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Afonso de Carvalho and Gonçalo Ramalho, for their continued

support during my PhD.

Thanks also go to my friends and colleagues Patrı́cia Lima,

Sónia Pinho, Luis Cerca, Paulino Muteto, João Nuno, Fábio
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palavras-chave Redes complexas, fı́sica estatı́stica, processos de ramificações,

dinâmica de evoluções, modelos de opiniões, processos de

optimização

resumo Nas últimas décadas, um grande número de processos têm sido

descritos em termos de redes complexas. A teoria de redes com-

plexas vem sendo utilizada com sucesso para descrever, mode-

lar e caracterizar sistemas naturais, artificias e sociais, tais como

ecossistemas, interações entre proteı́nas, a Internet, WWW, até

mesmo as relações interpessoais na sociedade.

Nesta tese de doutoramento apresentamos alguns modelos de

agentes interagentes em redes complexas. Inicialmente, apre-

sentamos uma breve introdução histórica (Capı́tulo 1), seguida

de algumas noções básicas sobre redes complexas (Capı́tulo 2)

e de alguns trabalhos e modelos mais relevantes a esta tese de

doutoramento (Capı́tulo 3).

Apresentamos, no Capı́tulo 4, o estudo de um modelo de

dinâmica de opiniões, onde busca-se o consenso entre os

agentes em uma população, seguido do estudo da evolução de

agentes interagentes em um processo de ramificação espacial-

mente definido (Capı́tulo 5). No Capı́tulo 6 apresentamos um

modelo de optimização de fluxos em rede e um estudo do surg-

imento de redes livres de escala à partir de um processo de

optimização. Finalmente, no Capı́tulo 7, apresentamos nossas

conclusões e perspectivas futuras.



keywords Complex networks, statistical physics, branching process, dy-

namics of evolution, opinion models, optimization process

abstract During the last decades, a great number of processes has been

described by complex networks. The complex network theory

has been used successfully to describe and characterize natural,

artificial and social systems, namely ecosystems, protein-protein

interaction, the Internet and WWW and also social relationships.

In this thesis we present some models of interacting agents in

complex networks. Initially, we present a brief historical intro-

duction (Chapter 1), followed by some basic notions of networks

(Chapter 2) and the background and related relevant work for this

thesis (Chapter 3).

In Chapter 4 we present a study of an opinion model, in which

agents reach an agreement. In Chapter 5 we investigated the

evolution of branching trees embedded in Euclidean spaces and

in Chapter 6 we study a model of current flow optimization and

a simple optimization based model for growing networks with

power-law degree distributions. Finally, in Chapter 7, we present

our conclusions and perspectives.
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Chapter 1

Introduction

1.1 Brief Historical Introduction

During the last decades the study of networks has attracted great interest of many researchers

from different areas. This interest is due to the general impact of theories of networks and their

numerous potential applications in many fields. Many problems in the fields like biology, social

sciences and technological applications can be interpreted in terms of networks.

A network is a set of nodes (vertices) representing the fundamental units of the network,

linked by a set of connections (called links or edges) characterizing any relationship between

these units. Configurations of nodes and links occur in a great diversity of applications. Any

object involving nodes and links between them may be called anetwork or a graph.

The pioneering work, which is regarded as the birth graph theory, (and, as well of the science

of networks) namely the solution to the called the Königsberg bridge problem, was made by

Leonhard Euler in 1735.

In the city of Königsberg (now Kaliningrad, Russia) the Pregel river flowed through the city

such that in its center was an island, and after passing the island, the river broke into two parts,

as shown in the left side of Fig. 1.1. Seven bridges were builtacross Pregel in the city. The

problem, believed to be a challenge at that time, was: Can a pedestrian walk across Königsberg

passing each bridge only once?

1



Figure 1.1: The map of Königsberg in Euler’s time with layout of the seven bridges, highlighting

the Pregel river and the bridges on left side. The corresponding graph is shown on right side.

The young Euler solved the problem in terms of a graph1. In the Königsberg bridge problem,

the nodes represent the land masses and the links represent the bridges (see Fig. 1.1). Euler

proved that when each of the nodes of a graph in the problem hasan odd number of links there

is no path passing each link only once.

In the beginning of the 1950s, a simple mathematical model ofa random graph was con-

sidered by Ray Solomonoff and Anatol Rapoport but their initial ideas did not attracted much

attention at that time. At the end of that decade, E. N. Gilbert rediscovered the Solomonoff-

Rapoport (actually Bernoulli binomial random graph) model, and theGN,p, as it is known, was

introduced. The notationGN,p indicates a statistical ensemble of networks,G, with two fixed

parameters: a given number of nodesN (in each ensemble member) and a given probabilityp

that two nodes have an interconnecting link [1]. There is another random graph, introduced by

Paul Erdős and Alfréd Rényi in the middle of the 1950s, called GN,L model [2, 3], that con-

tributed to establish the random graph theory. TheGN,L is a statistical ensemble graphs with two

parameters: a fixed number of nodesN and a fixed number of links,L, for each member of the

ensemble.

1The terms graph and network will be used interchangeably.
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Another seminal work was done in the 1960s by social psychologist Stanley Milgram [4].

In this experiment, Milgram observed at first time the well-known small-wordphenomenon.

Milgram distributed letters to randomly selected people inOmaha (Nebraska) and Boston (Mas-

sachusetts), in USA. Each person received a letter with someinstructions. The participants

should try to develop the letters to the target person by passing it to someone they knew on first

name basis and who they believed, knew the target or knew somebody who knew the target.

These acquaintances were then asked to do the same, repeating the process until the document

reached the designated target.

Among the results of this research, the most impressive is that the letters that came to be

delivered to the target (about 1/3 of the total) after passing through only, on average, 5.5 people.

From this surprisingly small number, emerges the idea that,“six handshakes separate us from

everyone else”. Other modern studies have been performed bymodern ways such as e-mail and

the result found is close to that found by Milgram.

Many other studies of networks involving relations betweenpeople have been exploited by

the social sciences. Currently, new technologies like the Internet have facilitated the social net-

working. Other types of networks such as biological (e.g., the relationship between predator-prey

or artificial electric power grids, for example) have been extensively studied [5, 6]. What makes

the study of complex networks so exciting is its fundamentalsignificance, as for many different

problems, networks show similar behaviors. The search of the universal features of complex

networks is the main trend in the network studies.

Back in the 1960s much progress has been achieved in the theories of random graphs. We

indicate for example the work of Derek Price [7], which showed that the distribution of the de-

grees of some networks follows a power law, i.e., these networks are uncorrelated random graphs

with a given degree sequence. In the 1980s other advances have been achieved, in particular, the

configuration modelproposed by Béla Bollobás [8] and other graph theory mathematicians but

also the solution of the Ising model on a regularBethe lattice, by Rodney Baxter [9]. After the

work of Baxter physicists began to create interest in studies of networks, using the techniques of

statistical physics.

At the end of the 1990s, high impact ideas were presented, including the model proposed by

3



Duncan Watts and Steven Strogatz [10] to explain the small-world phenomenon and the Lázló

Barabási and Réka Albert model, who introduced the concept of preferential attachment [11].

The solution of this model was given later by Sergey Dorogovtsev, José F. Mendes and Alexander

Samukhin [12]. A major development in the studies of complexnetworks has taken place since

then, exploiting empirical data from various types of networks such as social networks, Internet,

World Wide Web, biological and technological networks. Thesummary of the concepts and the

state of the art in the area of complex networks can be found inthe reviews[13, 14, 15].

One issue that has received much attention in complex networks studies is community struc-

ture formation. In large networks(N → ∞) with a finite mean degree, the network is, in

average, sparse. The community structure means the appearance of densely connected groups of

vertices, with sparser connections between different groups in the network. The detection and

characterization of heterogeneity in real-world networks, including community structure, clus-

tering and q-core structure is of significant importance, since most of real networks have far more

complicated organization than uncorrelated networks[16,17, 18, 19].

1.2 Networks in the real world

Researchers from many different areas investigated different types and models of networks.

In many cases, the starting point is to obtain data from real systems. Mark E. J. Newman sug-

gested a classification for different categories of networks: social networks, biological networks,

information networks and technological networks. The intention here is to make a brief presen-

tation of the most important features of well studied networks. This division into classes is useful

since the networks in the same class can often be treated by using similar techniques [20].

1.2.1 Social Networks

Social networks are formed by individuals or groups of individuals with some relationship

or interaction among its members. The nodes represent people or groups of people and the links

are social interactions among them. One can study social networks with diverse interpersonal

4



Figure 1.2: Network of sexual relationships in American high school, created by Bearman,

Moody and Stovel [21].

interactions or relations among the social groups, such as friendship, emotional, communication

patterns, professional and sexual relationships. An example of a social network is shown in

Fig. 1.2, representing the network of sexual relationshipsin a large American high school [21].

Some of the social networks show the small-world phenomenon, as one can see in the Mil-

gram’s experiment. The average distance between two arbitrary individuals tends to have very

short paths and it may have some effects in how fast the information (or a disease) can spread

through the social networks. Some other properties such as high clustering coefficient, clique

and community structures were usually reported [20].

Modeling social networks is a difficult task, given the subjectivity involved2 and the limitation

of network sizes. Various methods are used to obtain data of asocial network. The most common

2Social relationships can be seen different from one person to another, i.e. an individual A can consider an

individual B as a friend, but the opposite may not be true.
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are questionnaires and interviews but direct observation,data collected from clubs, associations

and even archival records were also used. Today the social networks hosted on the Internet such

asOrkut [22], Facebook[23] and others [24] are valuable data sources for network researchers.

Collecting data from some social networks can be difficult, specially seeking for individuals

engaged in illegal or illicit activities. Drug users, sex workers and criminals are examples of

difficult to reach or hidden populations. In this case, a specific technique,snowball sampling,

is applicable [25]. In this technique one can try identify aninitial group of members, who

provides information of other members. This process is repeated until a large sample of the

target population is extracted.

Understanding this social dynamics one can anticipate and act in some situations, such as

the spreading of a disease in a network of sexual relationships. In particular, one can more

effectively, for instance, immunize a fraction of the population, making possible to stop the

spread of a disease.

1.2.2 Biological Networks

Numerous biological systems have naturally a network organization. One can refer to the

vascular system, the network of metabolic pathways, food web or the network of our nervous

system, etc. Important classes of Biological Networks include, in particular, Biochemical, Neural

and Ecological Networks.

Biochemical Networks

Many of the biochemical processes that occur in living beings can be interpreted in terms of

chemical reaction networks. Among these networks that represent interactions and mechanisms

at molecular level, there are protein-protein interaction[26] and genetic regulatory networks

[27, 28].

The metabolic networks have universal features, such as thecitric acid cycle, which is found

in different types of cells. Similarly, genome forms a network of switchings between the proteins.

Some properties such as scale-free topology have also been reported for protein interaction net-
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works [26]. Recent developments in instrumental microbiology made possible the identification

of relationships among genetic human diseases and their associated genes [29].

Ecological Networks

In ecological networks, the interactions between species are described. The nature of these

interactions can be competition for resources, parasitismrelationships or even an advantageous

interaction such as pollination or seed dispersal. Generally, the interactions are represented by

directed links and the species are represented by nodes. In particular, food webs between prey

and predators interactions atracted significant interest of researchers [30, 31], even though only

few habitats were completely documented. Some studies shows that the food webs are highly

clustered, and the average path length between species is below 3 [32, 33].

One should note that, the experimental data for ecological networks is hard to obtain. As

pointed by Dorogovtsev and Mendes, it is hard to separate an ecological system perfectly and it

is hard to construct a food web uniquely [6]. One should add tothis the fact that all known food

webs are very small (the number of nodes is less than 200). An example of food web is shown

in Fig. 1.3, where United Kingdom Grassland Trophic Web is shown. Red nodes represent basal

species, such as plants, orange nodes represent intermediate species, and yellow nodes represent

top species (primary predators). Links characterize the interaction between two nodes, and the

link is thicker at the predator end and thinner at the prey end. Image produced with FoodWeb3D,

written by R.J. Williams and provided by the Pacific Ecoinformatics and Computational Ecology

Lab (www.foodwebs.org, Yoonet al. 2004) [34].

Neural Networks

The wormC. elegansis an example of organism with a neural network completely mapped.

It has about 300 neurons and close to 2000 directed connections with a mean degree〈q〉 = 14

[35]. This neural network shows an exponential degree distribution, small average path lengths

and a quite high clustering coefficient [10, 36, 37].

Much more complex is the neural network formed by the human brain. The number of
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Figure 1.3: Food web of the United Kingdom Grassland based ondata collected from 24 sites

between 1980 and 1992. Image produced with FoodWeb3D(www.foodwebs.org).

neurons in the human brain is of the order of1011 [6]. One can build a functional network of the

human brain by using images from the functional magnetic ressonance technique. This technique

measures brain activity by detecting changes of the blood flow, which is related to energy use by

cells in different areas of the brain. It was observed that the distribution of functional connections

is scale-free (2 ≤ γ ≤ 2.2) and the clustering coefficient is orders of magnitude larger than those

of corresponding random networks [38].

1.2.3 Information Networks

Information networks represent relations between structures of knowledge content. Citations

of scientific papers, the World Wide Web3, the records of patents, the structure of languages and

3We should not confuse the Internet with the World Wide Web, two concepts commonly viewed as equal. The

Internet basically is the physical network consisting of computers (routers, large scale computers which control the

data flow, or “autonomous systems”, collection of computerslinked by a local data routing, e.g. the network domain

of an University), interconnected by wires. Contrastingly, the WWW is a virtual network of information, built into

the websites where the information is stored.
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keyword indexes are examples of these information networks.

In particular, in these type of networks, the links are directed and can have weights, charac-

terizing the strength of interaction between nodes.

The World Wide Web

The WWW is a virtual network in which the nodes are web pages (hypertext of documents

containing the information) and the links are hyperlinks. The World Wide Web was created

in the 1980s by Timothy Berners-Lee (the original conception of the Web) at the high-energy

physics lab CERN, in Geneva. The aim of Tim Berners-Lee was tohelp CERN physicists to

share research information in a single information network.

The WWW is directed, since a hyperlink is naturally directed. In this network, page A may

have a link to page B but the page B may also have a link back to the page A. This structure

forms a cycle, and we have reciprocal links. Unlike the WorldWide Web, a citation network, for

example, has no cycles. One can see this type of structure in Fig. 1.4, where examples of citation

and WWW networks are shown.

The size of the WWW is huge: contains at least 8.8 billion pages4. In particular, a high clus-

tering coefficient, small world phenomenon (average path length around 16) and the distribution

of the links (incoming and outgoing) as power laws were usually reported in the WWW studies

[20].

Citation Networks

A network of citations between scientific papers is an information network in which the

papers are nodes and links are references from one paper to another. A seminal work in this

type of networks was published in the 1960s by Derek Price [7]. In this paper Price reported a

power law degree distribution of the citations. Today this kind of citations study is refered to

“information science” in the branch called bibliometrics.

In a network of citations of scientific papers, the network isacyclic, since an article can only

4Measured on Monday, 01 October, 2012 in http://www.worldwidewebsize.com/

9



World−Wide Webcitation network

Figure 1.4: Citation and WWW networks. One can see that on theleft side, the citation network

is acyclic while on the right side the WWW has a cyclic structure, adapted from [13].

mention (have a link) earlier articles. You can not cite future articles.5. The distribution of the

in-degrees in the citation networks follow a power law whilethe out-degrees has an exponential

tail [20].

Language Networks

The structure of a language can be represented in terms of a network. Ferrer i Cancho and

Solé studied a network of words constructed as follows: each word is a node; two words have a

link connecting them if they appear next to each other (no more than two words apart) in English

sentences [39].

This language network has a small average path length (ℓ = 2.67), high clustering coefficient

(C = 0.437) and a power-law degree distribution with two different exponents,γ = 1.5 for

q ≤ 103 andγ ≃ 2.7 for q > 103. One can create a different language network, connecting

words based on their meanings [40]. The results are not so different from the previous study,

with average path length (ℓ = 4.5), clustering coefficient (C = 0.7) and a power-law degree

distribution.

5An exception to this are the articles published online into the electronic archive database

(http://arXiv.org ) in which one can update and change their papers’ references[1]
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1.2.4 Technological Networks

Technological Networks are usually created for the distribution of resources. Distribution

networks for electricity, water, telephone and data, distribution of services as mail and delivery

goods, railway, road and the Internet are some examples of technological networks. These net-

works are in constant expansion, in particular, improving for faster and cheaper way to distribute

goods and services.

Internet

The Internet is the best documented and studied technological network. Researchers can

study the Internet structure by following large samples of data routes. The path the information

takes from one computer to another can be found by a traceroute tool [41]. One can treat the

Internet as a network in which the nodes are computers (routers and other devices) and the links

are connections (physical connections such as wires and optical fiber lines) between them. This

representation of the Internet is shown in Fig. 1.5.

When any information is sent from one computer, this information is divided into “small

packets” and each data packet is sent separately over the Internet. After reaching its destination

the packets are reassembled and the original information isreconstructed. By following a spe-

cific data packet one can trace the route from our computer (source) to the target (destination).

By sending a large number of packets, one can reconstruct thetopology of the Internet from

traceroute tool. Computers of end-users can appear and disappear from the network as they are

turned on and off. Therefore most studies of the Internet topology disregard end-user computers

and look only at the domain-level or the router-level of Internet [42, 43].

Another branch of the Internet studies are related to the resilience of a network, i.e. its ability

to stay connected after a failure or an intentional attack. The removal of some nodes in may

cause a fragmentation of the network, limiting the communication. Some failures may trigger

a cascade of subsequent failures, switching off or disconnect most of the nodes of the network

[44, 45, 46].
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Figure 1.5: Graphic representation of the Internet in 2005.This picture was created by the Opte

Project(www.opte.org) aiming a visual representation of the Internet. The colors indicate

the following areas: net, ca, us (blue); com, org (green); mil, gov, edu, (red); jp, cn, tw, au

(yellow); uk, it, pl, fr (pink); br, kr, nl (light blue); unknown (white).
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Power Grids

Power grids are networks providing the transportation of electric power from the generators

to the high(or mid)-voltage substations. In this case, the nodes are the generators, transformers

and substations and the links are the high-voltage power lines. Local low-voltage substations and

local power delivery are normally neglected [10, 47]. Typically power grids are small networks

with an exponential degree distribution.

Recent interest in the study of these networks have been motivated by the devastating effects

of power grids failures [46, 48]. Sometimes a failure can affect a large region of a country, where

a cascade failure may cause extensive electricity blackouts.

Telephone Networks

In a telephone network the nodes are telephone numbers and the links (directed) are the calls

from one number to another. The topological structure of thetelephone network is relatively

simple: end user’s subscribers are connected to the local offices which are connected among

themselves and also connected to the long distance offices. The long distance offices are also

connected among each other by trunk lines. It was found that this long distance calls’ network

have a power law degree distribution for incoming and outgoing calls [49].

Transportation, distribution and delivery

Road, rail, air, river, and sea routes can form networks of the transport lines, transportation

not only people but also distribution of goods, package and letters delivery [47, 50, 51, 52, 53].

Oil, gas and water pipelines are also examples of this type oftechnological networks, usually

shaped by geographical boundaries [54].

Interestingly, there is no consensus among researchers about what is represented by nodes

and links. For some authors, the distance between two nodes on the network (rail in this case)

is not the number of links among the train stations, but simply the number of trains needed to

travel between two different locations [50]. In the road network studies, the geografic locations

are usually the nodes and the links are formed by the routes between them [55].
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Chapter 2

Basic Notions of Networks

The aim of this Chapter is to describe some basic notions of complex networks, such as

degree, adjacency matrix, degree distribution, clustering and also mean distance, measurements

needed to reveal the structure of networks.

2.1 Basic Features

In simple words, a Network is a set of points (which we call nodes or vertices) with connect-

ing lines between them (which we call links or edges). In principle, networks can have different

types of nodes (see Fig. 1.2), links can have weight and can bedirected (Fig. 1.4). In Fig. 2.1

one can see three different types of networks: (a) undirected, (b) weighted and (c) directed.

One can consider temporal evolution of networks. Some networks, e.g., the WWW, citation

and friendship networks, internet, etc. can have nodes added or removed and the weights of

the links can change in time. These networks are non-equilibrium and they will be discussed in

Chapter 5.

Next Sections will describe some of mathematical tools to analyze, describe and measure

networks.
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Figure 2.1: Examples of three different types of networks: (a) an undirected network with a

single type of nodes and links; (b) weighted network with different types of links; (c) network

with directed links.

2.2 Adjacency Matrix

The Adjacency Matrix provides a complete mathematical representation of a network. In a

network withN nodes, the adjacency matrixAij has sizeN × N . Each element in the matrix

is related to one ofL links between the nodes:Aij = 1 if there is a link between nodesi and

j; Aij = 0 otherwise. The adjacency matrix of a simple tree withN = 8 andL = 7 shown in

Fig. 2.2 is

A =





















0 1 0 0 0 0 0 0

1 0 1 0 0 1 0 0

0 1 0 1 1 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 1 1

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0





















. (2.1)

All properties of a network can be extracted from the adjacency matrix. The degree of a node,

for instance can be obtained by

qi =
N
∑

j=1

Aij. (2.2)

For a random network, an adjacency matrix corresponds to a single realization, only one

member of the statistical ensemble.
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Figure 2.2: Example of a simple tree with labeled nodes. The corresponding adjacency matrix is

shown in Eq. 2.1.

The main diagonal of the adjacency matrix has all zeros if thenetwork has no loops. In the

case of loops, an elementAii is equal twice the number of links connecting the nodei to itself.

The adjacency matrix is symmetric if its represent an undirected network. Otherwise the matrix

is not symmetric as one can see in the Fig. 2.3, which also shows a network with multiple links

(sometimes calledmultigraph) and self-links.

Ad =









































0 1 0 0 0 0 0 0

2 0 0 0 0 1 1 0

0 1 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 1









































Figure 2.3: Directed network with multiple links and its adjacency matrix.

For directed networks, the adjacency matrixAd
ij is defined byAd

ij = 1 if j → i; Ad
ij = 0

otherwise. In a multigraph,Ad
ij is equal to the number of links from nodej to nodei.
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A more compact way to store and sometimes treat a structure ofa network is by using the

link list (or edge list) 1. This representation is given by a list of all links between nodes. The

network shown in Fig. 2.2 can be represented by the corresponding link list: (1,2), (2,3), (2,6),

(3,4), (3,5), (6,7), (6,8). Due to the usually large number of zeros in the adjacency matrix, this

representation is usefull for saving memory on computers when the network is large.

A weighted network have their links with weights. If the weights are all integer, a weighted

network is actually a multigraph, where multiple links correspond to the weights of the links.

2.3 Connectivity Measures

The basic characteristic of a node, degree is the total number of its connections. The basic

characteristic of a random network is its degree distribution. Much information about a network

is related to degree distribution. A network with a power-law degree distribution,P (q) ∼ q−γ

with 2 ≤ γ ≤ 3, for instance, is expected to be resilient to a random removal of links [56].

Measurements related to connectivity will be discussed in the next sections.

2.3.1 Degree

The degreeqi, is the number of links attached to a nodei. It is a local measure given by

equation 2.2 while the mean degree of the network is

〈qi〉 =
1

N

N
∑

i=1

qi. (2.3)

Most real-world networks are directed, such as World Wide Web, Citation networks and Food

Webs. For directed networks two types of degree are assigned: in-degree,qini is the number of

incoming links and out-degree,qouti is the number of outgoing links of a nodei.

1In this representation, for a directed network, (1,2) meansthat there is a link from node 2 to node 1.
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2.3.2 Degree Distribution

The degree distributionP (q) is the probability that a node chosen uniformly at random within

the network has a degreeq:

P (q) =
〈N(q)〉

N
, (2.4)

whereN is the total number of nodes in the network and〈N(q)〉 is the average number of nodes

of degreeq in the network, where the averaging is over the entire statistical ensemble2. In other

words, this is the fraction of nodes in the network, which have degreeq. For directed networks

one needs to take into account the degree distribution for incoming and outgoing degree for a

nodei, P (qini ) andP (qouti ).

Once the distribution is known, much information can be obtained by the calculation of

moments of this distribution. Then-th moment of the distribution is

〈qn〉 =
∞
∑

q=0

qnP (q). (2.5)

The first moment〈q〉 is the mean degree while the second moment is a mesure of the degree

fluctuations of the distribution. If〈q2〉 diverges, structure and function dramatically changes in

the network, in contrast to those for finite〈q〉 [57].

A degree distribution usually have one of these distributions forms: Exponential, Poisson,

Power-law, Multifractal or Discrete distributions. Examples of the most common types of degree

distributions are shown in Fig. 2.4.

An exponential degree distribution has the form

P (q) = Ce−αq. (2.6)

Exponential degree distributions were reported in some real-world networks such as the

Worldwide Marine Transportation Network [58], Email Network [59] and Power Grid Net-

work [60].

2Many empirical studies of networks measure one single realization while computer simulations usually take

average among a finite number of different realizations [6].
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Figure 2.4: Examples of the most common types of degree distributions: (a) exponential, (b)

poisson and (c) power-law (with a cut-off) degree distributions.

A classical random network such as the Erdős-Rényi model,have a Poisson degree distribu-

tion

P (q) = e−〈q〉 〈q〉
q

q!
(2.7)

when the number of nodesN → ∞. Both Exponential and Poisson degree distributions have all

their moments finite. These distributions have a natural scale, namely, an average degree.

One of the most common, power-law degree distribution is observed in many real networks,

P (q) ∼ Cq−γ, (2.8)

where C andγ are constants. The power-law distributions are also calledscale-free or fractal,

and networks with these distributions are called scale-free networks, since has no any natural

scale. This type of distribution is often referred to a Zipf’s law or Pareto distribution [61]. The

cut-off shown in the Fig. 2.4 (c) is due to the finite size effects common in all real networks.

Multifractal and Discrete degree distributions are less studied than those discussed above. A

multifractal distribution has no specific exponent and combines a continuum spectrum of power

laws, with different exponents.
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2.3.3 Degree Correlations

In uncorrelated networks, the degrees of the nearest neighbors are uncorrelated. The Erdős-

Rényi model is an example of uncorrelated network. Real-world networks are typically corre-

lated. This means that the degreeq of a node depends on the degree of its nearest neighbors

q′.

By using the joint probabilityP (q′|q) one can describe the correlation of a network, a proba-

bility of a node with degreeq being connected to another node with degreeq′. 3 If P (q′|q) does

not depend onq as in uncorrelated networks, the joint probability is a function of onlyq′:

P (q′|q) =
q′P (q′)

〈q〉
. (2.9)

The mean degree of the nearest-neighbors of a node of degreeq can be written as

qnn(q) =
∑

q′

q′P (q′|q). (2.10)

If a network is uncorrelated, one can insert Eq. 2.9 in Eq. 2.10, namely

qnn =
∑

q′

q′
q′P (q′)

〈q〉
=

〈q2〉

〈q〉
, (2.11)

whereqnn do not depends onq.

Correlated networks can be assortatives, or disassortatives. In an assortative networkqnn(q)

is a growing function ofq and highly connected nodes mostly have the nearest neighbors of high

degrees. In a disassortative network,qnn(q) decreases withq and a node of a high degree mostly

have low degree nodes as nearest neighbors. The assortativity of a network can be determined by

using the Pearson coefficient [65]. In this case, forr > 0 the network is assortative; forr < 0,

the network is disassortative and forr = 0, the network is uncorrelated.

3The joint probability should be normalized,
∑

q′
P (q′|q) = 1 and obey the detailed balance,qP (q′|q)P (q) =

q′P (q|q′)P (q′) [64].
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2.3.4 Hubs

Hubs (highly connected nodes) play an important role in the network dynamics. A removal

nodes from the network can cause a fragmentation of the network, destroying the connected

component. In this case, the network will be a set of disconnected clusters. Removal of hubs

destroys a network specially rapidly.

The difficulty in destroying the giant component by removal of vertices is used as a criterium

of resilience of the network against failures [48]. There are two kinds of resilience: against a

random removal of nodes and against a targeted removal of nodes. The Internet, for instance, is

resilient against random failures: it still working if somerouters are disconected at random [66,

46]. A different situation emerges in the case of an intentional removal of hubs. Networks

with γ ≤ 3, known to be resilient to random failues, are sensitive in the case of an intentional

attack [44, 45].

2.3.5 q-core Structures

Theq-core of a network is the largest subgraph in which all nodes have at leastq interconnec-

tions [17]. Theq-core indicates the best interconnected parts in a network and may be obtained

by the “pruning algorithm”. Remove from a network all nodes of degree less thanq. Some of

the resting nodes may remain with less thanq links. Then remove these nodes, and so on, until

no further removal is possible. The result, if it exists, is theq-core. Fig. 2.5 showsq-cores in a

small network and the pruning algorithm to find aq-core.

The 2-core differ a slightly from the original network. The 3- and higherq-cores, on the other

hand, show a great contrast to the connected component. Networks without loops, i.e. trees, have

no (q ≥ 2)-cores. If a network is tree-like (i.e. it has no finite loops), it can only have an infinite

(q ≥ 2)-core. In a loopy network, a single giant and numerous finiteq-cores can coexist, while

in tree-like networks there can only be a single giantq-core.

The birth of this giantq-core, forq ≥ 3 is an unusual phase transition, different from both

continuous and first-order transitions, the two classes of phase transitions normally used by

physicists. In a continuous phase transition, the order parameter emerges continuously without
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Figure 2.5: A small network on the left and the corresponding2- and 3-cores on the right side.

To find aq-core, one can remove all nodes with degree less thanq. After that, one can check if

the remaining nodes has degree grater thanq. If not, one may prune these nodes with degree less

thanq.

a jump, in contrast to a first-order transition, where the order parameter emerges abruptly. The

transition associated with the birth of the q-core combinesthe characteristics of both transitions.

This phase transition is called ahybrid transition.

Another problem closely related to theq-core of random graphs is the bootstrap percolation

on complex networks. Goltsevet. al described the properties of theq-core and explained the

meaning of the order parameter for theq-core percolation and the origin of the specific critical

phenomena [18]. G. J. Baxteret. al studied bootstrap percolation on an arbitrary sparse undi-

rected, uncorrelated complex network of infinite size usingthe configuration model (a random

graph with a given degree sequence) [67]. In their study theyalso found a hybrid phase transition

and described how this behavior changes when the network is damaged.

2.4 Loops in a Network

The presence of loops is a common feature in real-world networks. In a social network

for instance, there is a high probability that two people with a common friend are also friends

themselves. This characteristic was highlighted by A. Rapoport in the 1950’s [68]. A useful
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measurement of loops in a network is theirclustering coefficient.

2.4.1 Clustering

The concept of clustering reflects how the first neighbors of anode are connected to each

other, so it is a non-local feature. The clustering coefficient of a given node quantifies the density

of connections around this node. If node A is directly connected to nodes B and C, then there

is a probability that the node B is also directly connected tothe node C. This probability is the

clustering coefficient.

The local clustering coefficient of a nodei with qi nearest neighbors, and withti links between

them is defined as:

Ci(qi) =
2ti

qi(qi − 1)
, (2.12)

and may vary between 0 and 1. When all the nearest neighbors ofa nodei are interconnected,

Ci = 1. The same result is obtained for a fully connected network.

The clustering coefficient of the entire network, themean clustering coefficient, is the average

of the local clustering coefficient over all nodes:

C =

〈

2ti
qi(qi − 1)

〉

=
∑

q

P (q)C(q). (2.13)

Clustering refers to the statistics of the number of triangles (loops of length 3) in the network,

which is common in the real networks, specially in social ones.

2.5 Distance Measures

Statistics of node separation essentially determines dynamic processes on networks. Here,

the separation of nodes is related not to Euclidean distancebut rather to the length of the shortest

path between nodes measured as the number of links connecting them4.

4In Cap. 5 we will investigate the role of Euclidean distance related to a branching process in a biological

network.
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2.5.1 Shortest Path Length

One can define the distanceℓij between two verticesi and j as the shortest path length,

sometimes called ageodesic distance, as the minimum number of links connecting one node to

another5. A well-known algorithm to find the shortest path length in a network is thebreadth-

first search[20]. A single run of this algorithm finds the distance between a nodei and all other

nodes in the same connected component.

One can naturally introduce for a network, the mean path length, ℓ where the average pathℓij

is taken over all those pairs of nodesi andj which have at least one connecting path,

ℓ =
2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

ℓij. (2.14)

2.5.2 Diameter of a Network

The diameter of a networkℓD, is the length of the longest geodesic distance (shortest path)

between any two nodes in the network for which there exists aninterconnecting path. In many

networks whenN → ∞, ℓ is of the order ofℓD. For small worlds, typically

ℓD ∼
lnN

ln〈q〉
. (2.15)

In the case of a network with several disconnected clusters,one can define the diameters of

its isolated clusters [40].

2.5.3 Small-world phenomenon

The term small-word express the surprisingly smallness of the mean shortest path in net-

works. Milgram’s experiment described in Sec. 1.1 is the famous demonstration of this phe-

nomenon. A modern version of this experiment was performed by Doddset. alusing e-mail in

2003 [69] and were found very similar results.

5In directed networks, the shortest path runs in only one direction, following the direction of the links.
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In more strict terms, the small-word effect means that the mean separation of nodes grows

slower than the any positive network size. We will discuss details of small-world effect in

Sec. 3.1.3 devoted to the model proposed by Duncan Watts and Steven Strogatz with the small-

world feature.

In some networks the separation distance of nodes grows evenslower thanlnN . For uncor-

related scale free networks, with2 ≤ γ ≤ 3 the mean separation distance of nodes grows with

N aslnN/ ln(lnN), and this effect is known as the “ultra small-world” phenomenon [70, 71].

2.6 Centrality Measures

Centrality measures characterize the position and the properties of a node within entire net-

work, the “global” importance of a given node. In a social network, for instance, the person

with more connections usually have higher influence or prestige than others. In a network of

scientific papers, a large number of citations that a paper receives usually indicates its relevance

and influence in the scientific community.

2.6.1 Betweenness Centrality

The key measure of centrality is thebetweenness centralityproposed by L. C. Freeman [72]

in the 1970’s. For a given nodem, it is the number of shortest paths between other (thanm)

nodes that run through the nodem. The betweenness centrality is defined as

b(m) = NF
∑

i 6=m6=j

B(i,m, j)

B(i, j)
, (2.16)

whereB(i, j) > 0 is the number of shortest paths between verticesi andj andB(i,m, j) is

the number of the shortest paths passing through nodem. TheNF is a normalization factor

proposed by Freeman,NF = 2/[(N − 1)(N − 2)] in order to obtain0 ≤ b(m) ≤ 1. N is the

total number of nodes in the network. The betweenness centrality indicates the importance of a

node, showing the fraction of the network traffic which passes this node.
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2.6.2 PageRank

The PageRank is an algorithm used by Google Inc. for ranking web pages6. It was devel-

oped by Larry Page and Sergey Brin for characterization of the importance of a web page [73].

PageRank assigns a numerical weight to each nodei of a network and the result is shown as the

PageRank ofi, PR(i). The result of a query is shown in a list from highest to lowestPageRank.

The idea of PageRank is that the popularity is proportional to the number of times this page

is visited by randomly surfing. The PageRank essentially depends on the number of incoming

links of a node, and usually a higher number of incoming linksresults in a highPR.

The PageRank of a web pagei is defined as

PR(i) =
d

N
+ (1− d)

∑

j:j→i

PR(j)

qout,j
, (2.17)

whereN is the size of a network,qout,j is the outgoing degree of a nodej, and the sum is over all

pages that link toi. If d = 0, and a node has no outlinks, the node can capture the random walker

and terminates the process. To avoid this event, the processshould be restarted from a random

with some probability. The parameterd is the probability that one jumps to a randomly chosed

webpage instead to one of the nearest neighbors of a node. This parameter usually is chosen as

d = 0.15.

6This method is registered in the United States Patent and Trademark Office with the name:

Method for node ranking in a linked database, and can be accessed on http://patft.uspto.gov/netacgi/nph-

Parser?patentnumber=6285999.
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Chapter 3

Background and Related Work

The aim of this Chapter is to describe the background and somerelated works to this study.

In order to understand how the heterogeneity of a network caninfluence stochastic processes,

games, epidemics and opinion models on a complex network, some characteristics need to be

introduced. In particular, next sections will be devoted tothese characteristics, and we will

present some basic definitions and results.

3.1 Models of Networks

In the last decade many network models have been proposed to mimic features usually ob-

served in real-world networks such as the small world effect, scale-free degree distribution, com-

munity structures and high clustering. We will describe most influential network models: the

Erdős-Rényi model, the Gilbert model, Configuration model, the Watts-Strogatz model and the

Preferential attachment model.

3.1.1 Erdős-Ŕenyi and Gilbert models

The models known as the Erdős-Rényi model (ER) and the Gilbert model are the two main

versions of the so-called classical random graphs. These models actually are random networks

under some constraint. A random graph is not a single generated network, but an ensemble
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of networks. The Erdős-Rényi random graph, also calledGN,L, is a statistical ensemble of all

possible graphs with two given parameters: a fixed number of nodesN and a fixed number of

links,L, for each member of the ensemble [2, 3, 74].

The Gilbert model,GN,p, is a statistical ensemble of networks, with two fixed parameters: a

given number of nodes N (in each ensemble member) and a given probability p that two nodes

have a interconnecting link [75].

In the limit of large sparse networks(N → ∞), these two models are equivalent, and〈q〉 =

2L/N = p(N − 1). The degree distribution of this has a Poisson form and all their moments

converge:

P (q) =
e−〈q〉〈q〉q

q!
. (3.1)

The classic random graphs have the clustering coefficient〈C〉 = 〈q〉/(N −1) since all nodes

are connected with the same probabilityp. When〈q〉 is constant asN → ∞, the network is

sparse. In the classical random graphs, for〈q〉 ≫ 1, a giant connected component is present in

the network.〈q〉 = 1 is the point of a phase transition in which a giant connected component

emerges. This phase transition is similar to that one observed in percolation theory for infinite

dimensional lattices.

3.1.2 Configuration model

In order to generalize the classical random graphs, Bender and Canfield introduced a new

model of a random graph with a given degree sequence [76]. Béla Bollobás mathematically

completed this generalization and named it theConfiguration Model[8]. The model generates

uncorrelated random graphs with an arbitrary degree. The idea of the configuration model is to

build a maximally random graph with a given degree distribution.

By choosing a certain degree sequenceqi for the nodesi . . . N , we can obtain a desired degree

distributionP (q) for the network for a sufficiently large network. In numerical simulations we

can simply choose the degree sequence from a desired degree distribution. After that we set

for each nodei the number of stubsqi from the degree sequence. At random we choose a
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Figure 3.1: An example of a network constructed by the configuration model. One can see the

set of stubs (a) and one possible member of the statistical ensemble of the configuration model

after make the connections (b).

pair of nodes and make the connections. Once all the nodes areconnected, we will have one

member of the ensemble of networks with the givenP (q). The network produced by this model

is uncorrelated. Fig. 3.1 explains the configuration model construction.

3.1.3 Watts-Strogatz model

A large number of real-networks has a high clustering coefficient and demonstrate the small

world phenomenon. Classical random graphs (Erdős-Rényiand Gilbert models) and the con-

figuration model generate networks with typically small clustering. In 1998 Watts and Strogatz

proposed a new model of complex networks (WS) which combinesthe small-world effect and

high clustering, thesmall-world model[10].

The model is constructed based on a regular lattice, by moving or rewiring randomly chosen

links from the original positions, connecting distant nodes by long-range shortcuts. Starting with

a one-dimensional network with periodic boundary conditions (e.g. a circle with links between

first and second neighbors), by rewiring the links from the original nodes to random selected

ones we create long distance shortcuts. The links are moved with some probabilityp. Self-

connections and double links are not allowed in this model. One can see this process in Fig. 3.2

where the original network (p = 0) and the WS network with rewiring probabilityp = 0.1875

are shown.

In this model, forp = 0 the network shows high clustering but no small-world effect. On the

31



Figure 3.2: Example of a small-world network generated by WSmodel with probability of

rewiringp = 0 (a) andp = 0.1875 (b), in this case 6 of 32 links are rewired.

other hand, forp = 1 the network shows the opposite. For a long range of intermediate valuesp,

this model shows both features simultaneously [20]: even for a small, but finitep, these networks

demonstrate high clustering and shortℓ.

3.1.4 Preferential attachment model

Numerous networks are observed to have scale-free degree distributions, approximately fol-

lowing power laws. The first work in this direction was made byPrice, who presented a model

for growing network with power law degree distribution [7].The most famous and well stud-

ied model of growth networks with power law degree distribution is thePreferential attachment

model, developed by Barabási and Albert [11]. In simple words, inthis model, nodes with high

degree attract new links with higher probability. The probability that a new node becomes at-

tached to a previous existent node with degreeq is proportional to a function of this degree,f(q).

For networks with scale-free degree distribution, the preference function is

f(q) =
C + q

N(C + 〈q〉)
, (3.2)

where C is a constant. These networks follow a power law with exponent2 ≤ γ < ∞.

Barabási and Albert reproduced two aspects usually seen inreal-world networks that are

absents in ER and WS models. First, both these networks have afixed number of nodesN

32



connected at random (ER model) or rewired (WS model). But many real networks are growing

networks. Second, in both models, nodes are interlinked uniformly at random. In real networks

a new connection is often made by linking a new node to most connected nodes in the network.

For instance, a well cited paper is more likely to be cited than an unknown paper.

In the BA model, the probability℘i that a new node is attached to nodei is

℘i =
qi

∑

j qj
, (3.3)

whereqi is the degree of the nodei and the sum in the denominator is over all nodes in the

network.

The network is generated by the following rule:

1. The network starts from some initial configuration (e.g. aconnecting cluster).

2. At each step a new node is attached tom ≥ 1 of the previous nodes selected with proba-

bility ℘ proportional to their degrees.

3. Repeate 2 until the network reaches the desired sizeN .

After t time steps the network generated hasN = t nodes andL ∼= mt links, which gives the

sum in denominator of the Eq. 3.3

N
∑

j=1

qj ∼= 2mt. (3.4)

The degree distribution can be found from the evolution of the mean degree of nodei,

∂〈qi〉

∂t
= m℘i = m

〈qi〉
∑

j qj
=

〈qi〉

2t
. (3.5)

The rate of the grows of〈qi〉 is the probability that the node receives a link multiplied by the

number of conectionsn.

Solving this equation, we have〈qi〉(t) = Ct1/2. Thusqi(ti) = m, soC = m/t1/2. The

evolution of the mean degree〈qi〉 is described by,
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〈qi〉(t) = m

(

t

ti

) 1
2

. (3.6)

From these, one can get for largeq an estimate

P (q) ∼
2m2

q3
, (3.7)

following a power lawP (q) ∼ q−γ with γ = 3.

This result was independently found by Dorogovtsev, Mendesand Samukhin [12], in which

was found the exact form of the stationary degree distribution for large sizes of growing networks.

Other extensions and generalizations of the preferential attachment model have been sug-

gested, connecting already existent nodes by new links [77], removal of links [78] or a non-linear

preferential attachment function [79, 80].

3.2 Epidemics in networks

The models that are discussed focus in spreading infectiousdiseases in populations. The

mathematical modeling of epidemics is much older than the study of complex networks. It

started by the works of MacKendrick in the 1920s [81, 82]. In this traditional approach every

individual through network has the same chance per unit of time to have contact with every other.

This assumption doesn’t take into account the topology of the network.

The theories of epidemiology describe epidemic within fully connected graphs, classical ran-

dom graphs and lattices, where each of the individuals can bein two or more states: S - suscep-

tible, I - infected, R - removed or recovered (but not susceptible), E - exposed and M - births

with temporary immunity. Different models can be based on the individual states and they are

usually named by their acronyms. SI, SIS, SEIS, SIR, SEIR, SEIRS, MSEIR and MSEIRS are

some examples of epidemic models.

These models can be defined on substrates or lattices but alsoon complex topologies. In this

thesis the SI, SIS and SIR models will be briefly presented anddiscussed. For more detailed
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Figure 3.3: General diagram for states of the nodes in three epidemic models. The models SI (a),

SIS (b) and SIR (c) as well the infection rates (β), and the recovery rates (µ) are represented.

discussion of spreading infectious disease, the review by Herbert W. Hethcote can be consulted

[83].

3.2.1 SI model

In this simple epidemic model, an individual in the population is in one of the two possible

states: susceptible (S) or infected (I). A susceptible individual becomes infected if has contact

with an infected neighbor. It is important to find out if the disease spreads through the population

or becomes extinct after some time, or in other words, if there exists a critical infection rateβc

above which the disease survives.

In the SI model, the two possible states of an individual are represented in the Fig. 3.3 (a).

Initially, a network ofN individuals have a small numberI of infected nodes. At each step, a

susceptible individual becomes infected with rateβ if one of its nearest neighbors are infected.

The notation for the SI model is shown in the table 3.1. The total population is constant,

N = S + I ands+ i = 1.

For a fully connected graph, the probability to meet a susceptible person at random isS/N ,

so the evolution equation for infection spreading in the population is

di

dt
= β

SI

N
= βsi (3.8)

and for the susceptible individuals

ds

dt
= −β

SI

N
= −βsi. (3.9)
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N Total population

S Number of susceptible individuals

I Number of infected individuals

β Infection rate

s Fraction of susceptible individuals

i Fraction of infected individuals

Table 3.1: Summary of notation for the SI model.

Figure 3.4: Evolution of the fraction of infected nodes in the SI model, called the logistic growth

curve. For this picture, the initial fraction of infectedi0 = 0.02 and the infection rateβ = 0.01.

Usings = 1− i, we can rewrite the equation 3.8 as

di

dt
= β(1− i)i. (3.10)

This equation is called the logistic growth equation, and the solution is

i(t) =
i0e

βt

1− i0 + i0eβt
, (3.11)

wherei0 is the fraction of infected individuals att = 0. This solution is shown in Fig. 3.4. As

one can see, in the SI model the disease spreads and eventually reaches the entire population.
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3.2.2 SIS model

In the SIS model, an individual can be susceptible (S), infected (I) or can recovery and be-

come susceptible (S) again, as is shown in Fig. 3.3 (b). The rate of recovery of an infected node

(I → S) is µ and a susceptible node becomes infected(S → I) with rateβ if it has at least one

infected nearest neighbor. This model allows reinfection,as influenza and many other diseases

that do not confer immunity. The summary of notations for theSIS model is shown in table 3.2.

N Total population

S Number of susceptible individuals

I Number of infected individuals

β Infection rate

µ Recovery rate

λ Reproductive number

s Fraction of susceptible individuals

i Fraction of infected individuals

Table 3.2: Summary of notation for the SIS model.

The control parameter of the SIS model is the so-called reproductive number,λ = β/µ. If a

few nodes are infected, the disease will quickly die out if the reproductive number is below some

value,an epidemic threshold, λc. In homogeneous situations (nodes with a narrow distribution

of connections) in networks, the epidemic threshold is determined by the mean degree of a node,

λc ∼ 1/〈q〉. If the reproductive number is above the epidemic threshold, an epidemic spreads

throughout the network.

For the SIS model defined on uncorrelated networks, the epidemic threshold is

λc =
〈q〉

〈q2〉
. (3.12)

An important quantity is theprevalence, which is the fraction of infected individuals. Above

the epidemic threshold, the prevalence approaches a nonzero value, similar to the logistic growth

curve in the SI model.

The evolution equations for the SIS model on a fully connected graph are
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ds

dt
= µi− βsi, (3.13)

for the fraction of susceptible and
di

dt
= βsi− µi, (3.14)

for the fraction of infected individuals.

Usings = 1− i (constant population) in the equation 3.14,

di

dt
= (β − µ− βi)i, (3.15)

which has the solution

i(t) = (1− 1/λ)
Ce(β−µ)t

1 + Ce(β−µ)t
, (3.16)

where the constant C is

C =
βi0

β − µ− βi0
. (3.17)

Whenβ > µ the solution produces a curve formally similar to the SI model, as one can see

in Fig. 3.2.2. The principal difference is that only a fraction of the population is finally infected.

Figure 3.5: Evolution of the fraction of infected nodes in the SIS model withi0 = 0.02, β = 0.2,

µ = 0.1.
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3.2.3 SIR model

In the SIR model an individual can be in one of the three states, infected, susceptible or

recovered. The recovery rate for an infected individual(I → R) is µ. This model does not allow

reinfection: recovered individuals have permanent infection immunity. A susceptible individual

becomes infected(S → I) with rateβ if he or she has an infected nearest neighbor, as are

represented in Fig. 3.3 (c). The reproductive number for theSIR model isλ = β/µ. The

summary of notations for the SIR model is shown in table 3.3.

N Total population

S Number of susceptible individuals

I Number of infected individuals

R Number of recovered individuals

B Number of births

D Number of deaths

β Infection rate

µ Recovery rate

λ Reproductive number

s Fraction of susceptible individuals

i Fraction of infected individuals

r Fraction of recovered individuals

Table 3.3: Summary of notation for the SIR model.

We can analize the evolution of the epidemic outbreak for a fully connected graph. The

equations for the SIR model are

ds

dt
= −βsi, (3.18)

di

dt
= βsi− µi, (3.19)

dr

dt
= µi. (3.20)

Evaluating these equations numerically, one can see the evolution of the fractions of the

population in each of the three states. In contrast to the SISmodel, the SIR model shows an
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epidemic outbreak at initial times but approaches zero in the limit of infinite time. One can see

this typical behavior in Fig. 3.6 for the case of constantN .
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Figure 3.6: Evolution of the population in the SIR model. Theinitial fraction of infectedi0 =

0.01, β = 0.4, µ = 0.15 andN = 10000 nodes.

In 2001 Pastor-Satorras and Vespignani [16] considered thespread of infectious disease

within an uncorellated network with an arbitrary degree distribution, extending the traditional

epidemic in homogeneous media. The most important result was the absence of an epidemic

threshold. For the SIR model, the epidemic threshold,

λc =
〈q〉

〈q2〉 − 〈q〉
=

1

b
(3.21)

whereb = (〈q2〉/〈q〉)−1, coincides with the percolation threshold, because in manyaspects, the

SIR model is equivalent to the percolation problem [84].

In the networks with a heavy-tailed degree distribution, the epidemic threshold is low, dra-

matically smaller than1/〈q〉 the value of the classical random graph. This may indicates that

for some real-world networks (e.g. the Internet), an infection can spreads independently of their

infection rates.

Disease spreading was studied in numerous network models. For example, for small-world

networks, we can cite [85, 86]. For epidemics in networks with high clustering, it was found that
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the high clustering can affect the epidemic threshold and the size and the resilience of the giant

connected component [87, 88]. A popular topic is various immunization strategies [84, 89, 90].

The usual approach is a targeted immunization of the HUBs, since they are connected with high

number of nodes, are easily infected. Pastor-Satorras and Vespignani show that, for scale-free

networks withγ ≤ 3, the epidemic threshold is absent. By immunization of the most connected

nodes, one can restore a finite epidemic threshold and eradicate a virus [89]. This approach

requires global information of the network. It can also be used local information to choose the

nodes immunized [90] and prevent epidemics.

In the real world, the spread of infectious diseases is rather due the high population mobility,

in contrast to the models where the individuals stay permanently in their nodes.

In the case in which the population is not constant, at each time step B individuals are added

to the population andD are removed. The fractionb = B/N are added into the susceptible group

and the fraction of diseasedd = D/N are removed from entire population. The new equations

are:

ds

dt
= −βsi+ b− ds, (3.22)

di

dt
= βsi− µi− di, (3.23)

dr

dt
= µi− dr. (3.24)

Evaluating numerically these equations, in Fig. 3.7 we showthe evolution of the Susceptible,

Infected and Recovered populations for the case where deaths and births are taken into account.

One can see that in this case the nonzero steady steady can be reached.

In constrast to the case of the constant population, in whichinfection always disappears in

the long run, here it reaches a nonzero steady state level of the infected population, even ifb = d.
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Figure 3.7: Fractions of the population in the SIR model for anon-constant population. The

parameters used for the numerical solutions are shown in thefigure.

3.3 Community Structures

In networks with community structures, connections are denser within communities and

sparser between them. Many networks show clustering or transitivity, the presence of numer-

ous triangles of connections in a network. In a social network of friendships between individu-

als, there is a high probability that two friends of a given individual will also be friends of one

another and most social networks show community structures[13, 91].

Many methods have been proposed for the problem of identifying community structures [5,

92, 93, 94]. These methods seek for natural divisions of large networks into communities, usually

by grouping nodes according to their similarities. Anothermethod to identify communities in a

network is by using the so called divisive method. By using this technique, one can identify links

connecting different communities and remove them, dividing the network into small components.

In a seminal paper, M. Newman and M. Girvan proposed a divisive algorithm for discovering

communities [95]. This algorithm calculates the betweenness centrality for the network and re-

moves the link with largest centrality. After the removal, the betweenness centrality is calculated

for the remaining network and the link with largest centrality is again removed. This process

is repeated until no links remain and the number of links decreases from L to zero, while the
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network is divided into communities. This algorithm correctly shows community structures of

various real-world networks [1].

Networks with high clustering and loops are particularly difficult for mathematical analysis.

Newman proposed a model [19] that generalizes the standard “configuration model”, which is

a model of random graph with clustering and arbitrary degreedistribution. Recently, geograph-

ical properties of social networks have attracted much attention. Some empirical studies have

analyzed the distribution of distances between friends in real social networks and found that

the probability density function (PDF),P (r), of an individual to have a friend at a geographic

distancer is aboutP (r) ∝ r−1 [96].

Yanqing Huet. al [97] suggested that the origin of this dependence comes froma general

perspective based on the concept of entropy. They showed that theP (r) ∼ 1/r law can be seen

as a result from maximization of entropy, what means that an individual seeks to maximize the

diversity of its friendships in the social network.

3.4 Information Spreading

How information, ideas, gossips and influence spreads through a social network is a topic

often studied [98, 99]. The information about the pathways in which the information spreads can

be used to optimize communications, for example. In social spreading models, the information

flows in one direction, from people who have the information to those who do not have.

In a recent work, J. Kleinberg and K. Ligett proposed a model for reasoning about the way

information is shared in a social network [100] taking into account social conventions issues.

Maksim Kitsaket. alproposed a way to identify most efficient “spreaders” in a network [101].

As a result they show that, in contrast to common belief, the most influential spreaders in a social

network do not correspond to the best connected people or to the most central nodes.

Information spreading through a population have some similarities with the spreading of

an infectious disease. In this case, informed people play the role of an infected agent, while

the uninformed ones correspondent to susceptible agents. Recovered agents are represented by

stiflers, i.e., agents who lost interest in diffusing information. Differently from the epidemic
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models in which an infected node spontaneously becomes recovered, in information spreading

an informed agent becomes stifler when its neighbors are already informed.

Similar to the epidemic models, one can study if a finite fraction of the population is reached

by the information or if there is anepidemic thresholdfor the rate of spreading, in which anen-

demic stateis reached. The model introduced by Daley and Kendall [102] accounts for spreader,

ignorant and stifler agents. For this model in the case of homogeneous mixing, for any rate of

spreading information, a finite fraction of the population is reached by the information. This

model of information spreading was studied also in complex networks. For scale-free networks,

the fraction of population reached is smaller than the case in which homogeneous networks are

considered [103]. For small-world networks, there is an epidemic threshold dependent on the

rewiring parameterp. If p is greater than certain valuepc, the information reaches a finite frac-

tion of the population. Forp < pc, the information remains around its origin [104].

3.5 Opinion Models

The dynamics of opinion sharing and competing attracted attention from physicists and nu-

merous different models have been proposed to investigate how competing opinions among

agents evolve in populations. The dynamics opinion models are about how a group of people

reaches an agreement. The dynamics of agreement and disagreement is treated in terms of the

variation of the number of different opinion states in population, where each agent (individual)

can have a few opinions1.

It is clear that these models are reductive since we have a fewvariables representing opinions

about an issue. On the other hand, as pointed by Castellanoet al. [102], “in everyday life(...)

people are sometimes confronted with a limited number of positions on a specific issue, which

often are as few as two: right/left, Windows/Linux, buying/selling...”. The main problem is how

to describe the interaction among people by rules and study this evolution.

The first physicist who created an opinion model, based on a probabilistic framework of

1In this thesis we will only discuss the cases where the opinion is a discrete variable. For some models of

continuous opinions, see the review of Castellanoet al. [102]
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sociodynamics was Weidlich in 1971 [105]. After that, S. Galamet al. used the Ising model to

describe opinion dynamics [106, 107]. In these models, the coupling of the spins represents the

interaction between agents. The magnetic field plays a role of mass media acting as an external

field. Depending on the field, the system may reach total consensus (all agents with the same

opinion) or a state where both opinions are present (in the case of only two opinions are allowed).

In the past few years new models have been proposed [102, 108,109]. Here we will discuss

the models that have been received more attention such as theVoter model 3.5.1, the Majority

rule model 3.5.2 and the Sznajd model 3.5.3.

3.5.1 Voter model

The voter model was first considered by Cliford and Sudburry [110] as a model for compe-

tition of species. The name “voter model” was gived by Holleyand Liggett [111] in 1975. It is

a type of contact process which is one of the few non-equilibrium processes that can be exactly

solved in any dimension [102]. The voter model became popular by being a model with simple

non-equilibrium dynamics with a nontrivial behavior.

This model is a simple model of opinion in which an agenti (or in this case, voter) is located

at a node of a network. Each agent has a binary opinion (si = ±1), and at each time step a

randomly chosen agent assumes the opinion of one of its neighborsj, si = sj.

The average opinion (magnetization) is calculated summingover all the agent’s opinions in

the network:

m =
1

N

N
∑

i=0

si. (3.25)

The system evolves until reaches a consensus state with all agents with the same opinion,−1

or +1, and stays there forever. So, these two states are absorbingstates. One can see that this

model also shown the up-down symmetry. Starting the processwith a random configuration of

opinions, the dynamics of the voter model will increase order in the system.

In Fig. 3.8 one can see the evolution of the agent’s opinion inthe voter model defined on

a square lattice with 250000 agents. The simulation starts with opinions randomly distributed
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Figure 3.8: Evolution of the Voter Model on a square lattice.250000 agents start with opinions

randomly distributed (left panel) and, at each time step, anagent assumes the opinion of one of its

neighbors. Each opinion (±1) is represented by a black (−1) or white (+1) region in the picture.

From left to the right we can see three different time steps,t = 0, t = 2500 andt = 5000.

among the agents and three different time steps are shown.

The steady state is reached whenm = 1 orm = −1, solutions corresponding to the absorbing

states [112]. For the voter model in one- or two-dimensions,these are the only possibilities

for the steady state. For higher dimensions no consensus is reached and domains of different

opinions can coexist. According to Castellanoet al., the lack of consensus is related to the

nature of random walks ind > 2: diffusing active interfaces have a finite probability to meet and

annihilate each other [102].

3.5.2 Majority rule model

The majority rule model is a sociophysics model proposed by Serge Galam in 2002 [113]. In

this model the network is a complete graph (where each agent can communicate with each other)

composed byN agents with opinions+1 or −1. At each instant of timer agents are selected at

random and all agents in this group (called discussion group) follow the majority opinion inside

the group as one can see in Fig. 3.9. The unity of time is measured in number of updates per spin

for the majority rule model.

The discussion groupr does not have a fixed size and it is, at each time step, selectedfrom a
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Figure 3.9: Majority rule model: the majority opinion inside a discussion group (inside the box)

(a) is taken by all agents at the next time step (b).

given distribution. If the number of agents in the group is odd, there is always a majority opinion.

On the other hand, ifr is an even number there is a possibility of a tie, and in this case, a bias is

introduced in favor of some opinion. The introduction of this bias is inspired in the principle of

social inertia, where people are reluctant to accept a reform in the case where the majority is not

clear [102, 108].

One can see the evolution of the Majority Rule model in Fig. 3.10. The agent’s opinion, start-

ing fromρini, evolves until the steady state. The simulations were performed with the discussion

groupr selected from a gaussian distribution (mean zero andσ = 1). In our simulations, in case

of a tie among agents, the opinion−1 is favored.

The steady state is reached when all the agents have the same opinion. If the initial density

of agentsρ+1 (ρ−1) with opinion+1 (−1) is higher than a critical valueρc, all agents will finally

reach consensus. The time to reach the consensus scales as the logarithm of the number of agents

in the systems. Ifr if odd, ρc = 1
2

due to the symmetry of opinions. Ifr is even,ρc < 1
2

favoring

the biased opinion.

This model was solved analytically by Krapivsky and Redner in 2003 by mean field analysis

[114]. In their solution the authors have considered an odd number of agents in the discussion

groupr.
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Figure 3.10: Evolution of the agent’s opinion in the Majority Rule Model for different values of

the initial fractionρini. In case of a tie, the opinion−1 is favored. Each curve corresponds to a

single realization.

The average magnetization is

m =
1

N

∑

i

si = ρ+1 − ρ−1, (3.26)

wheresi is the opinion of the agenti. The size ofr is 3 and at each time step, the number of

agents with some opinion increases or decreases by one. The variation of the number of agents

with same opinion can be written as

dN+1 = 3(ρ2+1ρ−1 − ρ+1ρ
2
−1) = −6ρ+1(ρ+1 −

1

2
)(ρ+1 − 1) (3.27)

and so
dN+1

N

N

3
= ρ̇+1 = −2ρ+1(ρ+1 −

1

2
)(ρ+1 − 1), (3.28)

where the time step isdt = 3/N . Equation 3.28 has 3 fixed points:ρ+1 = 0, 1/2, 1. The point

ρ+1 = 1/2 is unstable and the pointsρ+1 = 0, 1 are stable, so all agents will have the same

opinion as the initial majority, as was found by Galam.
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The average time until the system reaches consensus is proportional to the logarithm of the

number of agentsN in the mean-field limit. Computer simulations suggested that the consensus

time grows asN2, for the bidimensional case. For higher dimensions, the system may be trapped

into metastable states evolving even slower. Numerical simulations of the critical properties

of the majority voter model ond−dimensional hypercubic lattices show that the upper critical

dimension is 6, reproducing the mean-field results [115].

3.5.3 The Sznajd model

The rationale behind the Sznajd model is the emergence of social collective behavior due

to interactions between individuals, constituting the microscopic level of a social system. Two

agents having the same opinion can convince other agents in the network. In the original one-

dimensional version of the model, each individual can have one of two opinions represented by

Ising spins (‘yes’ or ‘no’, ‘up’ or ‘down’). A pair of parallel spins on sitesi andi + 1 forces its

two neighbors,i − 1 andi + 2, to have the same opinion (orientation), while for an antiparallel

pair (i, i+ 1), the left-hand neighbor (i− 1) takes the opinion of spini+ 1, while the right-hand

neighbor (i+ 2) takes the opinion of spini [116].

In this simplest formulation of the Sznajd model, two types of steady states are reached: ei-

ther complete consensus (ferromagnetic-state) or stalemate, in which every agent has an opinion

which is different from that of its neighbors (antiferro-magnetic state). The Sznajd rule for the

antiparallel pair is unrealistic and it is usually replacedin the extensions of Sznajd models, so

if a pair of agents are in disagreement, the neighbors maintain their opinions [102]. The orig-

inal model in one dimension has no phase transition due to thecoexistence of two (ferro- and

antiferromagnetic) stationary states.

Considering the Sznajd model defined on a square lattice and not a pair of neighbors, but a

2 × 2 plaquette with four neighbors, Staufferet al. [117] made each fully polarized plaquette

convince its eight neighbors. For this model, they found a phase transition for an initial density

of up spinsd = 1/2. In the most common version of the Sznajd model, a pair of agents convince

all their neighbors, as shown in Fig. 3.11.
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Figure 3.11: The standard version of the Sznajd model definedon the square lattice: a pair of

agents with same opinion (inside the box) convince all theirneighbors (a), while in the case of

disagreement the neighborhood keep their opinions (b).

This model has been extensively studied, and numerous modifications have been proposed,

e.g., square [117], triangular [118], and cubic lattices [119]; increased interaction range [120]

and number of states of the variable [121, 122, 123]; and diffusion of the agents [123, 124]. The

model was also applied to areas such as politics, marketing,spread of opinions among traders

and finance [125, 126].

An exact solution for a Sznajd-like dynamics on a complete graph was given by Slanina

and Lavička [127]. In their model two agentsi andj interact with a third agentk, all taken at

random. If the opinions of the first two agents are the same, the third follows the previous agents,

otherwise nothing happens.

Other studies focused on the Hamiltonian formulation of themodel. In this approach an

equivalent dynamics is considered, based on minimization of disagreement function, essentially

a spin-spin interaction function [128, 129, 130].

50



Chapter 4

Consensus Model

In this Chapter we study numerically a modified version of theSznajd Opinions model, in-

troduced in the last Chapter. We include in our model reputation, a mechanism which limits the

capacity of persuasion of the agents. The reputation is introduced as a time-dependent score,

which can be positive or negative. The introduction of this mechanism avoids dictatorship (full

consensus, all spins parallel) for a wide range of parameters of the model. Two different situa-

tions were considered in this study: the case where the reputation of the agents increases for each

persuaded neighbor (case 1) and the case where the reputation of an agent can increase for each

persuasion but can also decrease when a neighbor keeps his opinion (case 2).

Our results show that the introduction of the reputation destroys full consensus even for initial

densities of up spins greater than1/2. The relaxation times follow a log-normal-like distribu-

tion in both situations, but they are greater in case 2 due to the competition of reputations. In

addition, we show that the usual phase transition occurs anddepends on the initial concentra-

tion of individuals with same opiniond, but the critical pointsdc are different in the two cases

considered.
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4.1 Reputation in the Sznajd Model

The explanation of the emergence of consensus in a population with interaction agents was

the great success of the Sznajd model. Since the model was introduced in 2000, many different

modifications were proposed and successfully applied to many different areas. The Sznajd model

is robust against the following situation: if one convincesthe neighbors only with some proba-

bility p, and leaves them unchanged with probability1 − p, the consensus will be still reached

after a long time.

Unfortunately the dynamics of social relationships in realworld shows a large number of

details which are commonly neglected in many models, such asthe influence of mass media in

the opinions formation or the authoritarianism forcing theagents to follow some standardized

opinion or a persuasion of an agent to follow a group’s opinion.

In order to formulate a more realistic model, we introduce inthis work a reputation mecha-

nism. We believe that the inclusion of reputation in our model turns it closer to a real system,

where not only the number of individuals with same opinion matters. We believe that the repu-

tation of the agents who holds an opinion is an important factor in persuasion the agents across

the community. In other words, an individual more easily changes their opinion if he or she is

influenced by people with good reputation.

On the other hand, people with bad reputation are usually ignored. The reputation limits the

capacity of persuasion of the agents, compared to the standard model. In fact, our results con-

sidering the simple microscopic rules of the model show thatnot only a full consensus situation

occurs, but a democracy-like situation is possible.

As was pointed byCastellano et al., we probably would not pay much attention to a single

guy staring at the sky, but instead, if a group of people stares at the sky at same time, we probably

may be tempted to do the same [102]. Convincing somebody is easier for a group of people than

for a single individual. Moreover, convincing somebody is even easier for a group with very

good reputation.
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4.2 Description of the Model

We consider the generalization of the Sznajd model defined onthe square lattice withL× L

agents [131]. Our model is based on the rules explained in Fig. 4.1. According to these rules a

plaquette of agents with same opinion convince all their eight neighbors. This differs from the

one-dimensional original model where a pair of neighboringagentsi andi + 1 determines the

opinions of their two nearest neighborsi−1 andi+2. In addition, an integer number (Ri) labels

each player,i, and represents its reputation across the community, in analogy to the Naming

game model considered by Brigatti [132].

Figure 4.1: Generalization of the Sznajd model defined on thesquare lattice by Staufferet al.:

a plaquette of agents with same opinion (inside the box) convince all their eight neighbors (a),

while in the case of any disagreement the neighbors keep their opinions (b).
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The reputation (agent’s score)Ri(t) is time dependent. The agents start the dynamics with a

Gaussian distribution ofR, and during the time evolution, the reputation of each agentchanges

according to its capacity of persuasion, following the rules explained in this section. The initial

state of the system is a population ofL × L agents with randomly assigned opinions (±1 Ising

spins) and a Gaussian distribution ofR, centered at0 with standard deviationσ. As will be

shown, the model displays the same results for various standard deviations of the distribution of

reputation.

At each time step, the following microscopic rules control our model:

1. Randomly choose a 2× 2 plaquette of four neighbors on the lattice.

2. If not all four spins in the plaquette are parallel, leave its neighbors unchanged and return

to step 1.

3. Otherwise we calculate the average reputation of this plaquette:

R̄ =
1

4

4
∑

i=1

Ri ,

whereRi, i = 1, 2, 3, 4 is the reputation of each plaquette’s agent.

4. Compare the reputations of each neighbor with the averagereputation of the plaquette. If

the reputation of a neighbor is less than the average one, this neighbor follow the plaquette

orientation. On the other hand, if the neighbor reputation is greater than̄R, nothing occurs.

5. For each persuasion, the plaquette agents’ increase their reputation by 1. If the plaquette

fails to convince its neighbors, then the reputations do notchange1.

If an agent convinces many others, his reputation increases. On the other hand, as will be

shown in subsection 4.4.2, the persuasion abilities may decrease if fails to convince other indi-

viduals.

1If the plaquette and their neighbors have all parallel spins, neighbors and reputation are kept unchanged.
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4.3 Reputation Dynamics

We considered two distinct situations: in the first situation, the reputation of each agent in-

creases in the case of successful convincing other agents, whereas in the second situation the

reputation may increase and decrease according with the agent’s success convincing their neigh-

borhood.

Case 1

In the first situation, if the plaquette convince their neighbors, then the reputation of each

of the agents in this plaquette increases by 1. Otherwise thereputation do not change, as was

explained before.

We will show that the introduction of the reputation destroys the final ferromagnetic (dicta-

torship) state on the standard Sznajd model. In our model, the final state (the end of evolution)

is characterized by not all agents holding the same opinion -“democratic consensus”.

Case 2

In the second situation which we consider, the agent’s reputation decreases if the plaquette

does not convince a neighbor. Our rules for this situation keep unchanged for the previous steps

1 - 4. The only difference is in the step 5 which changes in the following way:

5. For each persuasion, the plaquette agents’ increase their reputation by 1. If the plaquette

fails to convince their neighbors, the reputation of the agents inside the plaquette decrease

by 1.

4.4 Numerical Results

Our results will be presented separately for the two cases. In case 1 we will show the phase

transition occurring at an initial density of up spins,d, greater than 1/2. Differently, in case 2,

this transition only occurs ford → 1.
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Figure 4.2: Time evolution of the magnetization (case 1) forL = 53, initial densities of up spins

d = 0.4 andd = 0.6 and different samples (a). The system approaches steady state in which the

total consensus is not reached, in contrast of the standard Sznajd model defined on the square

lattice [117]. In figure (b) we show the results ford = 0.1 andd = 0.9. In these cases the system

reaches consensus.

4.4.1 Case 1

In the simulations, we used the agent’s initial reputationsfollowing a Gaussian distribution

with standard deviationσ = 5. Following the previous works on the Sznajd model, we can start

studying the time evolution of the magnetization per site,

m =
1

N

N
∑

i=1

si , (4.1)

whereN = L2 is the total number of agents andsi = ±1. In the standard Sznajd model defined

on the square lattice, ford < 1/2 (> 1/2) the system goes to a ferromagnetic state with all spins

down (up) in all samples, characterizing a phase transitionatd = 1/2 in the limit of largeL.

We show in Fig. 4.2 the evolution of the magnetization as a function of the simulation time

in our model, for the case 1. Figure 4.2 (a) the evolution starts from the initial density of spins

d = 0.6 (which is equivalent to the case ofd = 0.4). One can see that the total consensus with all

spins up (down) will not be achieved in any sample, indicating that a democracy-like situation is

possible in the model without introduction of some kind of special agents (like contrarians and

opportunists) [133]. In Fig. 4.2 (b), the evolution of the magnetization show situations where the
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consensus is obtained starting fromd = 0.9 andd = 0.1. In this situation the total consensus

is finally reached, so one could expect the transition at0.6 < dc < 0.9 (or, equivalently,0.4 <

dc < 0.1).

We have also studied the relaxation times of the model, i.e.,the time needed to find all the

agents at the end having the same opinion (a dictatorship state), in the original Sznajd model.

In our model, the relaxation time is the time needed to reach afixed point. In the case where

full consensus is reached, the dynamics stops and the magnetization of the steady state is always

m = ±1. On the other hand, in the cases where democratic states are reached, the magnetization

of these steady state fluctuates around a mean value but the dynamics evolves continuously. In

addition, the times to reach democratic steady states are normally larger than the times to reach

full consensus.

The distribution of the times needed to reach the fixed point,averaged over104 samples, is

shown in Fig. 4.3 (a). We can see that the distribution of thistime is compatible with a log-

normal one for all values of the standard deviationσ, which corresponds to a parabola in the

log-log plot of Fig. 4.3 (a). The same behavior was observed in other studies of the Sznajd

model [117, 133, 134]. In Fig. 4.3 (b) we show the average relaxation timeτ (also averaged

over104 samples) versus latice sizeL in the log-log scale. We can verify a power-law relation

between these quantities,τ ∼ L5/2, for all values of the standard deviation,σ. A power-law

relation betweenτ andL was also found in a previous work on the Sznajd model, with exponent

2.6 [134].

Let us analyze the phase transition of the model. In simulations, a phase transition is never

sharp, but it is indicated numerically by the change of the slope as L is becoming larger, as

one can see in Fig. 4.4 (a). Only in an infinite lattice one can expect a sharp transition (step

function) forf versusd. For this purpose, we simulated the system for different lattice sizesL

and measured the fraction of samples having final states withall spins up when the initial density

of up spinsd is varied in the range0.4 ≤ d ≤ 1.0. In other words, this quantityf gives us the

probability that the population reaches the total consensus, for a given value ofd.

We have considered1000 samples forL = 31 and53, 500 samples forL = 73 and101 and

200 samples forL = 121, all samples usingσ = 5. The results are shown in Fig. 4.4 (a). One
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Figure 4.3: Log-log plot of the histogram of relaxation times (case 1) forL = 53 andd = 0.8,

obtained from104 samples, with agents’ initial reputations following a Gaussian distribution

with different standard deviationsσ (a). The distribution is compatible with a log-normal one for

all values ofσ, which corresponds to the observed parabola in the log-log plot. The relaxation

timeτ , averaged over104 samples, versus latice sizeL in the log-log scale (b). The straight line

has slope 5/2. The result is robust with respect toσ.
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Figure 4.4: Fractionf of samples (case 1) which show all spins up when the initial density of

up spinsd is varied in the range0.4 ≤ d ≤ 1.0, for a set of lattice sizesL andσ = 5 (a). The

total number of samples are1000 (for L = 31 and53), 500 (for L = 73 and101) and200 (for

L = 121). It is also shown the corresponding scaling plot off (b). The best collapse of data was

obtained fora = 0.035, b = 0.444 anddc = 0.88.
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can see that the transition point is precisely in the regiond > 1/2. In order to locate the critical

point, we performed a finite-size scaling (FSS) analysis, based on the standard FSS equations

[134, 135],

f(d, L) = L−a f̃((d− dc) L
b) , (4.2)

dc(L) = dc + c L−b , (4.3)

wherec is a constant and̃f is a scaling function. The result found is

dc = 0.88± 0.01 . (4.4)

in the limit of large L, as shown in Fig. 4.4 (b). In addition, the best collapse of data was obtained

for a = 0.035 andb = 0.444.

In the original Sznajd model on a square lattice, the system starts with half of the spins up

and half down. Varying the initial density, the system finally has all spins down (ifd < 1/2) or

all spins up (ifd > 1/2). Fordc = 0.5, half of the samples reaches steady state with spins up and

half with spins down.

This difference of the critical point may be easily understood: at each time step, the randomly

chosen 2×2 plaquette that may convince 8, 7, 6, ..., 1 or 0 neighbors, even if the plaquettes’ spins

are parallel. That will depend on the reputation of an agent and the average reputation of the

plaquette. In the standard model, if the plaquettes spins’ orientations are the same, then all the

8 plaquette’s neighbors are convinced immediately. Thus, the usual phase transition of the SM

also occurs in our model, for the case 1, but for a larger valueof d. This transition is the same

for different values ofσ as one can see in Fig. 4.5.

4.4.2 Case 2

As was discussed in Section 4.2, in the second case the agent’s reputations may also de-

crease, which introduces a competition of reputations in the game. The resulting evolution of the

magnetization per site is shown in Fig. 4.6.
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Figure 4.5: Fractionf of samples (case 1) which show finally spins up when the initial density

d is varied in the range0.4 ≤ d ≤ 1.0, for L = 53, 1000 samples and various values ofσ. The

behavior off does not change withσ.

At intermediate initial densitiesd (aroundd = 0.5) the system reaches steady states with

m < 1, i.e., we have a democracy-like situation. The results nonetheless show a variety of steady

states, differently from the results of the case 1, Fig 4.2 (a), reaching different steady states for

the samed. We believe this is due to the evolution of the reputation, which for this case, may

increase or decrease depending on the evolution of the average reputation of the plaquettes [136].

Another characteristic observed in case 2 of our model is that the magnetization evolves

slowly to the steady state, even for large and small initial densities,d = 0.9 andd = 0.1. This

fact can be observed in the inset of Fig. 4.6 (b), in which the system evolves until7 × 105

time steps (observation time). The dashed line ism = 1 and we observe that one of the three

realizations reaches consensus before the observation time. Thus, for the case 2 of our model,

the full consensus is harder to reach and the emergence of democratic steady states is favored.

We have also studied the statistics of relaxation times in our model for case 2. The distribution

of the number of sweeps through the lattice is shown in Fig. 4.7 (a) for differentσ. One can see

that, as in case 1, the relaxation time distribution is compatible with a log-normal one for allσ.
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Figure 4.6: Time evolution of the magnetization (case 2) forL = 53, σ = 5 and initial densities

of up spinsd = 0.4 andd = 0.6. Different samples reach different democracy-like steadystates

for the samed. The results ford = 0.1 andd = 0.9 are shown in (b). Observe in the inset

the system reaches full consensus in only one of the three samples during the observation time,

7× 105 time steps. The dashed line in the inset ism = 1 (full consensus).

However, as one can expect, due to competition of reputations, the relaxation times in case

2 are greater than the corresponding relaxation times in case 1. In Fig. 4.7 (b) we show the

relaxation timeτ (averaged over104 samples) versus latice sizeL in the log-log scale. In this

case, we verify the same power-law behavior observed in case1, τ ∼ L5/2, for largeL and any

σ.

Following the approach described in the last subsection (case 1), we simulated the system

for different lattice sizesL and measured the fraction of samples which show all spins up when

the initial density of up spinsd is within the range0.5 ≤ d ≤ 1.0. We considered the same

number of samples as in the last subsection, and the results are shown in Fig. 4.8. One can see

that the transition pointdc > 0.88, i.e., the critical density in case 2 is greater than in case 1,

as expected due to the competition of reputations. In other words, when the reputation of an

agent can increase for each successful persuasion and decrease for each unsuccessful persuasion,

a higher initial densityd is needed to reach a full consensus state.

One can observe in Fig. 4.8 that, forL = 31, the curvef(d) is qualitatively distinct from

those for larger sizes, mostly due to finite size effects. Oursimulations show that, differently

from the case 1,f(d) = 1 is only obtained ford = 1. This result may indicate that the phase
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Figure 4.7: Log-log plot of the histogram of relaxation times (case 2) forL = 53 andd = 0.98,

obtained from104 samples, with agents’ initial reputations following a Gaussian distribution

with different standard deviationsσ (a). The distribution is compatible with a log-normal one for

all values ofσ, which corresponds to the observed parabola in the log-log plot. It is also shown

the relaxation timeτ , averaged over104 samples, versus latice sizeL in the log-log scale (b).

The power-law behavior for largeL is τ ∼ L5/2, for all values ofσ.

Figure 4.8: Fractionf of samples (case 2) which have finally all spins up versus initial fraction

of up spins, for different lattice sizesL. The total number of samples is1000 (for L = 31 and

53), 500 (for L = 73 and101) and200 (for L = 121). The simulations were performed for a

maximum observation time2× 105 time steps.
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Figure 4.9: Fractionf of samples (case 2) which show all spins up for the observation time

2 × 105 time steps. The initial densityd is within the range0.5 ≤ d ≤ 1.0, for L = 53, 1000

samples and two different values ofσ. The behavior off(d) is independent ofσ.

transition found in our model for the case 1 is absent for the case 2. However, we can not draw

this conclusion, since the resuls are dependent on the observation time and, in our simulations,

the largest observation time was7 × 105 time steps. In Fig. 4.9 one can see that the behavior of

f(d) is independent ofσ.

4.5 Remarks and Chapter Conclusions

We studied a modified version of the Sznajd sociophysics model. In particular we considered

reputation, a mechanism that limits the capacity of persuasion of the agents. The reputation is

introduced as a score for each player and is time dependent, varying due to the model’s rules.

The agents start with a random distribution of reputation values, and during the time evolution,

the reputation of each agent changes according to its capacity of persuasion. We assumed that the

initial values of the agents’ reputation follow a Gaussian distribution centered at0 with standard

deviationσ. We studied two different situations: (i) the situation in which the reputations increase
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due to each persuaded individual, and (ii) where the reputations increase for persuasion and

decrease if a group of agents fail to convince one of its neighbors.

In the first case, we observed a log-normal-like distribution of the relaxation times, i.e., the

time needed to reach a state with all the agents having the same opinion. In addition, the average

relaxation times grow with the linear size of the lattice, asτ ∼ L5/2. The system undergoes a

phase transition, which was identified by measurement of thefractionf of samples which show

all spins up when the initial density of up spinsd is varied.f is the probability that the population

reaches the full consensus for a given value ofd. We localized the transition point by finite-size

scaling analysis, and founddc = 0.88. This critical density is greater than1/2, the value found

by Staufferet al. [117] in the standard formulation of the Sznajd model. The simulations indicate

that the observed phase transition is independent ofσ.

In the second case, we also found that the relaxation times are log-normally distributed, but

they are greater than the relaxation times in case 1. We have observed the same power-law

behaviorτ ∼ L5/2, for largeL. The competition of reputations in case 2 increases the relaxation

times and we cannot draw conclusions about the phase transition in this case.
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Chapter 5

Evolution of Spatially Embedded

Branching Trees with Interacting Nodes

In this Chapter we study the evolution of branching trees embedded in Euclidean spaces,

which have suppressed branching of spatially close nodes. This cooperative branching process

accounts for the effect of overcrowding of nodes in the embedding space and mimics the evolu-

tion of life processes (the so-called “tree of life”) in which a new level of complexity emerges

as a short transition followed by a long period of gradual evolution or even complete extinction.

We consider the models of branching trees in which each new node can produce up to two twigs

within a unit distance from the node in the Euclidean space, but this branching is suppressed if

the newborn node is closer than at distancea from one of the previous generation nodes. This

results in an explosive (exponential) growth in the initialperiod, and, after some crossover time

tx ∼ ln(1/a) for small a, in a slow (power-law) growth. This special point is also a transi-

tion from “small” to “large worlds” in terms of network science. We show that if the space is

restricted, then this evolution can end by extinction.
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5.1 Introduction

A growing tree-like network can model different processes such as a technological or bio-

logical systems represented by a set of nodes, where each element in the network can create

new elements. Innovation and discovery [137], artistic expression and culture [138], language

structures [139, 140] and the evolution of life [141, 142] can be represented by a branching pro-

cess in a tree [143]. Growing trees naturally represent a wide range of real-life processes and

phenomena [6, 14, 142, 144, 145, 146]

“The evolution of life is, obviously, a nonuniform process”[141]. For biological evolu-

tion, this means that new types of biological objects emergeabruptly with subsequent gradual

evolution. This evolutionary process can be schematicallydepicted as a tree (“the tree of life”

[141, 142]), where branches, are, for example, different species. Importantly, the growth of this

tree is complicated by interaction and competition betweenspecies. In this Chapter we discuss

one of the simplest models of growing trees which can mimic this process.

The Galton-Watson branching process [147] provides a simple example of a growing tree

with non-interacting nodes and so uncorrelated branching.A root node generates a number of

daughter nodes distributed according to a Poisson functionwith meanµ. In that case, the whole

network goes to extinction only if each of the root’s daughters dies. In this case, the survival

probabilityZ satisfies1 − Z = e−µZ , which has a non-zero solution only whenµ > 1. The

phase transition in the GW model that occurs atµ = 1 is a general property of models with

independent branching.

Interacting branching processes are much more interestingand difficult for analysis [137]. In

this work we study evolving trees whose evolution is influenced by interaction between some of

the existing nodes, for example, nodes of the previous generation, representing a competition of

species for resources in a limited space. We assume that the growing tree is embedded in some

metric space and assume that spatially close nodes of the previous generation suppress mutually

their ability to born new nodes. In other words, overcrowding of nodes in the embedding space

suppresses their “fertility”. We also consider the evolving trees embedded in restricted areas

of metric spaces, and investigate the possibility of complete extinction under certain model’s
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parameters.

This kind of interaction (competition), leading to suppression of branching, emerges if there

is no sufficient space, no niches for the new nodes and branches (species). Due to the embed-

ding space, we can introduce distance between two nodes other then the shortest path internode

distance for this tree. For the sake of simplicity, we consider aD-dimensional Euclidean space,

although the results do not depend qualitatively onD. Networks embedded in metric spaces

and their evolution already attracted much attention [148,149, 150, 151, 152, 153]. We are

particularly interested in a transition (actually, crossover) between different regimes of the net-

work growth, namely, explosive (exponential) evolution and gradual (power-law) one. Here the

evolution of the network is characterized by the variation of the number of its nodes (which cor-

responds to biological diversity, for example). We find the position of this transition and express

it in terms of a single model parameter. This transition coincides with crossover from a “small

world” to “large world” network architectures [154], wheresmall worlds show a logarithmic de-

pendence of network diameters on their sizes (total numbersof nodes) and large words show a

power-law dependence [13, 40].

One should emphasize a principal difference from the previous studies of this crossover.

In Ref. [154], the crossover was controlled by a model parameter, while in the present study

the small-world and large-world architectures are realized on different stages of the network

evolution. In addition we find how the spatial distribution of nodes evolves and the possibility of

complete extinction.

5.2 The Model

The model of interacting nodes, which we use, is schematically represented in Fig. 5.1, show-

ing the grow of the tree embedded in a two-dimensional space.The growth of the tree starts from

a root node (dark black circle in Fig. 5.1). At each time step,each of the nodes of the tree at-

tempts to emit two leaves (leaf is a link with a new node, lighter circles), so at each time step a

new generation of nodes is given birth. The network is embedded in aD-dimensional Euclidean

space, and the root has zero coordinates.
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a

Figure 5.1: The scheme of the network growth on a plane. The black node shows the root, the

nodes of the first and the second generations are dark and light grey, respectively. The furthermost

left node attempts to born two children. The first attempt (left) is abandoned because of the

nearby second generation node. The second attempt (center)is successful since the new node

has no second generation node within radiusa from it. This results in the network (right).

At each time step, we make the following:

1. Choose uniformly at random a nodei (coordinatesxi) from the previous generation and

make an attempt to create its leaf with a new node at the pointxi +∆i. Here the random

vector∆i is uniformly distributed within−1≤∆x,i≤1, −1≤∆y,i≤1, . . . ,−1≤∆D,i≤1.

2. If among the nodes of the previous generation (excluding the parent nodei) and among

the nodes already created at this time step, no nodes are closer than at distancea from the

point,xi + ∆i, then create the leaf. If such nodes exist, abandon this attempt. Make the

next attempt to create the second leaf from this node using the same rules.

3. From the rest nodes of the previous generation, choose uniformly at random nodes one by

one and repeat the steps (1) and (2) until all the nodes of the previous generation will be

updated.

We will also consider a variation of this model, in which for each attempted node birth,

closeness to all existing nodes should be checked and not only to the previous generation nodes.
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In this case, we are taking into account the possibility thatmore than one generation can coexist.

These two variations of our model are related with the SIS andSIR epidemic models, which will

be discussed in the next Section.

5.3 Connection between our model and epidemic models

In the first situation considered in our model (Case 1), only the previous generation nodes

are take into account when testing node closeness from a potential newborn node. In the second

situation (Case 2), all existing nodes are checked before the birth of a new node. Case 1 has some

similarities with the SIS model, while the case 2 is related with SIR epidemic model.

5.3.1 SIS

In the SIS model, described in Sec. 3.2.2, a susceptible nodebecomes infected if it has contact

with an infected neighbor, but it also can recover and becomesusceptible again. One can describe

case 1 of our model as a version of the SIS model. The metric space is filled with susceptible

nodes and the root is the infected one. At each time step, new attempts to infect are made by each

node. The number of new nodes can be seen as the number of infected nodes in the epidemic

outbreak.

5.3.2 SIR

In the SIR model, described in Sec. 3.2.3, the nodes can be in one of the three states, infected,

susceptible or recovered. Similarly, one can describe case2 of our model, as a version of the SIR

model. The only difference is that, in previous case, the nodes can recover and get infected again,

while in case 2 reinfections are not allowed. There is also a connection with SIR model and the

percolation problem. John Cardy and Peter Grassberger showthat the SIR model is in the same

universality class as percolation [155].

Considering these connections between our branching modeland the SIS and SIR models, it

is possible to indicate some differences: i) in our model thetotal population is not constant and
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ii) the spreading process is spatially localized.

5.4 Network size evolution

Figure 5.2 shows the result of simulation of this model forD = 1 and sufficiently small

a, namely, the evolution of the number of nodesN(t) of generationt which plays the role of

time. Initially, N grows exponentially,N = 2t. One can see that after certain crossover time

tx, the network growth is slower than exponential. For an arbitrary dimensionD, one can easily

estimateN ∼= const(t/a)D at larget. To obtain this estimate, we assume that nodes of generation

t are within a hypersphere which radius grows with a constant rate of the order of1 (the rate is

actually smaller than1). This average rate of expansion is explained by the fact that children

in this tree are born within unit distance from their parent nodes. Since the neighboring nodes

cannot be closer than a distancea, we obtainN ∼ tD/aD.

Note that if the parametera is sufficiently large,N does not grow at all. Ifa is, say2, N = 1

for anyt, and our tree is a chain of nodes.

FromN(t . tx) = 2t andN(t & tx) ∼
(

t
a

)D

, we have very roughly

2tx ∼
(tx
a

)D

, (5.1)

which leads to the estimate

tx ∼
D

ln 2
ln
(1

a

)

, (5.2)

at smalla. In Sec. 5.6, we will demonstrate that this simple estimate is consistent with the results

of our simulations.

Data similar to Fig. 5.2 are shown on the normal-log plot, Fig. 5.3 (a), for a few values of

a (D = 1). The straight line in the figure is the dependence2t, and the crossover from the

exponential to a slower growth is clearly seen. Figure 5.3 (a) was obtained from the model

formulated in Sec. 5.2, in which the previous generation nodes affect the branching process. We

performed similar simulations for the model, in which newborn nodes cannot be closer than at
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Figure 5.2: General picture of the number of new nodes as a function of time, for initial time

steps of case 1,D = 1 anda = 0.1.

distancea from any of existing nodes (apart of their parents). The results of the simulations (the

evolution of the number of nodes of generationt) are shown in Fig. 5.3 (b). In contrast to Fig. 5.3

(a), in the network in which all nodes influence branching, the number of nodes of generationt

approaches a constant valueNmax(a) at larget.

In the Fig. 5.3 (c) we have the same situation as in Fig. 5.3 (a), except in this case much larger

values ofa and time are considered. One can see that for larger values ofthe parametera the

branching process can stop for all samples considered, as shown in the inset. Fig. 5.3 (d) shows

the same situation as shown in Fig. 5.3 (b) but for longer times. For this case of the model, when

we take into account all the interactions with all existing nodes, the branching process always

stops for sufficient long times.

One can easily obtain the plateau in Fig. 5.3 (b) using an estimate similar to that from the
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Figure 5.3: Evolution of the number of new nodes in the networks for different values of the

parametera (D = 1). The data were obtained after averaging over 100 samples. (a) The trees

evolve according to the rules introduced in Sec. 4.2, i.e., only the previous generation nodes in-

fluence the branching process. (b) The trees in which newborns cannot be closer than at distance

a from any of existing nodes (apart of their parents), i.e. thebranching process is influenced by

all existing nodes. (c) Same situation as seen in (a) but for long times and largera. (d) Same

data as shown in (b) but for long times. One can see that for (c)the branching process stops for

for larger values ofa while in (d), the number of new nodes always vanish, independent ofa, for

suficient long times.
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previous section,Ntot
∼= const(t/a)D. The only difference is that nowNtot in that estimate is the

total number of nodes in the network, and so for the number of nodes of generationt, we have

Nt =
dNtot(t)

dt
∼

DtD−1

aD
, (5.3)

and, in particular,

Nt ∼
1

a
atD = 1. (5.4)

The results of simulations for this model, which giveNmax ≈ 0.4/a, see Fig. 5.4, agree with

this simple estimate.

Figure 5.4: Log-log plot ofNmax versusa obtained by simulating the model of trees in which

newborn nodes cannot be closer than at distancea from any of existing nodes (apart of their

parents). The straight line has slope -1.

The crossover time between two regimes of the network evolution is obtained in Fig. 5.5

for the growing tree model (D = 1) from the previous section. Note that the result,tx(a) =
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−0.34 + 1.46 ln(1/a), agrees well with Eq. (6.9),tx ≈ (D/ ln 2) ln(1/a), since1/ ln 2 ≃ 1.44.

Clearly, the timet is of the order of the diameterd of this tree (the maximum separation

between two nodes in a network). So we have the logarithmic dependence of the diameterd

on the total numberNtot of nodes in these trees fort ≪ tx, and the power-law dependence

d(Ntot) for t ≫ tx, which corresponds, respectively, to the small-world and large-world network

architectures.

-10 0 10 20 30 40
t - t

x

10
-12

10
-8

10
-4

10
0

N
 / 

2t

a = 0.001; t
x 
= 9.68

a = 0.005; t
x 
= 7.45

a = 0.03; t
x 
= 4.90

a = 0.05; t
x 
= 3.82

(a)

10
1

10
2

10
3

1/a

2

4

6

8

10

C
ro

ss
ov

er
 T

im
e 

t x

t
x
 ~ ln(1/a)

(b)

Figure 5.5: Finding of the crossover timetx from simulation data for the model from the previous

section.N ≡ Nt is the number of thet-generation nodes. The dependenciesN/2t versust − tx

for different values ofa andD = 1 (a) collapse into a single curve for the crossover times

tx(a) shown on panel (b). Fitting givestx(a) = −0.34 + 1.46 ln(1/a), which is consistent with

Eq. (6.9).

5.5 Spatial restriction

The majority of populations are restricted by geographicalboundaries. It is natural to intro-

duce a spatial restriction into the model. If our network is embedded in an infinite Euclidean

space, the evolution is actually determined by the only parametera (recall that we set the scale

of displacements of children nodes from their parents to1, i.e., this is the unit distance in this
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problem). If the area of the space, in which the network is embedded, is restricted, then the

model has an extra parameter, namely the linear size of the area,L. For simplicity, we assume

that this area does not change with time.

Let the Euclidean coordinatesxi of all nodes in the network be within the area−L < xi < L,

−L < yi < L, . . . ,−L < Di < L. In our simulations we use periodical boundary conditions,

but, in principle, this is not necessary. IfL is finite, then one may expect that the size of the tree

will finally approach some limiting value. The network has even a chance to extinct if at some

moment all its nodes occur in one small area. It is well known that in, e.g., population biology,

the smaller a population, the more susceptible it is to extinction by various causes [156].

Figure 5.6 demonstrates an example of the evolution of the network, for a = 0.1 andL = 1.

The network rapidly enters the fluctuation regime, in whichNt fluctuates around a mean value

Nmax, and extincts before 900 time steps. After that we again introduced a new root node and

restarted the process.

The picture that we observe agrees with traditional views onextinction processes which show,

as pointed by (D. M. Raup) “relatively long periods of stability alternating with short-lived ex-

tinction events” [157]. This kind of extinction may occur inrandom branching annihilating and

other related processes studied in Refs. [158, 159]. In other models of biological evolution, ex-

tinction may require external factors or an environmental stress [160] or an internal mechanism,

such as a mutation may lead to evolutionary events that, in some cases, cause extinction [161].

For the same model, we investigated the state of the branching process aftertobservation= 105

generations (i.e., time steps) for variousL > 1 anda < 2 (for a > 2, the network turns out to be

a chain). In other words, we analyzed if the extinction time for givenL anda is smaller than105

generations or not. On the(a/2, L/2) diagram, Fig. 5.7, the boundary separating the extinction

and non-extinction regions is a monotonously growing curveL(a). Note that with increasing

observation time, the area of extinction should increase.

We suggest that iftobservationtends to infinity, than for any finiteL and non-zeroa, the network

may finally extinct, though it was impossible to verify this suggestion in our simulations. We

investigated the probability of extinction for different samples of our model. Figure 5.8 shows

the probability of extinctionΠext, i.e., the fraction of samples in which the branching process
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Figure 5.6: Evolution of the number of new nodes (number of nodes in the generationt) for a

single realization of the network of Sec. 5.2 defined on a one-dimensional interval−L < x < L,

whereL = 1, a = 0.1.

stops before106th generation of the process, for differentL. One can see that this picture is a

different representation of the phase diagram in the Fig. 5.7.

Figure 5.9 (a) shows the evolution ofNt for a few different values ofa. The averagedNt

(averaged over times before extinction),Nmax, decreases witha as Fig. 5.9 (b) demonstrates.

The simplest estimation givesNmax(a, L) ∼ L/a. Figure 5.9 (b) confirms that this estimate

is reasonable,Nmax is indeed inversely proportional toa, although these simulations indicate

deviation from proportionality onL for sufficiently largeL.

Since new nodes are born uniformly random in the interval(−1, 1) from their parents, the

case ofL = 1 is special. In this situation, new nodes are actually born atany point of the ring with

equal probability independently of the positions of their parents, and so a network structure here

76



Figure 5.7: Extinction of the network embedded in the(−L, L) during 105 generations. The

extinction and non-extinction regions are present on theL/2 vs. a/2 diagram.

is not essential. One can consider this specific model with new nodes born at arbitrary points

with equal probability at arbitraryL and findNmax(a, L) ≈ 0.5L/a. Figure 5.9 (b) for our

original model shows a functionally faster growth ofNmax(a, L) with L than this proportional

dependence. Note finally that the deviations of fluctuatingNt from the mean valuesNmax in

Fig. 5.9 (a) are of the order of
√

Nmax for eachL anda.

5.6 Node spatial distribution

In general, the nodes of the growing trees under consideration are non-uniformly distributed

in the embedding spaces. Only if the embedding area is restricted, the spatial distribution finally

becomes uniform, see Fig. 5.10 (a). For infinite embedding space, the evolution of the node spa-

tial distributions is shown in Figs. 5.10 (b) and (c) for the trees in which the birth of new nodes

is determined only by a previous generation and by all existing nodes, respectively. The distri-
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Figure 5.8: Probability of extinction versusa for 100 different samples and various values ofL

during106 generations.

butions in three instances are shown. The triangular shape of these distributions in Fig. 5.10 (b)

indicate that the spatial distribution of nodes of generation t has a symmetric step-function form

with boarders moving away from the center (root) with constant velocity equal approximately

to 0.5, so that their coordinates increase proportionally tot. The density of nodes between the

borders is a constant equal approximately to0.2/a. In the second case, Fig. 5.10 (c), this expand-

ing step-function form describes the evolution of the spatial distribution of all nodes in the tree.

The border speed is approximately0.6, and the density of nodes between borders is a constant

equal approximately to0.45/a. (Note that, as it should be, this value is close to the number

Nmax ≈ 0.4/a of new nodes found for this tree in Sec. 5.4, see Fig. 5.4.) These observations

explain the high quality of simple estimates obtained in Sec. 4.2.

Finally, for the networks embedded in a restricted area, in which the birth of new nodes is

determined by a previous generation, we also measured the distribution of the number of nodes

in one generation. We observed that this distribution is centered atNmax and is close to the

normal distribution.
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Figure 5.9: (a) Variation of the number of nodesNt in the current generation with time, for

different values ofa. The network is embedded in the interval−L ≤ x ≤ L, whereL = 1, and

only the previous generation influences the branching process. The average value ofNt at large

t, Nmax, is represented by a solid straight line. (b)Nmax versusa for differentL.
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Figure 5.10: Distribution of nodes of the growing trees in space. (a) The node spatial distribution

of the tree embedded in the interval−1 ≤ x ≤ +1 after 1000 time steps. The birth of new nodes

in the tree is influenced only by a previous generation,a = 0.01. The vertical columns of the

histogram show the numbers of nodes within bins of width0.2. (b) The node spatial distributions

for the tree embedded in a one-dimensional space at different instants of the growth. The birth

of new nodes in the tree is influenced only by a previous generation, a = 0.01. The vertical

columns of the histogram show the numbers of nodes within bins of width1. (c) The same as for

(b), but the birth of new nodes in the tree is influenced by all existing nodes,a = 0.001. Each of

the results was obtained from a single realization.

5.7 Conclusions

In this Chapter we have studied an evolving tree network model with interacting nodes em-

bedded into a Euclidean space, in which the branching process is determined by the relative

position of nodes in space. The branching process starts from a single root node and, at each

time step, each existent node in the network can branch to produce up to two new daughter nodes

at the next generation. The new nodes are not allowed to emerge closer than a certain distance

of a pre-existent node, defined by a parametera, i.e., overcrowding suppresses the “fertility” of

nodes. Thus, our model generates a competition between species or individuals (represented by

the nodes) for resources, which can limit the density of nodes in the network and therefore the

total population.

We have investigated two regimes of the evolution of these trees and crossover between them.

In the initial stage of evolution, the network growth is exponentially fast, and the network is a

small world. After some crossover time, this network becomes to grow much slower, and, in
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this regime, the network has a large world architecture in terms of network science. We have

demonstrated that the embedding of the network into a restricted area, which is natural for general

evolution, set limits to growth and can result in complete extinction. The simplest models which

we analyzed can only schematically describe real evolutionprocesses in biology.
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Chapter 6

Optimization in Networks

Numerous networks, such as transportation, distribution and delivery networks, have optimal

design aimed at increasing efficiency, lowering costs, improving stability of function, etc. The

optimal design fixes a network architecture, including clustering, degree distribution, hierarchic-

ity, community structures and other structural metrics.

We have mentioned in Sec. 3.1.4, the preferential attachment mechanism in generating com-

plex network architectures. An alternative mechanism generating complex networks is the op-

timization based process. In this Chapter we will consider (a) optimization of flows running

on a network with a given architecture and (b) specific optimization driven network evolution,

generating scale-free networks. In the first part, we discuss a transportation network model in

which we optimize (minimize) some cost function, for the fluxor current at each channel (link)

of the network. In the second part of this Chapter we study a basic optimization based model

generating networks with power-law degree distribution.

6.1 Flow optimization process

In this section we will consider a transportation network and specifically optimization of

flows running on it. Networks that distribute goods, such as electricity, water, gas, telephone

and data (Internet), or services as mail, railway, road are examples of transportation networks.
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These networks are specifically designed for efficient transportation, minimizing transit times

and costs.

All sort of transportation networks are faced with the same issue: traffic congestion among

their channels. The traffic and its dynamics has been extensively considered by physicists [162,

163, 164, 165]. The study of optimization in transport networks is a topic of growing interest for

theoretical researchers in the last years [166, 167, 168, 169, 170].

Let us consider a transportation network withN channels. The currentj flows on the network

channels (links, bonds), between the intersections in the network (nodes), satisfying the flow

conservation rule at each intersection, taking into account thatji ≥ 0. The cost associated with

transport through the channels is usually related to the time required to transport goods to their

destination. Considering that, one can write the total transportation costC as

C =
∑

i

ei
(

Aji +Bj2i
)

, (6.1)

whereei is a positive coefficient associated with each channel of thenetwork andA andB are

coefficients. Here we have neglected the higher order terms in the Eq. 6.1 and, for convenience,

we consideredA = 1 andB = 1/2.

When input current is small, apparently the optimal flow runsthrough a single chain of links

with lower costs. When the input current increases, the optimal flow splits and the channels with

higher costs become used. The resulting distribution of flows over links has the minimal value

of C. One can determine the optimal current configuration among the channels by minimizing

the cost function.

Considering the simplest case, a single node with an input currentJ is connected with two

outgoing channels,j1 andj2, see Fig. 6.1. Here, we consider a local optimization, with indepen-

dent nodes, and the current flows in just one direction. For this simple case, one can write the

cost function as

C = e1(j1 +
1

2
j21) + e2(j2 +

1

2
j22). (6.2)

By using the current flow conservation rule,j1 + j2 = J , one can minimizing the cost
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Figure 6.1: Distribution of currents within two outgoing channels of a node. The input currentJ

is divided in two,j1 andj2, associated with costse1 ande2.

function, ∂C
∂ji

= 0. The current flow is

j1 =
e2(J + 1)− e1

e1 + e2
(6.3)

and

j2 =
e1(J + 1)− e2

e1 + e2
. (6.4)

These solutions allow negative current flows, which is an invalid situation, since we consider

only positive currents. Thus, we can write the minimum inputcurrentIc asIc = e2/e1 − 1.

One can see that for small input currents,J < Ic, only one outgoing channel will be used (that

one with minimal cost). On the other hand, forJ > Ic, both outgoing channels will be used,

minimizing the cost function.

6.1.1 Simulations

Depending on the input flow, smaller or greater fraction of a network is used, so the quantity

of interest on this problem is the number of used (with current running through them) channels.

One can perform computer simulations on this transportation network and measure the number

of empty channelsB. We consider a directed network, with four channels (two incoming and

two outgoing) for each node. In our simulations we considered three different situations: two-

dimensional lattice, three-dimensional lattice and mean-field (infinite long-range connections)
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Figure 6.2: The “lattices” for the simulations in the flow optimization model. Each node is

connected with four directed channels (links), two from thetop and two from the bottom layer,

both for the two- a) and three-dimensional b) simulations. We used in our simulations periodic

boundary conditions.

case. For all the cases the current flows from top to bottom, see in Fig. 6.2. To perform our

simulations for the mean-field case, we have considered the following: sites in the neighboring

are connected uniformly at random, so each site is connectedto two randomly chosen sites from

the previous layer.

In our simulations we locally optimize the current flow. At each node, the current from two

incoming channels are summed. This currentJ is then divided into the two outgoing currentsj1

andj2, as shown in Fig. 6.1. IfJ < Ic, the current will flow through just one outgoing channel.

On the other hand, ifJ > Ic, the current will flow through both outgoing channels. One time

step consists in optimizing the current flow for the entire layer, so time corresponds to theN th

layer. Note that the total currentN × 〈j〉 is conserved, i.e., it is the same for every layer.

We start our simulations by injecting a total currentN×〈j〉 at the first layer, when the costs of

each channel are uniformly distributed in the interval0 ≤ ei ≤ 1. The fraction of used channels

1 − B as function of time, i.e., the number of the current layer, isshown in Fig. 6.3, for the two

dimensional simulations, usingN = 1000, 〈j〉 = 10−4 and averaged over 100 samples.

In our simulations we have used two different initial configurations. In the first one we set

the total input current equally divided between all channels. In the second one we put the total
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Figure 6.3: Two different initial configurations for the current flow in 2D. For the same amount

of total current flow, in the first case (red line) the total current is equally divided for all channels.

For the second case (black line), the total current is initially introduced in only one channel. For

both cases the results are for 1000 channels,〈j〉 = 10−4 and averaged over 100 samples. One

can see that, despite having different relaxation times, both situations reach the same steady state

with the same fraction of used channels.

current only in one channel. As one can see, the initial configuration is not important for the

stationary regime, since after relaxation both configurations have the same result.

After the initial transient, the fraction of used channels1− B on the network stays constant.

One can plot(1− B) at steady state as function of〈j〉. Remarkably, this result does not depend

on lattice (2D, 3D, or long-range connections), as one can see in Fig. 6.4. All the configurations

show the same result, for a wide range of〈j〉 in the small currents limit.

For the case of the high current limit, where〈j〉 → 1, all channels on the network become

used. In the small current limit,〈j〉 ≪ 1, we observe that the fraction of used channels has the

dependence(1− B) ∼ 2j
1
2 .

From our simulations we obtained the distribution of the currents,P (j). For large input

currents,〈j〉 ∼ 1, P (j) follows a gaussian distribution, see in Fig. 6.5. The best fitwith the

gaussian distribution is obtained for the values ofµ = 1.01 andσ2 = 0.0872 ≃ 1
12

. On the other

87



10
-8

10
-6

10
-4

10
-2

10
0

<j>

10
-3

10
-2

10
-1

10
0

1-
B

2*j
1/2

3D results
2D results
MF results

Figure 6.4: Fraction of used channels as function of〈j〉 for mean-field, two- and three-

dimensional results. One can see that 2D, 3D and mean-field networks provide the same sta-

tionary results, following the2〈j〉
1
2 law in the limit of small current (red straight line).

hand, when we consider the limit of the small current flows,〈j〉 ≪ 1, we found that the current

distribution has an exponential dependence with〈j〉−
1
2 , as shown in Fig. 6.6.

Simulations were supported by a mean-field theory [171] which gives

1− B = 2(〈j〉)
1
2 , (6.5)

and

P (j) = 4e
−2j√
〈j〉 (6.6)

for small〈j〉, as it is shown in Fig 6.6. Our simulations demonstrate that these laws work also in

2D and 3D and for large〈j〉, beyond the limits of the applicability of any MF theory.
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〈j〉 = 1. The points are the result of our simulations and the red straight line is a gaussian fit

with µ = 1.01 (mean) andσ2 = 0.0872 ≃ 1
12
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Figure 6.6: The current distribution in the limit of small current flows for different values of the

〈j〉. The straight line is the asymptotic valueP (j) = 4e
−2j√
〈j〉 and the points are the results from

our simulations for〈j〉 = 5× 10−5 (a), 〈j〉 = 5× 10−6 (b), and〈j〉 = 5× 10−7 (c).
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6.2 Emergence of Scale-free Architectures from Optimization

Process

Numerous real-world networks have a power-law degree distribution. Preferential attachment

is a standard mechanism producing power-laws in growing networks. Thanks to its simplicity

this mechanism is realized in most of the models of scale-free network, but, unfortunately, it

rather mimics scale-free networks and not explains them. Optimization based mechanisms have

a much greater potential to explain the evolution of scale-free networks. We consider one of

the simplest optimization based models generating power-law growing networks. Our model is

defined as follows. At each time step, a new node is created andconnected tomprevious nodes in

the network, which are selected to minimize the productsαr, wheres is the birth time of the node

andr is a random number drawn from some distribution. In the case of complete optimization,

the networks grown from this model have a power law degree distribution with the exponent

γ = 1 + 1/α for a wide range of the random number distributions. For partial optimization,

including a finite fraction of nodes in a network, we observe an exponential degree distribution.

6.2.1 A simple model for optimization

A generic feature of numerous real-world networks, observed in many different real systems,

as the Internet, scientific collaborations, WWW, protein and gene interaction networks, etc., is

their scale-free organization. For all these examples, thenumber of nodes of degreeq follows

a power-law distribution,P (q) ∼ q−γ with the exponentγ typically in the range2 ≤ γ ≤

3. One of the most studied mechanisms producing such topologyin networks is preferential

attachment [11, 40, 172]. Optimization is an alternative mechanism explaining complex network

architectures [92, 173, 174, 175, 176].

Although the idea of preferential attachment is simple and elegant, often the preferential

attachment itself cannot be explained. Furthermore, standard preferential attachment models are

often not realistic. It was shown recently that a refined optimization model, incorporating trade-

off between popularity and similarity of nodes, can describe real-world network architectures
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remarkably well [177]. In the present study we demonstrate that even within a very simple

optimization based evolution model, essentially more simple than in Ref. [177], one can obtain

a scale-free network having exponentγ in a wide range of values. This result is valid only

for complete optimization, in which information about all nodes in the network is taken into

account. For partial optimization, which accounts for a finite fraction of the network at each

step, or even for a few randomly selected nodes, the degree distribution of a growing network

has an exponential form.

6.2.2 Optimization based model for growing networks

Our model of a growing network is formulated as follows. At each time step we

• Create a new node which will be connected tom nodes in the network.

• Calculate for each node in the network the productsαrs, where the labels is the birth time

of the node,rs is a random number taken from a distributionp(r) and the exponentα is

non-negative.

• Connect the new node tom nodes with minimalsαrs.

In the case whenm ≤ t we add onlyt connections for the new nodes. Here the random variable

r actually plays the role of multiplicative noise.

Our simulations demonstrate that if the optimization process incorporates all existing nodes

at each step (complete optimization), then the growing network exhibits a scale-free topology.

In Fig. 6.7 we show the cumulative degree distribution of a network generated by the complete

optimization model, in whichα is set to1 andm = 1, 2, 5, 10, after averaging over 100 samples.

The random numbers are uniformly distributed and the probability density function is

p(r) =







1 for 0 < r < 1

0 otherwise.

One can see that the exponentγ of the power-law node degree distribution in our model

approaches 2 for anym. Introducingα < 1 leads toγ > 2, as one can see in Fig 6.8, when

arbitraryα are considered.
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values ofm, α = 1, generating a network of105 nodes, after averaging over 100 different

samples. The distributionp(r) is uniform,p(0 < r < 1) = 1 andp(r > 1) = 0. The resulting

power law has exponentγ = 2 (dashed line).
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Figure 6.8: Cumulative degree distribution for a complete optimization and arbitraryα for a

network of105 nodes, after averaging over 50 different samples. Values ofα < 1 leads toγ > 2

(a), whileα > 1 leads toγ < 2 (b). The dashed lines correspond to exponentsγ indicated in the

picture.
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6.2.3 Generation of power-law degree distributions

Let us derive the degree distribution for our model. Here we only present a simple estimate

in the case ofα = 1, m = 1, and for a random number uniformly distributed from 0 to 1.

In the case of the uniformp(r) defined above, the distribution of the productP(srs) is also

uniform, namely

P(srs) =







1
s

for 0 < srs < s

0 for srs > 0.
(6.7)

Consequently, for small values ofsrs, we haveP(srs) = 1/s. This means that the probability

that nodes has the smallest productsrs is proportional to1/s. Therefore, the mean degree

〈q〉(s, t) of nodes increases according to the following relation:

∂〈q〉(s, t)

∂t
∼

1

s ln t
, (6.8)

where the factor1/ ln t is due to normalization. So we have〈q〉(s) ∼ 1/s. In the continuum

approximation which is applicable to scale-free networks,this corresponds to the degree distri-

bution

P (q) = −
1

t

(∂q(s)

∂s

)−1∣
∣

∣

s=s(q)∼1/q
∼

1

q2
, (6.9)

where, as is usual in the continuous approximation, we set〈q〉(s, t) = q(s, t). This result agrees

with our simulation, Fig. 6.7.

For arbitrary values ofα, the distribution of the productP(sαrs) in Eq. 6.7 is non-uniform

and becomeP(sαrs) ∼ 1/sα, which means that the probability that nodes has the smallest

productsαrs is now proportional to1/sα.

Thus, for arbitrary (but positive)α, we have the relationγ = 1 + 1
α

. For the case when

0 < α ≤ 1, assumingp(r = 0) 6= 0, one can obtainγ ≥ 2 as indicated in Fig 6.8 (a). For

α ≥ 1, the exponentγ ≤ 2 as one can see in our results in Fig 6.8 (b) and the degree distribution

is non-stationary.

For non-stationary degree distribution the initial and endparts of the distribution change in

time. One can estimate how the number of nodes with only one connection,qmin evolves in time.
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From the condition

〈q〉 = 1 =

∫ t

1

c(t)qq−γdq, (6.10)

we have

c(t) ∼ (2− γ)t(γ−2). (6.11)

Due to normalization condition,1 =
∫ t

qmin(t)
c(t)q−γdq, one can estimateqmin, which leads

to

qmin ∼ t−( 2−γ

γ−1
). (6.12)

The end part of the distribution has a rapid decay, a cutoff. The cutoff has dependence with

γ andt and we estimated from our data,

qcut(γ, t) ∼ C(γ)t (6.13)

This constant, obtained from our simulations, isC(γ) = 2.859− 1.421γ.

In the work [178], attachment to a node of the maximal degree selected from a random

sample of n nodes was studied. The degree distributions of the resulting networks was found

to be rapidly decaying in the range of degreesq > n . Inspired by these ideas we modify our

model and consider a partial optimization process, in whichat each step, the optimal node for

attachment is selected from a finite fraction of the existingnetworks, namely from a uniformly

randomly chosen fractionf of all nodes.

In Fig. 6.9 we show a linear-log plot of the cumulative degreedistribution for the result of the

partial optimization process, in whichf = 0.01. One can see that for various values ofm, the

degree distribution decays exponentially. In Fig. 6.10 we show the cumulative degree distribution

obtained for various values off , wheref = 1 corresponds to complete optimization resulting in

the scale-free network havingγ = 2, while f = 0 actually corresponds to the standard random

recursive tree. Note that if at each time step, the optimization includes only a finite number of

nodes, we arrive at thef = 0 case.

The well-known result for the random recursive graph [40] has an exponentially decaying
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degree distribution in the form

P (q) =
1

m
e1−

q

m . (6.14)

On the other hand, we find that considering the optimization process for a finite fraction of the

network,0 < f < 1, produces an exponential cutoff of the power-law degree distribution as one

can see in the Fig. 6.10.

6.3 Chapter conclusions

In the first part of this Chapter we discussed a flow optimization model, in which the current

flows through a random network, actually a lattice, in which the randomness is due to random

coefficients of a cost funcion defined at lattice bonds. We obtained the exponential current dis-

tribution for small and large currents limit, as well as the power-law dependence of the fraction

of used channels with the mean input current〈j〉. We found that if〈j〉 is small, all the current

flows through a tiny fraction of the channels, and that MF describes even 2D and 3D cases.

In the second part of this Chapter, we introduced an optmization based model for growing

networks. We considered, maybe, the simplest example of theoptimization driven evolution

of complex networks. The resulting networks are scale-freeif at each step, the optimization

involves all existing nodes in a network. If the optimization is partial, i.e., it includes only a

finite fraction of a network or a few nodes, the result is an exponential cut-off of a power-law

degree distribution or even an exponential degree distribution. We suggest that the optimization

driven evolution is a widespread mechanism generating complex networks architectures.
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Chapter 7

Conclusions and Further Work

In this thesis we studied the interaction of agents on complex networks and their basic proper-

ties by means of computational simulations and statisticalphysics techniques. In the first Chapter

we presented a brief historical introduction to complex network, followed by description of the

basic properties of networks, in Chapter 2.

Chapter 3 provides the background and the related work of complex networks necessary to

our investigation. Due to a large volume of work in this area,we restricted this Chapter to a few

selected topics which are directly related to this present thesis.

In Chapter 4 we have studied an Ising spin model of opinions dynamics, namely a general-

ization of the Sznajd model. In our model, we included reputation, a mechanism that limits the

capacity of persuasion of the agents. The reputation is a time-dependent score for each agent,

which varies due to the dynamics of the model. The agents start with a random distribution of

reputation values, and during the time evolution, the reputation of each agent may increase or

decrease according to agent’s capacity of persuasion. We studied in this Chapter two different

situations: (i) the case where the reputations increase dueto each persuaded individual, and (ii)

the case where the reputations increase for persuasion and decrease if a group of agents fail to

convince one of its neighbors. For both cases we observed a log-normal-like distribution of the

relaxation times, i.e., the time needed to find all the agentsat the end having the same opinion,

but the relaxation times are greater for the second case. We have shown that the average relax-

97



ation times grow with the linear dimension of the lattice asτ ∼ L5/2. The system undergoes a

phase transition, identified by measurements of the fraction f of samples which show all spins

up when the initial density of up spinsd is varied. The model represents realistic situations of

democracy, where our results show that the introduction of the reputation avoids full consensus

even for large initial fraction of up spins.

In Chapter 5 we studied an evolving tree network model with interacting nodes embedded

into a Euclidean space. In our model, the network grows through a branching process starting

from a single root node and, at each time step, each existent node in the network can branch to

produce up to two new daughter nodes at future generation. The new nodes are not allowed to

grow closer than at distancea from a pre-existent node. Thus, our model generates a competition

between species or individuals for resources, which can limit the density of nodes in the network

and therefore the total population. Our model can demonstrate a transition from an explosive to

gradual evolution accompanied by a dramatic change of the network structure. We have studied

the time evolution of the network, which evolves in two different regimes. The initial regime

is characterized by an exponentially fast grow, and the network is a small-world. After some

crossover timetx, this network becomes to grow much slowly, and, in this regime, the network

has a large-world architecture. For the crossover time we obtainedtx ∼ ln(1/a). We also

embedded the network into a restricted area, as is natural for general evolution. This situation

sets limits to growth and can result, for some cases, in complete extinction. Our results suggest

that the dependency of the maximum number of nodes isN̄max(L, a) ∼ L · a−1, for all L.

Even these null models however are sufficient to demonstratethe transition from an explosive

to gradual evolution accompanied by a dramatic change of thenetwork structure. We believe that

the significance of the network representation of evolutionary processes, e.g., the so-called “tree

of life”, is greater than simply being a convenient visualization. We suggest that through explo-

ration of the structural organization of the empirical trees of life and their analogies on different

stages of evolution will essentially improve our understanding of evolutionary processes.

In the first part of the Chapter 6 we studied a general transportation network in which current

flows though the network’s channels, with randomness introduced by the random cost function in

the channels. The resulting distribution of currents optimizes the total cost function. We obtained
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the current distribution for small and large currents limit, P (j) = 4e
−2j√
〈j〉 , and the fraction of

empty channels as function of the mean input current,1− B = 2(〈j〉)
1
2 .

Finally, in the last part of the Chapter 6 we studied a simple optimization based model for

growing networks. It is well known that a basic characteristic present in many complex networks

and observed in different real systems are their scale-freetopology. One of the most studied

mechanisms to produce power-law degree distribution is thepreferential attachment mechanism.

However, some models based on optimization process have a greater potential to explain the

evolution of scale-free networks. In this Chapter we showedthat networks grown by our simple

model are scale-free networks (withγ ≥ 2) if at each step, the optimization process involves all

existing nodes in a network, corresponding to complete optimization. On the other hand, if the

optimization process is partial, i.e., it includes only a finite fraction of a network or a few nodes,

the result is an exponential cut-off of a power-law degree distribution or even an exponential

degree distribution. One can see that the optimization driven evolution is a natural source of

complex networks architectures.

Exploring some of the ideas presented in this PhD thesis, we foresee a number of generaliza-

tions and issues for future work of our resuls and models:

• In the social opinion model studied in Chapter 4, we can introduce inflexible contrarians,

a fraction of agents which hold a strong opinion, that is theynever change their opinion

while they can influence others.

• Regarding the social opinion model, we can also study the effect of the authoritarianism,

where an agent or a group of agents are “forced” to follow somepredetermined agent’s

opinion. In this case we may have the opposite situation to the reputation, in which the

capacity of persuasion of agents is not limited.

• We can study the introduction of reputation in others opinion models, namely the Voter

model and the Majority rule model.

• In the evolving trees whose evolution is influenced by interaction among some of existing

nodes which we studied in Chapter 5, we can introduce more than one species in the model
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and study the model embedded into a non-Euclidean space.

• In evolving networks that we studied in Chapter 6, we can citeas an extention of our work

the determination of the time of the expoential cutoff of thepower-law degree distribution.
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[2] P. Erdős and A. Rényi, On random graphs,Publ. Math. Debrecen6, 290 (1959).
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[152] M. Boguñá and D. Krioukov, Navigating ultrasmall worlds in ultrashort time,Phys. Rev.

Lett.102, 058701 (2009).

[153] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá, Hyperbolic Geom-
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