-solvent at 150 °C and 5 h.  

The reaction of Glu using [Emim]HSO4/Tol/CrCl3 led to 96% CGlu and 7 wt.% YHmf at 4 h, 

which was similar to that observed for [Emim]HSO4/Tol (6 wt.% YHmf). Hence, the rather low               

Hmf yield for the cellulose reaction in the [Bmim]Cl/[Emim]HSO4 (2:1, v/v)/IBMK/CrCl3 system 

may be due to the lack of selectivity in the dehydration of Glu. The CrCl2/[Bmim]Cl system 

reported by Zhang et al.,
9
 was successful in converting Glu into Hmf due to the formation of a 

higher halogenated anion complex. The mixed sulfate/chromium chloride IL acid systems may 

form different types of species, which may change (in nature and amount) during the course of 

the reaction as the concentration of water varies. 

 

 

8.2.2.5. Identification of the reaction products  

 

 

No by-products of the Xyl reaction in [Emim]HSO4/Tol at 100 °C or 120 °C were detected 

by HPLC of the IL phase (using a diode array detector) and GC-MS analysis of the Tol phase 
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showed a few very weak peaks, which were not clearly identified. Thus, it was postulated that the 

by-products are mainly heavier products resulting from condensation reactions. 

 The exact nature of the black residue formed in the reaction of Xyl/[Emim]HSO4  at 100 °C 

under reduced pressure was unknown. Elemental analysis revealed C, H, N and S contents of 45.7, 

4.9, 4.8 and 8.0 wt.%, respectively (C:N:S mole ratio of 15:1.4:1), suggesting that the residue 

contains the IL or an insoluble derivative thereof. The calculated values for the pure IL were: C, 

34.6; H, 5.8; N, 13.45; S, 15.4% (C:N:S mole ratio of 6:2:1). The solid state
 13

C CP MAS NMR 

spectrum of the recovered solid showed a complex series of overlapping resonances between 0 

and 200 ppm (Figure 8.7): δ =23.1, 44.3, 53, 89.5, 120, 131.5, 144.2 and 159.0 ppm. The signals up 

to 53 ppm were presumably due to the methyl and/or methylene carbon atoms, while those in 

the range 90-160 ppm were likely to arise from the carbon atoms of furan and/or 

imidazole/imidazolium rings. An alternative assignment for the peak at 90 ppm was a CH or CH2 

carbon bonded to two oxygen atoms (e.g. hemi-acetal), while the peak at 159 ppm may be due to 

the carbonyl group of an ester (since the FT-IR spectrum showed a new adsorption band at ca. 

1700 cm
-1

, that is attributed to a carbonyl stretching vibration, Figure 8.8). 

 

 

Figure 8.7-
13

C CP MAS NMR spectrum of the recovered solid after a catalytic batch run using        

D-xylose (Xyl)/[Emim]HSO4 at 100 °C/4 h. 
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Figure 8.8- FT-IR spectra of [Emim]HSO4 as acquired (blue line), and dark solid phase obtained 

from the reaction of D-xylose (Xyl) using [Emim]HSO4 at 100 °C/4 h. 

 

 

Levulinic and formic acids, which are common by-products formed in the aqueous phase 

reactions of hexoses under acidic conditions (via decomposition of Hmf), were not detected by 

HPLC (using diode array detector) in the reactions of hexoses using [Emim]HSO4/Tol at 100 °C/6 h 

or 80 °C/24 h. 

 The decomposition of Glu may give several by-products, such as other sugars                  

(e.g. mannose) via isomerisation, C-C bond scission via a retro aldol condensation and subsequent 

retro aldolisantion, and non-furan cyclic ethers via dehydration.
9,41

 GC-MS analysis of the 

Glu/[Emim]HSO4/Tol system after  6 h at 100 °C was performed to identify any volatile by-

products. The chromatograms presented a few very weak peaks, which could not be fully and 

clearly identified. In the reaction of Fru, 5,5’oxy-dimethylene-bis(2-furaldehyde), a symmetric 

ether of Hmf, was detected, which may be formed via condensation of Hmf.
42

 This product has 

also been detected in the thermal decomposition of Hmf.
43

 Possibly, the by-products were mainly 

heavy/non-volatile compounds. 
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8.2.2.6. IL stability and reuse under N2 atmosphere 

 

 

The stability of the [Emim]HSO4/Tol system (under N2 atmosphere) was investigated by 

recovering and reusing the IL phase in four consecutive runs at 100 °C (0.67 M in the IL).  Prior to 

each reuse of the IL, the two liquid phases were separated by decantation. Acetonitrile (miscible 

with [Emim]HSO4) was added to the IL phase with stirring, which facilitated the subsequent 

separation of dark residues by centrifugation. Acetonitrile and water were removed from the 

solution by evaporation under reduced pressure, giving the recovered IL free of Fur (ascertained 

by HPLC and FT-IR spectroscopy, Figure 8.10). The CXyl  and YFur at 4 h remained nearly constant at 

ca. 93 and 85% in the four consecutive runs (Figure 8.9).  

 

 

Figure 8.9- Conversion of D-xylose (CXyl) to 2-furaldehyde (Fur) in [Emim]HSO4/Tol for four 

consecutive 4 h runs at 100 °C, using the same IL charged initially to the reaction vessel. Reaction 

conditions:  0.3 Wt:0.7 Tol (v/v) biphasic solvent system, 100 °C, 0.67 M Xyl. 

 

 

The recycling of the [Emim]HSO4/Tol system using 167 gXyl.dm
-3

 in the IL (1.11 M Xyl) gave 

a turn over number of 1.25 after seven runs at 100 °C. The CNS microanalyses, FT-IR (Figure 8.10), 

1
H and

 13
C NMR spectra of the fresh and recovered IL were very similar (Figures 8.2 and 8.3). 
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These results demonstrated that [Emim]HSO4 was fairly stable and can be efficiently recycled 

under the reaction conditions used (catalytic reaction under N2 atmosphere). 

 

Figure 8.10- FT-IR spectra of pure [Emim]HSO4 (IL) and IL recovered from the reaction of D-xylose 

(Xyl) carried out in [Emim]HSO4/Tol under nitrogen, or in [Emim]HSO4 under reduced pressure. 

The spectra of D-xylose (Xyl) and 2-furaldehyde (Fur) are given for comparison.  

 

 

The weak and sharp band at ca. 650 cm
-1

 in the spectrum of the recovered IL under N2 

atmosphere was attributed to a residual amount of acetonitrile that was not completely 

separated from the IL during work-up procedures. 
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8.2.2.7. IL stability and reuse under reduced pressure 

 

 

In the absence of Tol and under reduced pressure, the black residues formed during the 

reaction were separated by centrifugation and membrane filtration, leaving a transparent, pale 

yellow liquid. Excess water (and possibly other volatile products) in the IL was distilled off under 

reduced pressure. The amount of Xyl in the recovered IL was ca. 1 wt.% (measured by HPLC) of 

the initial amount of Xyl charged to the reactor. The FT-IR spectra (Figure 8.10) and the elemental 

analysis data of pure and recovered IL were similar. For the two runs applied, the distillate 

consisted of two separate colourless liquids, which were identified by FT-IR spectroscopy as being 

Fur and water. For the second run, 81% CXyl and 22% SFur were reached in 4 h. The similar results 

for both runs suggested that the IL was recyclable, as observed for the reactions carried out under 

nitrogen. In summary, the YFur at 4 h are 12-18% for the reduced pressure system compared to 

40% for the IL without Tol, and 81% for the IL/Tol biphasic system 

 

 

8.3. Conclusions 

 

 

It has been shown that the dehydration of Xyl and Fru, and on the other hand, the one-

pot hydrolysis and dehydration of di/polysaccharides containing Fru units, in [Emim]HSO4/          

co-solvent gave fairly high yields of Fur or Hmf (80-90%) at 100 °C. The reaction of Xyl in 

[Emim]HSO4/Tol at 100 °C gave better results (82% YFur at 4 h) than previously reported 

DMSO/(Keggin-type heteropolytungstates or sulfuric acid) system at 140 °C.
13

 Furthermore, better 

results were achieved with [Emim]HSO4 than with aqueous H2SO4, under similar conditions. 

Removal of Fur by evaporation under reduced pressure (instead of solvent extraction) gave 

poorer results, although it should be possible to improve on the 18% YFur obtained at 4 h by 

optimising the pressure in the system, the design and dimensions of the setup, the mixing 

efficiency of the reaction mixture, and the reaction temperature and residence time. For both 

methods of Fur removal, the IL can be recovered and reused without a significant drop in the 

yields of Fur in recycling runs. In considering the potential of acidic ILs such as [Emim]HSO4 to 

replace sulfuric acid in processes for the transformation of saccharides into Fur and Hmf, it must 

be recalled that H2SO4 is very hygroscopic and difficult to dry in vacuum, and when heated it emits 
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highly toxic fumes, which include sulfur trioxide, leading to the accumulation of acidic waste. The 

use of [Emim]HSO4 instead of H2SO4 may allow process intensification with reuse of the acid IL.  

Although [Emim]HSO4 was effective in converting Fru (88% YHmf at 30 min) and polymers 

containing these units into Hmf, it was poorly selective in Glu dehydration. The 

[Bmim]Cl/Tol/CrCl3 system of Zhao et al.
9
 was quite effective in converting Glu and related 

disaccharides into Hmf, but not polysaccharides such as cellulose and starch. For the latter 

feedstocks, the addition of [Emim]HSO4 to cellulose/[Bmim]Cl/CrCl3 enhanced Hmf yield, 

presumably by accelerating the hydrolysis step. However, the dehydration of Glu monomers to 

Hmf was poorly selective (8-9% YHmf) compared to Xyl for the same system without [Emim]HSO4, 

most likely due to the formation of different active species from those formed in the absence of 

the sulfated anions. 

 A drawback of the IL/CrCl3 systems is that chromium (especially chromium (VI), which can 

be formed from chromium (III) in aqueous environments) poses risks to human health and the 

environment, which would mean that any process based on these systems would be subject to 

very stringent environmental controls. Nevertheless, the results showed that hydrophilic ILs may 

be promising for Fur and Hmf production from sugar feedstocks, allowing relatively easy work-up 

procedures for isolating the target product(s), reuse of the acidic medium and operation under 

relatively mild conditions. Attempts to find IL systems for selectively processing feeds composed 

of mixed Fru and Glu-based saccharides remains a challenge. 

In the next Chapter 9, the use of the IL [Bmim]Cl coupled to chromium-containing silicates 

in the conversion of Glu (more demanding substrate than Fru) to Hmf will be discussed. 
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9.1. Introduction 

 

 

D-Glucose (Glu) is the major monosaccharide building block obtained from carbohydrate 

biomass that can be converted into the promising platform chemical 5-(hydroxymethyl)-               

2-furaldehyde (Hmf).3  However, the reaction of Glu to Hmf is rather demanding in comparison to 

that for fructose (Fru) as substrate, partly due to the fact that the reaction mechanism is complex, 

involving several elementary steps with different acid-base requirements.  Zhao et al.4-6 reported 

one of the most effective catalytic systems known to date for the conversion of Glu to Hmf, 

consisting of chromium salts as homogeneous Lewis acid catalysts dissolved in an ionic liquid (IL) 

solvent under mild reaction conditions.4-6 CrCl2 coupled with 1-ethyl-3-methyl imidazolium 

chloride ([Emim]Cl) led to ca. 70% YHmf at 95% CGlu (10 wt.% Glu, 100 °C, 3 h reaction).4 Since then, 

several chromium/IL based catalytic systems have been sucessfully investigated in the conversion 

of Glu (and related di/polysaccharides) to Hmf, generally exhibiting superior catalytic 

performances in comparison to IL-based catalytic systems containing other transition metals as 

summarised in reviews of the topic. 7-10 A few other papers have been published afterwards.11-16 

The use of an IL as solvent instead of water is desirable because it avoids Hmf loss reactions, 

typically occurring in the aqueous media.17 Relatively low yields of Hmf have been reported for 

chromium salts (CrCl2, CrSO4) used as catalysts in the aqueous phase reaction of Glu, at 140 °C,18 

or of cellulose at 180 °C.19 On the other hand, and as mentioned in Chapter 1, some ILs are 

favourable (non-volatile) solvents for dissolving carbohydrates such as crystalline cellulose, in 

comparison to water and most common organic solvents (important for process intensification),20-

26 and these types of solvents can be obtained from renewable resources.27 

Homogeneous catalytic systems require careful work-up procedures in order to avoid 

losses of catalyst and contamination of effluents (requiring demanding/costly separation and 

purification processes and treatment/disposal of waste streams). The coupling of solid acid 

catalysts with ILs as solvents is a possible approach to minimise these drawbacks. Only a couple of 

studies can be found in the literature reporting on the reaction of Glu (or related 

di/polysaccharides) to Hmf using (chromium-containing solid acid)/IL catalytic systems. Physical 

mixtures of chromium salts and solid acids (zeolites H-Y, H-BEA, H-Mordenite, H-ZSM-5, or acidic 

Amberlyst ion-exchange resins) coupled with 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) as 

IL solvent have been investigated in the conversion of cellulose to Hmf, at 120 °C, and the best 

result was ca. 36% YHmf at 6 h reaction using H-Y zeolite as solid acid.28 In a recent study it was 
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reported that the addition of ILs to aqueous solutions of Glu enhanced adsorption of the latter on 

zeolites.29 Interesting results were reported for hydroxyapatite-supported chromium chloride    

(Cr-HAP) coupled with [Bmim]Cl as solvent in that this catalytic system was reused four times 

without significant decrease in the yield of Hmf (ca. 40% YHmf in 2.5 min, using the microwave 

heating method, 400 W).30  

A critical issue is the stability of the solid acids in the ILs medium. According to the 

literature, Brönsted solid acids may undergo ion-exchange reactions in the IL medium, and the 

catalytic reactions may be effectively homogeneous in nature.31-33 In the case of the Cr-HAP/IL 

system the homo/heterogeneous nature of the catalytic reaction was not assessed.30 

In this work, nanoporous chromium, aluminium-containing silicates were tested as solid 

acids in the reaction of Glu, using the IL [Bmim]Cl as solvent, at 120 °C. The investigated solid 

acids include: mesoporous TUD-1 type materials possessing chromium and/or aluminium           

(Al-TUD-1, Cr-Al-TUD-1, Cr-TUD-1); zeolite BEA (in the H+-form) and Cr-BEA, and the related 

micro/mesoporous composites BEATUD-1 and Cr-BEATUD-1 (Figure 9.1 A and B). Particullar 

attention was drawn to the stabilities of the nanoporous materials in the IL medium and the 

influence of the type of solvent ([Bmim]Cl versus water or DMSO) on the reaction of Glu. 
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Figure 9.1- Simplified representation of aluminium (A) and chromium (B)- containing silicates in 

which Al4+ and Cr6+ are in tetrahedral coordination (charges are not represented for the sake of 

simplicity). 

 

 

9.1.1. Cr-TUD-1 and Cr-Al-TUD-1 

 

  

The 3 D sponge-like mesoporous material TUD-1 (studied in Chapter 4 , as catalyst in the 

hydrolysis/dehydration of saccharides to Fur/Hmf) has several advantages, such as being 
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straightforward to prepare via (relatively low-cost) non-surfactant templating routes 

(environmentally friendly),31-36 having high specific surface areas, pore widths and volumes, and a 

3 D channel system, which are favourable features for the internal diffusion of relatively bulky 

reactant molecules and accessibility to the active sites.  

The purely siliceous TUD-1 may be furnished with Brönsted and Lewis acidity by 

tetrahedral incorporation of metals such as aluminium (Chapter 4), or chromium (in this work) 

into the framework via a one-pot procedure based on the sol-gel technique.37-40 In Chapter 4,     

Al-TUD-1 was reported to be an active and stable catalyst for the aqueous-phase dehydration of 

saccharides to furanic aldehydes, although the hexose-based mono/disaccharides gave less than 

20% YHmf. Since chromium-based catalytic systems are rather efficient in the conversion of 

hexoses, the incorporation of chromium in purely siliceous TUD-1 (Cr-TUD-1) and in Al-TUD-1   

(Cr-Al-TUD-1) was carried out (Figure 9.1 A and B). 

 

 

9.1.2. Cr-BEA and Cr-BEATUD-1 

  

 

Following on from the good catalytic stability of BEA and BEATUD-1 (discussed in Chapter 

5 in the dehydration of Xyl to Fur), in this chapter the corresponding chromium-containing 

versions namely Cr-BEA and Cr-BEATUD-1, were tested in the reaction of Glu as substrate to Hmf. 

Cr-BEA was prepared from BEA in the H+-form (Chapter 5) via an ion-exchange reaction, while                 

Cr-BEATUD-1 was prepared in a similar fashion to the micro/mesoporous composite BEATUD-1 

described in Chapter 5, albeit using Cr-BEA instead of BEA. 

 

 

 

 

 

 

 

 

 



Chapter 9 
______________________________________________________________________________________________ 

_____________________________________________________________________________ 
370 
 

9.2. Results and discussion 

 

9.2.1. Catalyst characterisation 

 

 

In this Chapter the following materials were prepared: Al-TUD-1, Cr-Al-TUD-1 and           

Cr-TUD-1, BEA, BEATUD-1, Cr-BEA and Cr-BEATUD-1.  As mentioned in the experimental part 

(Chapter 2), the aluminium and/or chromium-containing mesoporous silicas of the type TUD-1 

were prepared by hydrothermal synthesis. BEA was prepared by calcination of NH4-BEA, while    

Cr-BEA was prepared by ion-exchange of a suspension of NH4-BEA in an aqueous solution of 

Cr(NO3)3, further filtration and calcination.The composite Cr-BEATUD-1 was prepared by ion-

exchange of BEA with chromium, similar to the procedure for Cr-BEA, excluding the calcination 

step. 

The powder XRD patterns for Al-TUD-1, Cr-TUD-1 and Cr-Al-TUD-1 showed one broad 

peak at low angles (ca. 1.5° 2θ for Cr-TUD-1 and Cr-Al-TUD-1 and ca. 1.8° 2θ for Al-TUD-1, inset of 

Figure 9.2) and a very broad peak centred around 25° 2θ (Figure 9.2), indicating that these 

materials were amorphous, but had mesostructured features similar to that described in Chapter 

4, and in agreement with the literature.35,37-39,41-51 No evidence of crystalline phases (e.g. alumina 

or chromium oxides) was detected in the patterns, similar to that described in Chapter 4 and in 

agreement with the literature data.37,38,41,42,50-54     
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Figure 9.2- Powder XRD patterns of the fresh TUD-1 related materials (Al-TUD-1, Cr-TUD-1, and 

Cr-Al-TUD-1) and of the respective recW solids. The inset shows the low angle powder XRD 

patterns. 

 

In the case of BEA and Cr-BEA, the XRD diffraction patterns were similar suggesting that 

the crystalline structure was preserved during the ion-exchange procedure (Figure 9.3).  BEA and 

the related composite BEATUD-1 presented similar XRD patterns showing the characteristic 

diffraction peaks of zeolite BEA at 2θ=7-8° and 22.5° similar to that described in Chapter 5 and in 

agreement with the literature data.55-182  The same applies when comparing the data for Cr-BEA 

and Cr-BEATUD-1. 
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Figure 9.3- Powder XRD patterns of the fresh zeolite BEA-related materials and of the respective 

recW solids. 

 

 

The high-resolution (HR) TEM images of Cr-BEA (exemplified in Figure 9.4a) showed small 

crystallites wih a size of ca. 20-30 nm and the lattice fringes characteristic of zeolite Beta. In the 

case of Cr-BEATUD-1, HRTEM characterisation showed a 3 D sponge- or worm-like mesoporous 

matrix with some dark gray domains that may be attributed to the embedded zeolite particles 

(Figure 9.4 b), suggesting that Cr-BEATUD-1 was a composite of an amorphous mesoporous 

matrix and nanocrystallite Beta particles (isolated nanocrystals of ca. 20-30 nm, or aggregates of            

ca. 50-200 nm), which were fairly evenly distributed nanocrystals in the surrounding mesoporous 

matrix. The presence of small aggregates is in agreement with previous findings for a BEATUD-1 

composite material with a zeolite loading of 16-20 wt.%,56,180 or 40 wt.%,56  and can be attributed 

to the combined effect of the synthesis conditions and the high zeolite loading. These results 

were comparable to those previously reported in Chapter 5 for a composite material consisting of 

zeolite Beta and TUD-1 prepared in a similar fashion (and using the same commercial zeolite 

ammonia Beta powder) to that used in the present Chapter. 



Cr-containing silicates 
______________________________________________________________________________________________ 

_____________________________________________________________________________ 
373 

 

 

 

Figure 9.4- High resolution TEM images of a) Cr-BEA and b) Cr-BEATUD-1. 

 

 

Table 9.1 shows the chemical composition and textural properties of the prepared 

materials. For Al-TUD-1 and Cr-Al-TUD-1 the atomic ratios agreed roughly with those used in the 

respective synthesis mixtures. For Cr-TUD-1 the Si/Cr ratio of 150 was higher than the value of 

100 used in the synthesis, suggesting that a fraction of the initial amount of chromium was not 

incorporated in the mesoporous silicate. 

The zeolite BEA and the related ion-exchanged Cr-BEA possessed similar Si/Al ratios: in 

the latter case, the Si/Cr ratio was 47. Based on the aluminium contents it was possible to 

estimate that the BEATUD-1 and Cr-BEATUD-1 composites possessed ca. 26 wt.% BEA and 33 

wt.% Cr-BEA, respectively. In the case of the chromium-containing materials, the Al/Cr ratio was 

slightly higher for Cr-BEATUD-1 than for Cr-BEA (ca. 6 and 4, respectively), possibly due to partial 

leaching of chromium from BEA during the preparation of Cr-BEATUD-1. 

The textural properties of Al-TUD-1 and Cr-Al-TUD-1 were similar; in comparison, the SBET 

for Cr-TUD-1 was lower, and the PSD was wider and for greater values of pore widths (Table 9.1 

and inset of Figure 9.5). In the case of the composite materials, BEATUD-1 and Cr-BEATUD-1, the 

PSD curves lied in the range of pore widths 2.5-10 nm (Table 9.1). 
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Table 9.1- Physicochemical properties of the prepared materials and comparison with the 

literature data.  

Sample 

 

Si/Al  Si/Cr  Al/Cr  Surface area 

 (m
2
.g

-1
) 

Vp  

(cm
3
.g

-1
) 

PSD  (pore 

width, nm)  

Ref 

Al-TUD-1  20 
a
 - - 726 (789) 

b,d
 0.64 (0.69)

b,g
 2.5-7  

(2.5-7) 
b,k

 
this work 

Cr-Al-TUD-1  27 (30)
 a,b 

 108 
 

4 
 

763 (995) 
b,d

 0.78 (0.95)
b,g

 2.5-7  
(2.5-7)

 b,k
 

this work 

Cr-TUD-1  - 150 
(261) 

a,b
 

- 484 (515) 
b,d

 1.02 (1.14) 
b,g

 3-17  
(3-17)

 b,k
 

this work 

Cr-TUD-1 - 130
 a

 - 565 
e
 1.54 

h
 8.2

 k
 

39
 

Cr-TUD-1 - 130
 a

 - 565 
e
 1.54 

i
 8.4 

k
 

34
 

BEA  12 
a
 - - 634 

d
 0.74 

g
 - this work 

BEA 25
 a

 - - 500 (365/135)
f
 nf

 j
 nf 

j
 

183
 

BEA 50
 a

 - - 557 (430/127)
f
 nf

 j
 nf 

j
 

183
 

Cr-BEA  13 (13)
 a,b

 47 
 

3.6 
 

702 (793)
b,d

 0.87(0.75)
g
 - this work 

Cr-BEA 25
 a

 0.99 
c
 - 488 (341/147)

f
 nf

 j
 nf 

j
 

183
 

Cr-BEA 50
 a

 0.74 
c
 - 415 (334/111)

f
 nf

 j
 nf 

j
 

183
 

BEATUD-1   31 (33)
 a,b

 - - 685 (722) 
b,d

 0.78 (0.82) 
b,g

 2.5-10   
(2.5-10)

 b,k
 

this work 

Cr-BEATUD-1 41 (45)
 a,b

 236 5.8  
 

802 (717) 
b,d

 0.92 (0.80) 
b,g

 2.5-10 
(2.5-10)

b,k
 

this work 

a) Determined by ICP-AES. b) Values in brackets in the entries of this work refer to recovered and calcined solids (recC). c) Chromium 
percentage (wt.%). d) SBET determined by BET equation for relative pressures p/po in the range of 0.02-0.1. e) Surface area calculated 
from the adsorption branch of the N2 isotherm, using the BJH method. f) SBET determined by the BET equation; values in parenthesis 
refer to Smicro/Smeso. g) Vp determined using the Gurvitch equation for p/p0 ca. 0.98. h) Vp using the BJH method. i) Vmeso using the BJH 
method. j) nf= information not found. k) PDS calculated by BJH method from the adsorption branch of the isotherm. The calculations 
for the values without an indication are not mentioned in the respective works. 

 

   

The SBET tended to increase with the incorporation of chromium (Al-TUD-1 to Cr-Al-TUD-1, 

726 to 763 m2.g-1; BEA to Cr-BEA, 634 to 702 m2.g-1; BEATUD-1 to Cr-BEATUD-1, 685 to 802 m2.g-1). 

According to the literature, the SBET may be influenced by the chromium content; a higher amount 

of chromium led to higher SBET in the case of Cr-TUD-1 (484 m2.g-1 for Cr-TUD-1(150) and            

565 m2.g-1 for Cr-TUD-1 (130)).39
 Zuhairi et al.183observed the opposite in the case of the zeolite 

BEA and Cr-BEA (500-557 m2.g-1 for BEA(25-50) and 183183415-488 m2.g-1 for Cr-BEA(25-50)).  

The TUD-1 type materials exhibited type IV N2 adsorption-desorption isotherms at              

-196 °C, with a H-2 hysteresis loop (Figure 9.5), which was consistent with an interconnected 

(worm-like) mesoporous network characteristic of TUD-1 type materials, similar to that described 

in Chapter 4 and in the agreement with the literature data.34,37-42,44-48,50,51,53,106,184-197 The capillary 

condensation in the mesopores occured in the relative pressure range of about 0.4-0.7 for Al-

TUD-1 and Cr-Al-TUD-1, and 0.6-0.9 for Cr-TUD-1, above which the adsorption branch leveled off 
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(suggesting that the external surface area was minor). Similar results were reported previously for 

metal-incorporated TUD-1 samples.37-40 

 

 

Figure 9.5- N2 adsorption-desorption isotherms at -196 °C of Al-TUD-1 (■), Cr-Al-TUD-1 (Δ) and   

Cr-TUD-1 (О). The insets show the respective PSD curves (with matching symbols). 

 

 

The sorption isotherms for BEA and Cr-BEA showed a significant increase in N2 uptake at 

p/p0 < 0.01, typically associated with the filling of micropores, followed by a gradual increase in 

the N2 uptake as relative pressures approached unity (Figure 9.6),198-202 most likely due to 

multilayer adsorption on the external surface of the nanocrystallites. The related composite 

materials BEATUD-1 and Cr-BEATUD-1 exhibited type IV isotherms (Figure 9.6), typical of 

mesoporous materials with a hysteresis loop at p/p0 > 0.4, which was associated with capillary 

condensation/evaporation in mesopores.165,166,168-175 
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Figure 9.6- N2 adsorption-desorption isotherms at -196 °C of BEA (■), Cr-BEA (Δ), BEATUD-1 (О) 

and Cr-BEATUD-1 (X). The insets show the respective PSD curves (with matching symbols). 

 

 

The yellow colour of all the chromium-containing samples suggested that the major 

species present was monochromate.203 Accordingly, two very broad bands at ca. 275 (220-        

320 nm) and 365 (320-420 nm) in the diffuse reflectance (DR) UV-vis spectra (Figure 9.7) were 

assigned to O2-→ Cr6+ charge transfer transitions of tetrahedrally coordinated isolated Cr6+.39,181,203-

205 Similar results were reported previously for Cr-TUD-1,39 and chromium-substituted BEA.181,205 

The shoulder at 450 nm (420-520 nm) may be due to dichromate or polychromate species,203,204 

or as proposed previously for Cr-TUD-1, distorted isolated chromate species.39 The assignment of 

this band to octahedral Cr3+ species (including Cr2O3-like clusters) could be excluded since no 

bands were detected at wavelengths greater than 600 nm, where octahedral Cr3+ would be 

expected.39,181,204,205 
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Figure 9.7- Diffuse reflectance UV-vis spectra of the chromium-containing materials and the 

respective recC solids.  

 

 

9.2.2. Catalytic dehydration of D-glucose 

 

 

The batch-wise dehydration of Glu to Hmf was investigated in the presence of the 

prepared micro/mesoporous materials as catalysts, using [Bmim]Cl as IL solvent, at 120 °C 

(experiment denoted catalytic BR, where BR stands for Batch Run, Figure 9.8). This IL was chosen 

since it solubilises saccharides quite well, possesses a relatively low melting point (ca. 73 °C), is 

readily available and relatively cheap. Furthermore it has been used successfully as solvent in the 

homogeneous catalytic reaction of Glu and related di/polysaccharides to Hmf.8-10 The reaction of 

Glu using [Bmim]Cl as solvent, without adding a catalyst, gave 1% YHmf at 120 °C/3 h. These poor 

results are comparable with those reported in the literature for the same reaction using [Emim]Cl 

as solvent, without adding a catalyst, at 100 °C (< 5% YHmf).
4,206 
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Figure 9.8- Conversion of D

solid acid/[Bmim]Cl catalytic sy

(0.3 cm3), 120 °C, 15 gcat.dm-3, 0.28 M Glu, 3 h.

 

 

9.2.2.1. Catalytic performance of Cr

Cr-BEATUD-1 in the presence of [Bmim]Cl, DMSO or water

 

 

For the reaction of Glu using the prepared

42-96% were reached at 120 

The formation of Hmf was observed for all catalytic systems (9

included Fru and/or Man (less than 12% total yield). Levulinic acid was not detected, which may 

be partly due to the moderately anhydrous conditions of the IL medium (the reaction of Hmf with 

water can give levulinic acid).
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be partly due to the moderately anhydrous conditions of the IL medium (the reaction of Hmf with 

water can give levulinic acid). 

______________________________________________________________________________________________ 

_____________________________________________________________________________ 

 

furaldehyde (Hmf) using a 

Reaction conditions: monophasic solvent system, [Bmim]Cl       

-1, Cr-BEA and          

 

solid acid/IL systems, conversions in the range 

58% YHmf). By-products 
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be partly due to the moderately anhydrous conditions of the IL medium (the reaction of Hmf with 
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Table 9.2- Catalytic results for the reaction of D-glucose (Glu) in the presence of the prepared 

materials, using [Bmim]Cl as solvent, at 120 °C (Catalytic BR), and related catalytic tests for 

investigating catalyst stability (experiments (i), (ii), and (iii)) a 

Sample Catalytic BR 

 CGlu
b
            YHmf 

c
 

Experiment (i) 

   CGlu 
b
           YHmf 

c
 

Experiment (ii) 

  CGlu 
b
               YHmf 

c
 

Experiment (iii) 

  CGlu 
b
               YHmf 

c
 

Al-TUD-1 65 9 23 1 64 9 61 9 

Cr-Al-TUD-1 82 54 37 9 70 12 79 59 

Cr-TUD-1 42 39 18 5 42 24 46 42 

BEA 85 13 11 4 80 17 75 15 

Cr-BEA 96 58 39 10 84 28 96 60 

BEATUD-1 75 11 34 4 69 15 70 7 

Cr-BEATUD-1 65 36 19 2 62 13 66 58 
a) Experiments (i) and (ii) are relative to the recW and recC solids, respectively; experiment (iii) is relative to the recovered IL (recIL) 
(details in Section 9.2.2.3). b) Glucose conversion (CGlu) at 3 h reaction. c) 5-Hydroxymethyl-2-furaldehyde yield (YHmf) at 3 h reaction. 
Reaction conditions: [Bmim]Cl (0.3 cm3), 120 °C, 15 gcat.dm-3, 0.28 M Glu, 3 h. 

 

 

The influence of the type of solvent (water, DMSO) on the reaction was investigated for 

Cr-Al-TUD-1, under similar reaction conditions to those applied for [Bmim]Cl as solvent (120 °C,    

3 h). For the three tested solvents, Glu was always completely dissolved in the reaction medium. 

For water and DMSO, the reaction of Glu was very sluggish: 3% YHmf at 28% CGlu for DMSO; 2% CGlu 

at 3 h and no Hmf was detected for water as the solvent. These results were much poorer than 

those observed for the Cr-Al-TUD-1/IL system (54% YHmf), suggesting that [Bmim]Cl was a 

favourable solvent for the target reaction studied. 

For Al-TUD-1, the use of IL as solvent under moderate conditions did not improve the      

Hmf yield in comparison to that described in Chapter 4 for a  similar material Al-TUD-1 (Si/Al=21) 

tested as catalyst in the same reaction using a biphasic Wt:Tol solvent system (< 20% YHmf at      

170 °C). 

A comparative study for the different solid acid/IL systems showed that the catalytic 

systems without chromium led to fairly high CGlu (65-85%), but low YHmf (9-13%) compared to 

those observed for the related chromium-containing systems (36-58% YHmf, Table 9.2). In the case 

of Al-TUD-1 and Cr-Al-TUD-1, which possessed similar Si/Al ratios and textural properties,                 

Cr-Al-TUD-1 led to a much higher yield of Hmf. In parallel with these results, the Cr-BEA/IL and Cr-

BEATUD-1/IL systems led to higher yield of Hmf than the related BEA/IL and BEATUD-1/IL systems, 

respectively. Similar results were reported in the literature for the reaction of Glu in the presence 

of a hydroxyapatite-supported chromium chloride, using [Bmim]Cl as solvent (denoted Cr-HAP/IL 

system), in that higher yields of Hmf were reached than the related system without chromium 
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(denoted HAP/IL), under similar reaction conditions: 40% and 8% YHmf for Cr-HAP/IL and HAP/IL, 

respectively, at 78-81% CGlu (microwave heating, 400 W, 2-3 min).30   

The Hmf selectivity for the Cr-TUD-1/IL system was very high (> 90% at 42% CGlu,         

Table 9.2). Hence, while Brönsted acid sites (B) seemed to account for enhanced reaction rate of 

Glu, they were poorly selective in the conversion of Glu to Hmf (favouring side-reactions). Poor 

catalytic results have been reported in the literature for the reaction of Glu in the presence of a 

mixture of Brönsted acid and transition metal-containing catalysts, namely a phosphotungstic acid 

and chromium-containing metal-organic framework MIL-101, using [Emim]Cl as solvent (2% YHmf, 

21% CGlu, at 100 °C/3 h). It was postulated that the reaction was Brönsted acid-catalysed.32 

Previously investigated IL-based homogeneous catalytic systems possessing Brönsted 

acidity, such as H2SO4/[Emim]Cl,4 Brönsted acid-functionalised ILs ([Emim]HSO4, Chapter 8), and 

Brönsted acid ILs ([Bmim]HSO4 or [Hmim]HSO4) coupled with Lewis acid CrCl3,
207 were poorly 

effective in the conversion of Glu to Hmf. According to the literature, and as explained in Chapter 

1, the mechanism of the reaction of Glu to Hmf using chromium chloride salt/[Emim]Cl, at 100 °C, 

involved coordination chemistry between Lewis acid chromium species and Glu, accounting for a 

hydride transfer reaction and led to the isomerisation of Glu into Fru, which is an important 

primary step in the conversion of Glu to Hmf.4,208 

 

 

9.2.2.2. Catalyst stability 

 

 

In order to investigate the stability of the prepared materials in the IL medium, and to 

assess the homo/heterogeneous nature of the catalytic reaction, each of the materials was firstly 

put into contact with fresh IL under similar reaction conditions to those used for the Catalytic BR 

experiments, but without adding Glu. After stirring for 3 h at 120 °C, the solid was separated from 

the IL by centrifugation, washed with milli-Q water and dried at 55 °C overnight. Afterwards, 

separate experiments were carried out with this solid and the recovered IL: 

 

i) The washed and dried solid, referred to as recW (solid acid), was tested in the reaction of 

Glu, using fresh IL as solvent, at 120 °C for 3 h; 

ii) The recW solid was calcined (450 °C, 3 h, heating rate of 1 °C-min-1) to give recC (solid 

acid), which was tested in the reaction of Glu, using fresh IL as solvent, at 120 °C for 3 h; 
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iii) The recovered IL, referred to as recIL (“name of solid”), was used as solvent in a 3 h batch 

run of the reaction of Glu, at 120 °C, without adding a solid catalyst. 

 

No drastic changes in the textural parameters (SBET, Vp and PSD) were observed for the 

fresh and recC solids, the most significant differences were observed for Cr-Al-TUD-1 (763-        

995 m2.g-1 SBET, Table 9.1). The powder XRD patterns of the recovered TUD-1 and BEA-related 

solids were similar to those of the respective fresh materials (Figures 9.2 and 9.3, respectively). 

Hence, the prepared materials seemed to possess fairly good microstructural stability in the IL 

medium.  

The FT-IR ATR spectra of the recW solids were fairly similar to those observed for the 

respective fresh solid acids, and did not show bands characteristic of the IL (Figures 9.9 and 9.10).  

 

 

 
Figure 9.9- FT-IR ATR spectra of prepared materials and the respective recW solids.  
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Figure 9.10- FT-IR ATR spectra of prepared materials and the respective recW solids in the range 

300-1800 cm-1.  

 

 

The FT-IR spectra of all the recovered (recIL) phases were also quite similar to that of fresh 

[Bmim]Cl, suggesting that this IL was relatively stable under the applied reaction conditions 

(Figure 9.11). 
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Figure 9.11- FT-IR ATR spectra of fresh [Bmim]Cl and the recovered ionic liquid (recIL) phases for 

the different solid acid/IL systems [denoted recIL(name of solid acid)].  

 

 

The DR UV-vis spectrum of recC(Cr-BEA) was comparable with that for Cr-BEA (Figure 9.7), 

suggesting that the chemical nature of the surface chromium species were similar. Major 

differences were observed for recC(Cr-BEATUD-1) compared with Cr-BEATUD-1, suggesting that in 

this case modifications of the surface chromium species occurred (Figure 9.7).  For recC(Cr-Al-

TUD-1) and recC(Cr-TUD-1) the spectra showed three bands in similar ranges of wavelengths to 

those observed for the respective fresh solids, although some changes in the relative intensities 

were observed, which may be partly due to differences in the relative amounts of the surface 

chromium species. 

The catalytic results for experiment (i) were poorer than those observed for the 

corresponding Catalytic BR experiment: the reaction of Glu was slower (for experiment (i) the 

values for the conversion of Glu were 0.13-0.45 times the conversion of Glu in the Catalytic BR) 

and the yields of Hmf were lower. For the  chromium-containing systems (Cr-Al-TUD-1, Cr-TUD-1, 

Cr-BEA and Cr-BEATUD-1), the yields of Hmf values were a factor of 0.06-0.20 of the values for the 

catalytic BR, against 0.11-0.36 in the case of BEA, BEATUD-1 and Al-TUD-1 (Table 9.2). The 
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observed catalyst deactivation may be partly due to a) poisoning of the active sites and/or b) 

metal leaching.  

In order to get insights into hypothesis a), the catalytic results for experiments i) and ii) 

were compared (Table 9.2). For the recC solids related to the prepared materials without 

chromium, the catalytic results were similar to those observed for the Catalytic BR experiments 

(64-65% CGlu and 9% YHmf for Al-TUD-1; 80-85% CGlu and 13-17% YHmf for BEA; 69-75% CGlu and        

11-15% YHmf for BEATUD-1; Table 9.2), suggesting that the applied thermal treatment fully 

activated the recW solids. For the recC solids related to the prepared materials containing 

chromium, the thermal treatment led to enhanced Glu conversion, in a similar fashion to that 

observed for the remaining solid acids without chromium (Table 9.2). However, the yield of Hmf 

continued lower than those observed for the corresponding Catalytic BR experiments (Table 9.2). 

Nevertheless slight improvements were observed in the case of the recC solid acids containing 

chromium compared to the corresponding recW solid acids (9 to 12% for Cr-Al-TUD-1, 5 to 24% 

for Cr-TUD-1, 10 to 28% for Cr-BEA and 2 to 13% for Cr-BEATUD-1). These results suggested that 

chromium species (selective) are partially leached from the solids into the IL medium (hypothesis 

b). In fact, ICP-AES analyses for chromium in the recC solids gave residual amounts of chromium in 

all cases, excluding recC (Cr-TUD-1), with a Si/Cr ratio of 261 compared to 150 for the respective 

fresh material (Table 9.1). In contrast, the Si/Al ratios were comparable for the fresh and 

recovered chromium containing catalysts (Cr-Al-TUD-1, Cr-BEA and Cr-BEATUD-1, Table 9.1), 

suggesting that the prepared materials were fairly stable towards aluminium leaching in the IL 

medium: the Si/Al ratios for the recovered and calcined (recC) solid acids (recC(Cr-Al-TUD-1), recC 

(Cr-BEA) and recC (Cr-BEATUD-1) were 30, 13, and 45, respectively, compared to 27, 13 and 41 for 

the respective fresh materials (Table 9.1). According to the above discussion (in Section 9.2.2.1.) 

related to the roles of Brönsted and chromium Lewis acid species in the reaction of Glu, the 

thermally activated sites may be essentially of Brönsted acid type (active, albeit poorly selective). 

Thermal analyses (TGA and DSC, under similar conditions) were carried out for recW solid 

acids (recW(Cr-BEA), recW(Cr-TUD-1) and recW(Cr-Al-TUD-1). The DSC curves for the fresh and 

recovered solids exhibited endothermic bands at temperatures lower than 175 °C and assignable 

to desorption of physisorbed water (Figure 9.12).  
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Figure 9.12- DSC curves for the recW solids related to the chromium containing solid acids and, 

for comparison, for fresh Cr-TUD-1 and Cr-Al-TUD-1. 

 

 

Exothermic bands were observed at temperatures higher than 300 °C, only for recW 

solids, which may be due to the decomposition of organic matter; the latter may contribute to the 

observed catalyst deactivation for recW/IL systems (hypothesis a) discussed above). Based on the 

TGA data, the contents of organic matter were 1.2, 2.9 and 8.1 wt.% for the recW(Cr-TUD-1), 

recW(Cr-Al-TUD-1) and recW(Cr-BEA), respectively. The type of organic matter in the recW solids 

was most likely related to the cation [Bmim]+ since the analysed recW solids were recovered from 

the solid acid/IL mixtures without Glu. It was possible that organic cations in the recW solids were 

converted to Brönsted acid sites upon the thermal activation treatment, accounting for the 

improved conversions of Glu observed for the recC solids (without enhancing the yield of Hmf, 

Table 9.2). 

In order to get insights into the homo/heterogeneous nature of the catalytic reactions 

using the solid acid/IL systems, a comparative study of Catalytic BR and experiment (iii) was 

performed. In general, the catalytic results for these two experiments were comparable, 

suggesting that the catalytic reactions were essentially homogeneous in nature (Table 9.2). The 

active soluble species may be Brönsted acids and/or chromium Lewis acids.  In terms of getting 

insights into the type of soluble active species, the reaction of Glu was carried out in the presence 
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of potassium chromate (K2CrO4) or dichromate (K2Cr2O7) in which chromium is in the oxidation 

state +6. These salts were used in amounts equivalent to that of chromium added in the Cr-Al-

TUD-1 solid acid and dissolved in the IL (7.2 mM chromium salt). For the two salt/IL systems the 

reaction of Glu was very sluggish: 1% YHmf at 30-36% CGlu, 120 °C/3 h. These results suggest that 

the active soluble species in the catalysts tested herein were not oxochromium(VI) species. 

Possibly, fully dissociated chromium ions were leached into the IL to give chromium chloro-

complexes. Using Cr(NO3)3.9H2O  (in which the chromium is in the oxidation state +3) instead of 

the chromate salts gave an outstanding 79% YHmf at 97% CGlu, under similar catalytic reaction 

conditions. Figure 9.13 showed the UV-vis spectra of the recIL phases related to the solid acids, 

and for comparison those of freshly prepared salt/IL solutions and the respective solutions 

obtained after treatment under similar reaction conditions to those used for the Catalytic BR 

experiments, but without adding Glu (denoted heat(salt/IL)). The spectra of Cr(NO3)3/IL and heat 

((Cr(NO3)3/IL) were similar, suggesting that the dissolved chromium species were fairly stable 

under the applied reaction conditions. The same did not apply for K2CrO4 and K2Cr2O7, suggesting 

that in the latter two cases, the dissolved species were not stable under the catalytic reaction 

conditions. The spectral features of recIL(Cr-Al-TUD-1), recIL(Cr-BEA) and recIL(Cr-BEATUD-1) 

resembled somewhat more closely those for the Cr(NO3)3 related systems than those for the 

K2CrO4 and K2Cr2O7 systems. In the case of recIL(Cr-TUD-1), relatively intense bands appeared in 

the region 600-720 nm. These results suggested that the recIL phases contained active soluble 

Cr3+ species. Based on the characterisation results in Section 9.2.2.1. it was not possible to confirm 

the presence of Cr3+ in the solid acids prepared, although this possibility cannot be fully ruled out. 

The active soluble species may result from direct leaching of Cr3+ and/or from the transformation 

of leached metal species. Despite the presence of Cr3+ species in the case of Cr(NO3)3/IL system, 

no bands above 600 nm characteristic of Cr3+ (e.g. Cr2O3 clusters) were observed, possibly due to 

the fact that in this system the Cr3+ species are ions and ions do not present bands in the UV-vis 

spectra in this region. 
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Figure 9.13- UV-vis spectra of the recIL phases related to the chromium-containing solids, and of 

chromium salts dissolved in the IL ([Bmim]Cl) before and after heating at 120 °C for 3 h.  

 

 

9.3. Conclusions 

 

 

The reaction of Glu was investigated using aluminium and/or chromium containing 

micro/mesoporous solid acids coupled with [Bmim]Cl as solvent, at 120 °C. The prepared 

materials were Al-TUD-1, Cr-Al-TUD-1, Cr-TUD-1, BEA, Cr-BEA and the related micro/mesoporous 

composites BEATUD-1 and Cr-BEATUD-1. The prepared materials seemed microstructurally stable 

in the IL medium, and the Si/Al atomic ratios were similar for the fresh and recovered solids.  

The solid acids without chromium could be regenerated by thermal treatment, giving 

similar catalytic results to the respective fresh solids. Nevertheless, for these materials, the YHmf 

were rather low (< 17%). In contrast, the (chromium-containing solid acid)/IL systems led to 

relatively high YHmf (36-58%), although these materials could not be fully regenerated due to 

chromium leaching which led to a drop in YHmf (12-28%). The catalytic reactions were essentially 

homogeneous in nature. It was postulated that Brönsted acid species seemed relatively active in 
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the reaction of Glu, albeit poorly selective in the conversion of Glu to Hmf. In contrast, chromium 

species played an effective role in the conversion of Glu to Hmf. The IL was a favourable solvent 

for this target reaction (in terms of yields of Hmf reached) in comparison to water or DMSO. The 

development of truly heterogeneous catalytic systems based on ILs for the selective reaction of 

Glu and related di/polysaccharides to Hmf remains a challenge. 
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10.1. Conclusions 

 

 

In the face of the declining petroleum resources and rising oil prices it is necessary to 

develop alternative ways to fulfill the energy needs of our industrialised society. Much research is 

being done exploring non-fossil carbon energy sources, such as renewable biomass. Especially the 

processing of plant biomass-derived carbohydrates (preferably non-edible) into added-value 

products seems to be at the core of the biorefinery concept. Saccharides constitute the bulk of 

carbohydrates and can be converted to platform chemicals such as 2-furaldehyde (Fur) or             

5-hydroxymethyl-2-furaldehyde (Hmf) with wide application profiles, useful in different sectors of 

the chemical industry. 

Fur has been produced on an industrial scale for decades (world production of ca.          

250 000-300 000 ton.year
-1

 in 2005
1-3

 and continued until 2011)
4,5

 from biomass rich in pentosans 

(e.g., forest/agriculture wastes/surpluses). The hydrolysis of pentosans gives pentoses (mainly 

xylose, Xyl), and the latter is dehydrated into Fur. Hmf is obtained in a similar fashion from 

hexose-based carbohydrates, although it has not reached industrial scale production. Most 

industrial processes of Fur production use water as solvent, a reaction temperature in the range 

of 150-200 °C, and employ mineral acids as catalysts, commonly sulfuric acid. Liquid acids lead to 

equipment corrosion hazards and safety problems, difficult catalyst separation from the reaction 

products, and considerable waste disposal. For these reasons, the production of Fur is one of the 

industrial processes where the demand of green chemistry and technology for sustainability is 

stimulating the replacement of these “toxic liquid” acid catalysts by stable, recyclable, non-toxic 

solid acids. 

In this work, solid acid catalysts as alternatives to liquid acids were investigated in the 

hydrolysis/dehydration of saccharides to Fur or Hmf in aqueous or ionic liquid medium, under 

batch mode. Porous solid acid catalysts such as zeolites have served well the petroleum-based 

industry, and hold promise as catalysts for these biomass conversion processes as they are 

relatively cheap and easily recyclable. The thermal stability of the catalyst is important due to the 

fact that the reaction temperatures are typically higher than 150 °C and, on the other hand, the 

catalyst coking phenomena are characteristically inherent to these reactions systems. Particular 

attention was drawn to porous inorganic oxides as solid acid catalysts due to the generally higher 

thermal stabilities in comparison to organic or hybrid solid acids.  
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Figure 10.2- Saccharides investigated in the hydrolysis/dehydration of saccharides 

2-furaldehyde (Fur) and 5-hydro
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The tested solid acids exhibited high stability towards leaching, structure stability, and 

could be regenerated by thermal treatments in order to remove organic deposits, and reused 

similar Fur yields in consecutive batch runs. In general, the catalytic activity of the inorganic 

solid acids correlated well with the total amount (Brönsted plus Lewis) of acid sites measured 

using pyridine as base probe: e.g. for SAPO-11 (Chapter 3), BEA and BEATUD

2 (Chapter 6) and the modified zirconias (Chapter 7). It is 

to a specific structure type, as discussed in Chapter 3. The type and strength of 
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porous inorganic oxides are important. The reactions of saccharides may be hindered in a 
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The tested solid acids exhibited high stability towards leaching, structure stability, and 
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In general, the catalytic activity of the inorganic 

solid acids correlated well with the total amount (Brönsted plus Lewis) of acid sites measured 
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mesoporosity can enhance the amount of effective acid sites (e.g. Zr(W,Al) mixed oxides, Chapter 

7) and/or reduce the amount of coke formed (e.g. BEA and BEATUD-1, Chapter 5). The catalyst 

synthetic approaches involved the use of an organic template for introducing mesoporosity and 

obtaining relatively narrow pore size distributions (Chapters 4, 5, 7), use of nanocrystalline zeolite 

and its embedment in a mesoporous silica matrix (Chapter 5), and delamination of the lamellar 

precursor Pre-MCM-22(P) (Chapter 6). It is worth noting that the investigated catalysts were 

mainly aluminosilicates. Aluminosilicates can be quite versatile with respect to the type of 

crystalline and porous structures (micro/mesopores; 1, 2 or 3 D pore systems), the acid properties 

and surface polarity (varying Si/Al ratio), and they may be prepared with particle/crystallite sizes 

down to the nano-scale.  

Composite materials consisting of zeolite nanocrystals embedded in a mesoporous 

inorganic oxide matrix can minimise nanoscale-related drawbacks (high pressure drops or 

demanding separation techniques such as nanofiltration) and benefit from the advantageous 

catalytic properties associated with the zeolite nanocrystals. The catalytic performance of a 

composite catalyst consisting of H-Beta zeolite nanocrystals embedded in a TUD-1 type 

mesoporous inorganic oxide matrix tested in the dehydration of Xyl compared favourably with 

those of the (bulk) zeolite BEA and the physical mixture of BEA and silica TUD-1 (74% YFur 

compared to 54% YFur and 60% YFur, respectively, Chapter 5).  

Through delamination processes it was possible to prepare single crystalline sheets of 

zeolitic nature from lamellar precursors, allowing active sites to become accessible to the reagent 

molecules and avoid diffusion limitations and decrease the rates of the catalyst deactivation by 

coking. The delaminated solid ITQ-2 (Si/Al=24) possessed enhanced specific surface area and 

porosity compared with the lamellar precursor Pre-MCM-22(P).  ITQ-2 and the zeolite counterpart 

H-MCM-22 were tested as catalysts in the reaction of Xyl, at 170 °C (Chapter 6); a YFur of 71% was 

reached for H-MCM-22(24) and 66% for ITQ-2(24). While the delamination process considerably 

enhanced the external surface area of ITQ-2 in comparison to H-MCM-22, it caused modifications 

in the acid properties, leaving the two prepared materials (with the same Si/Al atomic ratio) on a 

comparable footing in terms of catalytic performance in the studied catalytic reaction. Despite 

their similar catalytic performances, ITQ-2(24) possessed lower amounts of insoluble organic 

matter, and may be advantageous in terms of energy requirements for thermal regeneration  

(550 °C for H-MCM-22(24) and 450 °C for ITQ-2(24)).  

Mesoporous solid acid Al-TUD-1 (Si/Al=21) was tested in the reactions of 

mono/di/polysaccharides containing pentose or hexose units (Chapter 4). A maximum 



Conclusions and outlook 

______________________________________________________________________________________________ 

____________________________________________________________________________ 

405 

 

 

monosaccharide yield of 31% and 59% was reached for sucrose (Suc) and cellobiose (Cel) as 

substrates, respectively.   Al-TUD-1 was more effective in converting Xyl to Fur (60% YFur in 6 h) 

than hexoses to Hmf (17-29% YHmf in 6 h), which may be partly due to the acid properties (mainly 

Lewis acidity).  

  Further improvements in the catalytic performances of the investigated 

micro/mesoporous aluminosilicates may be possible by fine-tuning the textural and acid 

properties: the acid properties by changing the Si/Al ratio (which will also affect the catalyst 

surface polarity) or the amount of zeolite seeds in the cases of the composite catalysts, and the 

textural properties by varying the particle size ranges, the template of the mesoporous solid acids, 

or increasing the efficiency of the delamination procedures of the lamellar precursors (increasing 

extension of the delamination without destroying the acid sites). On the other hand, water as 

solvent can have a more detrimental effect on the catalytic reaction in the case of hexoses (Hmf is 

converted to organic acids). 

Besides aluminosilicates and silicoaluminophosphates, zirconium-tungsten mixed oxides 

(Chapter 7) were investigated since they are fairly stable, versatile solid acid catalysts and some 

are commercially available. These types of materials were prepared by co-condensation without a 

templating agent (ZrW(X), in which X is related to the type of zirconium percursor) or by incipient 

wetness impregnation (ZrW-MP) with further doping of aluminium on ZrWAl-MP mesophases of 

zirconia (MP stands for mesoporous). The best results were obtained for ZrWAl-MP which led to 

51% YFur at 98% CXyl, attributed to the enhanced specific surface area and amount of accessible 

acid sites. 

Attempts to characterise the soluble and insoluble organic by-products formed were 

made using TGA/DSC, FT-IR, liquid and solid state NMR techniques and GC×GC-ToFMS analyses. 

These studies aimed to provide mechanistic insights and identify undesired reaction pathways. 

Complex mixtures of soluble reaction products were obtained and the different types of side 

reactions may occur, such as fragmentation reactions of Xyl and condensation reactions.  

The recognised high potential of Hmf as a bio-based platform chemical and the desire for 

its commercialisation led to an extensive study using IL-based catalytic systems with notable 

beneficial effects; the production of Fur and Hmf in high yields from saccharides has been made 

possible under relatively mild reaction conditions, using IL-based catalytic systems. With an IL-

based system it is possible to suppress undesired reactions, such as the acid-hydrolysis of Hmf 

into formic and levulinic acids (the latter being quite difficult to separate from Hmf, increasing 

production costs), typically occurring in acidic aqueous solutions. Furthermore, ILs may enhance 
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the solubility of polysaccharides

in the ionic liquid-based catalytic systems is given in Figure 10.3 and the IL systems tested in this 

work with some of the best catalytic results are given in Figure 10.4.
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based catalytic systems is given in Figure 10.3 and the IL systems tested in this 

work with some of the best catalytic results are given in Figure 10.4. 
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Figure 10.4- Ionic liquids tested in the hydrolysis/dehydration of saccharides 

(Fur) and 5-hydroxymethyl-2-

conversion of saccharides: [Emim]HSO

chromium containing micro/mesoporous materials coupled to [Bmim]Cl (Cr

Cr-BEA, Cr-BEATUD-1). 
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Ionic liquids tested in the hydrolysis/dehydration of saccharides 

-furaldehyde (Hmf) in the ionic liquid-based catalytic systems for the 

conversion of saccharides: [Emim]HSO4 as solvent and catalyst or added in catalytic amounts, and 

chromium containing micro/mesoporous materials coupled to [Bmim]Cl (Cr

In this work [Emim]HSO4 was employed with dual catalyst-solvent function in the 

f saccharides, and led to high YFur and YHmf (80-90%) from Xyl and Fru, 

under relatively mild conditions (100 °C, Chapter 8). [Emim]HSO

-up procedure) and reused in subsequent cycles, and can substitute 

allowing process intensification with reuse of the catalytic IL phase. 

that observed for the biphasic system, without an extracting solvent the Fur yield 

6h). Removal of Fur by evaporation under reduced 

solvent extraction) gave poorer results, although it should be possible to improve 

ing the control of the pressure in the system, the design of the setup, the mixing

of the reaction mixture, the reaction temperature and residence time. 
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Ionic liquids tested in the hydrolysis/dehydration of saccharides into 2-furaldehyde 

based catalytic systems for the 

t or added in catalytic amounts, and 

chromium containing micro/mesoporous materials coupled to [Bmim]Cl (Cr-Al-TUD-1, Cr-TUD-1, 

solvent function in the 

90%) from Xyl and Fru, 

C, Chapter 8). [Emim]HSO4 was recovered 

up procedure) and reused in subsequent cycles, and can substitute 

allowing process intensification with reuse of the catalytic IL phase. In contrast to 

Fur yield decreased with 

 pressure (instead of 

although it should be possible to improve the Fur yields by 

system, the design of the setup, the mixing efficiency 

and residence time. In contrast to 
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aluminosilicates with water as solvent, [Emim]HSO4 is effective in converting Fru (88% YHmf at      

30 min) and polymers containing these units into Hmf. However, [Emim]HSO4 was poorly selective 

in Glu dehydration. 

Attempts to find IL systems to improve the conversion of Glu (which is the major 

monosaccharide building block on Earth) to Hmf remains a challenge due to the more demanding 

reaction of Glu which has a complex reaction mechanism, involving a series of elementary steps 

with different acid-base properties requirements.  ILs have been used as solvents coupled with 

many different types of catalysts, mainly homogeneous (Brönsted-type liquid mineral acids and 

Lewis-type metal salts), and to a much smaller extent, insoluble solid acids. One of the most 

effective catalytic systems to convert Glu into Hmf consists of chromium chloride salts dissolved in 

an imidazolium chloride IL as solvent. In this work, the dehydration of Glu using [Bmim]Cl as 

solvent and (Al,Cr)-silicates under mild reaction conditions was investigated (Chapter 9). The 

micro/mesoporous solid acids were all microstruturally stable with no detectable Al leaching. The 

chromium-containing solid acid/IL systems led to relatively high YHmf (36-58%) compared to the 

catalysts without chromium (< 17% YHmf). However, the chromium micro/mesoporous solid acids 

were unstable catalysts because the chromium species leached into solution, and the catalytic 

reactions were essentially homogeneous in nature. Brönsted acidity is important for the 

hydrolysis step (Chapter 8) but these types of active sites are deactivated in the IL medium. The 

development of truly heterogeneous catalytic systems for the selective conversion of Glu and 

related di/polysaccharides to Hmf remains a difficult challenge.  

In summary, different types of heterogeneous solid acid catalysts have been identified as 

promising for the conversion of saccharides to Fur. The solid acids have been investigated at the 

lab-scale, in batch mode and are essentially powders (primary particles or aggregates of relatively 

small size (micrometer range). Aiming at continuous operation mode, the catalysts need to be 

shaped into larger physically separate entities, the shape and size of which depends on the design 

of the reactor and the reaction conditions. Very recently Xing et al.
10

 proposed a two-zone 

continuous biphasic reactor to produce Fur in high yields (ca.90%) from an aqueous solution of 

hemicellulose, with an estimate of ca. 67-80% lower energy requirements than the current 

industrial process. Currently, Fur is produced from a hydrolysis/dehydration process from the 

ground up biomass which is firstly sprayed with H2SO4 and then fed into a semi-batch reactor with 

significant quantities of steam (heat obtained from the burn of the leftover lignin and cellulose 

derived products).
11

 The main countries producing Fur today are China, South Africa and 



Conclusions and outlook 

______________________________________________________________________________________________ 

____________________________________________________________________________ 

409 

 

 

Dominican Republic.
1
 The theoretical yield for this process is 0.73 kg of Fur per kg of pentosan, 

but in practice, this process operates at only around 33% of the theoretical yield.
12

 

The implementation of heterogeneous catalytic processes for producing Fur/Hmf may 

partly depend on whether the processing of biomass into a liquid steam of poly, oligo or 

monosaccharides becomes economically feasible since otherwise severe mass transfer limitations 

may exist associated with solid-solid interface catalytic reactions.  

The catalytic performances of the porous inorganic oxide catalysts could be explored in 

other catalytic routes of the chemical valorisation of carbohydrate biomass, and it may be 

interesting to transform them into bifunctional catalysts (important for process intensification). 
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