
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2013

Daniel Belém de
Almeida Duarte

Implementação de Serviços de Segurança para
Comunicações Veiculares

Implementation of Security Services for Vehicular
Communications

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2013

Daniel Belém de
Almeida Duarte

Implementação de Serviços de Segurança para
Comunicações Veiculares

Implementation of Security Services for Vehicular
Communications

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Eletrónica e Telecomunicações, realizada sob a orientação cient́ıfica do Pro-
fessor Doutor Arnaldo Silva Rodrigues de Oliveira, Professor Auxiliar do De-
partamento de Eletrónica, Telecomunicações e Informática da Universidade
de Aveiro e do Professor Doutor Joaquim Castro Ferreira, Professor Adjunto
na Escola Superior de Tecnologia e Gestão de Águeda da Universidade de
Aveiro.

o júri / the jury

presidente / president Professor Doutor Alexandre Manuel Moutela Nunes da Mota
Professor Associado, Universidade de Aveiro

vogais / examiners committee Professor Doutor Luis Miguel Pinho de Almeida
Professor Associado do Departamento de Engenharia Eletrotécnica e de Computa-

dores da Faculdade de Engenharia da Universidade do Porto

Professor Doutor Arnaldo Silva Rodrigues de Oliveira
Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática

da Universidade de Aveiro (orientador)

Professor Doutor Joaquim Castro Ferreira
Professor Adjunto na Escola Superior de Tecnologia e Gestão de Águeda da Uni-

versidade de Aveiro (co-orientador)

agradecimentos /
acknowledgements

É com muito gosto que agradeço aos meus orientadores, Arnaldo Oliveira
e Joaquim Ferreira, pela proposta de dissertação e ajuda ao longo deste
trabalho.

Um especial agradecimento à minha faḿılia em particular aos meus pais e
ao meu irmão por todo o apoio e motivação ao longo da minha formação
académica.

Agradeço também à Ana por me apoiar nos meus piores momentos e por
me ter dado força durante esta caminhada.

Quero também agradecer a todos os meus amigos que me proporcionaram
bons momentos ao longo do meu percurso académico. Às pessoas do labo-
ratório de Radio Frequência pelo bom ambiente proporcionado ao longo do
meu trabalho.

Palavras-chave Segurança, Algoritmos de Segurança, ECDSA, IEEE 1609.2, Comunicações
Veiculares.

Resumo Ao longo dos últimos anos tem existido uma enorme evolução nas redes
veiculares com o objectivo de desenvolver protocolos e protótipos que sat-
isfaçam os requisitos do sistema de transporte inteligente. Uma das normas
desenvolvidas é a norma IEEE 802.11p que define a camada f́ısica para a
criação de uma plataforma que permita a formação de uma rede veicular.
A VANET (Vehicular Ad-Hoc Network) é uma rede criada pelos vários el-
ementos da estrada, como carros e plataformas de prestação de serviços
encontradas ao longo da estrada. Estas redes são de elevada importância,
permitindo fornecer vários tipos de serviços: proporcionar maior segurança
aos condutores e ocupantes reduzindo o número de acidentes; aumentar a
eficiência rodoviária reduzindo o impacto no ambiente; proporcionar serviços
de navegação e entretenimento para os seus ocupantes.

O potencial destas redes é enorme, mas exige requisitos de segurança e
anonimato de forma a não serem adulteradas por atacantes que pretendam
tirar partido destas. Deste modo, estudos mais recentes têm dado um maior
relevo às camadas superiores da pilha protocolar, nomeadamente ao estudo
do impacto da segurança nestas redes.

Neste trabalho propõe-se criar uma arquitetura e a analisar o impacto que os
serviços de segurança têm quando adicionados a uma rede veicular. Deste
modo o Standard IEEE 1609.2 aparece como forma de colmatar as falhas
de segurança que possam existir numa rede veicular.

Foi efetuada a implementação de serviços de segurança com base no Stan-
dard IEEE 1609.2 D17 Draft Standard implementando os vários algoritmos
criptográficos espećıficos assim como os protocolos para gerir a troca de
mensagens seguras na rede. Esta implementação foi desenvolvida em soft-
ware com a ajuda da livraria OpenSSL para implementação dos algoritmos
de segurança. O algoritmo criptográfico ECDSA que garante autenticação
de mensagens é mantatório para todas as mensagens trocadas tendo sido
este o foco da implementação.

De modo a ser posśıvel testar a implementação num ambiente real, foi
efetuada a integração do sistema com outros módulos tais como a geração
de mensagens e o protocolo de transporte WSMP.

O objetivo desta dissertação é avaliar o desempenho do sistema e o “over-
head” causado na rede quando os serviços de segurança são adicionados a
uma rede veicular. Como On Boad Unit (OBU) foi considerado o uso de um
Raspberry-Pi, concluindo que uma implementação puramente em software
não é viável conseguindo apenas atingir o número máximo de 40 verificações
de assinaturas por segundo usando o algoritmo criptográfico ECDSA.

Keywords Security, Cryptography Algorithms, ECDSA, IEEE 1609.2, Vehicular Com-
munications.

Abstract Over the last few years there has been a considerable development in the
field of vehicular communications (VC) in order to develop standards and
prototypes that satisfy the requirements of the Intelligent Transportation
System (ITS). One of these standards is the IEEE 802.11p that defines the
physical layers to create a platform for vehicular communications.

Cars and elements on the road are viewed as wireless routers (nodes), cre-
ating a VANET (Vehicular Ad-Hoc Network), which is part of the ITS. It’s
intention is to provide several services as: a safer environment for drivers
by reducing the number of accidents/injuries; improve traffic congestion
and consequently reduce the impact of cars in the environment; provide
infotainment services.
These networks have promising features to guarantee a high level of safety
between drivers, however they have to work on a secure and anonymous way
since they can be threatened and attacked by malicious sources. Therefore
more recently studies have focused on studying the impact of security on
VC.
In this dissertation it is proposed the creation of an architecture and the
analysis of the impact of security services when they are added to VANET.
This is achieved by using the IEEE 1609.2 Standard to overcome the limi-
tations of security on vehicular communications.

An implementation of the required cryptographic algorithms and protocols
to manage the sharing of secure messages according to the IEEE 1609.2
Standard was developed with the help of the OpenSSL library. The ECDSA
cryptographic algorithm ensures the authentication of all messages, which
is the focus of this dissertation.
In order to achieve an architecture capable of being integrated and tested in
a real scenario, the implemented system was joined with other applications
as the WSMP (WAVE Short Message Protocol) and the generation of CAM
messages. With this integration it was possible to evaluate the overhead
that is caused when the process to sign/verify a digital message is added to
a vehicular communication. For these tests a Raspberry-Pi was used as a On
Board Unit, concluding that a pure software implementation is not feasible,
allowing only a maximum number of 40 signature verifications/second using
the ECDSA cryptographic algorithm.

Contents

Contents i

List of Figures iii

List of Tables v

Acronyms vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Structure . 2

2 Background 5
2.1 Introduction . 5
2.2 Intelligent Transportation System . 5

2.2.1 Network Infrastructure and Nodes . 6
2.2.2 DSRC - Dedicated Short-Range Communication 7

2.3 Vehicular Communication Standards . 8
2.3.1 IEEE WAVE Protocol Stack . 8
2.3.2 ETSI Standards . 11

2.4 Cryptography Algorithms . 12
2.4.1 Symmetric Key Algorithms . 13
2.4.2 Public Key Algorithms . 13
2.4.3 HASH Algorithms . 18
2.4.4 Certificates and Authentication . 19
2.4.5 ECDSA - Elliptic Curve Digital Signature Algorithm 20

2.5 Security in Vehicular Communications . 20
2.5.1 Security Infrastructure . 21
2.5.2 Security Challenges in VANET . 21
2.5.3 Types of Attacks . 22
2.5.4 IEEE 1609.2 Draft Standard . 23
2.5.5 Performance Requirements . 23

Software Implementation Approach . 24

i

Smart Cards Implementation Approach 24
Hardware Implementation Approach 25

2.5.6 Related Work . 25
2.6 Summary . 26

3 IEEE 1609.2 Implementation 27
3.1 Introduction . 27
3.2 Architecture . 27

3.2.1 Required Software Resources . 29
3.2.2 Cryptographic Material . 30
3.2.3 Data Flow . 31

3.3 ECDSA - Implementation . 32
3.3.1 Open-SSL API . 33
3.3.2 Certificates . 36

3.4 Implementation of Secure Protocols . 36
3.5 Summary . 39

4 Integration with WSMP and Facilities Layer 41
4.1 Introduction . 41
4.2 Overview of the Integration Architecture . 42
4.3 Facilities Layer . 43

4.3.1 CAM . 43
4.3.2 DENM . 44

4.4 WSMP Layer . 44
4.5 Interaction between Layers . 45

4.5.1 Facilities Layer - Security Services . 46
4.5.2 Facilities Layer - WSMP . 47

4.6 Experiments and Tests . 47
4.7 Implementation on IT2S Platform . 48
4.8 Summary . 49

5 Experimental Results 51
5.1 Introduction . 51

5.1.1 ECDSA Timing Performance Analysis 51
5.1.2 Integration of CAM, WSMP and Security 54

System Benchmark with random data as payload 54
Results Analysis with CAM messages as payload 55

6 Conclusions and Future Work 59
6.1 Future Work . 60

Bibliography 61

ii

List of Figures

2.1 Vehicle Communication Types. 6
2.2 DSRC worldwide spectrum allocation. 7
2.3 WAVE Protocol Stack . 8
2.4 Wi-Fi and WAVE Characteristics . 9
2.5 WSMP Packet Structure. 10
2.6 IPv6 Packet Header. 10
2.7 ETSI ITS Stack . 11
2.8 Scytale Transposition Cipher . 12
2.9 Symmetric Security Scheme - Encryption of Data 13
2.10 Public-Key Scheme for Encryption. 14
2.11 Public-Key Scheme for Digital Signatures. 14
2.12 WAVE Certificates - Structure and relation between Root and Sub-Ordinate

Certificates . 19

3.1 Security Model. 28
3.2 Cryptographic Engine with the required algorithms. 28
3.3 Overview of the implementation architecture flow. 31
3.4 Overview of the implementation architecture flow. 32
3.5 Callgrind Chart Flow. 33
3.6 1609.2 Secure Packet Structure. 36
3.7 Signature generation and verification protocol. 39

4.1 Communications between vehicles. 41
4.2 Top Level architecture of the modules integration. 42
4.3 Architecture data flow. 43
4.4 DENM Trigger Event List . 44
4.5 WSMP Architecture. 45
4.6 Overview of how modules were integrated with each other. 46
4.7 First approach to the final system. 47
4.8 Second approach to the final system. 48
4.9 IT2S Board Description . 48
4.10 IT2S Target Architecture . 49

5.1 ECDSA timing on Laptop with increasing payload from 10 to 2000 bytes. . . 53
5.2 ECDSA timing on Raspberry-Pi with increasing payload from 10 to 2000 bytes. 53
5.3 Entire system times for Signature and Verification. 55

iii

5.4 Execution times of security model with CAM message as payload. 56
5.5 Signature generation and verification on Raspberry-pi. 57

iv

List of Tables

2.1 Key Strength Comparisons . 15
2.2 Smart Cards Timings . 25

5.1 Hardware comparison between personal laptop and Raspberry-Pi. 52
5.2 Table with mean execution times for ECDSA 224 and 256 for both computers. 54
5.3 Summary of program execution. 55
5.4 Average time for signature and verification with CAM as payload. 56
5.5 Table with sum-up values for the whole system with Raspberry-Pi. 57

v

vi

Acronyms

AES Advanced Encryption Standard

API Application Programming Interface

BSM Basic Safety Message

CA Certificate Authority

CAM Cooperative Awareness Message

CCH Control Channel

DENM Decentralized Environmental Notification Message

DES Data Encryption Standard

DH Diffie–Hellman

DL Discrete Logarithm

DoS Denial of Service

DSA Digital Signature Algorithm

DSL Digital Subscriber Line

DSRC Dedicated Short Range Communications

DSS Digital Signature Standard

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

ECU Electronic Control Unit

ETSI European Telecommunications Standards Institute

FAST FIX Adapted for STreaming

FCC Federal Communications Commission

viii Glossary

FIPS Federal Information Processing Standard

FPGA Field-Programmable Gate Array

GPS Global Positioning System

HSM Hardware Security Model

I2V Infrastructure to Vehicle

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPv6 Internet Protocol version 6

ITS Intelligent Transportation System

MAC Medium Access Control

NIST National Institute of Standards and Technology

OBD On Board Diagnostics

OBU On Board Unit

OFDM Orthogonal Frequency-Division Multiplexing

OSI Open Systems Interconnection

PHY Physical Layer

PKI Public-Key Infrastructure

PSID Provider Service IDentifier

RF Radio Frequency

RSI Road Side Infrastructure

RSU Road Side Unit

SAE Society of Automotive Engineers

SCH Service Channel

SeVeCom Secure Vehicular Communication

SHA Secure Hash Algorithm

USB Universal Serial Bus

Glossary ix

V2I Vehicle to Infrastructure

V2R Vehicle to Road Side

V2V Vehicle to Vehicle

VANET Vehicular Ad-Hoc Network

VC Vehicular Communications

WAV Waveform Audio File Format

WAVE Wireless Access in Vehicular Environments

WME Wave Management Entity

WSA WAVE Service Advertisement

WSM WAVE Short Message

WSMP WAVE Short Message Protocol

x Glossary

Chapter 1

Introduction

1.1 Motivation

Nowadays the number of cars and people travelling is increasing and the safety among
travellers is a constant concern for everyone. According to [1] in 2010 the number of vehicles
in the world has reached the number of 1.015 billion, with an approximate ratio of 1:7 cars
per person.

In the USA the number of accidents per year is about 5.25 million, causing many deaths
and injuries on the drivers. This number is a big concern for the authorities and it is expected
to rise in the next years so measures must be taken in order to reduce and improve the safety
of drivers.

The Federal Communications Commission (FCC) [2] in the USA allocated a 75 MHz of
spectrum in the 5.9GHz band to be used in Intelligent Transportation System (ITS). This is
also referred as the 5.9-Dedicated Short Range Communications (DSRC) and its main goal
is to provide vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication.
So, services and applications should be developed to help prevent accidents and manage
traffic flow. A fast exchange of a special type of messages is shared among vehicles and
the infrastructure to provide safety information to the participants in the communication.
Therefore a group of standards was defined both in the USA and in Europe to define the DSRC
for vehicular communications, named Wireless Access in Vehicular Environments (WAVE)
and ETSI-ITS respectively.

The IEEE 1609 Working Group defines a set of standards for Wireless Access in Vehicular
Environments (WAVE). This family of standards define an architecture, a set of interfaces and
services that all together enable secure Vehicle to Vehicle (V2V) and Vehicle to Infrastructure
(V2I) wireless communications. The IEEE 1609.2 is the standard addressing security services
that will prevent attacks and will ensure that the communications are made securely between
nodes of the network.

Vehicular Ad-Hoc Network (VANET) are very sensitive to security threats because the
more popular a system becomes, the higher the number of attacks and vulnerabilities. These
networks will be analysed by malicious people whose intent is to take advantage: from causing
the chaos on the road, by intentionally redirecting traffic flow, to false drivers alerts that may
cause accidents.

2 Chapter 1. Introduction

Therefore, the objective of this dissertation is to analyse the latest version available at
the time, the IEEE 1609.2 D17 Draft Standard and to develop an architecture that allows a
secure communication on a vehicular environment.

1.2 Objectives

Security is a major problem in every common and widely used system and VANET are
no exception. For the specific case of vehicular communications, the IEEE 1609.2 standard
comes to define the cryptography algorithms and services that should be used in order to
ensure a secure environment. Also the IEEE 1609.3 standard defining the communication
protocols to use in Vehicular Communications (VC) have an important role in monitoring
traffic patterns and responding to possible attacks. A secure system depends therefore on
much more than just cryptography algorithms, so a group of defined protocols and a well
structured design are also needed [3].

When well defined architecture and secure protocols are used together with the correct
cryptography algorithms, it should allow authentication, anonymity, confidentiality, integrity,
non-repudiation and access control.

For this dissertation the following objectives were defined:

• To study the cryptography algorithms used in vehicular communications;

• To study the requirements in the IEEE 1609.2 D17 draft standard;

• To implement a software version of the secure protocols;

• To assess the system performance;

• To integrate WAVE Short Message Protocol (WSMP), CAM message generation and
security;

1.3 Structure

This dissertation is organized as follows:

Chapter 2 - Background
This chapter starts with an introduction of the ITS by describing the standards and the

architecture model of a vehicular communication system. Then, detailed information is given
on how security is implemented in VANET. Finally the IEEE 1609.2 D17 Draft Standard is
analysed to better understand the architecture and the requirements to propose an imple-
mentation.

Chapter 3 - IEEE 1609.2 Implementation
In this chapter the proposed implementation of the IEEE 1609.2 D17 Draft Standard

is explained in detail. The security model is presented: explaining how the cryptographic
algorithms were implemented and how the secure protocols to correctly sign a message are

1.3. Structure 3

applied and implemented.

Chapter 4 - Integration with WSMP and Facilities Layer
In this chapter the Security Services are inserted into a ”black-box” that contains other

modules as the WSMP and the facilities application (generation of Cooperative Awareness
Message (CAM) message). The implementation of this black box was done in order to achieve
a software that works as desired. A description of how this integration was done is also shown.

Chapter 5 - Experimental results
In this chapter a discuss of the results obtained from the implementation of the security

services is presented.
Laboratory experiments of the integration with the WSMP and the facilities application

are also performed to benchmark the whole system.

Chapter 6 - Conclusions and Future Work
A summary of the dissertation is done and future work is proposed.

4 Chapter 1. Introduction

Chapter 2

Background

2.1 Introduction

This dissertation is part of two research projects HEADWAY-Highway Environment AD-
vanced WArning sYstem, funded by Brisa, a motorway operator, and ICSI - Intelligent Co-
operative Sensing for Improved traffic efficiency, an FP7 project. These projects have been
developed in the Telecommunications Institute in Aveiro and its main goal is to develop a
FPGA-based softcore implementation of a IEEE 802.11 A6 / ETSI ITS G5 controller, the
IT2S platform. This work is integrated in these projects but focusing on an architecture ca-
pable of securing the communications on Vehicular Communications (VC) instead of working
on the lower layers.

Therefore this chapter gives an introduction to the Intelligent Transportation System
(ITS) explaining all the required standards and how security is addressed. The specific case
of security in VC is analysed detailing its infrastructure, challenges, types of attacks and
requirements. Theory behind the necessary cryptography algorithms in VC is also presented
to better understand its context. Also some related work and projects addressing security on
VC are referred.

2.2 Intelligent Transportation System

Vehicular networks, most of the times named as Vehicular Ad-Hoc Network (VANET),
are a part of the ITS that use moving cars and the infrastructure as nodes to create a network.
Cars are viewed as a wireless router allowing all cars within a radius of approximately 1Km to
communicate with each other. The aim of the ITS is to provide useful information to its users
by creating a safer environment and by improving traffic flow. To support these services the
VANET networks were designed to work on vehicular environments allowing communications
between cars even when they are travelling at high speeds.

According to [4] ”In the following years it is expected a significant increase in vehicular
Dedicated Short Range Communications (DSRC) supporting safety, comfort and infotainment
services. However, to be widely adopted and used, vehicular DSRC protocols and technologies
must allow Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I) and Infrastructure to

6 Chapter 2. Background

Vehicle (I2V) communications in very heterogeneous vehicular scenarios and real-time features
to effectively support safety critical services”.

2.2.1 Network Infrastructure and Nodes

The network infrastructure of a vehicular network is composed of nodes, which can be an
On Board Unit (OBU) or a Road Side Unit (RSU). These nodes are placed either in each
car(OBU) or on the side of the road (RSU). The communication can be done between OBU
to Road Side Infrastructure (RSI) or from OBU to another OBU, which represents a V2I or
V2V communication respectively. RSU will have a fixed place on the road and its main goal
is to retrieve or spread important information to the OBU nodes as, for example, information
about the road, the weather or the traffic. A backbone connection is associated to the RSU
to get access to the Internet through mobile communication, Digital Subscriber Line (DSL)
or fibre [5].

Figure 2.1: Vehicle Communication Types.

The purpose of VC is to provide safety information by sharing important messages among
cars, allowing the following services:

• Traffic information;

• Traffic management and warnings;

• Reduce the impact of cars in the environment;

• Global Positioning System (GPS) based services;

• Electronic payment;

A network infrastructure like VANET can have several hundred million of nodes all over
the world making it one of the biggest ones.

2.2. Intelligent Transportation System 7

2.2.2 DSRC - Dedicated Short-Range Communication

This technology has been developed since 1995 and the first DSRC standard was released
in 1998 and it is already standardized in the IEEE 802.11p. Its aim is to provide safe and
private communication services between cars and road side units [6].

The DSRC characteristics are[5]:

• Standardized on IEEE 802.11p;

• Address the physical(PHY) and Medium Access Control (MAC) layers;

• 7 licenses channels in 5.9GHz, 10MHz each;

• Data rates from 6 up to 27 Mbps;

• Communications up to 1000m;

• Security using Public Key infrastructure;

• Low latency and time-critical responses (≈ 50ms);

• Technology regulated by the Federal Communications Commission (FCC) and IEEE
Standards;

In USA the DSRC has a frequency range from 5.850 to 5.925 GHz, divided in 7 channels
(10MHz each) starting on channel 172 and ending on channel 184 with a 5Mhz reserved as
guard band. From these 7 channels, one channel is configured as Control Channel (CCH) and
all the other 6 are configured as Service Channel (SCH). High priority messages are carried
by the control channel and all the others are sent through the service channels.

In Europe the allocation is different, having a range of 30 MHz allocated between the
5.875 GHz to 5.90 GHz.

In figure 2.2 the DSRC allocation in different world areas is presented.

Figure 2.2: DSRC worldwide spectrum allocation [7]

8 Chapter 2. Background

2.3 Vehicular Communication Standards

In order to have a vehicular communication system, a set of standards needed to be defined
but different approaches have been taken around the world. Most of the approaches are based
on the American Standard IEEE 802.11p (recently named as 802.11:2012 A6) addressing the
lower layers as the PHY and the MAC Layers of the stack. The main differences in the
approaches are noticed when the higher layers are referred: differences in the application
layer, the shared messages type and the communication protocol.

2.3.1 IEEE WAVE Protocol Stack

The Wireless Access in Vehicular Environments (WAVE) is the American vehicle based
communication group of standards and its protocol stack is composed of multiple parts, from
several Institute of Electrical and Electronics Engineers (IEEE) standard families. The IEEE
802.11p, the IEEE 1609.x family and the Society of Automotive Engineers (SAE) define what
is called the WAVE protocol stack.

In figure 2.3 the WAVE stack is presented. This stack has some key components that are
necessary to allow the WAVE to work correctly: multi-channel operations, networking and
security services and resource manager which are described ahead.

Figure 2.3: WAVE Protocol Stack [8].

IEEE 802.11p
The IEEE 802.11p is an amendment to the well known wireless standard 802.11a/b/g/n

(Wi-Fi). However the modulation adopted is Orthogonal Frequency-Division Multiplexing
(OFDM) on 10-Mhz channels in the 5.9 GHz band which is different from the normal 20-
MHz channels used on the Wi-Fi [2] [8]. The reason for this amendment is because VC have

2.3. Vehicular Communication Standards 9

special needs, requiring low latencies, reduced inter-symbol interference due to the multi-path
propagation and the Doppler shift effect.

In figure 2.4 the differences between Wi-Fi and WAVE are presented.

Figure 2.4: Wi-Fi and WAVE Characteristics [8].

IEEE 1609.1
This standard defines the interfaces, services and packets for the resource manager in

WAVE.

IEEE 1609.2
This is the most advanced automotive standard related with security. Its aim is to secure

all the communications that are performed in a vehicular communication. The standard
defines which security mechanisms should be used and how the packets should be correctly
formatted.

A set of protocols are also needed to correctly process the messages because security
is not only about cryptography mechanisms [3]. A special type of certificates called WAVE-
Certificates are also referred in the standard as a compact certificate type special for vehicular
communications.

IEEE 1609.3
The networking services are defined by this standard as an additional communication

protocol to the Internet Protocol version 6 (IPv6), a non-ip protocol specific for WAVE
communications. It is called as the WAVE Short Message Protocol (WSMP), which is able
to operate over the Service and Communication channels (SCH,CCH).

Vehicular communications main requirements are low latency on communications as cars
are travelling very fast. So, the purpose of developing such communication protocol was to

10 Chapter 2. Background

take down some of the overhead that was imposed by an internet protocol.
The IPv6 packet takes an overhead of 40 bytes which is a large packet compared with

only 11 bytes that the WSMP carries [9] [10].
In the figures 2.5 and 2.6 the size of each field and the differences of both packet headers

are shown.

Figure 2.5: WSMP Packet Structure.

• WAVE Short Message (WSM) version - Defines the version of the implemented
WSMP standard.

• Security Type - Identifies if the packet is unsecured, signed or encrypted.

• Channel Number, Data Rate, TX Power - Allow control of the radio parameters.

• Provider Service IDentifier (PSID) - Works as and UDP and TCP port to identify
the services that are being transmitted.

• Length - Indicates the number of bytes that the WSM data carries.

• WSM Data - The Message to be transmitted.

Figure 2.6: IPv6 Packet Header.

2.3. Vehicular Communication Standards 11

IEEE 1609.4
This standard provides frequency band coordination and management as e.g. the multi-

channel operation in the DSRC.

SAE J2735
This standard is defined by the SAE, which defines parts of the higher layers of the WAVE

Open Systems Interconnection (OSI) model. It defines the message structure of the messages
shared among elements on the road whose purpose is to share important information about
the traffic or the state of the vehicles.

According to Hartenstein et all [5] one of the most important message is the Basic Safety
Message (BSM), which aim is to provide vital information about the vehicle: velocity, position,
direction, etc. These messages are shared among all vehicles on the road and it’s the way to
get information about the position of every car. This information can therefore be used to
prevent, for example, accidents by providing vital information to the driver.

2.3.2 ETSI Standards

The European Telecommunications Standards Institute (ETSI) defines a European stack
for VC in a similar way to the WAVE Standards in the USA. Some of the standards defined
by the ETSI can be similar to the USA standards, while others have big differences.

In figure 2.7 the layers which compose the ETSI stack are presented with a small descrip-
tion of each.

Figure 2.7: ETSI ITS Stack [11]

12 Chapter 2. Background

Access Layer
This layer defines the PHY and MAC layers along with the interfaces to other layers on

the stack.

Networking & Transport Layer
This layer is responsible for the management of the network and the data flow. This layer

is capable of supporting multiple network protocols as GeoNetworking, CALM FAST, IPv6
or other protocols.

Facilities layer
The facilities layer is responsible for the data retrieval from the vehicle or from the net-

work and provides it to the application layer. It is also responsible for the acquisition of data
collected from the car sensors and generates adequate messages with the retrieved information.

Security
The security layer is responsible for providing adequate security to all the layers in the

stack. As the ETSI Security Standard is not still well defined and documented it was decided
to implement and base this study on the American IEEE 1609.2 D17 Draft Standard.

Management
This layer is responsible for the management of all the layers in the ETSI stack.

2.4 Cryptography Algorithms

Cryptography is part of our daily life (using the Internet, playing a DVD, etc) and we
barely don’t notice it. With the increase of technology and the constant connection to the
internet, the privacy and security worries everyone and measures have to be taken to protect
personal information.

The first use of cryptography was made by the ancient Greeks who used a scytale trans-
position cipher - a thin cylinder made out of wood (figure 2.8). The Spartan army used
this cryptography method to send and receive sensitive messages. The way this worked was
by wrapping around the stick with a paper-strip and write the message, this way when the
paper-strip was removed, the message seamed to be only scrambled letters [12].

Figure 2.8: Scytale Transposition Cipher [13]

2.4. Cryptography Algorithms 13

Nowadays these algorithms are no longer used because computers can easily crack them.
Computer based cryptography is now used to allow present and future security.

Computer cryptography schemes generally belong to one of the following categories:

• Symmetric key algorithms

• Public Key algorithms

2.4.1 Symmetric Key Algorithms

In this type of algorithms, both sides need to share de same key, otherwise the commu-
nication cannot be performed. This means that a previous knowledge about the participants
(computers) in the communication must be known. A secret key is given to each of the
participants so that they are able to encrypt and decrypt messages.

Figure 2.9: Symmetric Security Scheme - Encryption of Data [14]

The first symmetric encryption algorithm was Data Encryption Standard (DES) which
used a 56-bit key [15]. As computers have become faster, nowadays this standard is no longer
used and the adopted standard is now Advanced Encryption Standard (AES), using 128, 192
or 256-bit keys, which is estimated to fully satisfy the security requirements for the upcoming
years [16].

2.4.2 Public Key Algorithms

The Public Key algorithms, also named as asymmetric algorithms, make use of a combi-
nation of two keys. A private key, kept in secret for the user, and a public key to be spread
for all the users in the communication. The private and public key (key pair) are related but
in a way that given the public key it is computationally infeasible to compute the private key.
To better understand the concept of this algorithms let us consider the following example:

Consider two entities, Alice and Bob who are going to communicate. Both of them gen-
erate a key pair, private and public key and exchange the public key. From this point of the
communication, if Alice wants to send a secret message to Bob, she will encrypt the message
with Bob’s public key and if Bob wants to communicate with Alice he will use Alice’s public
key to cipher the message. This way the recipient of the ciphered data will be able to decrypt
data using its own private key [17].

14 Chapter 2. Background

Figure 2.10: Public-Key Scheme for Encryption.

Public Key algorithms may be used to encrypt messages (e.g.RSA algorithm) or to sign
a message in order to provide authenticity (Digital Signature Algorithms).
The use of Digital Signatures is a way to guarantee that a certain message came from the
expected person. In this case the public key is shared with everyone and a message is signed
with its corresponding private key. This way everyone who has the public key is able to
verify the message, proving that the sender had access to the private key and is probably the
expected person.

Figure 2.11: Public-Key Scheme for Digital Signatures.

In figure 2.10 and 2.11 both public key schemes for encryption and for digital signature
are described.

2.4. Cryptography Algorithms 15

The security on public key algorithms is based on some computation problems that are
listed bellow [5]:

• The integer factorization problem, when given a positive integer it is computationally
hard to find its prime factorization.

• The discrete logarithm problem, when given g and h it is hard to find x which is the
solution for the following equation: gx = h.

• Based on elliptic curves algebraic problems.

These mathematical problems are used in the generation of private and public key, guar-
anteeing that it is computationally infeasible to derive the private key from the public key.

The main differences in these 3 types of computational problems is that each of them
needs a specific key size that ensures the infeasibility of the problem to derive one key from
the other. For example, a RSA algorithm that uses the integer factorization problem requires
a 1024-bit key length size to provide the same level of security as an Elliptic Curve Cryptog-
raphy (ECC) with 160-bit key length. In table 2.1 a comparison of key sizes to provide the
same level of security between RSA and ECC is presented.

Key Strength Comparisons

RSA(bits) ECC(bits)

1024 160

2048 282

4096 409

Table 2.1: Key Strength Comparisons [18].

RSA is more common than ECC and there are several implementations of it, although
the length of the key size makes it unsuitable for the vehicular communication because of the
overhead caused by it. This way the ECC is referred in the IEEE 1609.2 Standard as the
choice for WAVE.

RSA

The RSA algorithm (named after its inventors Rivest, Shamir and Adleman) was pro-
posed in 1978 and it is one of the most versatile public-key algorithms. It is suitable for
encryption/decryption, signing/verification and for key establishment. Its security is based
on the difficulty of factoring large integers, and the recommended RSA key length should be
at least 1024 bits long to provide adequate security [19].

16 Chapter 2. Background

DH - Diffie–Hellman

The Diffie–Hellman (DH) algorithm is a specific method of exchanging cryptographic keys.
Each of the peers uses its own private key and the public key of the other peer to generate
a symmetric key that no third-party can use. The security of this algorithm is based on the
complexity of computing logarithms in a finite field. The recommended length of the key to
be used is at least 1024 bits long to provide adequate security. [19]

DSA - Digital Signature Algorithm

The Digital Signature Algorithm (DSA) is a Discrete Logarithm (DL) Scheme and it was
proposed by U.S. National Institute of Standards and Technology (NIST) and was specified by
the U.S. Government Federal Information Processing Standard (FIPS 186) called the Digital
Signature Standard (DSS) [20].

The DSA was exclusively designed for signing/verification and also for data integrity.
The security of this algorithm is based on the complexity of computing logarithms in a

finite field. The recommended length of the key to be used is at least 1024 bits long to provide
adequate security [19].

Key generation

In the DL systems the key pair(y, x), public key (y) and private key(x) are associated with
3 domain parameters(p, q, g). These domain parameters are a prime p, q is a prime divisor of
p − 1 and g ∈ [1, p − 1] has order q (t = q is the smallest positive integer satisfying gt ≡ 1
(mod p)).

A private and a public key are derived from this parameters, the private key(x) is an
integer selected randomly that satisfies the equation x ∈ R : [1, q − 1] and the public key (y)
is obtained by y = gx (mod p).

The DL systems are very powerful because of the mathematical problem in determining
the private key (x) given the domain parameter (p, q, g) and the public key (y) [17].

Algorithm 1 DL Domain Parameters

Require: Security Parameters l, t

1: Select a t-bit prime q and an l-bit prime p such that q divides p-1.

2: Select an element g of order q.

3: Select arbitrary h ∈ [1, p - 1] and compute g = h(p−1)/q mod p.

4: if g = 1 then

5: go to step 3.

6: else

7: Return parameters (p, q, g).

8: end if

2.4. Cryptography Algorithms 17

Algorithm 2 DL Key Pair Generation

Require: Domain Parameters (p, q, g).

1: Select x ∈ R[1, q − 1]

2: Compute y = gx mod p.

3: Return key pair (y, x).

Signature

In the DSA an entity with the private key x signs a message and its identity can be verified
by any other entity who has access to the public key y. The algorithm is described bellow
where H is the Hash function used to generate the message digest of the input message.

Algorithm 3 DSA Signature Generation

Require: Domain Parameters (p, q, g), private key x, message m.

1: Select k ∈ R[1, q − 1]

2: Compute r = (gk mod p) mod q.

3: if r = 0 then

4: Go to step 2.

5: else

6: Compute s = k−1 (H(m) + xr) mod q.

7: end if

8: if s = 0 then

9: Go to step 2.

10: else

11: Return Signature (r, s).

12: end if

18 Chapter 2. Background

Algorithm 4 DSA Signature Verification

Require: Domain Parameters (p, q, g), public key y, message m, signature (r, s).

1: Verify if r, s are integers in the interval [1, q-1].

2: If any parameters verification fails the Rejected Signature

3: Compute h = H(m).

4: Compute w = s−1 mod q.

5: Compute u1 = hw mod q.

6: Compute u2 = rw mod q.

7: Compute r′ = (gu1yu2 mod p) mod q.

8: if r = r′ then

9: Return Valid Signature.

10: else

11: Return Rejected Signature.

12: end if

2.4.3 HASH Algorithms

The HASH Algorithms have the ability to transform big amounts of data into a fixed
bit array block. This type of functions can be seen as a fingerprint of a certain information.
There are several HASH functions as SHA, MD5 or MD2, but the one required for this work
is the Secure Hash Algorithm (SHA) [21].

SHA-1

The SHA-1 is the original version of the SHA algorithm. It was especially design to be
used with the DSA, but it can be used with any other public-key algorithm. Its design is very
similar to other hash functions as MD2 or MD5. This function is most of the times referred
as SHA-1 or SHA-160, because the size of the fingerprint is 160-bits. The number of bits
used in this functions is expected to provide adequate security for the following years[22].

SHA-256/SHA-224

The SHA-256 is very similar to the SHA-1 and the main difference is on the output size
of the fingerprint. The name reference to 256 is the size of the output bit array which in this
case is 256 bit long. The DSA algorithms in this standard required a 224 and 256 bit hash
algorithms. The SHA-224 can be obtained the same way as SHA-256 but the final value is
truncated to 224 bits [22].

2.4. Cryptography Algorithms 19

2.4.4 Certificates and Authentication

A certificate is a way to identify an entity, to ensure that a certain public-key is indeed from
the expected person. Certificates are used to fill the gap we had when sharing a public-key
which everyone could use but nobody really knew who the person really sharing it was.

For example, if we want to get a driving license (certificate), some tests are made to make
sure we are able to drive. The authority that verifies our identity and ensures our ability to
drive is a Certificate Authority (CA). A CA is an entity which verifies identities and issues
certificates. These certificates have a relation with the public key and the name of the entity
who requests the certificate. Certificates help prevent attacks from people who create fake
public key and try to identify themselves as the real sender, this way only the public key that
was certified by the certificate will work with the corresponding private key [14].

A digital certificate is composed of 3 parts, the identification of the user, the associated
public key and the signature.

A special certificate for vehicular communications is needed in order to have small cer-
tificates that can be sent over the network without causing a significant overhead in the
network. In figure 2.12 the specific fields of how a WAVE-Certificate should look like and also
the relation between a Root and a Sub-Ordinate Certificate is shown.

Figure 2.12: WAVE Certificates - Structure and relation between Root and Sub-Ordinate

Certificates [21].

Authentication
Authentication is the core security requirement in a vehicular network, so it is required that

all applications use authentication in their messages. It is also mandatory that each message
carries a location and time stamp to avoid replay attacks. Authentication is therefore the
way to confirm the identity of an entity by means of digital signatures. The Elliptic Curve
Digital Signature Algorithm (ECDSA) algorithm is the chosen algorithm by the IEEE 1609.2
Standard as the algorithm to provide digital sigantures on VC. In the the next section the

20 Chapter 2. Background

ECDSA algorithm is presented.

2.4.5 ECDSA - Elliptic Curve Digital Signature Algorithm

The ECDSA is used to create a digital signature in order to allow authenticity. A digital
signature can be seen as a normal handwritten signature that we can recognize but we can
not forge. The ECDSA is a digital signature algorithm that works over an Elliptic Curve.
This elliptic curve is a function in which points on this curve will be used to create the
signature and consequently verify it. This is all about mathematics, so private and public
keys are points on this curve which when used on a certain equation can generate or verify a
signature.

Without getting into deeper mathematics, basically two random points on the curve are
generated, one is the considered ”point of origin” and the other one is the private key. When
the private key is used with the ”point of origin” in a special equation it gives another point on
the curve which is the public key. At this point we have our key pair generated and when we
want to sign a message we use the private key and the hash of the data in a special equation
that will generate the signature. This signature is composed of two parts, named by R and
S. In order to verify a signature we use the public key and one part of the signature (S) with
a special equation. In case of success it will result on the same value as R.

Summing up, we use a private key along with data to generate a signature (R and S) and
if the mathematical equation used with the public key and S results in R, the signature is
verified.

To illustrate how this algorithm works, two users are going to be considered, commonly
named by Alice and Bob. Alice is going to communicate with Bob and so Alice generates a
key-pair as in algorithm 2, which is a generation of a private and a public key. Alice then
performs the signature generation process (algorithm 3) and then she publishes her public
key. Then Bob, who is going to receive Alice message, can verify the signature on the message
by first getting Alice’s public key and then by performing the signature verification process
(algorithm 4).

2.5 Security in Vehicular Communications

The automotive industry is in constant development and the main evolution that cars
have suffered is related with information technology, in which safety applications will have
an important role in the upcoming years. These applications will take an important role
in creating a safer environment for all drivers, guaranteeing that potential threats that may
harm the driver are detected in advance and some action may be taken to prevent it. Security
comes on top of these services to guarantee that there are no malicious attacks nor any type
of manipulation of these systems.

Security objectives and solutions are very well defined for computer based architecture in
general but for vehicular environments the approach needs to be different [5]:

• The computational performance is quite small in the embedded computers that the
vehicles will carry. These low-cost processors may not have enough memory and per-
formance to allow the cryptographic operations that may grant security.

2.5. Security in Vehicular Communications 21

• A car has a life-time of at least 10 years, and the upgrade of the secure system or the
OBU can not be granted to be upgraded in this time. It is important that the OBU
works and fulfils all the security requirements for the car life-time.

• An attacker can exploit a remote or a physical intrusion depending on the type of
access he has. If an attacker has physical access to a vehicle, he can have access to the
Electronic Control Unit (ECU) of the car as well and take control of it.

Considering the tremendous benefits expected from vehicular communications and the
number of vehicles around the world, it is also clear that the vehicular communications will
become the most relevant ad-hoc networks. The more used a system becomes, the higher
will be the number of threats that will arise. So it is essential to provide an efficient security
system to prevent these threats. Some of the threats over VANET are described bellow as
depending on the target of the attacker and how the attacker has access to the vehicle.

There are two different ways of gaining access to the vehicle: by physical access or by
wireless methods.

In case of physical access to the vehicle, a mechanic or a bad-intentional person can plug
a malicious component into the On Board Diagnostics (OBD) and make changes on the car
software that might create malfunction of the system. Hacking devices like these can be used
only once to perform the desired changes or be permanently attached to the car [23].

Wireless communication in cars can also be a threat and a way-in into the cars’ system.
Nowadays each car is equipped with more than one wireless communication device as

DSRC, Bluetooth or any other RF communication that can compromise the security of a car
[23]. A CD player can also be a threat and it has been proved by Checkoway an his colleges in
[24] that a specific song can affect the security of a car. The exploit here is when a firmware
update can be made by special information on a CD as for example playing a specific modified
song in Waveform Audio File Format (WAV).

2.5.1 Security Infrastructure

When security is needed in a certain place, a set of secure protocols are used to provide
that the environment is securely safe. A secure infrastructure is thereby defined to provide the
services and secure protocols that will grant a secure scenario for vehicular communication. A
very well defined secure design of the infrastructure is needed, from cryptography algorithms
to secure protocols. An overview of secure algorithms schemes and how they work was already
introduced in section 2.4.

2.5.2 Security Challenges in VANET

VANET is a special and new type of networks and it will rise security threats and new
requirements that are different from the ones we are used to deal with in a regular computer
network. Some of these challenges are described below:

The risk attached to a Vehicular Network is a lot higher than in a normal computer when
that is compromised. The hacking for a OBU can cause devastating physical security prob-
lems while in a computer the worst that can happen is a hard drive to get corrupted. It is
therefore said that the safety applications will never take control of the vehicle, but they will

22 Chapter 2. Background

only provide vital information to the user [5].

VANET allows the creation of multiple services with financial profit to provide new maps,
location based services, road tolling, digital infotainment and a lot more. Therefore the
communications need to be secured in all types of data. In a home computer users do buy
anti-virus and firewalls to prevent attacks, but in a vehicular environment drivers will not
have to be worried if they do have anti-virus or if it has the last update. These processes then
need to be somehow automatic to be completely transparent to the user.

Cars will be travelling from one place to another and the tracking of those should not be
possible by anyone unless it’s required by an authorized authority as the police. This way
the driver’s information as time, location, payments or any other should be kept in secret
in a way that this information cannot be linked to a car and be traced. Privacy is then a
big concern for VANET because police could for example issue speeding tickets based on the
velocity that the beacon transmits.

2.5.3 Types of Attacks

The number of attackers that will try to take some advantage from these networks is likely
to be significant, from crackers to hackers/academic hackers, they will be constantly trying
to explore the network at theirs faults. Multiple types of attacks are possible: eavesdropping,
message content modification and physical attacks. The main characteristics of the different
types of attacks that may arise will be detailed bellow: [5]

• Eavesdropping: This is defined as the act of secretly listening to others’ conversations,
in this case scenario, an eavesdropper will collect several messages and will analyse them
to gather the important information in his profit.

• Message manipulation: An attacker will inject in the network messages that were
previously modified by him in order to transmit false information. This can be used
to transmit false location and all other types of alerts (e.g as the occurrence of a fake
accident).

• Denial of Service (DoS): The DoS attack is defined as the attempt to make a machine
or network unavailable to its users. The way this can be achieved in VANET is by
physically jamming the used frequencies or by injecting too many messages at the same
time in a way that it will flood the communication channel. An attack like this is not
considered a top risk attack because, in the worst case scenario, the level of security on
the road will be the same as the one existing today.

• Replay Attacks: Replay attacks are based on the re-injection of a message in the
network, a captured message can therefore be injected later in time or in a different
location.

• Physical Attacks: These attacks are made when the attacker has access to the hard-
ware, the purpose might be to gather secret keys and identification values that were
introduced in manufacture time by the producers.

2.5. Security in Vehicular Communications 23

The use of cryptography algorithms and protocols as defined in the IEEE 1609.2 can
be applied to prevent some of these types of attacks as the replay, eavesdropping or
message manipulation. Regarding the physical attacks they can only be secured if
secure hardware is produced to protect secret keys from being extracted.

2.5.4 IEEE 1609.2 Draft Standard

The IEEE 1609.2 D17 Draft Standard is the security standard in which the implementation
of the security services will be based. The choice of using this standard aside from the
European Security standard was because this is the most advanced automotive standard
related with security. Its aim is to secure all the communications that are performed in a
vehicular communication, defining which security mechanisms should be used and how the
packets should be correctly formatted.

The required algorithms that the standard forces to be used in order to provide ade-
quate security are the public key algorithms based on elliptic curves. The only symmetric
algorithm that the standard refers is the AES-128 to be used with the ECIES public key
algorithm. Therefore the standard leads to the following specification in terms of security
algorithms:

• Digital Signatures using ECC over prime fields, ECDSA with NIST Fp curves.

• Encryption using ECC, ECIES.

• Hash Algorithms - SHA-1 and SHA-256.

• Symmetric scheme AES.

The ECDSA should support a 224-bit and a 256-bit implementation, the ECIES should
work over a 256-bit key and the AES should work over a 128-bit key.

The standard also refers the creation of specific certificates called WAVE-Certificates
which are more compact for performance reasons.

Although this is the most recent standard for security in VC it is very poor regarding
its content, being still in Draft Version. A lot of topics are still open, by not specifying how
certificates should be shared among elements on the road and what are the secure protocols
to correctly use with the ECIES and AES algorithms. The main focus of this Standard is to
allow authenticity by using the ECDSA algorithm.

2.5.5 Performance Requirements

In Vehicular Communications one of the crucial aspects towards deployment are the se-
curity requirements. The cost to equip a car with the state-of-art computer is too high so a
reasonable alternative is to use embedded processors. Vehicular communications need to be
secured so the security attached to these communications do not cause a significant overhead.

In VC cars are constantly interacting/checking each other (beaconing) for example to send
information about their position or the weather conditions. These beacons are commonly sent
at a rate between 1 and 10 per second which will cause some overhead in the network. Each

24 Chapter 2. Background

of these beacons carry safety information which needs to be signed (secured) by means of
digital signatures and consequently verified by the receiver, for example a car may need to
verify each 100ms all the beacons that come from nearby cars.

In DSA, the signature verification is the most consuming part of this security mechanisms.
The sender has to generate one signature per message, and the receiver has to verify two
signatures (message and certificate).

In a real case scenario if we want to estimate the number of signatures verification we must
consider the worst case situation, for example a large highway during a traffic congestion. In
[25] they state that ”Assuming a neighbourhood density of 200 vehicles and beaconing rates
between 1 and 10 per second, each vehicle needs to generate between 1 and 10 signatures per
second and needs to verify between 400 and 4000 signatures per second.” In this scenario and
considering beaconing each 100ms we can reach up to 4000 signatures per second so summing
up, the performance requirements are really high, there is no off-the-shelf cryptographic co-
processor capable of such a signature verification load [25].

Some different approaches can be considered to achieve the security requirements:

• A fully software solution.

• Hardware solution.

• Smart Cards.

Software Implementation Approach

A OBU is equipped with an embedded processor, but the performance constrains are very
high so even a fast processor as a Core i5 is not fast enough. Cryptography operations are
performed over 224 or 256 bit operations which makes computation hard.

Benchmark results from the ECDSA with NIST P curves are scarce, but some results
from a research found in [25] states that with a Intel Core i5 520M@2.4GHz achieved the
following signature generation and signature verification results respectively: 250/s and 192/s.
As referred before even with a core i5 processor, it is not possible to perform the extreme
number of 4000 signature/second [25].

Smart Cards Implementation Approach

Smart Cards are a good alternative to a pure software implementation because they
have a dedicated arithmetic unit for cryptography operations. Also they are designed to be
tamper safe, being safer against physical attacks. Smart cards are designed to have dedicated
long arithmetic cryptography modules that operate with words of 1408 or even more (eg.
Crypto@1408 Smart Card). In table 2.2 it is shown a comparison of execution times of
ECDSA with 256 bit length between two smart cards. It is important to notice that the
clock frequency used in the smart cards (SLE88@66 MHz and SLE78@33 MHz) are very low
compared with the i5 Core processor used in the software implementation [25].

Smart cards are not designed for full optimisation but mainly to have low power consump-
tion, area and costs.

2.5. Security in Vehicular Communications 25

SLE88@66 MHz SLE78@33 MHz

Signature Generation Time in ms 9 98

Signature Verification Time in ms 16 54

Table 2.2: Smart Cards Timings [25].

Hardware Implementation Approach

As it was referred above a pure software implementation or even a smart card implementa-
tion do not satisfy the cryptography requirements for a Vehicular Communication System. An
approach to this problem is to use Field-Programmable Gate Array (FPGA) and develop spe-
cific hardware implementations of a cryptographic processor. Full hardware implementations
of ECDSA are scarce. In [26] the author proposed an implementation for a fully hardware
version of the ECDSA algorithm with 163bit length. The achieved times for signature gen-
eration and verification were respectively 0.94ms and 1.61ms. Another solution proposed in
[27] designed to operate over prime fields with a key length of 256-bit, for a FPGA Xilinx
Virtex 5 using 14256 LUT/FF achieved a 7.15ms generation time and a 9.09ms verification
time. Implementations like these are still too slow for the worst case scenario, verifying only
a few messages per second. Even with a fully hardware implementation of ECDSA a factor
of more than 10 times is still missing. To help improve these efficiency requirements, most
authors state that the use of Colbitz curves instead of NIST prime field curves could make the
computation time a lot faster. Kimmo Järvinen, in [26] says that an improvement of almost
50% can be achieved with the use of these curves.

2.5.6 Related Work

Vehicular communications have been debated over the last few year as being the up-
coming future technology for cars. This field has been a subject of study by manufacturers
and universities to better understand and try to deploy a prototype that fulfils the VANET
requirements.

The first projects were more interested in proving the feasibility of the system rather than
being worried with higher layers, as applications or security. More recently projects from
the US Department of Transportation, Rohde Schwarz SIT GmbH [25], the Secure Vehicular
Communication (SeVeCom) [28] or other entities always refer the analysis of the security
requirements and propose their security infrastructure. Projects like these play an important
role in influencing some versions and reviews of IEEE 1609.2 Standard.

The escrypt company [29] already developed a sales product which implements the IEEE
1609.2 Draft Standard providing a highly optimized cryptographic engine to perform up to
400 signature generations/verifications over elliptic curves per second. It also provides other
cryptographic algorithms as ECIES-AES-CCM as well as WAVE certificate handling.

A security analysis of Vehicular Ad Hoc Networks is described by Samara in [30]. Samara
also talks about the security challenges, the requirements to achieve a secure system, and
discusses previous proposed solutions from other authors.

26 Chapter 2. Background

2.6 Summary

After all the necessary background have been explained the proposed implementation of
the security services for vehicular communications is presented in the next chapter. Although
it is known from other researches as Papadimitratos in [31] and Rohde & Schwarz SIT GmbH
project [25] that a pure software implementation is not capable of satisfying the security
requirements of a VC, it was decided to do it.

The main purpose of this approach is to clearly understand how much computation power
is needed to implement and provide the adequate security on VC. With this implementation
it is expected to understand if security can be the bottleneck of a VC network.

In the next chapter an implementation of the security services focussing on the ECDSA
algorithm as the core of security in VC is presented.

Chapter 3

IEEE 1609.2 Implementation

3.1 Introduction

In this chapter a software implementation of the security services is proposed. The choice
was to implement in C programming language to clearly understand the performance require-
ments of pure software implementation in a Vehicular Communications (VC) scenario.

Security services defined in the IEEE 1609.2 D17 Draft Standard along with a cryptogra-
phy engine were implemented with the help of OpenSSL as the library to perform the required
cryptographic algorithms.

The choice to use the OpenSSL library was not arbitrary as it is a free and open-source
C/C++ library for cryptographic operations and algorithms. It is not a cryptographic Ap-
plication Programming Interface (API) but instead it contains all the required functions to
implement the required algorithms.

Other software libraries as Crypto++ or BeeCrypt were considered but as OpenSSL was
well documented and is widely used it became the preferable choice.

3.2 Architecture

The implementation architecture was divided into 3 main modules: a module that handles
all the secure protocols, another one that is responsible for the cryptographic algorithms and
another one containing all the secure keys and manufacture values. The module that deals
with security protocols handles requests and interprets the responses from the cryptography
engine. It is also responsible for the requests to the locally stored keys and provides them to
the cryptographic engine. This module is the interface between higher layers (e.g applications)
and the process of securing data. The private and public keys, along with certificates are stored
in the module that contains all the manufacture values and secure keys. Additionally to these
3 modules a Global Positioning System (GPS) module was used to support the application
by providing location and time information.

The proposed security model is based on the conceptual security model referred in [28]
which is illustrated in figure 3.1.

28 Chapter 3. IEEE 1609.2 Implementation

Figure 3.1: Security Model.

The engine which performs all the cryptographic algorithms was implemented with the
OpenSSL library in order to provide all the specified algorithms in the standard. It is though
capable of performing Elliptic Curve Digital Signature Algorithm (ECDSA) 224 and 256 [32],
ECIES, Hash algorithms, certificate generation and verification. In figure 3.2 the engine with
all the supported operations and building blocks is presented.

As referred before in chapter 2 the IEEE 1609.2 Draft Standard only defines secure proto-
cols for interacting with the cryptography engine for the ECDSA algorithm, which from now
on is the focus on this dissertation.

Figure 3.2: Cryptographic Engine with the required algorithms.

3.2. Architecture 29

3.2.1 Required Software Resources

After the architecture is defined a set of software resources and libraries were used in order
to implement it. Next they are described and an explanation of how they work and what
their purpose are is presented.

Hash Table
An hash table is an abstraction of a common array which has the ability of having any

type of reference as the array index. When we use an array, the index must be an integer
that starts with 0 and goes over n. In the hash table the index can be anything we wish and
it is called the key. The content of the array is called the value. So a hash table is a structure
that has a key and a value in which the content can be accessed very fast by the key and it
allows a fast search of unordered data.

Serialization
Serialization or more commonly marshalling is the process of transforming data structures

into a buffer of data. This buffer of data is then suitable for storage or transmission. The
reverse process is also possible, which allows a received buffer to be de-serialized and creates
a data structure as the original one.

The data that needs to be signed according to the standard [21] is a structure, ToBe-
SignedData, which contains several data types. The signature of data needs to be done over a
buffer of data, so the ToBeSignedData was serialized before being sent to the signature pro-
cess. Serialization was also needed to transform the 1609dot2 packet structure into a buffer
that was suitable to be sent over the network.

When serialization of a data structure contains variable data lengths, it means that an
additional data field is required for each variable data. This extra fields are required to store
the length of the variable data length, this is the only way to allow a correct de-serialization
of data and it is able to reconstruct back the data structure.

Sockets
When the connection between two programs or two machines is needed, the use of a

mechanism called sockets is used. This is a feature that most operating systems have and it
allows a client-server connection to be used. Each time a socket is needed a socket API is
used in the client and server programs to allow the establishment of a connection.

The way the interaction between Client-Server is done is by proceeding in the following
way [33]: a server creates a TCP socket (socket()), binds it to a determined port (bind()),
starts listening (listen()) and is ready to accept a connection from a client. The client also
creates a TCP socket and establishes a connection. Both the server and the client are ready
to communicate (recv() and send()) and share information. After the communication finishes
the client closes the connection (close()) and consequently the server closes it too. After the
connection is closed the server starts listening again for new connections from other clients.

The server only needs to have knowledge about the used port of communication and the
client must know the server address and port.

GPSd
The gpsd is a daemon for GPS devices which interacts with various GPS brand devices

through Universal Serial Bus (USB)/serial interface. The data from the GPS is acquired

30 Chapter 3. IEEE 1609.2 Implementation

through a TCP connection of the host computer and allows multiple access from different
clients.

The purpose of the gpsd it to provide an open source interface for Linux users to easily
interact with different GPS devices and obtain information as speed, location and more [34].

The gpsd was used in this implementation in order to get the time stamp and location to
insert in the 1609dot2 secure packet. The IEEE 1609.2 D17 Draft Standard does not specify
if location values should be obtained by the security layer or if a connection to higher layers
must be performed to request a location. In this implementation it was decided to directly
obtain the location and time-stamp values from the gpsd daemon.

The location structure should contain a latitude and longitude values represented by a
int32 t value and encoded with precision 1/10th micro degree. The gpsd returns these values
in degrees which were converted to be according to the standard.

3.2.2 Cryptographic Material

The keys and certificates that should be inserted into the On Board Unit (OBU) are
referred as crypto-material and are stored in manufacture time. In this implementation
it is assumed to have a fully Public-Key Infrastructure (PKI) deployed, meaning that the
algorithms to share certificates and to manage certificate-revocations were not considered.

The crypto-material as the private keys, the public-keys and the certificates were stored
in each of the cars. Each car has a 224-bit and a 256-bit key-pair length and a certificate
which can be chosen depending on the required algorithm. The algorithms and processes to
share certificates were not the focus of this dissertation so it was decided to include in each
car all the other cars certificates.

This way each vehicle contains the following crypto-material:

• A private and public key associated with the vehicle.

• A certificate containing the vehicle public key.

• The certificates that belong to all other cars.

When a message is sent over the network, instead of containing the entire certificate
attached to it, only a Hash of the certificate is sent. The SHA-256 is the chosen algorithm to
perform this operation, but instead of adding the entire hash (256 bit) to the packet only the
8 less significant bytes are added [21]. Each car also contains a table of hashes, identifying
all the stored certificates and its corresponding hash. Therefore when a message is received
it contains the 8 less bytes hash of the corresponding certificate which is compared over the
table of hashes and the corresponding certificate is loaded for verification.

An implementation like this implies a centralized system. When a new car enters the
system, all the other cars in that area need to update their certificates data base in order to
receive that new car certificate. This could be supported by the Road Side Units which could
transfer and update the certificates data base of the cars when they enter a new area.

3.2. Architecture 31

3.2.3 Data Flow

The way the signature generation/verification process works is defined by several services
that handle multiple protocols. Different types of messages are going to be signed depending
on the type of information that is going to be sent over the network.

Each time a connection is requested to the security services the flow of data is different
depending on whether the request is to sign or to verify a message. In figure 3.3 a flowchart
is shown in order to get an overview of how data is chained until the final result is obtained.

Figure 3.3: Overview of the implementation architecture flow.

The program starts by trying to establish a connection to the GPSd Daemon and after
it is connected it creates a client/server connection with the facilities layer. From this point
on the system stays in loop waiting to receive a connection from the client. As soon as a
message arrives, its content is analysed and a process to verify or sign a message is performed.
Then the message is returned to the facilities layer and the system stays again waiting for
new messages to come.

The process to create the signature generation or signature verification of a message is
detailed in figure 3.4 which describes how data is processed. There are two important functions
(defined by the IEEE 1609.2 Standard [21]), the WME SEC SIGN DATA and the WME SEC
VERIFY DATA, which are responsible to handle the protocols to sign or verify the messages
correctly. It is in these functions that the access to the GPS data and the load of keys are
made. In section 3.4 these protocols are explained in more detail.

32 Chapter 3. IEEE 1609.2 Implementation

Figure 3.4: Overview of the implementation architecture flow.

3.3 ECDSA - Implementation

The ECDSA algorithms were implemented in C programming language and with the help
of OpenSSL library [35].

The implementation of the algorithms and profiling of the code is going to be analysed to
help understand the performance requirements for such an implementation in a real vehicular
system.

As referred before, the main reference of the standard is that vehicular communications
should support the ECDSA signature algorithms with the specified NIST Elliptic Curves P224
and P256. In order to analyse the implemented code at a deep level, a debugging, profiling
and memory leak application was used. Valgrind [36] was the chosen one as it gathers all the
necessary applications to analyse the code.

Signing and verifying messages is the purpose of this algorithm so the created application
was developed to perform signing messages with different payload sizes and with the P224
and P256 curves. Verification of these messages was also made to get timings for verification
and signing in different situations.

In figure 3.5 a flow chart was extracted from the profiling application Callgrind that is part
of the Valgrind application. In this graph it is clear how much time is spent in each function
to perform a signature generation or verification. A run of 100 signatures for each NIST curve
and with payload size increasing from 100 characters to 200 characters was analysed to get
the mean execution time in each function.

3.3. ECDSA - Implementation 33

Figure 3.5: Callgrind Chart Flow.

The percentage in each block means the percentage of time that each function takes in its
operations, regardless of the computer it is running on.

The signing process takes more time than the verification process (62.01% and 37.87% of
the time respectively) as can be seen in figure 3.5. This happens because in this implemen-
tation, for each run, the signing process needed to generate a key pair, generate the random
data and perform the signing process itself.

A further analysis in chart 3.5 shows that the verification process itself is computationally
harder than the signing one. The OpenSSL functions to sign (ECDSA do sign) and verify
(ECDSA do verify) take 32.01% and 37.81% of the time, respectively. This was the expected
result according to the theory of cryptography, as the verification process has more operations
than the signing one [26].

3.3.1 Open-SSL API

In this section the OpenSSL library used to perform the required cryptographic algorithm
with the specific curves will be explained. With this library it is possible to implement almost
all known cryptographic algorithms, but here only ECDSA is explained in detail.

34 Chapter 3. IEEE 1609.2 Implementation

Key Generations

The key generation process is not ECDSA specific and it is generated in the following way
[35]:

EC_KEY *eckey=EC_KEY_new();

if (eckey == NULL) { /* Handle error */ }

else {

EC_GROUP *ecgroup= EC_GROUP_new_by_curve_name(int nid);

if (NULL == ecgroup) {/* Handle error */}

else {

int set_group_status = EC_KEY_set_group(eckey,ecgroup); /* returns 1 for

success. */

if (set_group_status != 1) { /* Handle error */ }

else {

int gen_status = EC_KEY_generate_key(eckey); /* returns 1 for success. */

if (gen_status != 1){ /* Handle error */}

} } }

The nid value that is assigned in the function EC GROUP new by curve name(int nid)
is the name of the curve that is used to create the Elliptic Curve Group, which in this case
are the NIST prime curves defined respectively by the following names: NID secp224r1 and
NID secp256k1 [35].

The OpenSSL library allows the use of multiple curves and its list can be viewed by
running the following command on terminal.

openssl ecparam -list_curves

The EC KEY* eckey is a structure that is composed of parameters that define the type
of key generated along with the private and public key. It’s structure is defined bellow, and
when the EC KEY new(*void) is called it is created the following way [35]:

eckey->version = 1;

eckey->group = NULL;

eckey->pub_key = NULL;

eckey->priv_key= NULL;

eckey->enc_flag= 0;

eckey->conv_form = POINT_CONVERSION_UNCOMPRESSED;

eckey->references= 1;

eckey->method_data = NULL;

The ecgroup value is changed with EC KEY set group(EC KEY *key, const EC GROUP
*group) function according to the group curve used. The private and public keys are assigned

3.3. ECDSA - Implementation 35

when the int EC KEY generate key(EC KEY *eckey) function is called [35].

Signature generation

For the signature generation, considering that the private key is already generated, and
apart from the data processing it is only needed to call the following Open-SSL function [35]:

ECDSA_SIG * = ECDSA_do_sign(const unsigned char *dgst, int dgst_len, EC_KEY *eckey);

This function has as return value the signature that was generated for the input data.
As discussed before a signature has twice the size of the key length used in the ECDSA

algorithm, so the ECDSA SIG is a structure composed of two BIGNUM:

struct

{

BIGNUM *r;

BIGNUM *s;

}ECDSA_SIG;

If the hexadecimal representation of the signature is needed the following function can be
used to print both values.

char *BN_bn2hex(const BIGNUM *a);

Verification

The verification of a signature is composed of several steps that must be taken into con-
sideration to make a verification with OpenSSL.

EVP_PKEY* pk = EVP_PKEY_new();

EC_KEY* publickey;

pk = X509_get_pubkey(X509);

publickey = EVP_PKEY_get1_EC_KEY(pk);

int ECDSA_do_verify(const unsigned char *dgst, int dgst_len, const ECDSA_SIG *sig,

EC_KEY* eckey);

EVP_PKEY_free(pk);

EC_KEY_free(publickey);

The return value from the ECDSA do verify functions determines if the verification was
a success (return value = 1), failure (return value = 0) or an error occurred (return value =
-1) [35].

36 Chapter 3. IEEE 1609.2 Implementation

3.3.2 Certificates

The certificates used in a vehicular environment must follow the rules defined in the
standards. Since in this dissertation the WAVE protocol stack was followed, the IEEE 1609.2
Standard defines the WAVE-Certificates which are a special type of certificates for Vehicular
Communications. As a PKI was not implemented, the used certificates were generated using
OpenSSL which are a standard certificate type. These certificates are larger compared with
the expected size of a compact WAVE-Certificate. The used certificates are encoded in X.509
which is a specific format for certificates. Their size can vary, depending on the key length
used for the public key algorithm, on the size of identification and on some optional values. In
this implementation the used certificates had approximately 956-bytes (containing the public
key, signature, validity and other information about the user) which are too big compared
with the expected WAVE Certificate size of about 120-bytes as refereed in [5].

An application to generate private and public keys together with the respective certifi-
cate was implemented separately to support the main application that makes use of this
cryptographic material.

3.4 Implementation of Secure Protocols

So far the cryptographic engine supported by OpenSSL libraries is able to perform all the
required algorithms from the standard. As already mentioned, a cryptographic engine is not
enough if it is not strongly supported by some protocols.

The IEEE 1609.2 D17 Draft Standard defines these protocols to use with the ECDSA
algorithm. These protocols are handled by the Wave Management Entity (WME), which is
responsible for the handling of data from higher layers. The WME also makes requests to the
security module to ask for secure data. After data gets secured it needs to be sent over the
network, a secure packet structure is defined by the IEEE 1609.2 as follows:

A secure packet is referred in the standard as a 1609dot2 packet. Its structure is composed
of multiple sub-structures as it is shown in figure 3.6.

Figure 3.6: 1609.2 Secure Packet Structure.

3.4. Implementation of Secure Protocols 37

• Version - Defines the version of the implemented 1609.2 standard;

• Content Type - Identifies if the packet is unsecured, signed or encrypted;

• Signed WSA/WSM - The signed data itself;

• ToBeSignedData - The data that is going to be signed;

• Signature - The signature of the respective data;

• Data - The message itself;

• Time - The time-stamp in which the data was signed;

• Location - The location where the data was signed;

• ECDSA Signature - The signature itself;

• Algorithm - The type of algorithm used to sign the message;

• HashID8 - The less 8 significant bytes of the SHA-256 of the certificate.

The size of each field is only fixed for the Version, Content Type, Time, Location, Al-
gorithm and HashID8, all the other fields vary depending on the size of each message. The
version takes the number 2 as it refers to the version of the standard IEEE P1609.2TM/D17
and has the size of 1-byte [21]. Content Type and Algorithm also take 1-byte each. Time has
a 4 byte length and Location has a 2D Location with latitude and longitude defined as a four
byte length each.

The size of the signature also varies between 2 values depending on the signature algorithm
used. As the standard refers, the implementation should provide 2 signature algorithm, an
ECDSA with 224-bit and 256-bit length. The signature size has twice the length of the key
length of the signature algorithm, which means that the signature can get a length of 56 or
64 bytes.

The size of all packet can then vary from 83 to 91 bytes without the size of the message.
These messages can also vary in size depending on the type of messages and on the number
of fields it carries.

In this implementation the type of messages that are going to be secured are the CAM
messages. This messages are defined later in chapter 4 and considering only its mandatory
values its minimum size should be around 54-bytes. This way the 1609dot2 packet should
carry most of the time at least between 137 to 145 bytes.

Now that the secure packets were described the signature generation and the signature
verification protocols are presented:

Process of a Signature Generation:

• Get the data to be signed;

• Get time and current position;

38 Chapter 3. IEEE 1609.2 Implementation

• Create a structure called ToBeSignedData;

. Data that is going to be signed;

. Generation time and location;

. Expiry time;

• Encode ToBeSignedData structure into an octet string;

• Digitally sign the generated octet string with the ECDSA algorithm;

• Create another structure called SignedData;

. Type of data;

. The data;

. The signature;

• Create a 1609dot2 structure ready for transmission;

. Protocol version;

. Type of data;

. Encoded SignedData.

If the signature generation occurs as expected, the type of data in the 1609dot2 packet
should be set equal to signed data to identify that the content is signed.

Process of a Signature Verification:
Get the 1609dot2 packet and make the following verifications. In case any of them fails,

the message must be discarded.

• Decode the message and parse it into its structure fields;

• Check if protocol version is equal to 2;

• Check if SignedData.type is equal to signed;

• Check if expiry time is later than generation time;

• Construct a chain from the received certificate to a known root certificate;

• Verify the certificate signature;

• Verify the signature of the message;

If none of these verifications fail, the message is correctly verified and can be passed to
the higher layers which requested the verification (calling application).

In figure 3.7 the process of securing a message is presented, both for a signature generation
and for a signature verification.

3.5. Summary 39

Figure 3.7: Signature generation and verification protocol.

3.5 Summary

In this chapter it was explained how the security services were implemented.
An architecture to provide the adequate security based on the IEEE 1609.2 D17 Draft

Standard [21] was proposed. This implementation was purely developed in C programming
language to understand the necessary computational power.

Next other modules were integrated to create a full-blown architecture that is capable of
generating messages, secure them and communicate with the IT2S Platform.

40 Chapter 3. IEEE 1609.2 Implementation

Chapter 4

Integration with WSMP and

Facilities Layer

4.1 Introduction

After the security services have been developed there was the need to integrate this work
with other applications as the WAVE Short Message Protocol (WSMP) and the facilities
layer in order to have a full system working. All these applications/modules were developed
separately by different persons in the scope of other dissertations, which made the integration
a complicated task. From these 3 modules, the WSMP (developed by Paulo Sousa) and the
security services were developed based on the WAVE Stack while the facilities layer (developed
by Daniel Ferreira) is defined in the ETSI ITS Stack. The reason for having mixed these two
stacks was due to the lack of standards in the ETSI ITS Stack which does not define any
security standard for VC. Therefore a way to interact between layers and to achieve the
desired objective was developed.

Figure 4.1: Communications between vehicles.

In this chapter all the modules will be described separately explaining how the integration
and the communication between them was performed. The main purpose of this integration

42 Chapter 4. Integration with WSMP and Facilities Layer

was to have an architecture capable of generating messages, secure them and communicate
through the Dedicated Short Range Communications (DSRC) platform IT2S developed in
the IT (Telecommunications Institute).

4.2 Overview of the Integration Architecture

The integration of all modules can be seen as a ”black box” that generates messages
and communicates with the IEEE 802.11p platform through the WSMP. Each module was
implemented separately and the communication between them was made using socket com-
munication. In figure 4.2 this ”black box” is presented.

Figure 4.2: Top Level architecture of the modules integration.

A Cooperative Awareness Message (CAM) message is generated by the facilities module
with all the information gathered from the vehicle: speed, location, direction and all types
of valuable information. This message is sent to the security services which receives the
message and digitally signs its content with its private-key. After the message gets secured in
the format of a 1609dot2 packet, it is sent again to the facilities module which forwards its
content to the WSMP. The WSMP generates the WSM packet and puts in its data field the
1609dot2 packet received from the facilities module. In figure 4.3 we can better understand
how the flow of data is handled.

4.3. Facilities Layer 43

Figure 4.3: Architecture data flow.

The WSMP, Facilities layer and Security are complex modules that are going to be de-
scribed in detail in the next sections.

4.3 Facilities Layer

The facilities layer is responsible for handling the generation of messages. In order to
correctly generate these messages they need to obtain some specific information: current
position, time-stamp and other valuable information from the car. This data is gathered
from the Global Positioning System (GPS) or the On Board Diagnostics (OBD) sensors.
From the European standard [37] two types of messages can be generated: the CAM and the
Decentralized Environmental Notification Message (DENM).

4.3.1 CAM

Vehicles need to be constantly providing information about themselves (position or status
of the vehicle) to other cars through the CAM. The main purpose of these messages is to
provide useful information about all surrounding vehicles and for example, to alert drivers of
an emergency vehicle approach.

These messages are time and position triggered, which means they are constantly being
sent between a frequency of 1Hz to 10Hz and whenever there is a difference in position bigger
than 5meters [37].

44 Chapter 4. Integration with WSMP and Facilities Layer

4.3.2 DENM

The DENM are more specific messages that are only triggered on special events. These
messages are very specific and should cover a certain area within its generation location.
Therefore they are multi-hop messages that can be re-transmitted from/to other vehicles
[38].

The type of events that can cause the generation of a DENM message goes from an
emergency breaking warning to the detection of a strong wind condition. In figure 4.4 a list
of some events that cause the generation of these messages is shown [38].

Figure 4.4: DENM Trigger Event List [38].

4.4 WSMP Layer

The WSMP was developed to work in a Linux based architecture and it was deployed
in a daemon process in which communication primitives are supported. The communica-
tion between the network layer and the lower layers is maintained by a Raw Socket, while
communication between higher layers is performed through TCP/IP Sockets.

The architecture of the implementation is presented in figure 4.5. This architecture is
suitable for any Non-IP protocol and it can support both the WSMP and FIX Adapted for
STreaming (FAST) Protocol, but for these tests the WSMP was used.

4.5. Interaction between Layers 45

Figure 4.5: WSMP Architecture.

4.5 Interaction between Layers

After having explained all the modules, it is time to focus on the information flow between
those modules providing details about the connections.

Each time a CAM or DENM message is generated it is inserted into a queue in order
not to lose any message. The Message Handler is therefore responsible for the extraction of
messages from the queue and sends them to the security services or directly to the WSMP.

The CAM Handler, the queue and the message handler are separated processes that are
handled with threads to allow the correct function of the system.

In the reverse process, when a message comes from the network (WSMP) and needs to go
up to the application layer, the message handler is also responsible for it and always forwards
the message to the security services. The message is then verified by the security services and
if it succeeds, it will be sent to the receiving application or, in case of failure, the message
will be discarded.

In figure 4.6 it is clear how the connection between modules was performed.

46 Chapter 4. Integration with WSMP and Facilities Layer

Figure 4.6: Overview of how modules were integrated with each other.

4.5.1 Facilities Layer - Security Services

As stated before, specific interfaces and a communication protocol had to be created to
interconnect these modules and allow the communications between them.

Once a message is generated, it is sent over the security services to get the corresponding
security level. In order to identify if the received message is to sign or to verify, an header
had to be added to create a communication protocol between these two modules. This header
is 1-byte long to identify if the message is to sign, verify or if there was an error in the
signature generation or verification. This way each time a message is generated an header
with the character ′e′ is added signalling that the message must be signed. If the message
gets correctly signed, this header is replaced by the security services with the character ′d′,
which means that it was correctly signed.

The packet is transmitted to the network with this header attached to the 1609dot2 packet.
When the facilities module receives the packet, it checks the header and if it has the header
= ′d′ it takes it out and only forwards the 1609dot2 packet to be verified by the security
services. A message gets verified or not and notifies the facilities layer by sending the verified
message back to it or by sending back the character ′n′. It is now the facilities layer function
to keep or discard the message in case of success of failure verification. In figure 4.3 it is
clearly shown how the header is used in the message flow.

4.6. Experiments and Tests 47

This communication protocol had to be used because at the moment of the implementation
there was no defined standard to deal with the transference of data between layers and also
because the layers were from different stacks.

The communications between the two modules are made by using sockets in blocking
mode, meaning that when a message is sent to the security services the connection stays
blocked until it receives a response, be it of success or failure.

4.5.2 Facilities Layer - WSMP

The communication between the facilities layer and the WSMP is performed in a server/-
client connection methodology. The server (wsmp deamon process) is the first program to
start running and waits for the clients to connect to it. The server must create a stream
socket, assign a port and an interface to which the clients will connect through. The client
(facilities application) tries to connect to the defined port and to the name server and if the
server is listening in the same port the connection will succeed. A handshake is performed
to associate the client with a PSID and after this the connection is ready to send or receive
messages.

4.6 Experiments and Tests

The integration was performed in several steps, before getting to the final stage of the
system. The communication among modules was performed using sockets and in the first
approach each of the modules was running separately in a different machine. The security
services, the WSMP and the facilities application were running in different laptops (figure
4.7). Then the modules were joined in the same machine in order to simulate the system as
if it was running in a real On Board Unit (OBU) (figure 4.8). In this second approach the
communication was still done by means of sockets but now the connection between modules
was performed in localhost.

Figure 4.7: First approach to the final system.

48 Chapter 4. Integration with WSMP and Facilities Layer

Figure 4.8: Second approach to the final system.

The connection between OBU was performed through Ethernet to simulate the connection
through the IT2S platform. This approach had to be used because it was dependent on other
projects which were running at the same time, namely the implementation of the device driver
for the IT2S Platform.

4.7 Implementation on IT2S Platform

In figure 4.9 the IT2S board implements all the lower layers required by the ETSI ITS
Stack to work as DSRC module. As referred in [39] ”The IT2S board comprises all the
components required to implement the lower layers (IEEE 802.11p PHY and MAC time
critical operations) of the ETSI ITS G5 protocol stack”.

Figure 4.9: IT2S Board Description [39].

This ”black box” (the security services, the WSMP and the facilities application) is used
on top of this platform to provide a way to generate, secure and transmit messages according
to the standards.

4.8. Summary 49

After having performed all the experiments in laptops the migration to a more suitable
environment for real tests was needed. Therefore a Raspberry-Pi was the choice to be the
embedded single board computer that binds the higher layers with the lower ones. The
configurations and management of the platform is achieved by a Universal Serial Bus (USB)
connection with the Raspberry-Pi. As soon as the device driver for the IT2S Platform is ready,
the migration to this interface should be smooth and everything should work as expected.

In figure 4.10 there is a general overview of the whole architecture, from the lower lay-
ers(the IEEE 802.11p PHY and MAC), to the higher ones (Smart Phone).

Figure 4.10: IT2S Target Architecture [39].

4.8 Summary

In this chapter it was explained the integration of the security services with the WSMP and
the facilities layer (generation of messages) in order to achieve a full-blown architecture. This
integration was developed using different stacks which turned to be a difficult task. Therefore
specific protocols had to be created to handle the interaction of data between layers.

In the next chapter the results obtained from the implementation will be presented.

50 Chapter 4. Integration with WSMP and Facilities Layer

Chapter 5

Experimental Results

5.1 Introduction

In this chapter the results of the security services and the cryptography algorithms de-
fined in the IEEE 1609.2 D17 Draft Standard are presented. Timing values and how system
responds to different payload sizes is evaluated. The integration with the WAVE Short Mes-
sage Protocol (WSMP) and the facilities application is also evaluated both in a conventional
laptop and in a Raspberry-Pi to simulate a real scenario.

In order to benchmark the system, several tests were carried out. The main focus of these
tests was to benchmark the overall system that provides authenticity with Elliptic Curve
Digital Signature Algorithm (ECDSA). In a first approach the system was benchmarked in a
laptop and later in a Raspberry-Pi which was the option as the on-board computer for a real
vehicular communication system.

The choice to use two computers in the experiments was to clearly understand how much
computational power might be needed to achieve a good performance of the system. The
power of both computers was very different which caused a significant difference in timing
analysis. Table 5.1 provides a hardware and software comparison between the two used
machines.

The following set of experiments were analysed:

• ECDSA algorithm timing analysis on Laptop with increasing random payload;

• ECDSA algorithm timing analysis on Raspberry-Pi with increasing random payload;

• Security Implementation timing analysis on Laptop with CAM Messages as payload;

• Security Implementation timing analysis on Raspberry-Pi with CAM Messages as pay-
load;

5.1.1 ECDSA Timing Performance Analysis

For the analysis of the execution times regarding the ECDSA algorithm an application
capable of signing and verifying messages without all the overhead caused by the security
services was developed.

52 Chapter 5. Experimental Results

Specifications Personal Laptop Raspberry Pi

CPU Intel Pentium Processor

T2310 (1M Cache, 1.46 GHz,

533 MHz FSB)

700 MHz Low Power

ARM1176JZ-F Applications

Processor

Instruction-Set 32-bits 32-bits

Memory 3GB 512 MB SDRAM

OS Ubuntu 12.04 Arch-Linux

Table 5.1: Hardware comparison between personal laptop and Raspberry-Pi.

In order to calculate the execution time of the algorithm to be evaluated, a processor tick
timer was inserted in the code to count the number of ticks that each function runs. This
way the exact timing of specific parts of the code could be analysed in detail.

Algorithm 5 Time Counter

Require: #include ”time.h”;

Require: struct timespec t1,t2;

Require: double dt;

1: clock gettime(CLOCK MONOTONIC, &t1);

2: Code for timing analysis goes here ...

3: clock gettime(CLOCK MONOTONIC, &t2);

4: dt = (t2.tv sec - t1.tv sec) + (double)(t2.tv nsec - t1.tv nsec) * 1e−9;

5: Runtime of code: dt;

Then the execution of the code was analysed for the ECDSA NIST curve P224 and P256
with the payload varying from 10-bytes to 2000-bytes. Within each payload the code runs
1000 times in order to calculate the mean execution time for the given payload size. The
payload was randomly generated, containing only alpha-numeric values.

In graph 5.1 there are the execution times tested on a laptop and some conclusions can
be taken:

• It is noticed that the cryptographic engine has different computation times depending
on the size of the algorithm key.

• The differences between signing and verifying are also very explicit, as the verification
and the signature timings are quite distinct. As mentioned in the literature [26], the ver-
ifying process is computationally harder than the signature process which is consistent
with these values.

• Another interesting fact is that the signing and the verification process do not depend
on the size of the payload. The reason for this is that it is only considered the arithmetic

5.1. Introduction 53

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1.8

2

2.2

2.4

2.6

2.8

3

Payload (Bytes)

T
im

e
 (

m
s
)

Laptop times for Signature and Verification with incresing payload from 10 to 2000 bytes

sign256
verify256
sign224
verify224

Figure 5.1: ECDSA timing on Laptop with increasing payload from 10 to 2000 bytes.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
8

9

10

11

12

13

14

15

Payload (Bytes)

T
im

e
 (

m
s
)

Raspberry−Pie times for Signature and Verification with incresing payload from 10 to 2000 bytes

sign256
verify256
sign224
verify224

Figure 5.2: ECDSA timing on Raspberry-Pi with increasing payload from 10 to 2000 bytes.

operation to sign and verify and not, for example, the hashing of the payload.

Figure 5.2 refers to the computation times in the Raspberry-Pi. The execution times
either to sign or to verify messages are higher comparing with the laptop execution times
in figure 5.1. These values were expected as the hardware is a lot slower than the personal
computer. Another interesting fact is that the timings either in signature generations or
verifications are fluctuating a bit. This might be caused by the low memory and low power
CPU that the Raspberry-Pi has.

Now comparing the overall timings in graphs 5.1 and 5.2 the Raspberry-Pi is about 5-times
slower than the laptop.

In table 5.2 a summary of the mean execution time for both key algorithms and computers
is presented.

It is very important to refer that all these values only represent timings for the OpenSSL
signature generation and verification functions. An ECDSA Signature or Verification to be
completed requires that a key-pair must be previously generated or the keys must be loaded
and a hash function applied to the payload, for the OpenSSL functions to sign and verify to

54 Chapter 5. Experimental Results

Computer Algorithm sign[ms] Signature/s verify[ms] Verification/s

Laptop ECDSA

P256

2.4339 411 2.8676 349

Laptop ECDSA

P224

1.8958 527 2.2222 450

Raspberry-

Pi

ECDSA

P256

11.3833 88 13.3581 75

Raspberry-

Pi

ECDSA

P224

8.7552 114 10.2238 98

Table 5.2: Table with mean execution times for ECDSA 224 and 256 for both computers.

be applied.
These values do not represent the overall system execution times but they were taken to

benchmark the OpenSSL library.

5.1.2 Integration of CAM, WSMP and Security

It is now time to give an analysis of timings with integration of WSMP, the facilities
application and security.

This step is important to better understand how the system handles the increase of the
payload, the time for the whole process, the signature generation, the signature verification,
the loading certificates and the hashing of data.

These experiments were both tested on a laptop and on the Raspberry-Pi to see the
differences in performance (table 5.1).

System Benchmark with random data as payload

For this specific performance test only the laptop was considered to benchmark the whole
system, increasing the payload of the messages with random data.

In figure 5.3 the process to sign and verify a message with different payload sizes is analysed
and the computation times are presented. For each payload the values presented are mean
values calculated over a run of 500 times of the code. The ECDSA algorithm considered was
the ECDSA-256.

This experiment led to the following mean execution times for both signature generation
and verification, 4.8128ms and 5.6003ms, respectively regardless the size of the payload.

From the graph in figure 5.3 as the payload increases also the time either to sign and
verify increases. This increase is sharpest in the signature generation while in the verification
process between the 800 and 1200 byte payload there is a significant decrease.

5.1. Introduction 55

200 300 400 500 600 700 800 900 1000 1100 1200
4.5

5

5.5

6

Payload (Bytes)

T
im

e
 (

m
s
)

Signature Generation and Verification times for incresing payload from 200 bytes to 1200 bytes

Signature Generation
Signature Verification

Figure 5.3: Entire system times for Signature and Verification.

Results Analysis with CAM messages as payload

Here it is considered a real scenario test bed with all the modules integrated and with the
Cooperative Awareness Message (CAM) messages being transmitted at the rate of 10Hz. Ten
thousand messages were sent at this rate to analyse the system performance. Within these
10000 messages two different sizes were generated, one with 53 bytes and another one with
67 bytes.

The experiments were performed again in two computers, a laptop and a Raspberry-Pi.

Laptop

The following results presented on table 5.3 were obtained from one of the computers that
was running the whole integrated system.

Summary

Total number of messages to sign 10000

Total number of messages to verify 9958

Total number of verification OK 9859

Total number of verification Failed 99

Percentage of failure (%) 0.99

Timings

Signatures[ms] 3.850

Verifications[ms] 4.415

Table 5.3: Summary of program execution.

56 Chapter 5. Experimental Results

From the summary shown on table 5.3 some conclusion can be taken: all the messages
were successfully signed while in verification the percentage of failure was close to 1%. These
failures in verification happened because the WSMP arbitrary lost some bytes during the
transmission of the packets causing the ECDSA verification to fail. Another important refer-
ence is that the number of receiving messages was not 10000 as expected, this was caused by
the difference in the starting time of the applications in both computers.

In figure 5.4 a comparison between signing and verifying for both messages is presented.
The mean time to sign and to verify a message regardless of the size (53 or 67 bytes) it is
3.8504ms and 4.4157ms, respectively.

0 1000 2000 3000 4000 5000 6000
0

5

10

15

20

25

Message Number

T
im

e
 (

m
s
)

Signature Generation and Verification times 10000 times − 53 and 67 Bytes

sign payload 53
verify payload 53
sign payload 67
verify payload 67

Figure 5.4: Execution times of security model with CAM message as payload.

The execution time, for either 53 or 67 byte messages, is very close because the red and
blue colors are very intense meaning that their times are coincident. The average time for
signing and verifying for either 53 and 67 byte messages is presented in table 5.4.

Message byte length Signature (ms) Verification (ms)

53 3.8684 4.4750

67 3.8318 4.4430

Table 5.4: Average time for signature and verification with CAM as payload.

Raspberry-Pi

Now it is time to analyse the timings on the Raspberry-Pi. For this test two Raspberry-Pi
were communicating though Ethernet and sharing CAM messages at the frequency of 10Hz
with its size changing between 53 and 67 bytes. Figure 5.5 shows that the times to perform a
signature generation and verification are very high with the following mean times: signature
generation: 21.7615ms and signature verification: 25.3628ms, considering both the 53 and
67 byte payload of the CAM message.

5.1. Introduction 57

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

Message Number

T
im

e
 (

m
s
)

Signature Generation and Verification execution times with 1000 shared. CAM Message as Payload

sign time
verify time

Figure 5.5: Signature generation and verification on Raspberry-pi.

These times were taken considering the whole system which is affected by the secure
protocols and the gathering of the Global Positioning System (GPS) values. In the following
table 5.5 there is a summary regarding the execution times.

Computer: Raspberry-Pi

generation[ms]: 21.7615

Signature/s: 45

verification[ms]: 25.3628

Verification/s: 39

Maximum cars to

verify [10 Hz]:

3.9

Table 5.5: Table with sum-up values for the whole system with Raspberry-Pi.

With this implementation, 4 is the maximum number of cars that it is possible to verify,
broadcasting at a frequency of 10 Hz. The number of signature generation is fulfilled by the
system because it is only required that each car signs 10 messages per second.

58 Chapter 5. Experimental Results

Chapter 6

Conclusions and Future Work

The main focus of this dissertation was to analyse the requirements and how much effort
had to be done to provide the adequate security requirements for a vehicular network. The
software proposed for the implementation was based on the IEEE 1609.2 TM/D17 Standard.

The conclusions taken from this work are the same as Papadimitratos in [31] and Rohde
& Schwarz SIT GmbH project [25], meaning that a pure software implementation of security
services is not feasible.

The constraints imposed by the on board units, which have a very low computation power,
make the system very slow when security is added to the network. From the performance
tests, considering the entire system architecture running on a laptop, the maximum number
of signature verifications that the system is capable of performing is about 223 per second.
These results mean that if cars are beaconing at 10Hz, the maximum number of cars in the
neighbourhood possible to verify is ≈ 22, which is very common to happen in a congested
road. These values were obtained using a laptop that has a higher performance compared
with the Raspberry-Pi that was considered as the On Board Unit (OBU).

When using the Raspberry-Pi the performance goes down to 39 signature verifications
per second, allowing the system to only verify ≈ 4 cars per second when beaconing at 10Hz.
This is a very bad performance because in a congested highway the number of cars can be
massive, requiring a system that must be capable of verifying several hundreds of cars at the
same time.

From this results, it is understandable why there is the need to build a Hardware Security
Model (HSM) to achieve the desired/needed performance. An Field-Programmable Gate
Array (FPGA) implementation of the cryptography algorithms seems to be the best approach.
OpenSSL libraries can be integrated with hardware FPGA making possible for the hard time
consuming operations as the signature generation and verification to be performed purely in
hardware. The HSM is proposed in the ETSI ITS Stack (please see figure 2.7) as an approach
to achieve the desired performance.

Although the performance of the security services is not very good, the integration with
the WAVE Short Message Protocol (WSMP) and Facilities Layer was a success, achieving a
full-blown implementation that is ready to be integrated with the IT2S Platform.

60 Chapter 6. Conclusions and Future Work

6.1 Future Work

As future work the study of other algorithms besides the ones referred in the IEEE 1609.2
TM/D17 Standard should be analysed. Some papers state that the use of Colbitz curves
could be used instead of the NIST curves required by the security standard. A comparison
of these algorithms in terms of performance could be analysed.

Also a hardware solution based on FPGA could be developed to perform some of the
arithmetic operations required by the cryptographic algorithms. The hardware module can
be integrated with the OpenSSL library allowing some hard operations to be performed on
hardware.

Regarding the public key infrastructure, there should be an authority that could issue
the WAVE Certificates with the specific fields defined in the IEE 1609.2 D17 Draft Standard.
Also finding solutions for sharing certificates in an efficient way deserved an investment in
further studies.

The IEEE 1609.2-2013 Standard released at the end of April 2013 has finally left the
draft version, being the actual active standard to provide adequate security on Vehicular
Communications (VC). It should be analysed because some important changes might have
been done.

Security over vehicular communications is still an open issue which means there is yet a
lot of research to be done in order to fully satisfy the security requirements of a vehicular
communication network.

Bibliography

[1] WARDSAUTO. (2010) World Vehicle Population Tops 1 Billion Units. Accessed on June
2013. [Online]. Available: http://wardsauto.com/ar/world vehicle population 110815

[2] Federal Communications Commission (FCC). (2007) Dedicated Short Range
Communications (DSRC) Service. Accessed on May 2013. [Online]. Available:
http://wireless.fcc.gov/services/index.htm?job=service home&id=dedicated src

[3] B. S. Niels Ferguson and T. Kohno, Cryptography Engineering. John Wiley & Sons,
2010.

[4] Brisa, “HEADWAY - Connecting Vehicles and Highways,”
http://www.brisainovacao.pt/en/innovation/projects/headway.

[5] K. P. Hannes Hartenstein, VANET: Vehicular Applications and Inter-Networking Tech-
nologies, K. P. Hannes Hartenstein, Ed. WILEY, 2010.

[6] ARINC. Dedicated Short-Range Communications (DSRC). [Online]. Available:
http://www.arinc.com/products/intel trans sys/dsrc.html

[7] Georgios Karagiannis, Onur Altintas, Eylem Ekici, Geert Heijenk, Boangoat Jarupan,
Kenneth Lin, and Timothy Weil, “Vehicular Networking: A Survey and Tutorial on Re-
quirements, Architectures, Challenges, Standards and Solutions,” IEEE Communications
Surveys and Tutorials, vol. 13, 2011.

[8] Li, Yunxin (Jeff), “An Overview of the DSRC/WAVE Technology.” in QSHINE,
ser. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, X. Zhang and D. Qiao, Eds., vol. 74. Springer, 2010,
pp. 544–558. [Online]. Available: http://dblp.uni-trier.de/db/conf/qshine/qshine2010.
html#Li10

[9] The Internet Engineering Task Force (IETF), “RFC 2460 - Internet Protocol, Version 6
(IPv6) Specification.”

[10] IEEE, “IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Net-
working Services,” 2010.

[11] ETSI EN 302 665 V1.1.1, “ETSI EN 302 665 V1.1.1 Intelligent Transport Systems (ITS);
Communications Architecture,” 2010.

[12] CYCOM Cypher Research Laboratories, “A Brief History of Cryptography.” 2006.

http://wardsauto.com/ar/world_vehicle_population_110815
http://wireless.fcc.gov/services/index.htm?job=service_home&id=dedicated_src
http://www.arinc.com/products/intel_trans_sys/dsrc.html
http://dblp.uni-trier.de/db/conf/qshine/qshine2010.html#Li10
http://dblp.uni-trier.de/db/conf/qshine/qshine2010.html#Li10

62 Bibliography

[13] Luringen. (2007) Scytale. Accessed on July 2013. [Online]. Available: http:
//commons.wikimedia.org/wiki/File:Skytale.png

[14] Mozilla Developer Network. (2005) Introduction to Public-Key Cryptography. [On-
line]. Available: https://developer.mozilla.org/en-US/docs/Introduction to Public-Key
Cryptography#A Certificate Identifies Someone or Something

[15] Eli Biham and Adi Shamir, “Differential Cryptanalysis of DES-like Cryptosystems,”
Journal of Cryptology, 1991.

[16] FIPS PUB 197, “Advanced Encryption Standard (AES),” 2001.

[17] S. V. Darrel Hankerson, Alfred Menezes, Guide to Elliptic Curve Cryptography. Pringer,
2004.

[18] Vasant Patel, Dr. Kris Gaj, “Key Sizes Selection in Cryptography and Security Compar-
ison between ECC and RSA.”

[19] R. Laboratories, SA Laboratories’ Frequently Asked Questions About Today’s Cryptogra-
phy, Version 4.1. RSA Security Inc., 2000.

[20] S. L. Carlisle Adams, Understanding Pki: Concepts, Standards, and Deployment Con-
siderations. Addison-Wesley Professional, November 16, 2002.

[21] IEEE P1609.2TM/D17, “Draft Standard for Wireless Access in Vehicular Environments
- Security Services for Applications and Management Messages,” 2012.

[22] FIPS PUB 180-3, “Secure Hash Standard,” 2008.

[23] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, and Tadayoshi Kohno,
“Experimental Security Analysis of a Modern Automobile,” Department of Computer
Science and Engineering University of Washington, 2010.

[24] Stephen Checkoway, Damon McCoy, Brian Kantor, “Comprehensive Experimental Anal-
yses of Automotive Attack Surfaces,” 2011.

[25] Rohde & Schwarz SIT GmbH, “Automotive Security: Cryptography for Car2X Commu-
nication,” 2011.

[26] Kimmo Jarvinen, “Final Project Report: Cryptoprocessor for Elliptic Curve Digital
Signature Algorithm (ECDSA),” 2007.

[27] Benjamin Glas, Oliver Sander, Vitali Stuckert, Klaus D. Müller-Glaser, and Jürgen
Becker, “Prime Field ECDSA Signature Processing for Reconfigurable Embedded Sys-
tems,” International Journal of Reconfigurable Computing Volume 2011 (2011), Article
ID 836460, 12 pages, 2010.

[28] Panagiotis Papadimitratos,Levente Buttyan, Tamás Holczer, “Secure Vehicular Commu-
nication Systems: Design and Architecture,” IEEE Communications Magazine, 2008.

[29] Escrypt. CycurV2X. Accessed on June 2013. [Online]. Available: https://www.escrypt.
com/products/cycurv2x/overview/

http://commons.wikimedia.org/wiki/File:Skytale.png
http://commons.wikimedia.org/wiki/File:Skytale.png
https://developer.mozilla.org/en-US/docs/Introduction_to_Public-Key_Cryptography#A_Certificate_Identifies_Someone_or_Something
https://developer.mozilla.org/en-US/docs/Introduction_to_Public-Key_Cryptography#A_Certificate_Identifies_Someone_or_Something
https://www.escrypt.com/products/cycurv2x/overview/
https://www.escrypt.com/products/cycurv2x/overview/

Bibliography 63

[30] Ghassan Samara, Wafaa A.H. Al-Salihy, R. Sures, “Security Analysis of Vehicular Ad
Hoc Networks (VANET),” Second International Conference on Network Applications,
Protocols and Services, 2010.

[31] Frank Kargl, Panagiotis Papadimitratos, “Secure Vehicular Communication Systems:
Implementation, Performance, and Research Challenges,” IEEE Communications Mag-
azine, 2008.

[32] FIPS PUB 186-3, “Digital Signature Standard (DSS),” 2009.

[33] Michael J. Donahoo and Kenneth L. Calvert, “TCP/IP Sockets in C: Practical Guide
for Programmers.”

[34] (2013, May) A GPS Service Deamon. Accessed on May 2013. [Online]. Available:
http://catb.org/gpsd/index.html

[35] OpenSSL Documents. (2013) OpenSSL Crypto Docs. [Online]. Available: http:
//www.openssl.org/docs/crypto/

[36] Valgrind. Valgrind. Accessed on July 2013. [Online]. Available: http://valgrind.org/

[37] ETSI TS 102 637-2 V1.2.1, “Intelligent Transport Systems (ITS); Vehicular Communi-
cations; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic
Service,” 2011.

[38] ETSI TS 102 637-3 V1.1.1, “Intelligent Transport Systems (ITS); Vehicular Communi-
cations; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental
Notification Basic Service,” 2010.

[39] Arnaldo S. R. Oliveira and João Nuno Matos, “IT2S Board Description,” Instituto de
Telecomunicações – Pólo de Aveiro, March 2013.

[40] Bionic Buffalo Tech, “How Encryption and Digital Signatures Work,” Bionic Buffalo
Tech Note 35, 1999.

[41] Brian Wallace. (2012) DSA/ECDSA/SHA1 Benchmark. Accessed on July 2013. [Online].
Available: https://gist.github.com/bwall/3278083

[42] Dr. Michele Weigle, “Standards: WAVE / DSRC / 802.11p,” 2010.

[43] ETSI TS 102 637-1 V1.1.1, “Intelligent Transport Systems (ITS); Vehicular Communi-
cations; Basic Set of Applications; Part 1: Functional Requirements,” 2010.

[44] H. Krishnan, “Vehicle Safety Communications (VSC) Project,” February 15, 2006.

[45] IBM. (2013) IBM Systems Cryptographic Hardware Products. IBM. Accessed on May
2013. [Online]. Available: http://www-03.ibm.com/security/cryptocards/

[46] Kimmo Jarvinen, “Design and Implementation of a SHA-1 Hash Module on FPGAs,”
2004.

[47] Marcus Bannerman, “Supercomputing on Graphics Cards,” Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU).

http://catb.org/gpsd/index.html
http://www.openssl.org/docs/crypto/
http://www.openssl.org/docs/crypto/
http://valgrind.org/
https://gist.github.com/bwall/3278083
http://www-03.ibm.com/security/cryptocards/

64 Bibliography

[48] Miguel Morales-Sandoval and Claudia Fergrino-Uribe, “A Hardware Architecture for
Elliptic Curve Cryptography and Lossless Data Compression,” IEEE, 2005.

[49] Nisse. (2013) ECC Benchmark. Accessed on July 2013.
[Online]. Available: http://git.lysator.liu.se/nettle/se-nettle-2013/blobs/
ca37e2f0d88a288d5eecaacb8b27d6adc96f6139/benchmark/ecc-2013-02-27

[50] Roberto A. Uzcátegui, Guillermo Acosta-Marum, “WAVE: A Tutorial,” IEEE Commu-
nications Magazine, 2009.

[51] J. W. . Sons, Applied Cryptography - Protocols, Algorithms and Source Code in C.
BRUCE SCHNEIER, 1996.

[52] U.S Department of Transportation, “Vehicle Safety Communications – Applications
(VSC-A),” 2011.

[53] B. Williams, Intelligent Transport Systems Standards, 2008.

http://git.lysator.liu.se/nettle/se-nettle-2013/blobs/ca37e2f0d88a288d5eecaacb8b27d6adc96f6139/benchmark/ecc-2013-02-27
http://git.lysator.liu.se/nettle/se-nettle-2013/blobs/ca37e2f0d88a288d5eecaacb8b27d6adc96f6139/benchmark/ecc-2013-02-27

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Objectives
	Structure

	Background
	Introduction
	Intelligent Transportation System
	Network Infrastructure and Nodes
	DSRC - Dedicated Short-Range Communication

	Vehicular Communication Standards
	IEEE WAVE Protocol Stack
	ETSI Standards

	Cryptography Algorithms
	Symmetric Key Algorithms
	Public Key Algorithms
	HASH Algorithms
	Certificates and Authentication
	ECDSA - Elliptic Curve Digital Signature Algorithm

	Security in Vehicular Communications
	Security Infrastructure
	Security Challenges in VANET
	Types of Attacks
	IEEE 1609.2 Draft Standard
	Performance Requirements
	Software Implementation Approach
	Smart Cards Implementation Approach
	Hardware Implementation Approach

	Related Work

	Summary

	IEEE 1609.2 Implementation
	Introduction
	Architecture
	Required Software Resources
	Cryptographic Material
	Data Flow

	ECDSA - Implementation
	Open-SSL API
	Certificates

	Implementation of Secure Protocols
	Summary

	Integration with WSMP and Facilities Layer
	Introduction
	Overview of the Integration Architecture
	Facilities Layer
	CAM
	DENM

	WSMP Layer
	Interaction between Layers
	Facilities Layer - Security Services
	Facilities Layer - WSMP

	Experiments and Tests
	Implementation on IT2S Platform
	Summary

	Experimental Results
	Introduction
	ECDSA Timing Performance Analysis
	Integration of CAM, WSMP and Security
	System Benchmark with random data as payload
	Results Analysis with CAM messages as payload

	Conclusions and Future Work
	Future Work

	Bibliography

