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o júri / the jury

presidente / president Prof. Doutor Joaquim João Estrela Ribeiro Silvestre Madeira
Professor Auxiliar da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Alexandre Miguel Barbosa Valle de Carvalho
Professor Auxiliar da Universidade do Porto (Arguente Principal)
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Resumo Com o desenvolvimento das tecnologias de captura remota de dados per-
mitindo a captura e transmissão de dados geo-referenciados ao longo do
tempo, apareceram muitas aplicações que necessitam de ferramentas para
tratamento de dados espácio-temporais eficientes. Isto levou ao desenvolvi-
mento de uma grande variedade de métodos e serviços para implementação
de sistemas de informação que trabalham com objetos que podem ser mod-
elados como objetos moveis. No entanto, a investigação em bases de dados
com objetos moveis de geometrias complexas focou-se essencialmente em
modelos de dados espácio-temporais e linguagens de interrogação, existem
ainda diversas questões sobre a aquisição de dados espácio-temporais.

Esta tese propõe um conjunto de ferramentas para aquisição de dados
espácio-temporais em mudança cont́ınua a partir de fontes de dados discre-
tos, tais como imagens de satélite. Para gerar os dados utilizam-se técnicas
de morphing de poĺıgonos, já existentes. A técnica usada é apresentada
em detalhe nesta tese. Para inserção dos dados espácio-temporais na base
de dados usada foi criado um framework em JAVA que permite converter
esses dados em dados compat́ıveis com a base de dados espácio-temporal.
A framework desenvolvida também permite a inserção desses dados na base
de dados. São também apresentadas uma serie de medidas para avaliar a
qualidade dos dados gerados. Com a criação de data sets reais procura-se
aumentar a qualidade das bases de dados espácio-temporais existentes e
futuras. Neste contexto é também apresentado um método para utilização
de técnicas de morphing para resolver operações espácio-temporais na base
de dados.





Abstract With the development of remote sensing technologies allowing capturing
and transmitting geo-referenced data repeatedly along time, there are many
applications demanding for efficient tools to deal with spatio-temporal data.
This has led to development of a whole spectrum of methods and services
for implementation of information systems dealing with objects that may be
modelled as moving points. Although, database research on moving objects
with complex shapes has mainly focused on spatio-temporal data models
and query languages, there are still issues to be solved regarding for example
the acquisition of spatio-temporal data.

This thesis proposes a set of tools to acquisition of continuously changing
spatio-temporal data from discrete sources, such as satellite images. To
generate the continuous data from the discrete data source we resort to
existing polygon morphing techniques, which are presented in detail in this
thesis. To insert the generated data into the spatio-temporal database, a
JAVA framework was created that can transform the generated data into
spatio-temporal data compatible with the representations used in spatio-
temporal databases. We also present a set of measures to evaluate the
quality of the generated data. With the creation of real data sets we strive
to improve the quality of the existing and future spatio-temporal databases.
In that context we also present a method to use morphing techniques to
solve spatio-temporal operations in the database.
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Chapter 1

Introduction

In recent years a lot of work has been done in the area of spatio-temporal databases and
handling of spatio-temporal data. Examples of applications are tracking of moving objects
like forest fires, floods, oil leaks propagation or icebergs movement. Tracking these events
may help in understanding phenomena such as the melting rate of an iceberg or the fire
propagation rate in some sort of terrain. To study these kind of events remote devices capable
of capturing and send geo-referenced data (GIS) are commonly used. These devices send the
captured information over time to its receptors. A problem when using these devices is that
the data received is discrete, and the phenomena are continuous events. To solve this problem
the discrete data have to be transformed into continuous data to allow a better comprehension
of the event. A solution to this problem is to apply a morphing techniques to recreate the
event based on the existing observations. In doing so a real data set of spatio-temporal data
is created. That data set can be used to test and develop spatio-temporal databases. Due
to lack of such data sets the developers of the spatio-temporal databases normally use only
simple synthetic data sets.

This thesis demonstrates that morphing techniques are a viable solution to some problems
in spatio-temporal databases. Chapter 2 gives an overview of morphing techniques, a detailed
presentation of the morphing algorithm used in this work and the results of the tests performed
to evaluate the quality of the moving objects data representations. The algorithms were
implemented in Java. Chapter 3 focuses on the application of the algorithm to implement
the clipping operation in spatio-temporal databases. First a discussion about the existing
spatio-temporal databases will be done, followed by a presentation of the spatio-temporal
database used in the thesis. Next follow the details of the implementation of a clipping
operation in a spatio-temporal extension developed in Oracle 11g, including the methods to
integrate the Java classes implementing the morphing into the database and an application
to create and insert spatio-temporal data in the database. Finally results for the insertion of
spatio-temporal data and the intersection operation are presented and discussed. This work
aims to create the tools that can aid in the development of spatio-temporal applications and
databases, as well as improve the quality of the existing ones.
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Chapter 2

Acquisition of continuously
changing spatio-temporal data

To acquire spatio-temporal data from a discrete data source such as images, first the
regions of interest must be identified and segmented from the image, then these regions are
converted to polygons, where the morphing algorithm is applied to generate the continuous
data and recreate the event. In this thesis a set of satellite images of an iceberg where used
to create the dataset.

2.1 Image segmentation

The fist step to recreate an event using the discrete data retrieved by the sensing devices
is to obtain the data in each of these discrete moments. In this case since satellite images
were used as the source of data to generate the spatio-temporal data, an image segmentation
application was used. This application uses some morphological image operators to extract
the icebergs contours, grey scale conversion and active contours, see Figure 2.1 and 2.2. This
application was developed by André Filipe da Silva Oliveira, for the course project of the first
cycle degree in Technologies and Information Systems, see [1].

The segmented polygon is generated by applying a vertex reduction algorithm, presented
in Section 3.5, to the resulting iceberg contour. By using this algorithm the contour of an
iceberg can be reduced to a polygon using less than 10% of its initial vertices, with a minimal
definition loss.

2.2 Morphing overview

Polygon or shape morphing consists in a ”metamorphosis” of a shape into another through
a deformation process. The result of this process is an interpolation where the original shape
is morphed into the target shape. Using two shapes there are a lot of different animation
sequences that can be considered valid solutions to the morphing problem. A good morphing
sequence must avoid vertex interception during its animation or great deformations in the
shape form. If these conditions are not fulfilled then the sequence will not seem real to the
user. In last years some techniques have been developed to try to solve this problem, however
these techniques lack some automatism and require manual work to obtain a solution. The

3



Figure 2.1: Applying threshold operation to image

Figure 2.2: Applying active contours to the black and white image
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morphing techniques can be applied in areas like computer graphics, modelling, animation or
film production.

To create a morphing algorithm it is necessary to overcome two major problems. First the
algorithm must find the vertex correspondences between the source and target polygons, also
known as vertex correspondence problem (VCP). The second problem consists in calculate the
motion vectors for each vertex from its start position, in source polygon, to its end position,
in target polygon, also known as vertex path problem (VPP).

2.2.1 Vertex correspondence problem

The first step aims at finding a good vertex correspondence between the source and target
polygons, refereed as S and T respectively. The solution for this problem is not as trivial
as it seems. While it is a simple task for us, humans, for a computer it is not the case. For
example imagine there are two different polygons, S with n vertices and T with m vertices,
then exists n×m distinct correspondences between the vertex of the two polygons.

A solution for this problem can be seen as a mapping function, where for each of S vertices
exists one and only one correspondence in the vertices of T. In many cases the number of
vertices in S and T are different, hence it is necessary to add new vertices to S or T so that
both possess the same number of vertices, then the mapping can be performed. Even in the
cases where S and T have the same number of vertices, finding a good solution is not easy.
In a good solution interception of vertices should not exist during its animation, meaning
that the path travelled by a vertex from its start position to its end position should not cross
the path travelled by other vertices. To avoid such scenarios this problem should be taken
into consideration not only in the vertex path problem, but also in the vertex correspondence
problem. If this is done then scenarios like the one represented in Figure 2.3 can be avoided. In
this scenario it is impossible to generate a good morph sequence using the represented vertex
correspondences, since the section of the shapes composed by the vertices that intercept each
other can not be morphed without creating vertex interceptions.

Figure 2.3: Vertex path interception example

Simple methods like corresponding the S vertex to the T closest vertex can create in-
terceptions, Figure 2.4, that can not be solved obtaining a good solution to the vertex path
problem.

This step requires manual work, since it normally requires some kind of user input, and
it is crucial to avoid vertex interception. To obtain the vertex correspondences usually the
algorithm calculates descriptors for each vertex and then creates a graph with the correspon-
dences between all vertex of the two shapes, the value of each graph node is the value of the

5



Figure 2.4: Vertex interception example 2

calculated correspondence between two vertex. A solution to the vertex correspondence is
found by calculating the minimum cost path of the graph. In the various developed algorithms
the most relevant appear to be the ones proposed by Sederberg et al. [2] and Liu et al. [3].

Thomas W. Sederberg et al. [2] propose a physically based approach where a shape is
considered a piece of wire that can be deformed, stretched and shrunk until it turns to the
other shape. The user must define the physical properties of that wire, the cost to change the
wire is calculated based in these properties. During the morphing process this is the cost of
the vertex correspondence. To prevent vertex interception a penalty value is used always a
wire interception is detected. This approach was suggested in 1992 and some improvements
have been proposed by Yuefeng Zhang [4].

Ligang Liu et al.[3] propose an approach based in human perception where the vertex cor-
respondence is calculated using similarity measures between some key vertices, called feature
points. These similarities are calculated based in geometric properties of the feature point
and its adjacent vertices. Using this method, regions that are similar in the original and
target shape are mapped together to create an appealing result to the user as explained in
detail in Section 2.4.

On the context of this thesis the adopted method to solve this problem was the proposed
by Ligang Liu et al [3], this approach takes into consideration the local information of the
feature points (see Section 2.3), according to some similarity criteria to create the vertex
correspondences. This way the algorithm can preserve the most relevant features of the
shapes and it is efficient, since the feature points are normally a small portion of the vertices.
This method is also resilient to geometric transformations such as translation, rescaling, and
rotation since it is based in topological information of each vertex.

6



2.2.2 Vertex path problem

The vertex path is crucial to create an intuitive morphing sequence. Using simple methods
like vertex interpolation can be very easy but, in many cases, can create undesired deforma-
tions during the morphing process, this happens because this method does not preserve the
polygon shape. In many cases using only linear vertex paths create self interceptions, see
Figure 2.5. A good solution to the VPP should avoid vertex interceptions, reduce the defor-
mation during the process and create a natural morphing sequence from the source to target
polygon.

Figure 2.5: Vertex interceptions caused by linear animation paths

The methods proposed to solve the vertex path problem normally require no manual
work, unlike the previous ones. The more interesting methods appear to be the ones pro-
posed by Craig Gotsman and Vitaly Surazhsky [5], Michal Shapira and Ari Rappoport [6]
and Thomas W. Sederberg et al [7]. All these methods require that a solution to the ver-
tex correspondence problem is provided, before the solution for the vertex path problem is
calculated.

The method proposed by Thomas W. Sederberg et al [7] is an improvement to the linear
vertex interpolation. In this method the polygons are not considered a set of vertices but
a set of edge lengths and angles. These are the values that are interpolated during the
morph process. By interpolating these values it generates a smoother morphing sequence
than a normal vertex interpolation. Some adjustments are also applied to the angle–edge
interpolation to further improve the results. This method is an extension to the previously
proposed by the same author [2].

In the method proposed by Craig Gotsman and Vitaly Surazhsky [5] the vertex path
solution is found by calculating a morph of two compatible planar triangulations. The tri-
angulations must have a set of corresponding points, the vertex correspondences. In this
method, instead of interpolating the vertex coordinates, the vertex barycentric coordinates
are interpolated. The barycentric coordinates represent the relative position of a point inside
a triangle (2D) or a tetrahedron (3D). First a compatible internal triangulation of the two
polygons is calculated, then a morph between the two triangulations is generated. By using
this internal triangulations it is guaranteed that no self interception is generated. This method
is restricted to simple polygons or polygons with a single hole, otherwise the compatibility
of the two triangulations is not guaranteed. In Figure 2.6 an example of morphing of planar
triangulations between two polygons is shown.

7



Figure 2.6: Polygon triangulations example, source [5]

In [6], Michal Shapira and Ari Rappoport proposed a similar method, but this method,
instead of calculating the morph of the internal triangulations, it calculates the morph of
what they call star–skeletons. A star–skeleton is composed of two parts: a decomposition in
star–shaped pieces and a skeleton that connects all the star–shaped pieces. Each star–shaped
piece have a star origin. The star origin is a point inside the polygon where all the boundary
points are visible. The skeleton is a planar graph that connects all star origins, see Figure 2.7.
The morph is generated by blending the skeletons and then the vertex associated to each
star–shaped piece.

Figure 2.7: Star–skeleton decomposition example, source [6]

2.3 Feature Points

To implement the algorithm proposed by Ligang Liu et al [3], first it is necessary to detect
the feature points of the geometric shapes to use. There are several methods to detect feature
points in shapes, the one used was proposed by Dmitry Chetverikov et al [8]. The reasons to
use this algorithm were its efficiency and simplicity.

For geometric shapes a feature point represent a point in a 2D plan. These points have
other properties besides its coordinates. Using only the feature points and its properties it is
possible to represent the polygon or shape they belong, like the vertices of a polygon or the
points of a shape. The feature points can represent the shapes where they belong, normally
using a reduced number of points, however in some cases some details can be discarded. Each
feature point is normally associated to an area of high curvature in the shape or polygon and
its properties are calculated based on that curve.

8



The detection of feature points in geometric shapes is done in two steps. In the first step
are calculated which of the vertex are candidates to became feature points, the second step
determinates which of the candidates are feature points.

2.3.1 Candidate detection

To verify that a point in a geometric shape is a feature point candidate, that point must
match the following set of rules,

dmin 6 ||Pi − P+
i || 6 dmax

dmin 6 ||Pi − P−i || 6 dmax

α 6 αmax,

where dmin, dmax and αmax are parameters defined by the user and represent the minimum
distance between the points, the maximum distance between the points and the maximum
angle between the points Pi, P

+
i and P−i respectively. The distance between points is the

euclidean distance,
√

(P1x − P2x)2 + (P1y − P2y)2, represented by ||P1− P2||. Pi, P+
i and

P−i represent respectively the reference point, the next point and the previous point. The
value of the angle α is calculated using the following formula:

α = arccos
a2 + b2 − c2

2ab
,

where a = ||Pi − P+
i || , b = ||Pi − P−i || and c = ||P−i − P

+
i ||, see Figure 2.8.

If a point Pi fulfil these rules then that point is eligible to became a feature point and
is considered a candidate. The value of the angle α is calculated for all P−i and P+

i pairs
in range [dmin, dmax] of Pi and the lowest angle is considered the sharpness of the feature
point. Another propriety that can be extracted is convexity of the point: if the condition
bxcy − bycx > 0 is verified then the point is convex, if not then it is concave.

Figure 2.8: Calculating α angle
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2.3.2 Candidate selection

After the candidates have been detected the next step is the selection of which of these
candidates are feature points of the geometric shape and which will be discarded. The first
step detects which points fulfil the requirements to became a feature point, however in one
curve of the shape can exist multiple candidates. This step consists in selecting the candidate
that best defines this curve. First a neighbourhood for each of the candidates will be defined
using the value of dmax. Then if in a neighbourhood of a candidate, Pi, exists another
candidate, Pj , that have a sharpness value greater than Pi, Pi will no longer be considered
a candidate, in the end is left the candidate that best defines the curve. That candidate will
be considered the feature point of the curve.

2.3.3 Feature Points in polygons

The methods of feature point detection have been developed for geometric shapes with
zones of high curvature, but that principles can also be applied to polygons. In polygons the
difficulty of finding feature points is reduced, since each vertex can be considered a feature
point. However it is preferred that the feature points are detected using the previous method,
to ensure that vertices in almost linear edges can be ignored. Ignoring these vertices carry
few impact in the general form of the polygon and in most cases these changes are not even
noticed by the users. Another detail to have into account are the values of dmin and dmax,
used for candidate detection. To make the algorithm more robust these values should be
calculated using the average edge length, so that the algorithm will not be affected by the
size of the polygon neither by operations such as scaling.

2.4 Vertex correspondence

The vertex correspondence problem discussed in Section 2.2.1 can be solved using feature
points and its properties as similarity measures to calculate the correspondences between
the vertices of S and T. This method is similar to the way humans solve this problem.
By using sections of the shapes that are associated to a feature point, called regions of
support, and calculating some descriptors of the feature point and the associated region (see
Section 2.4.2) it is possible to calculate a similarity value between two regions and create the
vertex correspondences.

2.4.1 Regions of support

A region of support (ROS) consists in a set of points that are associated to a feature point.
Usually these points belong to the curve described by the feature point. The region of support
of a feature point Fpi contains the points in the interval [Fpi−1, Fpi+1], where Fpi−1 and
Fpi+1 are the previous and next feature points to Fpi. The points [Fpi−1, Fpi] are called the
region of left(ROL) and the points [Fpi, Fpi+1] are called region of right(ROR). Both ROL
and ROR have a maximum number of points, this number can be defined as totalPoints

nFeaturePoints ,
where totalPoints is the number of points in the shape and nFeaturePoints is the number
of feature points in the shape.

Each region of support has some descriptors that define its topological properties. To
calculate these descriptors some algebraic principles will be used. First the center of the
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ROS, Pc, is calculated using the formula

Pc =
1

nPoints+ 1

nPoints∑
i=0

Pi,

where nPoints is the number of points contained by the ROS, then is calculated the covariance
matrix of the ROS,

COV =
1

nPoints+ 1

nPoints∑
i=0

(Pi − Pc)T (Pi − Pc)

Using the covariance matrix’s eigenvectors and eigenvalues it is possible to calculate an ap-
proximation of the normal and tangent vectors of the curve made by the ROS points. To
define which of the eigenvectors is the tangent and which is the normal vector, the bisector
of the angle of the feature point is calculated. Then is calculated the dot product of the
eigenvectors and the bisector, the eigenvector with the smallest dot product is considered the
tangent vector and the one with the larger value is considered the normal vector.

2.4.2 Geometric measures

The descriptors calculated in Section 2.4.1 and the feature point describe the portion of
the shape represented by the ROS using numeric values. These values are used to compare
the similarity of the curve to other curves of different geometric shapes or polygons. There
are three geometric measures to distinguish the ROS from each other. These measures are:

• Feature variation

The feature variation, σ(Pi), of the ROS of a feature point Pi is defined as

σ(Pi) = ξ
λN

λN + λT
,

where ξ = −1 if Pi is convex or ξ = 1 otherwise, λN and λT are the normal and tangent
eigenvalues calculated in Section 2.4.1. This variation measures the deviation of neighbour
points of ROS from the tangent direction at Pi, meaning that if the ROS points distribution
resemble a line segment then its feature variation is close to 0 otherwise it tends to | − 1, 1|.

• Feature side variation

Feature side variation, τ(Pi), is

τ(Pi) =
σ(ROR) + σ(ROL)

2
,

where σ(ROR) and σ(ROL) are the feature variation of the ROR and ROL respectively, which

are calculated using the previous formula but without ξ factor, having σ(ROR) =
λRN

λRN + λRT

and σ(ROL) =
λLN

λLN + λLT
. Like feature variation it measures the linearity of the region.

However unlike feature variation, the value of each subregion influences the result. If the two
regions differ then this value differ from the value of feature side variation. If the two regions
are similar then the value approaches the value of feature side.
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• Feature size

Feature size measures the size of ROS relatively to the size of the original polygon. It is the
a percentage of the perimeter that ROS represents, and is calculated as

ρ(Pi) =
ρR(Pi) + ρL(Pi)

2
,

where ρR(Pi) ρ
L(Pi) are the percentage of the perimeter that ROR and ROL represent re-

spectively. If this measure have a high value then it represents a large part of the polygon
and have a great importance, small values means that the ROS is a very small fraction of the
polygon and is less importance.

2.4.3 Similarity costs

Using the similarity measures feature variation, feature side variation and feature size,
shown in Section 2.4.2, its is possible to create a function that calculates the similarity between
two feature points ROS. That similarity is called the similarity cost and is used to calculate the
vertex correspondence. The idea behind this process is to match portions of source polygon
S with similar portions of target polygon T as much as possible. The formula to calculate
the similarity cost of a pair of feature points Si, Tj , where Si is a feature point of S and Tj is
a feature point of T , is given by

SimCost(Si, Tj) = σ(Si, Tj)
∑

q=σ,τ,ρ

ωq∆q(Si, Tj),

where σ(Si, Tj) is a weight value that defines the importance of the correspondence given by
its visual relevance for the user, and its given by σ(Si, Tj) = max(ρ(Si), ρ(Tj)). The relevance
factor is percentage of the size of the polygon that is represented by the region, the bigger
the size the greater the relevance for the human user. ω is a weighting function defined by
the user to variate the weight of each geometric measure in the cost. These weights must
be defined as ωq ≥ 0 and

∑
q=σ,τ,ρ

ωq = 1. Finally ∆q is the function that compares the three

different geometric measures of the two feature points and gives the similarity value. That
value is calculated for each geometric measure using the following method:

∆σ(Si, Tj) = |σ(Si)− σ(Tj)|,

∆τ (Si, Tj) =
|σ(ROL(Si))− σ(ROL(Tj))|+ |σ(ROR(Si))− σ(ROR(Tj))|

2
,

∆ρ(Si, Tj) =
|ρL(Si)− ρL(Tj)|+ |ρR(Si)− ρR(Tj)|

2
,

where σ, τ, ρ are as defined in Section 2.4.2. ROL(Si), ROR(Si), ROL(Tj) and ROR(Tj)
refer to the region of left(ROL) and region of right(ROR) of feature points Si and Tj .

The values of similarity belong to [0, 2]. The closer to 0 the more similar the feature points
are and the closer to 2 the more dissimilar the points and ROS are. Using these similarity
costs it is possible to match the feature points of S and T , but in most cases the number of
feature points of the two polygons is not the same and so, it makes it necessary to discard
some feature points when creating the correspondences. It makes more sense to discard the
points that are less relevant to the human eye. For that purpose, it is used a function that
calculates the discard cost for a feature point.
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2.4.4 Discard costs

To estimate the cost of discarding a feature point for the morphing process it is used a
function that uses the geometric measures calculated in Section 2.4.2. These measures allow
estimating the impact of the feature point and his ROS for the user. This value can be
calculated as

DisCost(Si) = Φ(Pi)
∑

q=σ,τ,ρ

ωq|q(Pi)|,

where σ, τ, ρ are the same as used to calculate the similarity cost as well as the values of ω.
The value Φ(Pi) represents the relevance of the ROS associated to the feature point to the
whole polygon and is equal to ρ(Pi). Using Φ as a coefficient it increases the discard cost as
the size of the region grows relatively to the total polygon size.

2.4.5 Calculating the correspondences

The feature point correspondences between two polygons or shapes S and T can be rep-
resented as a mapping function. Where J(r) : Si → Tj , Si is the feature point i of S and
Tj is the feature point j of T . To reduce the deformation during the morphing process the
mappings should be restricted to adjacent feature points of S and T , creating a path of con-
secutive feature points J(r|r + 1) : S(i|i + 1) → T (j|j + 1). However if S have n feature
points and T have m feature points and n 6= m, some feature points must be skipped. A new
mapping sequence can be considered for these cases: J(r|r + 1) : S(i|i + k1) → T (j|j + k2),
where k1, k2 < k and k limits the number of skips. The value for a mapping J(r) should
consider the values of the feature points Si and Tj similarity, see Section 2.4.3, and the value
of the discarded feature points since J(r − 1), see Section 2.4.4. The value of the mapping is
given by

δ(S(i|i+ k1), T (j|j + k2) =

i+k1−1∑
l=i

DisCost(S(l))+

j+k2−1∑
l=j

DisCost(T (l)) + SimCost(S(i+ k1), T (j + k2))

This way the mappings for all feature points can be calculated. These set of mappings can
be seen as a path, Γ, from S feature points to T feature points. The solution for the vertex
correspondence problem is the path with the lowest value. The value of a path is calculated
as the sum of all mappings,

Cost(S, T,Γ) =
R∑
r=1

δ((S(ir−1)|ir), (T (jr−1|jr))

The solution is Cost(S, T ) = min(Cost(S, T,Γ)), and Γ contains all the mappings J(r).
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Chapter 3

Morphing implementation

The morphing algorithm presented in [3] was implemented in Java language, given its
good integration with the ORACLE database that will be needed further for the algorithm
implementation, its cross platform and high level object oriented capabilities. The Java swing
framework was also used for visual proposes and application interfaces.

The first step towards the solution was the creation of the new data structures needed for
the algorithm, the shapes, points and feature points. This data structures are an extension,
of the already existing geometric objects from the java.awt package. This extension allows an
easy graphic representation and access to the implemented methods. The class MyPolygon2D
represents a polygon composed by 2 dimension points and a list with the detected feature
points. A feature point is represented by the class FeaturePoint2D, this class stores the feature
point properties and descriptors explained in Section 2.3.

The implementation of the morphing solution can be found in the package morphing of
the source code, this package is divided in two packages morphing.vcp and morphing.vpp.

The package morphing.vcp contains the solution described in Section 2.4 for the vertex
correspondence problem discussed in Section 2.2.1. In this package the code for detection
of feature points and calculation of vertex correspondences can be found, respectively in the
classes, FeaturePointDetector and PolygonCorrespondences, some details of these classes will
be explained in the next subsections.

3.1 FeaturePointDetector class

As defined in Section 2.3 there are two steps to find the feature points of a polygon:
first the detection of the candidates and then a selection from that candidates. For both
these steps a set of values to detect the feature points are given, the values are, dmin, dmax
and αmax, defined in Section 2.3.1. These values are used by the constructor FeaturePoint-
Detector(double max angle, double min angle, double d min, double d max) to create a new
FeaturePointDetector, where the parameters d min, d max and max angle correspond to the
values of dmin, dmax and αmax, the parameter d min is used to guarantee a minimum distance
between the points when choosing a feature point. By setting this minimum distance in the
candidate detection step, the detection of feature points that have a very small relevance can
be avoided. Also if there are points too close the angle will be very sharp and it can lead
to the detection of some false candidates, see Figure 3.1. The d min parameter ensures that
these points are not considered when detecting candidates. Another relevant aspect is how
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distance of two points is calculated. This distance is the sum of the length of the edges from
the source point to the target, instead of the linear distance. This way cases where all points
are within the d max distance from each other, if this value is to great, this avoids a loop of
verifications or invalid distances as can be seen in Figure 3.2.

Figure 3.1: Feature point detection with(left) and without(right) d min parameter usage

Figure 3.2: edge distance(red) against linear distance(green)

The two steps to find the feature points of a polygon are implemented in the method
getFeaturePoints(MyPolygon2D polygon). First the list of candidates is created, this list
stores all the detected candidates. All the vertices of the polygon will be tested and the ones
that match all the conditions defined in Section 2.3.1 will be added. Once all the candidates
are found the candidate selection is done. In this step the point that best define a curve of
the polygon is selected using the parameter d max to define the range of the validation.
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3.2 RegionOfSupport class

The class RegionOfSupport represents a Region of support as defined in Section 2.4.1. A
new RegionOfSupport is created using a list of points containing all the points of that re-
gion and its feature point as parameters to the constructor RegionOfSupport(List<Point2D>
points, FeaturePoint2D fp). This class will calculate the center, the covariance matrix and
the normal and tangent eigenvectors/eigenvalues, as defined in Section 2.4.1. The list of
points that compose a RegionOfSupport are given in the method getRegionOfSupportPoints(
FeaturePoint2D fp) provided by the class MyPolygon2D. This method gets the points in the
interval [Fpi−1, Fpi+1] with the maximum totalPoints

nFeaturePoints points, as defined in Section 2.4.1.
This allows restricting the size of the ROS and avoiding that many points of other curves
appear in the wrong regions, see Figure 3.3.

Figure 3.3: Example of feature points and its ROS in a polygon

To obtain the normal and tangent eigenvectors/eigenvalues, first the bisector of the angle
must be calculated. The bisector is calculated using the three points that form the least
opening angle of the feature point in that region, these points were stored in the FeaturePoint
class during the feature point detection process. This way calculating the angle bisector is
very simple, once the bisector is calculated the dot product between the, already calculated,
eigenvectors and the bisector are calculated and the eigenvector with the smallest dot product
is considered the tangent vector. Once the normal and tangent eigenvectors/eigenvalues are
defined the geometric measures defined in Section 2.4.2 are calculated and stored in the
corresponding feature point.
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3.3 PolygonCorrespondences class

This class address the problem described in Section 2.4. To create a new instance of a
PolygonCorrespondences the constructor PolygonCorrespondences(MyPolygon2D S, MyPoly-
gon2D T, double wFvariation, double wFside, double wFsize, double weightSim) can used.
The parameters wFvariation, wFside and wFsize correspond to Feature variation, Feature
side variation and Feature size defined in Section 2.4.2. The value of weightSim defines the
weight of the similarity value of two feature points in the process of finding the correspon-
dences (see Section 2.4.3). If this value is ]0, 1[ then the similarity have a higher importance,
if the value is greater than 1 then it have a lower importance and the possibility of discarding
feature points is increased. The parameters S and T used in the constructor are the source
and target polygons where the correspondences will be calculated and must have the feature
points already detected.

The correspondences between the feature points of S and T are calculated using the meth-
ods getFeaturePointCorrespondences(int skips) or getFeaturePointCorrespondences(int s init,
int t init, int skips), where the parameter skips defines the number of skips to be used, the
k value defined in Section 2.4.5. The parameters s init and t init define an initial correspon-
dence in the second method. Using an initial correspondence in the process of finding the
correspondences reduces the number of combinations that will be tested. If an initial corre-
spondence is not set the algorithm will test all the possible initial correspondences and choose
the best one, the number of initial correspondences is n×m where n is the number of feature
points of S and m the number of feature points in T. The initial correspondence is set by the
user to try to define a good correspondence to improve the results of the correspondences.

The best correspondence between S and T is considered the minimum value of all the
possible correspondences of S and T feature points. The total of possible correspondences is
k2 × n×m if an initial correspondence is set or (k × n×m)2 if one is not defined. Without
any optimization the time required to find the solution will increase too fast to be considered
usable for polygons with many feature points. To reduce this time some optimizations must
be implemented. The method suggested by the literature was the dynamic programming, this
method reduces the cost of calculating a path by first filling a matrix with all the possible
vertex correspondences and its costs. By doing so this method can reduce the complexity
of the algorithm to k2 × n × m, however the cost to initialize the matrix is k2 × n × m.
Other algorithm was implemented to further reduce the complexity, this new algorithm (fast
algorithm) does not guarantee the optimal solution, however a reasonable solution is always
achieved. This algorithm was a complexity of max(n,m)× k2 and does not require an addi-
tional matrix. To reduce the execution time in any of the previous algorithms a matrix with
the discard and similarity costs between feature point is created to accelerate the calculation
the correspondence function.

Once the correspondences between feature points are established, the correspondence
between the polygons vertices can be set. The correspondences between the vertices are
calculated between sections of the two polygons, these sections are defined by the points
between two feature points, see Figure 3.4. The points of the section defined by the feature
points Si and Si+1 correspond to the points of the section defined by Ti and Ti+1. Normally
one section contains a different number of points than the other, to solve this problem some
points of one section can correspond to more than one point in the other section, see Figure 3.5.
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Figure 3.4: Polygon section example, the points of the section are the points between Si and
Si+1

Figure 3.5: Vertex correspondence example

18



3.4 VPCalculator class

The solution to the vertex path problem is implemented in this class. This solution is a
simple vertex interpolation, as previously explained this method is very simple and in many
cases creates not intuitive morph sequences. This method was first implemented to see the
results of the VCP, since the results at that time were satisfactory the method was left to
improve later as there was yet many important issues to attend, and the development of a
better solution would involve a large time investment while our priority was towards other
issues.

The class receives a list of vertex correspondences between two polygons, these correspon-
dences can be calculated by the class in Section 3.3. A correspondence between two vertices
contains the vertex coordinates and other optional information, as the vertex correspondence
cost.

Before the vertex paths are calculated two new polygons are created, S′ and T ′, this new
polygons topologies are identical to S and T respectively. S′ has the same number of vertices
than T ′ however that number of vertices can be different from S or T . That happens because
in most cases the sections of S and its correspondent section of T can have a different number
of vertex. In that cases a n → m correspondence is created and new vertex are added to
the sections of S′ and T ′ so that these sections have max(n,m) vertex. The new vertex will
start or end in the coordinates of an already existing vertex. For example in a 1→ 2 vertex
correspondence, the new vertex will be added to S′ in the same position of the vertex of S,
then the two vertex, S′(i) and S′(i+ 1), will move to the coordinates of T (i) and T (i+ 1). In
a 2→ 1 correspondence the new vertex will be added to T ′, in the same coordinates of T (i),
and the two vertex of S will move to the correspondent vertex of T ′. Following the previous
method the morphing sequence of S to T can then be considered a morphing sequence between
S′ and T ′, where S′ and T ′ have the same number of vertex.

Once S′ and T ′ are defined calculating the linear vertex paths are very simple. These
paths are defined as a 2D vector, v = vx, vy, and are associated to each vertex of S′.

vx = T ′(i)x − S′(i)x

vy = T ′(i)y − S′(i)y
To create an animation of the morphing sequence a time interval should be associated to
the morphing sequence, that time interval will define the amount of time that the animation
will take. To calculate the velocity of a vertex the components of the movement can be
calculated from the vector v. A method that calculates a representation of a moving point is
implemented in getMPointUnit(int id, Timestamp start, Timestamp end), the representation
of moving points and polygons will be described in the Section 4.3.

3.5 ReducePolygon class

This class provides methods to reduce the number of points needed to represent a poly-
gon. This method can be used when importing a polygon from the segmentation application
refereed in Section 2.1. The method used to reduce the number of points was the algorithm
known as Douglas–Peucker algorithm proposed by Urs Ramer, in 1972, and by David Douglas
and Thomas Peucker, in 1973. The algorithm was conceived to create an approximation of
a curve using line segments using a threshold value, ε, see Figures 3.6 and 3.7. However its
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principles can also be applied to create an approximation of a polygon. This approximation
will became very similar to the initial polygon if a small threshold is used.

Figure 3.6: Douglas–Peucker algorithm step by step

This algorithm simplifies a polygon by recursively adding polygon vertex to a line segment,
the line is created by two points of the initial polygon. Then the point of the initial poly-
gon that have the greatest perpendicular distance to that line is added, creating a new line
segment. The new line segments will became the approximation of the polygon. New points
will be added until no point is at a greater perpendicular distance of a line segment than the
specified value defined by the user. That value is the threshold used by the Douglas–Peucker
algorithm, ε, that will define the precision of the approximated polygon, the lower the value
the closer the approximation will be from the initial polygon.

The perpendicular distance of a point to a line is the length of the line segment perpen-
dicular to the initial line that ends in the point, this length can be considered the smallest
distance of the point to the line see Figure 3.8.
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Figure 3.7: Douglas–Peucker ε value variation

Figure 3.8: Perpendicular distance example

21



3.6 Results

In this section some tests done with the implemented method will be presented and the
results obtained will be explained. The tests will use a synthetic data set composed by some
simple geometric shapes. These tests intend to show the weight of different parameters used
in the various steps during the morph and some limitations in the solution. The synthetic
data set consists of twelve distinct polygons, these polygons will be numbered from 1 to 12
and that number will be reference to each polygon, the polygons are shown in Figure 3.9.

Figure 3.9: Synthetic polygons used

3.6.1 Feature point detection test

The first implemented test focus in the detection of feature points in polygons. By chang-
ing the values of max angle, min angle, d min and d max different feature points will be de-
tected. The detection of feature points is crucial for obtaining a good vertex correspondence,
for it will define the regions to be compared and matched during the vertex correspondence
process. If the regions are dissimilar it is hard to create a good morphing sequence.

To reduce the user interaction required, this test will try to find the more generic param-
eters to use to obtain reasonably good results. The optimal parameters change for each case
so to find more generic results a set of parameters that yield adequate results in most cases
must be defined. To find values for d min and d max that are not affected by the polygon
size or scale operations the average edge length is calculated and used as reference. The
value to test will be a factor applied to this average length, for d min this value shall be in
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the interval [0, 1[ and for d max this value should be [1, 3[. To test the parameters a simple
application was created, in this application the user can load polygons and change the values
of max angle, min angle, d min and d max to see the different detected feature points and
its ROS, Figures 3.10 and 3.11 are examples of the application main frame and a Region of
support frame.

Figure 3.10: Feature point test application

When a polygon is loaded the average edge length is calculated. The d min is average edge length
3

and the value for d max is 3× average edge length. These values where chosen because they
work relatively well for many polygons, the values for max angle and min angle are 160 and
20 respectively, with this values the angles with few relevance are discarded. All these values
can be changed to see the different results. Using the previous values to detect the feature
points, the following feature points where detected in the synthetic data set. In Figure 3.12
the polygons are shown and the red dots represent a feature point. As we can see the feature
points detected in each polygon can define good ROS the define relevant areas of the polygons.

3.6.2 Vertex correspondence test

To test the algorithm in the vertex correspondence problem, the obtained correspondences
will be compared with a manual correspondence between some polygons from the hypothetical
data set, using the feature points detected in the last test. The manual correspondence will
be set using the polygon regions similarity as base. The number of matches will be calculated
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Figure 3.11: Region of Support 5, its maximum opening triangle(yellow), feature point(red),
vertices and geometric measures

Figure 3.12: Detected feature points
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and be used to evaluate the precision of the algorithm, however it should be taken into account
that several solutions can be found for the correspondence problem, so other results can also
be considered. In this test the results of the different correspondence algorithms will also be
compared, the fast correspondence algorithms, described in Section 3.3 will be compared with
minimal cost. In this test the similarity and discard costs (see Sections 2.4.3 and 2.4.4), used
where the proposed in the article [3], these values where ωq = 1

3 and the maximum skips set
to 2.

The results, correspondences and comments are listed bellow:

• Correspondence between polygons 1 and 2

The manual correspondence was {0 → 0; 1 → 1}, where 0 → 0 denotes a correspondence
between feature point 0 of polygon 1 and feature point 0 of polygon 2. The feature points
are shown in Figure 3.12. In this case both algorithms matched the manual correspondence
with 100% precision.

• Correspondence between polygons 3 and 4

The manual correspondence was {0 → 0; 2 → 1}. In this case the fast correspondence
algorithm result was {0 → 0; 3 → 1} and the minimum cost result was {0 → 0; 1 → 1}.
These two results are different but represent a similar solution to the problem. Both solutions
differ from the manual correspondence but represents a possible solution to the problem.

• Correspondence between polygons 3 and 5

The manual correspondence was {0 → 0; 1 → 1; 2 → 2}. The minimum cost algorithm get
the same result as the manual solution. The fast correspondence algorithm gives {1→ 0; 2→
1; 3→ 2} as the solution, this solution may differ from the other but represent an adequate
solution to the problem.

• Correspondence between polygons 3 and 7

The manual correspondence was {0 → 0; 1 → 1; 2 → 2; 3 → 3}. The minimum cost
algorithm gets the same result as the manual solution. The fast correspondence algorithm
considered {0 → 2; 1 → 3; 2 → 0; 3 → 1} as the solution, this solution may differ from the
other but represent the same solution only considering a different initial correspondence.

• Correspondence between polygons 5 and 6

The manual correspondence was {0 → 0; 1 → 1; 2 → 2}. In this case both the algorithms
give the same results as the manual solution.

• Correspondence between polygons 5 and 11

To this two polygons the manual correspondence was {0 → 0; 1 → 1; 2 → 2}. In this case
the fast correspondence algorithm matched the manual solution, while the minimum cost
algorithm yield the solution {0→ 0; 2→ 1}.

After analysing the previous results, a very good result was obtained in almost every
case. Even in cases where the result was not optimal, it was acceptable for the two different
algorithms. These results set a good base to the morphing algorithm since the feature point
detection is one of the most important steps.
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3.6.3 Translation test

In this test the morphing algorithm will be tested in a polygon translation, a polygon will
be translated and the morphing result will be evaluated. In this case the topology of the two
polygons will be identical and the correspondences calculated will be a direct correspondence
between the feature points of S and T . The vertex paths should be equal to the translation
applied to the T polygon.

Since there are no deformation and the vertex paths are linear the implemented solution
can easily solve this kind of morphing, as can be seen in Figure 3.13. In this example the
polygon 3 is translated vx = 30 and vy = 50, that as also the vertex path of each vertex.

Figure 3.13: Vertex paths from polygon 3 translation, the points represent the vertex start
position and the lines the vertex path, each color represent a distinct vertex

3.6.4 Rotation test

In this test a polygon will be rotated and the resulting morphing sequence is evaluated.
Once again the S ans T polygons topologies are identical, only the vertex coordinates differ.
The vertex paths should avoid vertex interceptions and the polygon shape should be main-
tained. The experiments show that even if the correspondences are correct, the vertex path
solution implemented gives no guarantee that no interceptions or unnecessary deformations
do not appear. To evaluate the algorithm result two criteria where considered, the number
of interceptions and the area variation during the morph process.

In this test some polygons where rotated and the following results were obtained to each
case:

• Polygon 3, 45 degrees rotation

This rotation does not yield vertex interception but the polygon area reduces and then
expands again. Even through the topology is maintained, the polygon suffers an unnec-
essary deformation, see Figures 3.14 and 3.15.

• Polygon 5, 90 degrees rotation

Similar to the previous rotation the polygon area is reduced and then expanded instead
of being constant, see Figures 3.16 and 3.17.
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Figure 3.14: Polygon 3, 45 degrees rotation

Figure 3.15: Vertex paths from polygon 3, 45 degrees rotation

Figure 3.16: Polygon 5, 90 degrees rotation

Figure 3.17: Vertex paths from polygon 5, 90 degrees rotation
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• Polygon 5, 180 degrees rotation

In this rotation the area variation is even more severe, in this case the polygon area
reaches 0 and the polygon is reduced to a line, see Figures 3.18 and 3.19.

Figure 3.18: Polygon 5, 180 degrees rotation

Figure 3.19: Vertex paths from polygon 5, 180 degrees rotation

3.6.5 Deformation test

For this case the morphing between two similar polygons are tested, to simplify the vertex
correspondence the results from the correspondences between the pairs of polygons 1 → 2,
3 → 4 and 5 → 6 will be used, the correspondences were presented in Section 3.6.2. Once
again the vertex interceptions and area variation will be used as measures to evaluate the
morph result.

• Morph 1→ 2

In this morphing no interception occurred but as this morph is similar to a rotation, the
polygon area reduces and expands during the morph. The final result is acceptable but
a more ”rigid” polygon deformation should have been the result. The area variation
can be seen in Figure 3.20.

• Morph 3→ 4

In this case there are also no vertex interception and once more the area variation is
not linear. The morph sequence should be more natural, but with the used vertex
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Figure 3.20: Area variation in morph 1→ 2

correspondence the deformation is more than the necessary. The area variation can be
seen in Figure 3.21.
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Figure 3.21: Area variation in morph 3→ 4

• Morph 5→ 6

This morph can be considered the ideal result, there are no vertex interceptions, the
area variation is linear and the resulting morph sequence seams a natural morph from
polygon 5 to polygon 6. The area variation can be seen in Figure 3.22.

29



time %

area

0 10 20 30 40 50 60 70 80 90 100
9000

9500

10000

10500

11000

11500

12000

Area

Figure 3.22: Area variation in morph 5→ 6
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Chapter 4

Moving objects representation in
spatio-temporal databases

4.1 Overview of moving objects databases

A spatio-temporal database is a database that is able to represent, manage, process and
retrieve spatio-temporal data. Since spatio-temporal data changes both in time and space,
a moving object is an abstraction commonly used in spatio-temporal databases research to
denote geographical entities that can move and change shape over time. The database pro-
vides a set of operations over this objects like intersections, distances, area calculation or
projections.

Although there were many research works on the development of spatio-temporal meth-
ods for dealing with moving points, that is, moving objects whose size and shape do not
need to be represented in the information system, research on spatio-temporal methods for
dealing with moving objects with complex shapes has received minor attention. In this
context, the abstract definition of a moving object can be given by a triple( τ, ς, ν) where
τ ⊂ R is a time interval, ς ⊂ R2 denotes the geometry of the moving object at a cer-
tain time instant and ν : R2 × R → R2 is a continuous function defining the transfor-
mation of the geometry ς during τ [9]. The semantics of this abstract representation is
m = (x, y, z) ∈ R2 × R|(∃x′)(∃y′)(x′, y′) ∈ ς

∧
t ∈ τ

∧
(x, y) = ν(x′, y′, t).

This abstract representation of moving objects has been implemented on different discrete
data models suitable for implementation in databases. The most important ones are the
constraints databases ([10]) and abstract data types ([11] and [12]) approaches. In recent
years, it was given particular attention to the ADTs approach because this data model can
be smoothly built into extensible DBMS, such as object-relational DBMS.

The solutions based on abstract data types represent the objects movement as an ordered
sequence of motion units [13]. The motion within a unit is given by simple functions,linear
functions in most proposals, describing the movement of each vertex during a fixed time
interval, and must be consistent with several restrictions for ensuring that the geometry and
the topology of the region is valid for every time instant in that interval Figure 4.1.

This approach was firstly implemented on the top of Secondo, a prototype DBMS for
research and teaching [14]. It is to the author knowledge the only implementation where
the spatio-temporal data model and query language are completely integrated into a DBMS
environment. It allows representing different types of moving objects, namely, moving points,
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Figure 4.1: A moving object motion unit

moving lines and moving regions with complex shapes, including moving regions with holes.
This prototype also implements a wide variety of spatio-temporal algorithms for the evaluation
of projections, set operators, predicates and clipping operations, which are described with
detail in [13].

Object-relational DBMS currently in commercial use, as the Oracle DBMS, allow devel-
oping extensions to deal with complex data types that can be attached to the database and
manipulated using SQL, this data types can be build to represent moving objects. This is
the case of Hermes, which is an Oracle extension for the representation and management of
spatio-temporal data [15]. The spatio-temporal data types derive from the Oracle Spatial
data types and the temporal data types released by TAU Temporal Literal library [16]. This
is the only extension where the edges connecting the vertices defining the boundary of moving
regions can be straight lines or arcs. Although, due to the complexity of the underlying data
model, this extension has only a limited number of algorithms to perform spatio-temporal
operations dealing with moving objects with complex shapes. For details on this work it is
recommended to read the technical report [17].

The Spatio-temporal Object Cartridge(STOC) is also an extension for the representation
of continuously and discretely changing spatial data [18]. However, this extension has only
two data types for the representation of moving objects, moving point and moving rectangle.
This means that it is only possible to represent approximations, minimum bounding boxes,
of moving objects with complex shapes.

The extension proposed in [19] also introduces spatio-temporal data types and opera-
tions for dealing with moving objects in Oracle 11g. The data model is inspired in [11] but
this paper also introduces a technique for the evaluation of spatio-temporal operations based
on a discretion of the temporal dimension using a temporal quantum. This means that a
spatio-temporal operation is decomposed into a sequence of spatial operations over snap-
shots(projections) of the moving objects. The technique is simple to implement and may
be adapted for several types of movement functions, linear, quadratic, etc. However, the
implementation of spatio-temporal clipping operations requires an additional post-processing
step to assemble the results of the spatial operations over each snapshot back into a moving
data type. The paper presents a simple interpolation method to accomplish this task but the
authors argue that the results are not satisfactory and need improvement.

The framework used in this thesis was the one developed by Lúıs Matos et all. [19].
This framework is implemented as an extension for the ORACLE 11g and provides support
for moving points and moving regions. These data types and the operations over these are
resumed in Sections 4.3 and 4.4.

32



4.2 Architectures for spatiotemporal databases

According to M. Breunig et all [20], there are three main architecture that can be con-
sidered when implementing a database extension, these three architectures are monolithic,
layered and extensible. In a monolithic based solution all the features are plugged into the
DBMS kernel. This improves performance as all operations are supported by the database
core, however the implementation is very demanding and each modification or expansion
must be implemented in the DBMS kernel code. In a layered architecture all the changes are
implemented in a layer on top of the DBMS core. This layer uses a predefined interface to
communicate with the DBMS. This architecture has the advantage of reducing the implemen-
tation time, as the implementation is outside of the core then its performance may decrease.
The extensible architecture combines the best of the two previous models, since the support
for new features in DBMS is done outside its core. The architecture implemented in the OR-
ACLE DBMS can be considered extensible and so it makes it simpler to develop extensions
for the DBMS. Considering that the ORACLE DBMS already have a spatial support, it is a
good candidate for the development of a spatio-temporal expansion.

4.3 Data model

The spatio-temporal expansion for the ORACLE database, used in this work provides
data types and operations for the representation and querying of moving objects. The base
of this implementation is the moving point, MPoint, that consists of a collection of moving
point units, Movement, and an id associated to that MPoint. The Movement contains
a dynamic number of MPointUnit where each unit represents the movement of the point
during a given time interval. This data type consists of a structure that contains 3 data types:

• Point, this data type is a representation of a simple 3D point and is defined by its
coordinates x, y, z, represented as Numbers. The Point defines the initial location
of in a MPointUnit, as the extension only considers objects moving in a 2D space, the
value of z is zero.

• TimeInterval, this data type defines the time interval that the MPointUnit rep-
resents. The time interval consists of a start and an end date, both ORACLE Date
types.

• VariabilityFunction, this data type represents the translation of the Point during
the TimeInterval and it is defined by the 3 components of the movement vx, vy, vz,
represented as Number’s in the ORACLE database. In resemblance to the Point, the
value of vz is also zero.

Using the previously defined MPoint it is possible the create more complex shapes named
MRegion that consists of a VARRAY or a Table of MRegionUnit. A MRegionUnit,
like a MPointUnit, is a representation of a moving region during a defined time interval,
and consists of a TimeInterval and a list of MPoint that define the region in that time
window. The list of MPoint is a VARRAY or a Table that contains the ids of the MPoint.
By using this model it is possible to create a moving region that can change the number of
points as well as its positions over time, as represented in Figure 4.1.
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Figure 4.2: Moving region storage in database, source [19]

To use this data model in the ORACLE database a table named MPointTable must be
created to store all the MPoints. A table to store the MRegions can also be created to
store the moving regions. It is important to notice that the MPoints can be shared between
regions to reduce the redundancy and the storage space, see Figure 4.2. Since the points that
define a region can change over time it is easy to link several morphing sequences into one to
create a moving region. All that is needed is to create a MRegionUnit for each morphing
using the results of the algorithm and then join the MRegionUnits in a single MRegion.

For details and formal definitions on the data model consult the article [19].

4.4 Operations

The algorithms proposed in [19] to implement more complex operations dealing with
moving regions have two or three main steps:
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Figure 4.3: Clipping operation for a moving point and moving region, source [19]

1. Transform a moving object into spatial (sdo geometry) objects;

2. Perform spatial operations using ORACLE Spatial functions;

3. Assemble the results into a moving object;

The operations can be separated in 3 categories:

• Projections are operations to obtain numerical, temporal ar spatial features from a
moving object. The footprint of a moving object is the area travelled by this object
over an associated time. For instance the spatial projection of a MPoint is a line. If
the time of a projection is an instant, then the result will be the representation of that
object at that time instant.

• Predicates results are true or false. This kind of operations normally test if a certain
condition happens, for example if a moving object is within a certain distance from
another object or if it intersects some other geometry.

• Clipping are the most complex operations and normally must follow the three steps
enumerated early, unlike the other two categories that can be solved in just two steps.
The Clipping operations enable filtering spatio-temporal values according to a given
criteria. The result is a subset of the initial spatio-temporal value for which the criteria
holds. Examples of these operations can be a moving object during a time interval or
the intersection of a moving object with a certain geometry, in Figure 4.3 is presented an
example of the intersection of a moving point and moving region with a static geometry.

For more details about these operations and its implementations see the article [19].

4.4.1 Intersection of moving objects

This operation can be considered a clipping operation and the result of the intersection of
two moving regions will be either empty, another moving region or several moving regions. In
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Figure 4.4 are shown 3 examples of moving object interceptions: in the first the two regions
never intercept (empty case), in the second the two moving regions intercept in the cyan filled
rectangular area (simple moving region case), in the third case the interception of the two
regions in some instants is composed on the distinct regions (multiple moving region case).
Due to some limitations on the used spatio-temporal extension only the first two cases will
be considered. “As the current version of the data model does not include a data type for the
representation of multiple moving regions, the spatial clipping algorithms can only operate
with convex shapes. This ensures that the intersection of two moving regions returns always
a single moving region”, citation from [19].

Figure 4.4: Object intersection results

4.5 Implementation of clipping operation

4.5.1 Java integration

A solution for the moving objects intersection operation can be found by using polygon
morphing algorithm described in Chapter 2, using the JServer introduced in the Oracle8
i. The JServer integrates a Java Virtual Machine(JVM), called Aurora, enabling runtime
environment and Java class libraries to be executed in the database. The Aurora JVM can
execute Java methods as Java Stored Procedure(JSP). The JServer also provides integration of
the Java methods and classes with the PL/SQL language used to create and define the spatio-
temporal extension. This way an easy integration of the previous implemented algorithm is
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possible with the ORACLE database, see Figure 4.5.

Figure 4.5: Accessing JSPs from within the Oracle database, source [21]

To use a Java method there are five steps that must be followed:

• Compile the Java source code;

• Load all classes or jar package needed into the database using the loadjava tool via a
command line utility;

• Create a wrapper using PL/SQL to publish the Java methods as PL/SQL functions;

• Grant the required privileges to the PL/SQL wrapper functions;

• Call the PL/SQL wrapper functions.

For details see Chapter 9 of [21].
A PL/SQL wrapper can be created via the CREATE OR REPLACE FUNCTION state-

ment by using the AS LANGUAGE JAVA clause as defined in the PL/SQL syntax. An
example of how to create the wrapper for a JAVA function can be seen below,

CREATE OR REPLACE FUNCTION jMorphPolygon(sdo1 SDO GEOMETRY, sdo2
SDO GEOMETRY)
RETURN numberArray
AS LANGUAGE JAVA
NAME ’morph.PolygonMorph.calcMorph(oracle.sql.STRUCT, oracle.sql.STRUCT) return
oracle.sql.ARRAY’;
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this example creates a wrapper for a function that receives two SDO GEOMETRY objects
as oracle.sql.STRUCT and returns an array of double as an oracle.sql.ARRAY. The array of
doubles contains the coordinates for each point and its movement as,

{V 0cx, V 0cy, V 0cz, V 0vx, V 0vy, V 0vz,

V 1cx, V 1cy, V 1cz, V 1vx, V 1vy, V 1vz, ...

V ncx, V ncy, V ncz, V nvx, V nvy, V nvz}

where V xcx,cy,cz correspond to the (x, y, z) coordinates of the point x and the V 0vx,vy,vz to
the movement of the x point in the (x, y, z) dimensions. The oracle.sql.STRUCT and ora-
cle.sql.ARRAY classes are imported from the ODBC package, that is a JDBC API extension
for Oracle Databases.

There are several advantages to use a Java method to implement the morphing algorithm
instead of a PL/SQL implementation. The main advantage is that the Java methods can ex-
ecute sequential programming task with greater efficiency while PL/SQL focuses in database
tasks. In the moving objects intersection method the Java method handles the morphing
related tasks and the insertion of information in the database is handled by the PL/SQL
method, taking advantage of the best of each language to solve the problem. Using Java to
implement the sequential programming operations also reduces the amount of time needed to
implement the solution and do not require more data types and information on the database.

There are other technologies that allow the interaction between Java and the Database like
JDBC. This solution could be used to insert the data into the DB instead of using PL/SQL.
The JDBC is widely known and uses a JAVA API that provides a connection to most DBMS
and enables JAVA programs to execute SQL statements and manage the information on those
DBs. In fact, the application shown in Section 4.7 uses JDBC to interact with the database.

4.5.2 Operation structure

The challenge that was proposed in this work was to implement a clipping operation for
moving regions with complex shapes for the spatio-temporal extension proposed in [19]. The
actions performed were the following:

• In the first step the method starts by calculating the intersection of the time interval
of the two moving regions. Then the continuous time interval is discretized in instants,
using a configurable argument, as proposed in [19].

• The second step consists in calculating the static intersection of the two moving regions
for each time instant. To calculate these intersections it is created a spatial projection
of each region at each time instant and finally using ORACLE Spatial functions the
interception is computed.

• The third step assembles all the static interceptions in a new moving object of type
MRegion. By using the morphing algorithm to create a morph sequence between
two static interceptions, it is possible to create the MRegionUnit to represent the
moving region from the clipping operation. The result of the clipping method will be
the MRegion that contains all the MRegionUnits generated. However to create a
MRegion its MPoints must be saved in the MPointTable in the database. This step
is explained in Section 4.5.3.
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It is also important to refer that the first and third steps are implemented in PL/SQL while
the second step uses the JAVA wrapper.

4.5.3 Insert database data

As said before a moving region contains a collection of MPoint ids. The result of the
intersection operation is a moving region and so, it is required to first store the MPoints
in the MPointTable, but it creates a problem because the result of any operation should be
temporary unless the user decides to save it. However since the MPoints are stored in a table
they became persistent. The solution to this problem was to create a table that keeps the
record of these MPoints so that the user can remove then when they are no longer needed.
This table is called TMP MPoints. The table records the MPoints created by the method
using its MPId, its creation date and the SESSION USER.

4.6 Accessing the data base using JDBC

The JDBC is a framework that enables JAVA applications to use a wide variety of DBMS.
Using JDBC it is possible to connect to the DBMS and to run queries in the DB without
need to perform any configuration besides the connection string. To use JDBC to access the
DB with the spatio-temporal extension some additional classes must be created to map the
new data structures of the extension to JAVA objects, see Figure 4.6. These new objects will
be called entities and each entity correspond to a data structure discussed in the Section 4.3.
By analyzing the class diagram shown in Figure 4.6 it is possible to see that the entities
have a relation to each other similar to the relations between the data structures on the
database. An entity can have two kinds of builders, one using a STRUCTURE or ARRAY
and another using JAVA data types. The first type constructs the entity from data received
from the database (via JDBC), where a STRUCTURE from the JDBC contains a generic
data structure and an ARRAY contains a VARRAY from the database. The second type
constructs the entity using JAVA data types as double, Timestamp, BigDecimal, etc. An
entity can also contain some attributes corresponding to attributes in the database. Each
data type in the database is mapped into a type in JAVA, like a number to a BigDecimal or
a DATE to a Timestamp. Another important method shared by all the entities is the toSQL
that creates a string containing the SQL statement that can be used in a query to create,
delete or alter a record.

To run a query in the database the JDBC provides a series of classes namely the Statement,
CallableStatement and PreparedStatement. By using these classes an user can run a SQL
query in the database using a Connection and a String containing the SQL statement to
execute. The Connection class provided by the JDBC enables the user to create a connection
to the database using a connection string, it also provides methods to create save points and
transactions. In Figure 4.7 represents how a JAVA application can access the database.

4.7 Loading spatiotemporal data into the database

The use of entities and JDBC makes development of applications using the spatio-temporal
database easier. A good example is the application to insert spatio-temporal data into the
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Figure 4.6: JAVA entities class diagram
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Figure 4.7: Application access to database diagram

database. This application creates a morphing sequence from the segmented polygons ob-
tained from the segmentation application described in Section 2.1. This morphing sequence is
converted into spatio-temporal data and inserted in to the database using JDBC. The applica-
tion was used to construct the movement of the objects and to store it in the spatio-temporal
database.

Figure 4.8 depicts the layout of the application where the source and target polygons are
displayed at, in the lower half a series of controls are available in three tabs. The first two
tabs provide controls to load the polygons and to detect the Feature Points, the third tab
controls the vertex correspondence and the insertion of the data into the database.

Figure 4.8: Application - load polygon and detect FPs

To create a morphing sequence first a polygon must be loaded, either from a file or from
a table existing in the DB. When loading a polygon from the DB, the last instance of the
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loaded MRegion is selected, which means that new data can be inserted to the moving object.
Once the polygon is loaded the feature points must be detected from the two polygons, see
Figure 4.8. In the third tab the correspondences are created manually or automatically.
Finally the user can insert the resulting morphing sequence in the database or see a preview
of the sequence to evaluate its quality before inserting the data, see Figure 4.9.

Figure 4.9: Application - create morph sequence and insert data

The application also enables the user to view the geometry of a MRegion at any instant
of its time interval as shown Figure 4.10, where the scroll bar controls the time instant that
is represented.

4.8 Case study

The case study used in this work is a set of satellite images of icebergs taken in the same
region during several weeks. An iceberg can move and change shape during time and provides
a good real data set where the algorithm can be applied. To create this data set the shape
of the icebergs must be obtained from the satellite images, using the image segmentation
application presented in Section 2.1, then the resulting shapes are used to create a sequence
of polygons. Each sequence of polygons can be used to create a morphing sequence that will
represent the iceberg during a time interval defined by the dates of the images.

The case study consists of ten satellite images of the iceberg known as B-15, this iceberg
is considered the world largest iceberg, measuring about 400km long and 40km wide. The
satellite images focus some of its fragments, more notably the B−15a and the B−15j which
will be refereed as iceberg 1 and 2. An example of a images of the two icebergs can be seen
in Figure 4.11, where to bigger iceberg is the iceberg 1 and the smaller iceberg the iceberg 2.
For iceberg 1 the most predominant movement is a translation along the cost line where the
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Figure 4.10: Application - view of a MRegion
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iceberg 2 suffers mostly a rotation around its center. Both the icebergs suffer deformations
during the sample time due to melting or fragmentation. The images used in this case study
are taken at the following dates: 19-11-2004, 21-11-2004, 26-11-2004, 02-12-2004, 04-12-2004,
07-12-2004, 13-12-2004, 20-12-2004, 23-12-2004 and 02-01-2005.

The satellite images were download from the NASA site, http://www.nasaimages.org/,
however the data set is no longer available.

Figure 4.11: Satellite image taken in 02-12-2004

To create a morphing from the polygons sequence the application presented in Section 4.7
was used. The application can read two polygons contours from files and create a polygon
morph between this two polygons. It is possible to see and change the feature point detection
or the vertex correspondence parameters from the application interface. The vertex corre-
spondences can be changed or created manually. An animated morphing can also be viewed
in this application.

To test the morph algorithm using this real data set some metrics where defined to evaluate
the quality of the morph obtained. The metrics are:

• Intersections

This measure tests the occurrence of vertex intersections during the morphing process.
To test if there are vertex intersections 100 frames are generated for a morphing sequence
and for each frame it is tested if any of its edges intercepts another, the result is the
number of frames where occurs one or more edge interceptions. The value of this
measure variate from 0 to 100 as the number of frames with edge interceptions variate.

• Snapshot similarity

In this measure the similarity between two shapes is estimated. The similarity can be

calculated as 1 − Area(E
⋃
S)−Area(E

⋂
S)

Area(E
⋃
S)

, where E is the estimated shape calcu-

lated by the morphing algorithm and S is the shape obtained from an image, see in
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Figure 4.12 the yellow and red polygons correspond to S and E, respectively. To use
this measure three snapshots of an iceberg are sorted by date, for example by using
the images on the dates 19-11-2004, 4-12-2004 and 7-12-2004. The three polygons are
segmented, then is applied the algorithm to generate a morphing sequence from the poly-
gons corresponding to dates 19-11-2004 and 7-12-2004. In Figure 4.12 the green polygon
correspond to the iceberg of image taken in 19-11-2004 and the blue polygon the iceberg
from image taken in 7-12-2004. The resulting area from Area(E

⋃
S) − Area(E

⋂
S)

corresponds to the area denoted in black in Figure 4.13 and represents the difference
between the estimated polygon E and the segmented polygon S. The greater this is
area in relation to the total area Area(E

⋃
S) the greater the difference between this

two polygons. This measure tends to 1 when the 2 polygons are similar.

Figure 4.12: Snapshot similarity

With the measures defined above a set of tests for iceberg 1 and 2 where done. These tests
consisted in creating several morph sequences using the polygons obtained by segmentation
of the images. The morphing were either fully automatic or manual, were the manual uses
an initial correspondence set by the user. Each morph was calculated and loaded into the
database, then the value for each measure was calculated and the obtained results are shown
in Table 4.1 and Table 4.2. Some of the values in the tables are missing, because edge
interceptions can cause invalid polygon shapes at some instants. In these instants no shape
is returned by the database and these situations were discarded from the final results.

By analysing the values it is possible to see that the average value for the snapshot
similarity is about 80% and in more than half cases no intersection is generated. The average
value for the snapshot similarity is a very good value considering the lack of precision of the
segmentation application used, which reduces the precision of the results. In some cases the
estimated polygon E is more similar to the actual iceberg than the segmented polygon S. It
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Figure 4.13: Snapshot similarity: difference area(black)

is also important to consider that the movement of the iceberg is not always linear nor its
melting or fragmenting rates, which also introduces some error between the estimated iceberg
shape and the real one.

4.9 Results

In this section some results of the moving object clipping method will be presented, the
results consists of an intersection of two moving objects, a triangle and a square. The first
region consists of a rectangular triangle that transforms into another rectangular triangle, see
Table 4.3 to view points coordinates. The second region is a large square with 5000 pixels
length and centred in (2500, 2500) that moves to (2500, 2400), the Table 4.4 show the points
coordinates.

The Figure 4.14 shows the result of the clipping of the two MRegions. Each sub figure
represents the result at a given instant. The polygons with black edges are the two MRegions,
and the polygon with red edges and dark grey filling is the result of the clipping of the two
MRegions. As can be seen the clipping polygon corresponds to the interception of the
moving regions.

The intersection clipping algorithm should only be used to calculate the clipping between
two convex shapes, to avoid cases where the resulting intersection have more than one region,
see Figure 4.4.
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Morph Results

Begin E/S End Type Intersections Similarity

19-11-2004 26-11-2004 4-12-2004
Automatic 61 84%

Manual 2 —

26-11-2004 4-12-2004 7-12-2004
Automatic 0 82%

Manual 34 —

4-12-2004 7-12-2004 20-12-2004
Automatic 0 —

Manual 0 —

19-11-2004 26-11-2004 7-12-2004
Automatic 28 71%

Manual 0 87%

19-11-2004 4-12-2004 7-12-2004
Automatic 28 78%

Manual 0 90%

26-11-2004 4-12-2004 20-12-2004
Automatic 0 81%

Manual 0 82%

26-11-2004 7-12-2004 20-12-2004
Automatic 0 77%

Manual 0 79%

Table 4.1: Results for iceberg 1

Morph Results

Begin E/S End Type Intersections Similarity

19-11-2004 21-11-2004 26-11-2004
Automatic 30 —

Manual 12 —

21-11-2004 26-11-2004 2-12-2004
Automatic 50 —

Manual 0 80%

26-11-2004 2-12-2004 4-12-2004
Automatic 0 92%

Manual 0 90%

19-11-2004 21-11-2004 2-12-2004
Automatic 0 87%

Manual 0 80%

19-11-2004 26-11-2004 2-12-2004
Automatic 0 76%

Manual 0 76%

26-11-2004 4-12-2004 20-12-2004
Automatic 0 74%

Manual 35 —

26-11-2004 7-12-2004 20-12-2004
Automatic 0 89%

Manual 35 —

Table 4.2: Results for iceberg 2

MPoint Start End

MPoint 1 (−200, 100) (100, 100)

MPoint 2 (−100, 100) (200, 100)

MPoint 3 (−200, 200) (200, 200)

Table 4.3: Mpoints for MRegion 1 (Triangle)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Intersection of MRegion 1 with MRegion 2
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MPoint Start End

MPoint 1 (0, 0) (0,−100)

MPoint 2 (5000, 0) (5000,−100)

MPoint 3 (5000, 5000) (5000, 4900)

MPoint 4 (0, 5000) (0, 4900)

Table 4.4: Mpoints for MRegion 2 (Square)
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Chapter 5

Conclusions

This work presents several techniques proposed in different domains of research that may
be used to implement adequate tools to insert data of moving objects into spatio-temporal
databases. It also presents a framework for the acquisition of moving objects data based on
morphing techniques. This is the first work presenting a set of methods for creation and eval-
uation of moving objects representations from real-world data sources. The experiments show
that it is possible to achieve good quality representations for moving objects with extent and
it also reveals that there are issues like the intersection of vertex paths and the representation
of rotation transformations that require future investigation.

With the developed work we were able to create a spatio-temporal data set from a col-
lection of satellite images and load it to a spatio-temporal database. The application to load
the data is simple to use and can easily be used to create more complex data sets in different
scenarios. The clipping operation developed also fulfils its requisites, however it still have
room for improvements, such as use the existing MPoint to set a initial correspondence and
reduce the number of MPoint created.

5.1 Contributions

With the methods proposed in this work it is possible to create real data sets and load
them to spatio-temporal databases. To our knowledge, this work is a first step towards the
development of efficient tools for the acquisition of spatio-temporal data in moving objects
databases. Using this data sets it is possible to better test and to improve the quality of the
existing and future spatio-temporal extensions. We also present some tools to evaluate the
quality of the generated moving objects.

Since the technologies used during the development of this project are widely known it
makes the work simpler to reuse and improve in the future, proving a basis to the development
of tools for spatio-temporal data acquisition in real-world applications.

This work also shows that is possible to implement morphing algorithms to solve some of
the more complex operations in a spatio-temporal extension.

Part of the work presented in this dissertation has been accepted for presentation and
publication at GEOProcessing 2013: Lúıs Paulo, José Moreira, Paulo Dias. Morphing Tech-
niques in Spatio-temporal Databases. In proceeding of the Fifth International Conference on
Advanced Geographic Information Systems, Applications, and Services, February 2013. (To
appear). With this publication we hope that some improvements and applications of this
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work appear in the future.

5.2 Future Work

In the development process of this work we can across a series of new issues and challenges.
Most of these issues were solved and the solution to them is presented in this thesis. We
consider two issues that are subject to improvements in the future, a better solution to the
vertex path problem and an algorithm to “connect”the MPoints of the MRegionUnits
generated by the morphing algorithm. To the first issue some solutions were presented in
Section 2.2, namely in [5], [6] and [7]. We suggest the implementation of the method proposed
in [6], since in creates a skeleton of the polygon, it retains the general shape of the polygon
better than the other methods. The method can also calculate the vertex path for non convex
shapes, making it a more robust algorithm.
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