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palavras-chave

resumo

Redes complexas, fisica estatistica, processos de ramificacdes,
dinamica de evolucdes, modelos de opinides, processos de

optimizacao

Nas (ltimas décadas, um grande nimero de processos tém sido
descritos em termos de redes complexas. A teoria de redes com-
plexas vem sendo utilizada com sucesso para descrever, mode-
lar e caracterizar sistemas naturais, artificias e sociais, tais como
ecossistemas, interacdes entre proteinas, a Internet, WWW, até

mesmo as relagdes interpessoais na sociedade.

Nesta tese de doutoramento apresentamos alguns modelos de
agentes interagentes em redes complexas. Inicialmente, apre-
sentamos uma breve introducdo historica (Capitulo 1), seguida
de algumas nog¢des basicas sobre redes complexas (Capitulo 2)
e de alguns trabalhos e modelos mais relevantes a esta tese de

doutoramento (Capitulo 3).

Apresentamos, no Capitulo 4, o estudo de um modelo de
dindmica de opinides, onde busca-se 0 consenso entre 0S
agentes em uma populacao, seguido do estudo da evolucao de
agentes interagentes em um processo de ramificacao espacial-
mente definido (Capitulo 5). No Capitulo 6 apresentamos um
modelo de optimizacdo de fluxos em rede e um estudo do surg-
imento de redes livres de escala a partir de um processo de
optimizacao. Finalmente, no Capitulo 7, apresentamos nossas

conclusdes e perspectivas futuras.



keywords

abstract

Complex networks, statistical physics, branching process, dy-

namics of evolution, opinion models, optimization process

During the last decades, a great number of processes has been
described by complex networks. The complex network theory
has been used successfully to describe and characterize natural,
artificial and social systems, namely ecosystems, protein-protein

interaction, the Internet and WWW and also social relationships.

In this thesis we present some models of interacting agents in
complex networks. Initially, we present a brief historical intro-
duction (Chapter 1), followed by some basic notions of networks
(Chapter 2) and the background and related relevant work for this

thesis (Chapter 3).

In Chapter 4 we present a study of an opinion model, in which
agents reach an agreement. In Chapter 5 we investigated the
evolution of branching trees embedded in Euclidean spaces and
in Chapter 6 we study a model of current flow optimization and
a simple optimization based model for growing networks with
power-law degree distributions. Finally, in Chapter 7, we present

our conclusions and perspectives.
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Chapter 1

Introduction

1.1 Brief Historical Introduction

During the last decades the study of networks has attracead mterest of many researchers
from different areas. This interest is due to the generabithpf theories of networks and their
numerous potential applications in many fields. Many pnuislén the fields like biology, social

sciences and technological applications can be integbretierms of networks.

A network is a set of nodes (vertices) representing the foneateal units of the network,
linked by a set of connections (called links or edges) chiaraing any relationship between
these units. Configurations of nodes and links occur in atgtearsity of applications. Any

object involving nodes and links between them may be calleebtaork or a graph.

The pioneering work, which is regarded as the birth grapbrihéand, as well of the science
of networks) namely the solution to the called the Koniggdaridge problem, was made by

Leonhard Euler in 1735.

In the city of Konigsberg (now Kaliningrad, Russia) the dgrrkriver flowed through the city
such that in its center was an island, and after passing ldnadisthe river broke into two parts,
as shown in the left side of Fig.1.1. Seven bridges were buoilbss Pregel in the city. The
problem, believed to be a challenge at that time, was: Camegbdeéan walk across Konigsberg

passing each bridge only once?



Figure 1.1: The map of Kdnigsberg in Euler’s time with layotithe seven bridges, highlighting

the Pregel river and the bridges on left side. The correspgrgtaph is shown on right side.

The young Euler solved the problem in terms of a gHa;htnthe Konigsberg bridge problem,
the nodes represent the land masses and the links reprbsetidges (see Fi§. 1.1). Euler
proved that when each of the nodes of a graph in the problerarhadd number of links there

is no path passing each link only once.

In the beginning of the 1950s, a simple mathematical moda& ndom graph was con-
sidered by Ray Solomonoff and Anatol Rapoport but theiiahitdeas did not attracted much
attention at that time. At the end of that decade, E. N. Gilbediscovered the Solomonoff-
Rapoport (actually Bernoulli binomial random graph) mo@eld theGzy ,,, as it is known, was
introduced. The notatiofiy,, indicates a statistical ensemble of networks,with two fixed
parameters: a given number of nodggin each ensemble member) and a given probahlity
that two nodes have an interconnecting link [1]. There isl@orandom graph, introduced by
Paul Erdds and Alfréd Rényi in the middle of the 1950s|ech{>y ;, model [2,[3], that con-
tributed to establish the random graph theory. The,, is a statistical ensemble graphs with two
parameters: a fixed number of nod€sand a fixed number of linkd,, for each member of the

ensemble.

1The terms graph and network will be used interchangeably.
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Another seminal work was done in the 1960s by social psydisi@tanley Milgram[[4].

In this experiment, Milgram observed at first time the weiblvn small-word phenomenon.
Milgram distributed letters to randomly selected peopl®maha (Nebraska) and Boston (Mas-
sachusetts), in USA. Each person received a letter with sastauctions. The participants
should try to develop the letters to the target person byipgsisto someone they knew on first
name basis and who they believed, knew the target or knew smgevho knew the target.
These acquaintances were then asked to do the same, rgpbatiprocess until the document
reached the designated target.

Among the results of this research, the most impressiveattie letters that came to be
delivered to the target (about 1/3 of the total) after paginough only, on average, 5.5 people.
From this surprisingly small number, emerges the idea tisat,handshakes separate us from
everyone else”. Other modern studies have been performetblgrn ways such as e-mail and
the result found is close to that found by Milgram.

Many other studies of networks involving relations betweenple have been exploited by
the social sciences. Currently, new technologies like titerhet have facilitated the social net-
working. Other types of networks such as biological (et relationship between predator-prey
or artificial electric power grids, for example) have beeteazively studied [5,/6]. What makes
the study of complex networks so exciting is its fundamesigghificance, as for many different
problems, networks show similar behaviors. The search efutiiversal features of complex
networks is the main trend in the network studies.

Back in the 1960s much progress has been achieved in theegb@drandom graphs. We
indicate for example the work of Derek Pric¢e [7], which shadwtleat the distribution of the de-
grees of some networks follows a power law, i.e., these méiare uncorrelated random graphs
with a given degree sequence. In the 1980s other advancedkan achieved, in particular, the
configuration modeproposed by Béla Bollobas![8] and other graph theory nmatiiEians but
also the solution of the Ising model on a reguBmthe lattice by Rodney Baxter [9]. After the
work of Baxter physicists began to create interest in stidfenetworks, using the techniques of
statistical physics.

At the end of the 1990s, high impact ideas were presenteldidimg) the model proposed by

3



Duncan Watts and Steven Strogatz![10] to explain the smatldyphenomenon and the Lazlo
Barabasi and Réka Albert model, who introduced the canotpreferential attachment [11].
The solution of this model was given later by Sergey Dorog@vtJosé F. Mendes and Alexander
Samukhin[[12]. A major development in the studies of completworks has taken place since
then, exploiting empirical data from various types of natwgsuch as social networks, Internet,
World Wide Web, biological and technological networks. Buenmary of the concepts and the
state of the art in the area of complex networks can be foutiteimeviews[13, 14, 15].

One issue that has received much attention in complex nksmgbudies is community struc-
ture formation. In large network&V — oo) with a finite mean degree, the network is, in
average, sparse. The community structure means the appearfdensely connected groups of
vertices, with sparser connections between differentggon the network. The detection and
characterization of heterogeneity in real-world netwoiksluding community structure, clus-
tering and g-core structure is of significant importanaegsimost of real networks have far more

complicated organization than uncorrelated networks[ 7618, 19].

1.2 Networks in the real world

Researchers from many different areas investigated diftaypes and models of networks.
In many cases, the starting point is to obtain data from rngstesns. Mark E. J. Newman sug-
gested a classification for different categories of netwoslocial networks, biological networks,
information networks and technological networks. Thentiten here is to make a brief presen-
tation of the most important features of well studied neksoiT his division into classes is useful

since the networks in the same class can often be treatedrxysimilar techniques [20].

1.2.1 Social Networks

Social networks are formed by individuals or groups of imdlixals with some relationship
or interaction among its members. The nodes representg@eogroups of people and the links

are social interactions among them. One can study socialonlet with diverse interpersonal
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Figure 1.2: Network of sexual relationships in Americanhthgchool, created by Bearman,

Moody and Stovel[21].

interactions or relations among the social groups, suchedship, emotional, communication
patterns, professional and sexual relationships. An elawmipa social network is shown in

Fig.[1.2, representing the network of sexual relationsimslarge American high schoal [21].

Some of the social networks show the small-world phenomeasione can see in the Mil-
gram’s experiment. The average distance between two anpimdividuals tends to have very
short paths and it may have some effects in how fast the irdtom (or a disease) can spread
through the social networks. Some other properties suchghasctustering coefficient, clique

and community structures were usually reported [20].

Modeling social networks is a difficult task, given the sty invoIvecH and the limitation

of network sizes. Various methods are used to obtain data@ial network. The most common

2Social relationships can be seen different from one persanother, i.e. an individual A can consider an

individual B as a friend, but the opposite may not be true.
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are guestionnaires and interviews but direct observatiata collected from clubs, associations
and even archival records were also used. Today the sot¢wbries hosted on the Internet such
asOrkut[22], FacebooK23] and others[[24] are valuable data sources for netwakarchers.
Collecting data from some social networks can be difficyglecsally seeking for individuals
engaged in illegal or illicit activities. Drug users, sexnkers and criminals are examples of
difficult to reach or hidden populations. In this case, a Bpetechnique,snowball sampling
is applicable [[25]. In this technique one can try identify iaitial group of members, who
provides information of other members. This process isatgubuntil a large sample of the
target population is extracted.
Understanding this social dynamics one can anticipate anthasome situations, such as
the spreading of a disease in a network of sexual relatipsshin particular, one can more
effectively, for instance, immunize a fraction of the pagidn, making possible to stop the

spread of a disease.

1.2.2 Biological Networks

Numerous biological systems have naturally a network argdion. One can refer to the
vascular system, the network of metabolic pathways, fook @rethe network of our nervous
system, etc. Important classes of Biological Networksudel in particular, Biochemical, Neural

and Ecological Networks.

Biochemical Networks

Many of the biochemical processes that occur in living begican be interpreted in terms of
chemical reaction networks. Among these networks thaessmt interactions and mechanisms
at molecular level, there are protein-protein interac{®®] and genetic regulatory networks
[27,128].

The metabolic networks have universal features, such asttiweacid cycle, which is found
in different types of cells. Similarly, genome forms a netkvof switchings between the proteins.

Some properties such as scale-free topology have also bperted for protein interaction net-
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works [26]. Recent developments in instrumental micradgglmade possible the identification

of relationships among genetic human diseases and theriatsd genes [29].

Ecological Networks

In ecological networks, the interactions between specieslaescribed. The nature of these
interactions can be competition for resources, parasitegationships or even an advantageous
interaction such as pollination or seed dispersal. Gelyethk interactions are represented by
directed links and the species are represented by nodeartioydar, food webs between prey
and predators interactions atracted significant interfesgsearchers [30, 31], even though only
few habitats were completely documented. Some studiessstimav the food webs are highly
clustered, and the average path length between specidsvs B¢32, 33].

One should note that, the experimental data for ecologieabarks is hard to obtain. As
pointed by Dorogovtsev and Mendes, it is hard to separatealngical system perfectly and it
is hard to construct a food web uniquely [6]. One should adtlitothe fact that all known food
webs are very small (the number of nodes is less than 200) xAmgle of food web is shown
in Fig.[1.3, where United Kingdom Grassland Trophic Web isval Red nodes represent basal
species, such as plants, orange nodes represent intetengaies, and yellow nodes represent
top species (primary predators). Links characterize ttexaction between two nodes, and the
link is thicker at the predator end and thinner at the prey émdge produced with FoodWeb3D,
written by R.J. Williams and provided by the Pacific Ecoimi@tics and Computational Ecology
Lab (wwv. f oodwebs. or g, Yoonet al. 2004) [34].

Neural Networks

The wormC. eleganss an example of organism with a neural network completelppeal.
It has about 300 neurons and close to 2000 directed connsatiith a mean degrefg) = 14
[35]. This neural network shows an exponential degreeildigton, small average path lengths
and a quite high clustering coefficient [10] 36] 37].

Much more complex is the neural network formed by the humamnbr The number of
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Figure 1.3: Food web of the United Kingdom Grassland basedata collected from 24 sites
between 1980 and 1992. Image produced with FoodWebaiw. f oodwebs. or g) .

neurons in the human brain is of the orded 6t [6]. One can build a functional network of the

human brain by using images from the functional magnetmmeance technique. This technique
measures brain activity by detecting changes of the bloed fidich is related to energy use by

cells in different areas of the brain. It was observed thatlbktribution of functional connections

is scale-freeZ < ~ < 2.2) and the clustering coefficient is orders of magnitude latigen those

of corresponding random networks [38].

1.2.3 Information Networks

Information networks represent relations between strastaf knowledge content. Citations

of scientific papers, the World Wide Wthhe records of patents, the structure of languages and

3We should not confuse the Internet with the World Wide Weln toncepts commonly viewed as equal. The
Internet basically is the physical network consisting ahpaiters (routers, large scale computers which control the
data flow, or “autonomous systems”, collection of compuitaked by a local data routing, e.g. the network domain
of an University), interconnected by wires. Contrastinghe WWW is a virtual network of information, built into

the websites where the information is stored.



keyword indexes are examples of these information networks
In particular, in these type of networks, the links are dedcand can have weights, charac-

terizing the strength of interaction between nodes.

The World Wide Web

The WWW is a virtual network in which the nodes are web paggpdhext of documents
containing the information) and the links are hyperlinksheTWorld Wide Web was created
in the 1980s by Timothy Berners-Lee (the original concaptb the Web) at the high-energy
physics lab CERN, in Geneva. The aim of Tim Berners-Lee wdsetp CERN physicists to
share research information in a single information network

The WWW is directed, since a hyperlink is naturally directadthis network, page A may
have a link to page B but the page B may also have a link backetp#ige A. This structure
forms a cycle, and we have reciprocal links. Unlike the Wokidie Web, a citation network, for
example, has no cycles. One can see this type of structuig.id.B, where examples of citation
and WWW networks are shown.

The size of the WWW is huge: contains at least 8.8 billion &ge particular, a high clus-
tering coefficient, small world phenomenon (average patgtiearound 16) and the distribution

of the links (incoming and outgoing) as power laws were Uguaported in the WWW studies

[20].

Citation Networks

A network of citations between scientific papers is an infation network in which the
papers are nodes and links are references from one papeotitean A seminal work in this
type of networks was published in the 1960s by Derek Pricelfrihis paper Price reported a
power law degree distribution of the citations. Today thisdkof citations study is refered to
“information science” in the branch called bibliometrics.

In a network of citations of scientific papers, the networkdagclic, since an article can only

4Measured on Monday, 01 October, 2012 in http://www.worltewebsize.com/
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citation network World-Wide Web

Figure 1.4: Citation and WWW networks. One can see that otethside, the citation network

is acyclic while on the right side the WWW has a cyclic struetadapted fromi [13].

mention (have a link) earlier articles. You can not cite fetarticlesH. The distribution of the

in-degrees in the citation networks follow a power law whiie out-degrees has an exponential

tail [20].

Language Networks

The structure of a language can be represented in terms dihvanke Ferrer i Cancho and
Solé studied a network of words constructed as followsheward is a node; two words have a
link connecting them if they appear next to each other (ncentfwain two words apart) in English
sentences [39].

This language network has a small average path lerigth 67), high clustering coefficient
(C' = 0.437) and a power-law degree distribution with two different empnts,y = 1.5 for
g < 103 andy ~ 2.7 for ¢ > 10%. One can create a different language network, connecting
words based on their meanings|[40]. The results are not ferefit from the previous study,
with average path lengttf (= 4.5), clustering coefficient = 0.7) and a power-law degree

distribution.

SAn exception to this are the articles published online intee telectronic archive database

(http://arXiv.org )inwhich one can update and change their papers’ referdftes
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1.2.4 Technological Networks

Technological Networks are usually created for the distidn of resources. Distribution
networks for electricity, water, telephone and data, diistron of services as mail and delivery
goods, railway, road and the Internet are some exampleslofddogical networks. These net-
works are in constant expansion, in particular, improvimgféster and cheaper way to distribute

goods and services.

Internet

The Internet is the best documented and studied technalogetwork. Researchers can
study the Internet structure by following large samplesatbdoutes. The path the information
takes from one computer to another can be found by a traeetoat [41]. One can treat the
Internet as a network in which the nodes are computers (®atel other devices) and the links
are connections (physical connections such as wires amnchbfiber lines) between them. This

representation of the Internet is shown in [Fig] 1.5.

When any information is sent from one computer, this infdromais divided into “small
packets” and each data packet is sent separately over graént After reaching its destination
the packets are reassembled and the original informaticec@nstructed. By following a spe-
cific data packet one can trace the route from our computer¢sdto the target (destination).
By sending a large number of packets, one can reconstrud¢bgmdogy of the Internet from
traceroute tool. Computers of end-users can appear angpéiaafrom the network as they are
turned on and off. Therefore most studies of the Internatltayy disregard end-user computers
and look only at the domain-level or the router-level of intt [42]43].

Another branch of the Internet studies are related to thkemese of a network, i.e. its ability
to stay connected after a failure or an intentional attacke femoval of some nodes in may
cause a fragmentation of the network, limiting the commaitiasn. Some failures may trigger
a cascade of subsequent failures, switching off or disattmrmest of the nodes of the network
[44,(45,46].
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Figure 1.5: Graphic representation of the Internet in 2008s picture was created by the Opte
Project( wwv. opt e. or g) aiming a visual representation of the Internet. The colodicate
the following areas: net, ca, us (blue); com, org (green); gav, edu, (red); jp, cn, tw, au

(yellow); uk, it, pl, fr (pink); br, kr, nl (light blue); unkawn (white).
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Power Grids

Power grids are networks providing the transportation e€teic power from the generators
to the high(or mid)-voltage substations. In this case, thdes are the generators, transformers
and substations and the links are the high-voltage powes libocal low-voltage substations and
local power delivery are normally neglectéd[[10] 47]. Tybig power grids are small networks
with an exponential degree distribution.

Recent interest in the study of these networks have beewatedi by the devastating effects
of power grids failured [46, 48]. Sometimes a failure caretffi large region of a country, where

a cascade failure may cause extensive electricity blaskout

Telephone Networks

In a telephone network the nodes are telephone numbers atidikk (directed) are the calls
from one number to another. The topological structure oftéhephone network is relatively
simple: end user’s subscribers are connected to the lotiaé®fwhich are connected among
themselves and also connected to the long distance offides.lohg distance offices are also
connected among each other by trunk lines. It was found kiisldng distance calls’ network

have a power law degree distribution for incoming and outgaialls [49].

Transportation, distribution and delivery

Road, rail, air, river, and sea routes can form networks efttansport lines, transportation
not only people but also distribution of goods, package attéis delivery([47, 50, 51, 52, 53].
Oil, gas and water pipelines are also examples of this tygeddfnological networks, usually
shaped by geographical boundaries [54].

Interestingly, there is no consensus among researchetd waiat is represented by nodes
and links. For some authors, the distance between two naddsemetwork (rail in this case)
is not the number of links among the train stations, but syntipé number of trains needed to
travel between two different locatioris [50]. In the roadwak studies, the geografic locations

are usually the nodes and the links are formed by the routeseba them([55].
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Chapter 2

Basic Notions of Networks

The aim of this Chapter is to describe some basic notions wiptex networks, such as
degree, adjacency matrix, degree distribution, clusgesimd also mean distance, measurements

needed to reveal the structure of networks.

2.1 Basic Features

In simple words, a Network is a set of points (which we call@®dr vertices) with connect-
ing lines between them (which we call links or edges). Ingple, networks can have different
types of nodes (see Fig.1.2), links can have weight and catireeted (Fig[1}4). In Fid. 211

one can see three different types of networks: (a) undide¢b@ weighted and (c) directed.

One can consider temporal evolution of networks. Some mésye.g., the WWW, citation
and friendship networks, internet, etc. can have nodesdaddeemoved and the weights of
the links can change in time. These networks are non-equitiband they will be discussed in

Chaptefb.

Next Sections will describe some of mathematical tools talyae, describe and measure

networks.
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(a) (b) (c)

Figure 2.1: Examples of three different types of networks). gn undirected network with a
single type of nodes and links; (b) weighted network witHead#nt types of links; (c) network

with directed links.

2.2 Adjacency Matrix

The Adjacency Matrix provides a complete mathematicalesgntation of a network. In a
network with N nodes, the adjacency matr; has sizeN x N. Each element in the matrix
is related to one oL links between the nodesi;; = 1 if there is a link between nodesand
J, Aij = 0 otherwise. The adjacency matrix of a simple tree with= 8 and L = 7 shown in
Fig.2.2 is

(2.1)

SO O O O O O +~ O
o O H O O B O =
o O O B O+ O
SO O O O O = O O
= = O O O = O O
o O O O o ©o + o
SO O B O O O O O
SO O B O O O O O

All properties of a network can be extracted from the adjagenatrix. The degree of a node,

for instance can be obtained by

For a random network, an adjacency matrix corresponds togesrealization, only one

member of the statistical ensemble.
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Figure 2.2: Example of a simple tree with labeled nodes. Dineesponding adjacency matrix is

shown in Eq[Z11.

The main diagonal of the adjacency matrix has all zeros ihgtevork has no loops. In the
case of loops, an elemeHdt; is equal twice the number of links connecting the not itself.
The adjacency matrix is symmetric if its represent an urntie network. Otherwise the matrix
is not symmetric as one can see in the Eigl 2.3, which also shavetwork with multiple links

(sometimes callechultigraph and self-links.

o O o O

—_
—_
- o o o o = O

o O O o o o N o
o o o O

o o O

o o O

o O O o o o o o
o o o o o o = O
- o O O o o o O

Figure 2.3: Directed network with multiple links and its acgncy matrix.

For directed networks, the adjacency matii is defined byA?, = 1if j — i; A%, = 0

otherwise. In a multigraphélglj is equal to the number of links from nogdéo node:.
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A more compact way to store and sometimes treat a structusenetwork is by using the
link list (or edge lisj 1. This representation is given by a list of all links betwe@ues. The
network shown in Fig. 212 can be represented by the correspgiink list: (1,2), (2,3), (2,6),
(3,4), (3,5), (6,7), (6,8). Due to the usually large numbiezaros in the adjacency matrix, this
representation is usefull for saving memory on computemnithe network is large.

A weighted network have their links with weights. If the wieig are all integer, a weighted

network is actually a multigraph, where multiple links @spond to the weights of the links.

2.3 Connectivity Measures

The basic characteristic of a node, degree is the total nuofbits connections. The basic
characteristic of a random network is its degree distrdsutMuch information about a network
is related to degree distribution. A network with a powe-ldegree distributionP(q) ~ ¢
with 2 < v < 3, for instance, is expected to be resilient to a random refmivinks [56].

Measurements related to connectivity will be discussetiémiext sections.

2.3.1 Degree

The degreey;, is the number of links attached to a nodelt is a local measure given by

equatior 2.2 while the mean degree of the network is

N
(q:) = % Z G- (2.3)

Most real-world networks are directed, such as World Widé V@itation networks and Food
Webs. For directed networks two types of degree are assignetbgreeg:" is the number of

incoming links and out-degreg;“* is the number of outgoing links of a node

LIn this representation, for a directed network, (1,2) methasthere is a link from node 2 to node 1.
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2.3.2 Degree Distribution

The degree distributioR(q) is the probability that a node chosen uniformly at randonhinit

the network has a degree

P(q) = : (2.4)

whereN is the total number of nodes in the network aid(q)) is the average number of nodes
of degregg in the network, where the averaging is over the entire $ikmlsensembl. In other
words, this is the fraction of nodes in the network, whichéndegree;. For directed networks
one needs to take into account the degree distribution fmnmng and outgoing degree for a
nodei, P(g™) and P(¢?*).

Once the distribution is known, much information can be wigd by the calculation of

moments of this distribution. The-th moment of the distribution is

(d") =>_q"Plq). (2.5)

The first momentg) is the mean degree while the second moment is a mesure ofdgheede
fluctuations of the distribution. If¢?) diverges, structure and function dramatically changes in
the network, in contrast to those for finitg) [57].

A degree distribution usually have one of these distrimgitorms: Exponential, Poisson,
Power-law, Multifractal or Discrete distributions. Exal®pof the most common types of degree
distributions are shown in Fig.2.4.

An exponential degree distribution has the form
P(q) = Ce 1. (2.6)

Exponential degree distributions were reported in soméwedd networks such as the

Worldwide Marine Transportation Network [58], Email Netkd59] and Power Grid Net-
work [60].

2Many empirical studies of networks measure one singlezatitin while computer simulations usually take

average among a finite number of different realizations [6].
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(a) (b) (©)

In P(q)

In P(q)
In P(q)

Inq Inq Inq
Figure 2.4: Examples of the most common types of degreeilulisons: (a) exponential, (b)

poisson and (c) power-law (with a cut-off) degree distridos.

A classical random network such as the Erd6s-Rényi mbdeke a Poisson degree distribu-
tion

Plg) = e 2 (2.7)

when the number of nodé€ — oo. Both Exponential and Poisson degree distributions hdve al

their moments finite. These distributions have a naturdéescamely, an average degree.

One of the most common, power-law degree distribution i€nkesl in many real networks,

Plg) ~Cq 7, (2.8)

where C andy are constants. The power-law distributions are also cabade-free or fractal,
and networks with these distributions are called scale-fretworks, since has no any natural
scale. This type of distribution is often referred to a Zgw or Pareto distribution [61]. The
cut-off shown in the Fid. 214 (c) is due to the finite size effecommon in all real networks.
Multifractal and Discrete degree distributions are lessligtd than those discussed above. A

multifractal distribution has no specific exponent and corab a continuum spectrum of power

laws, with different exponents.
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2.3.3 Degree Correlations

In uncorrelated networks, the degrees of the nearest naiglaloe uncorrelated. The Erdos-
Rényi model is an example of uncorrelated network. Realadvoetworks are typically corre-

lated. This means that the degreef a node depends on the degree of its nearest neighbors

/

q.
By using the joint probability?(¢’|q) one can describe the correlation of a network, a proba-
bility of a node with degreg being connected to another node with degreg If P(q¢'|q) does

not depend om as in uncorrelated networks, the joint probability is a fiimT of only ¢':

P(dlq) = q/]:ng,) (2.9)
The mean degree of the nearest-neighbors of a node of degesebe written as
Tun(@) =>_ d'P(d]0). (2.10)
"
If a network is uncorrelated, one can insert Eqgl 2.9 in[Eqd,2hamely
7. = Zq,q’P(Q’) _ () 2.11)

, (q) (@)’

q

whereg,,,, do not depends on

Correlated networks can be assortatives, or disass@satin an assortative netwogk,, (¢)
is a growing function of; and highly connected nodes mostly have the nearest neigbbbrgh
degrees. In a disassortative netwagk,(¢) decreases with and a node of a high degree mostly
have low degree nodes as nearest neighbors. The asstytati@inetwork can be determined by
using the Pearson coefficient [65]. In this case,for 0 the network is assortative; for< 0,

the network is disassortative and for= 0, the network is uncorrelated.

3The joint probability should be normalizel, , P(¢'lq) = 1 and obey the detailed balaneg?(q'|¢) P(q)
q¢'P(qlq)P(q") [64].
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2.3.4 Hubs

Hubs (highly connected nodes) play an important role in &tgvark dynamics. A removal
nodes from the network can cause a fragmentation of the mietwiestroying the connected
component. In this case, the network will be a set of discotateclusters. Removal of hubs
destroys a network specially rapidly.

The difficulty in destroying the giant component by removalertices is used as a criterium
of resilience of the network against failurés|[48]. There awo kinds of resilience: against a
random removal of nodes and against a targeted removal efsnddhe Internet, for instance, is
resilient against random failures: it still working if sonmuters are disconected at random| [66,
46]. A different situation emerges in the case of an inter@iacemoval of hubs. Networks
with v < 3, known to be resilient to random failues, are sensitive endase of an intentional

attack [44[45].

2.3.5 (Q-core Structures

Theg-core of a network is the largest subgraph in which all nodelat leasi interconnec-
tions [17]. Theg-core indicates the best interconnected parts in a netwatkaay be obtained
by the “pruning algorithm”. Remove from a network all nodéslegree less thag. Some of
the resting nodes may remain with less thhdimks. Then remove these nodes, and so on, until
no further removal is possible. The result, if it exists,hie §-core. Fig[2.b showsg-cores in a
small network and the pruning algorithm to fing-&ore.

The 2-core differ a slightly from the original network. Theshd higheg-cores, on the other
hand, show a great contrast to the connected componentoNetwithout loops, i.e. trees, have
no (g > 2)-cores. If a network is tree-like (i.e. it has no finite loppscan only have an infinite
(¢ > 2)-core. In a loopy network, a single giant and numerous fipiteres can coexist, while
in tree-like networks there can only be a single giagcbre.

The birth of this giany-core, forq > 3 is an unusual phase transition, different from both
continuous and first-order transitions, the two classeshafsp transitions normally used by

physicists. In a continuous phase transition, the ordearpater emerges continuously without
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2-core 3-core

Figure 2.5: A small network on the left and the correspondngnd 3-cores on the right side.
To find ag-core, one can remove all nodes with degree less ghaidter that, one can check if
the remaining nodes has degree grater thdhnot, one may prune these nodes with degree less

thang.

a jump, in contrast to a first-order transition, where theeoyghrameter emerges abruptly. The
transition associated with the birth of the g-core combthescharacteristics of both transitions.
This phase transition is calledhgbrid transition

Another problem closely related to thecore of random graphs is the bootstrap percolation
on complex networks. Goltsest. al described the properties of tlyecore and explained the
meaning of the order parameter for thxeore percolation and the origin of the specific critical
phenomend[18]. G. J. Baxtet. alstudied bootstrap percolation on an arbitrary sparse undi-
rected, uncorrelated complex network of infinite size ugheyconfiguration model (a random
graph with a given degree sequence) [67]. In their study éfsyfound a hybrid phase transition

and described how this behavior changes when the netwodoisidged.

2.4 Loops in a Network

The presence of loops is a common feature in real-world nésvoln a social network
for instance, there is a high probability that two peoplehvétcommon friend are also friends

themselves. This characteristic was highlighted by A. Rapioin the 1950's[[68]. A useful
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measurement of loops in a network is thdurstering coefficient

2.4.1 Clustering

The concept of clustering reflects how the first neighbors nbde are connected to each
other, soitis a non-local feature. The clustering coeffica@ a given node quantifies the density
of connections around this node. If node A is directly coneedo nodes B and C, then there
is a probability that the node B is also directly connecteth®onode C. This probability is the
clustering coefficient.

The local clustering coefficient of a nodeith ¢; nearest neighbors, and witHinks between

them is defined as:

2,
qi(q — 1)7
and may vary between 0 and 1. When all the nearest neighbarsiofie; are interconnected,

Ci(q:) = (2.12)

C; = 1. The same result is obtained for a fully connected network.
The clustering coefficient of the entire network, thean clustering coefficiens the average

of the local clustering coefficient over all nodes:
qi(q — 1)

o <2—t> ~ Y P(g)Cla). (2.13)

Clustering refers to the statistics of the number of triasdloops of length 3) in the network,

which is common in the real networks, specially in socialone

2.5 Distance Measures

Statistics of node separation essentially determinesrdi;mprocesses on networks. Here,
the separation of nodes is related not to Euclidean distamioether to the length of the shortest

path between nodes measured as the number of links cormpéuogim.

4In Cap.[® we will investigate the role of Euclidean distanekated to a branching process in a biological

network.
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2.5.1 Shortest Path Length

One can define the distanég between two vertices and j as the shortest path length,
sometimes called geodesic distan¢as the minimum number of links connecting one node to
anothet. A well-known algorithm to find the shortest path length inetwork is thebreadth-
first search[20]. A single run of this algorithm finds the distance betweenode and all other
nodes in the same connected component.

One can naturally introduce for a network, the mean pathtterigvhere the average path

is taken over all those pairs of nodieand; which have at least one connecting path,

_ 9 N N

i=1 j=i+1

2.5.2 Diameter of a Network

The diameter of a networky, is the length of the longest geodesic distance (shortels) pa
between any two nodes in the network for which there exists@nconnecting path. In many

networks whenV — oo, / is of the order of ,. For small worlds, typically

(p ~ InN (2.15)
In{q)

In the case of a network with several disconnected clusbters can define the diameters of

its isolated clusters [40].

2.5.3 Small-world phenomenon

The term small-word express the surprisingly smallnesdiefrhean shortest path in net-
works. Milgram’s experiment described in Séc.]1.1 is thedasndemonstration of this phe-
nomenon. A modern version of this experiment was performeDdddset. alusing e-mail in

2003 [69] and were found very similar results.

5In directed networks, the shortest path runs in only onectiog, following the direction of the links.
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In more strict terms, the small-word effect means that thamseparation of nodes grows
slower than the any positive network size. We will discustaitke of small-world effect in
Sec[3.1.B devoted to the model proposed by Duncan WattstamdrSStrogatz with the small-
world feature.

In some networks the separation distance of nodes growssteer thann N. For uncor-
related scale free networks, with< ~ < 3 the mean separation distance of nodes grows with

N asln N/ In(In N), and this effect is known as the “ultra small-world” phenoroe [70,71].

2.6 Centrality Measures

Centrality measures characterize the position and theeptiep of a node within entire net-
work, the “global” importance of a given node. In a socialwatk, for instance, the person
with more connections usually have higher influence or geghan others. In a network of
scientific papers, a large number of citations that a papeives usually indicates its relevance

and influence in the scientific community.

2.6.1 Betweenness Centrality

The key measure of centrality is thetweenness centraliproposed by L. C. Freeman [72]
in the 1970’s. For a given node, it is the number of shortest paths between other (than
nodes that run through the node The betweenness centrality is defined as

B(i,m,j
b(m) = NF i;;j ﬁ (2.16)
where B(i, 7) > 0 is the number of shortest paths between verticasd j and B(i,m, j) is
the number of the shortest paths passing through moddhe N F' is a normalization factor
proposed by Freema F' = 2/[(N — 1)(IN — 2)] in order to obtair) < b(m) < 1. N is the
total number of nodes in the network. The betweenness digniralicates the importance of a

node, showing the fraction of the network traffic which pasbés node.
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2.6.2 PageRank

The PageRank is an algorithm used by Google Inc. for rankiely pageg. It was devel-
oped by Larry Page and Sergey Brin for characterization @frtiportance of a web page [73].
PageRank assigns a numerical weight to each nofl@ network and the result is shown as the
PageRank of, PR(i). The result of a query is shown in a list from highest to lowRmsgeRank.

The idea of PageRank is that the popularity is proportioméhé number of times this page
is visited by randomly surfing. The PageRank essentiallyeddp on the number of incoming
links of a node, and usually a higher number of incoming lirdsailts in a highP R.

The PageRank of a web pages defined as

d PR(j)

PR(i) = &+ (1—d) > s (2.17)

Ji—i
whereN is the size of a network,, ; is the outgoing degree of a nogleand the sum is over alll
pages that link ta. If d = 0, and a node has no outlinks, the node can capture the randtkerwa
and terminates the process. To avoid this event, the pretesdd be restarted from a random
with some probability. The parametéiis the probability that one jumps to a randomly chosed
webpage instead to one of the nearest neighbors of a node pafameter usually is chosen as

d = 0.15.

5This method is registered in the United States Patent andlefirark Office with the name:
Method for node ranking in a linked database, and can be sedesn http://patft.uspto.gov/netacgi/nph-
Parser?patentnumber=6285999.
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Chapter 3

Background and Related Work

The aim of this Chapter is to describe the background and selaed works to this study.
In order to understand how the heterogeneity of a networkirtiduence stochastic processes,
games, epidemics and opinion models on a complex netwonke snaracteristics need to be
introduced. In particular, next sections will be devotedtese characteristics, and we will

present some basic definitions and results.

3.1 Models of Networks

In the last decade many network models have been proposeniic features usually ob-
served in real-world networks such as the small world effezdle-free degree distribution, com-
munity structures and high clustering. We will describe mmp8uential network models: the
Erdds-Rényi model, the Gilbert model, Configuration mptlee Watts-Strogatz model and the

Preferential attachment model.

3.1.1 Erdds-Rényi and Gilbert models

The models known as the Erdds-Rényi model (ER) and thee@ithodel are the two main
versions of the so-called classical random graphs. Theselsiactually are random networks

under some constraint. A random graph is not a single gesteragtwork, but an ensemble
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of networks. The Erdds-Rényi random graph, also cafled,, is a statistical ensemble of all
possible graphs with two given parameters: a fixed numbeodés/N and a fixed number of
links, L, for each member of the ensemhle[[2, 3, 74].

The Gilbert model(~y ,, is a statistical ensemble of networks, with two fixed paramse a
given number of nodes N (in each ensemble member) and a giebalgulity p that two nodes
have a interconnecting link [75].

In the limit of large sparse network®V — o), these two models are equivalent, apil =
2L/N = p(N — 1). The degree distribution of this has a Poisson form and el thoments
converge:

e {q)s

Plg) = " (3.1)

The classic random graphs have the clustering coeffic@nt= (¢) /(N — 1) since all nodes
are connected with the same probability When (¢) is constant asvV — oo, the network is
sparse. In the classical random graphs,(for>> 1, a giant connected component is present in
the network. (¢) = 1 is the point of a phase transition in which a giant connectedponent
emerges. This phase transition is similar to that one olskrv percolation theory for infinite

dimensional lattices.

3.1.2 Configuration model

In order to generalize the classical random graphs, Benu#iCanfield introduced a new
model of a random graph with a given degree sequence [76la Bélobas mathematically
completed this generalization and named it @@nfiguration Mode[8]. The model generates
uncorrelated random graphs with an arbitrary degree. Tée @ the configuration model is to
build a maximally random graph with a given degree distidout

By choosing a certain degree sequefider the nodes. . . V, we can obtain a desired degree
distribution P(q) for the network for a sufficiently large network. In numetisanulations we
can simply choose the degree sequence from a desired degteeution. After that we set

for each node the number of stubs; from the degree sequence. At random we choose a
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(@) (b)

Figure 3.1: An example of a network constructed by the condigon model. One can see the
set of stubs (a) and one possible member of the statistisghelole of the configuration model

after make the connections (b).

pair of nodes and make the connections. Once all the nodesoarected, we will have one
member of the ensemble of networks with the giv&). The network produced by this model

is uncorrelated. Fig. 3.1 explains the configuration modaktruction.

3.1.3 Watts-Strogatz model

A large number of real-networks has a high clustering caefficand demonstrate the small
world phenomenon. Classical random graphs (Erdds-Ré&mgiGilbert models) and the con-
figuration model generate networks with typically smallstring. In 1998 Watts and Strogatz
proposed a new model of complex networks (WS) which combinesmall-world effect and
high clustering, themall-world mode[10].

The model is constructed based on a regular lattice, by ngamimewiring randomly chosen
links from the original positions, connecting distant n®@t& long-range shortcuts. Starting with
a one-dimensional network with periodic boundary condgi¢e.g. a circle with links between
first and second neighbors), by rewiring the links from thigioal nodes to random selected
ones we create long distance shortcuts. The links are mowtkdsame probabilityp. Self-
connections and double links are not allowed in this modek €an see this process in Hig.]3.2
where the original networkp(= 0) and the WS network with rewiring probability = 0.1875
are shown.

In this model, forp = 0 the network shows high clustering but no small-world eff€at the
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Figure 3.2: Example of a small-world network generated by M&lel with probability of
rewiringp = 0 (a) andp = 0.1875 (b), in this case 6 of 32 links are rewired.

other hand, fop = 1 the network shows the opposite. For a long range of interatedalue9,
this model shows both features simultaneously [20]: evea fmall, but finitey, these networks

demonstrate high clustering and short

3.1.4 Preferential attachment model

Numerous networks are observed to have scale-free degtedbuations, approximately fol-
lowing power laws. The first work in this direction was madeRrce, who presented a model
for growing network with power law degree distributian [7The most famous and well stud-
ied model of growth networks with power law degree distridmis thePreferential attachment
mode| developed by Barabasi and Albert[11]. In simple wordghis model, nodes with high
degree attract new links with higher probability. The prhobty that a new node becomes at-
tached to a previous existent node with degresproportional to a function of this degregq).

For networks with scale-free degree distribution, thegrezice function is

C+q

flq) = NC T (q) (3.2)

where C is a constant. These networks follow a power law wifoaent2 < v < oo.
Barabasi and Albert reproduced two aspects usually seeealavorld networks that are

absents in ER and WS models. First, both these networks héixecanumber of nodegv
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connected at random (ER model) or rewired (WS model). Butymeal networks are growing
networks. Second, in both models, nodes are interlinkefdumly at random. In real networks
a new connection is often made by linking a new node to mostected nodes in the network.
For instance, a well cited paper is more likely to be citechtha unknown paper.
In the BA model, the probability, that a new node is attached to nadse
di

i = )
Zj 4q;

whereg; is the degree of the nodeand the sum in the denominator is over all nodes in the

(3.3)

network.

The network is generated by the following rule:

1. The network starts from some initial configuration (e.goanecting cluster).

2. At each step a new node is attachedto> 1 of the previous nodes selected with proba-

bility p proportional to their degrees.

3. Repeate 2 until the network reaches the desired/size

After ¢ time steps the network generated as- ¢ nodes and. = mt links, which gives the

sum in denominator of the Elg. 3.3

N
Z q; = 2mit. (3.4)
j=1

The degree distribution can be found from the evolution efrtitean degree of node

0Xa) _ o =y S _ (@) (35)

The rate of the grows ofy;) is the probability that the node receives a link multipligctbe

number of conections.
Solving this equation, we hawg;)(t) = Ct'/2. Thusg(t;) = m, soC = m/t'/2. The

evolution of the mean degrée;) is described by,
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t

() (1) = m (—)% . (3.6)

t;

From these, one can get for largan estimate

P(q) ~ 2—722 (3.7)
q
following a power lawP(q) ~ ¢~ with v = 3.
This result was independently found by Dorogovtsev, MeradesSamukhin [12], in which
was found the exact form of the stationary degree distiwoLfor large sizes of growing networks.
Other extensions and generalizations of the preferentiatlanent model have been sug-
gested, connecting already existent nodes by new links f@fjoval of links[[78] or a non-linear

preferential attachment function [[79,/80].

3.2 Epidemics in networks

The models that are discussed focus in spreading infectimemses in populations. The
mathematical modeling of epidemics is much older than theysbf complex networks. It
started by the works of MacKendrick in the 1920s![81, 82]. His traditional approach every
individual through network has the same chance per unitreé to have contact with every other.
This assumption doesn't take into account the topology efigtwork.

The theories of epidemiology describe epidemic withinyfgtbnnected graphs, classical ran-
dom graphs and lattices, where each of the individuals can tveo or more states: S - suscep-
tible, 1 - infected, R - removed or recovered (but not susbépt E - exposed and M - births
with temporary immunity. Different models can be based amnitidividual states and they are
usually named by their acronyms. SlI, SIS, SEIS, SIR, SEIRRSEMSEIR and MSEIRS are
some examples of epidemic models.

These models can be defined on substrates or lattices budratsmmplex topologies. In this

thesis the SI, SIS and SIR models will be briefly presenteddisclissed. For more detailed
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Figure 3.3: General diagram for states of the nodes in thpielemic models. The models Sl (a),

SIS (b) and SIR (c) as well the infection rat¢y,(and the recovery rateg) are represented.

discussion of spreading infectious disease, the reviewdnpétt W. Hethcote can be consulted

[83].

3.2.1 Sl model

In this simple epidemic model, an individual in the popudatis in one of the two possible
states: susceptible (S) or infected (I). A susceptiblevidial becomes infected if has contact
with an infected neighbor. It is important to find out if thesease spreads through the population
or becomes extinct after some time, or in other words, ifdlestists a critical infection ratg.
above which the disease survives.

In the SI model, the two possible states of an individual epresented in the Fig.3.3 (a).
Initially, a network of V individuals have a small numbérof infected nodes. At each step, a
susceptible individual becomes infected with raté one of its nearest neighbors are infected.

The notation for the SI model is shown in the tablel 3.1. Thaltpbpulation is constant,
N=S+Tands+1i=1.

For a fully connected graph, the probability to meet a susiglepperson at random iS/ N,
so the evolution equation for infection spreading in theypagon is

di ST

and for the susceptible individuals

ds

ST .
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Total population

Number of susceptible individual

Number of infected individuals

D |~ || =

Infection rate

Fraction of susceptible individual

Fraction of infected individuals

Table 3.1: Summary of notation for the SI model.
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Figure 3.4: Evolution of the fraction of infected nodes ie 8l model, called the logistic growth

curve. For this picture, the initial fraction of infecteégd= 0.02 and the infection ratg = 0.01.

Usings = 1 — 4, we can rewrite the equation 8.8 as

This equation is called the logistic growth equation, arelgblution is

di .
pri B(1 —i)i.

. ioeﬁt
1 — g+ igeft’

i(t)

(3.10)

(3.11)

wherei is the fraction of infected individuals at= 0. This solution is shown in Fig.3.4. As

one can see, in the SI model the disease spreads and evwergaales the entire population.
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3.2.2 SIS model

In the SIS model, an individual can be susceptible (S), tef€l) or can recovery and be-
come susceptible (S) again, as is shown in[Eig. 3.3 (b). Tieeofarecovery of an infected node
(I — S)is p and a susceptible node becomes infe¢ted- /) with rate/ if it has at least one
infected nearest neighbor. This model allows reinfectaminfluenza and many other diseases

that do not confer immunity. The summary of notations for$® model is shown in table3.2.

Total population

Number of susceptible individuals

Number of infected individuals

Infection rate

Recovery rate

> =~ wn| =

Reproductive number

Fraction of susceptible individuals

V)

7 Fraction of infected individuals

Table 3.2: Summary of notation for the SIS model.

The control parameter of the SIS model is the so-called ceptive number) = 5 /u. If a
few nodes are infected, the disease will quickly die outéftproductive number is below some
value,an epidemic threshold\.. In homogeneous situations (nodes with a narrow distiauti
of connections) in networks, the epidemic threshold ismeteed by the mean degree of a node,
Ae ~ 1/{(q). If the reproductive number is above the epidemic threshaidepidemic spreads
throughout the network.

For the SIS model defined on uncorrelated networks, the epaireshold is

Ao = % (3.12)

An important quantity is th@revalencewhich is the fraction of infected individuals. Above
the epidemic threshold, the prevalence approaches a rovalele, similar to the logistic growth
curve in the SI model.

The evolution equations for the SIS model on a fully connégi@ph are
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d
d—j = i — Bst, (3.13)

for the fraction of susceptible and

y
d_jﬁ = Bsi — i, (3.14)

for the fraction of infected individuals.

Usings = 1 — i (constant population) in the equation 3.14,

di

— = (B—u— B Nl

o (B — p— Bi)i, (3.15)
which has the solution

. Ce(ﬁ_ﬂ)t
where the constant C is
By
= —"—7—. 3.17
B — n—= B ( )

When$ > 1 the solution produces a curve formally similar to the SI nipde one can see

in Fig.[3.2.2. The principal difference is that only a fractiof the population is finally infected.

1 T T T T T T T

Fraction of infected individuals

0 10 20 30 40 50 60 70 80

Figure 3.5: Evolution of the fraction of infected nodes ie ®IS model with, = 0.02, 5 = 0.2,

w=0.1.
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3.2.3 SIR model

In the SIR model an individual can be in one of the three statdscted, susceptible or
recovered. The recovery rate for an infected individdat> R) is i.. This model does not allow
reinfection: recovered individuals have permanent inéecimmunity. A susceptible individual
becomes infectedS — 1) with rate 5 if he or she has an infected nearest neighbor, as are
represented in Fig._3.3 (c). The reproductive number forSHe model isA\ = /u. The

summary of notations for the SIR model is shown in tablé 3.3.

Total population

Number of susceptible individuals

Number of infected individuals

Number of recovered individuals

Number of births

Number of deaths

Infection rate

Recovery rate

> 2|y ||~ wnl|=

Reproductive number

Fraction of susceptible individuals

V)

7 Fraction of infected individuals

r Fraction of recovered individuals

Table 3.3: Summary of notation for the SIR model.

We can analize the evolution of the epidemic outbreak forlly fronnected graph. The

equations for the SIR model are

d

d—j — _Bsi, (3.18)
gy

d_jf = [si— u, (3.19)
dr

— = . 3.20
7 i (3.20)

Evaluating these equations numerically, one can see thetevo of the fractions of the

population in each of the three states. In contrast to then®8el, the SIR model shows an
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epidemic outbreak at initial times but approaches zeroenithit of infinite time. One can see
this typical behavior in Fig._316 for the case of constant

1

o
©

o
)}

I
N

— Susceptible

— Recovered
— Infected

Fraction of population

0.2

Figure 3.6: Evolution of the population in the SIR model. Thigal fraction of infectedi, =

0.01,5=0.4, u = 0.15and N = 10000 nodes.

In 2001 Pastor-Satorras and Vespignani [16] consideredspinead of infectious disease
within an uncorellated network with an arbitrary degredrdstion, extending the traditional
epidemic in homogeneous media. The most important resudttiva absence of an epidemic

threshold. For the SIR model, the epidemic threshold,

(3.21)

whereb = ((¢%)/{g)) — 1, coincides with the percolation threshold, because in naapgcts, the
SIR model is equivalent to the percolation problen [84].

In the networks with a heavy-tailed degree distributior, &pidemic threshold is low, dra-
matically smaller tharl/(¢) the value of the classical random graph. This may indicdtat t
for some real-world networks (e.g. the Internet), an infettan spreads independently of their
infection rates.

Disease spreading was studied in numerous network modetexiample, for small-world

networks, we can cité [85, 86]. For epidemics in network&wigh clustering, it was found that
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the high clustering can affect the epidemic threshold aedcsibe and the resilience of the giant
connected component [87,188]. A popular topic is various imipation strategies [84, 89, 190].
The usual approach is a targeted immunization of the HUBsggihey are connected with high
number of nodes, are easily infected. Pastor-Satorras aspighani show that, for scale-free
networks withy < 3, the epidemic threshold is absent. By immunization of thetnaonnected
nodes, one can restore a finite epidemic threshold and etadicvirus([89]. This approach
requires global information of the network. It can also bediocal information to choose the

nodes immunized [90] and prevent epidemics.

In the real world, the spread of infectious diseases is rathe the high population mobility,

in contrast to the models where the individuals stay permidya their nodes.

In the case in which the population is not constant, at eawé step B individuals are added
to the population and are removed. The fractidn= B/N are added into the susceptible group
and the fraction of diseasedd)= D/N are removed from entire population. The new equations

are.

ds

il —Bsi+b—ds, (3.22)
g
d—z — Bsi— pi— di, (3.23)
d
d—: — ui—dr (3.24)

Evaluating numerically these equations, in Fig] 3.7 we stimnevolution of the Susceptible,
Infected and Recovered populations for the case whereslaathbirths are taken into account.

One can see that in this case the nonzero steady steady caached.

In constrast to the case of the constant population, in winifgction always disappears in

the long run, here it reaches a nonzero steady state leve affiected population, eveniif= d.
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Figure 3.7: Fractions of the population in the SIR model forom-constant population. The

parameters used for the numerical solutions are shown ifigiines.

3.3 Community Structures

In networks with community structures, connections aresdenvithin communities and
sparser between them. Many networks show clustering ositnaty, the presence of numer-
ous triangles of connections in a network. In a social netvadifriendships between individu-
als, there is a high probability that two friends of a givediudual will also be friends of one
another and most social networks show community strucfd:®1].

Many methods have been proposed for the problem of identjfgommunity structure§|[5,
92,93/ 94]. These methods seek for natural divisions oélasgworks into communities, usually
by grouping nodes according to their similarities. Anotimathod to identify communities in a
network is by using the so called divisive method. By using tbchnique, one can identify links
connecting different communities and remove them, digdire network into small components.

In a seminal paper, M. Newman and M. Girvan proposed a diisigorithm for discovering
communities[[95]. This algorithm calculates the betwessreentrality for the network and re-
moves the link with largest centrality. After the removak betweenness centrality is calculated
for the remaining network and the link with largest centyais again removed. This process

is repeated until no links remain and the number of links el@ees from L to zero, while the
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network is divided into communities. This algorithm cotitgshows community structures of
various real-world networks$ [1].

Networks with high clustering and loops are particularlficult for mathematical analysis.
Newman proposed a modeél [19] that generalizes the standardiguration model”, which is
a model of random graph with clustering and arbitrary deglisgibution. Recently, geograph-
ical properties of social networks have attracted mucmate. Some empirical studies have
analyzed the distribution of distances between friendsal social networks and found that
the probability density function (PDFR(r), of an individual to have a friend at a geographic
distancer is aboutP(r) o< r~! [96].

Yanging Huet. al[97] suggested that the origin of this dependence comes &@®mneral
perspective based on the concept of entropy. They showethth&(r) ~ 1/r law can be seen
as a result from maximization of entropy, what means thahdividual seeks to maximize the

diversity of its friendships in the social network.

3.4 Information Spreading

How information, ideas, gossips and influence spreads gir@usocial network is a topic
often studied[98, 99]. The information about the pathwayshich the information spreads can
be used to optimize communications, for example. In sogedading models, the information
flows in one direction, from people who have the informatiothose who do not have.

In a recent work, J. Kleinberg and K. Ligett proposed a modeléasoning about the way
information is shared in a social netwoik [100] taking intc@unt social conventions issues.
Maksim Kitsaket. alproposed a way to identify most efficient “spreaders” in avoek [101].
As aresult they show that, in contrast to common belief, tbstimfluential spreaders in a social
network do not correspond to the best connected people betmost central nodes.

Information spreading through a population have some antigs with the spreading of
an infectious disease. In this case, informed people playdke of an infected agent, while
the uninformed ones correspondent to susceptible ageetovRred agents are represented by

stiflers, i.e., agents who lost interest in diffusing infation. Differently from the epidemic
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models in which an infected node spontaneously becomeseara in information spreading
an informed agent becomes stifler when its neighbors aradiiaformed.

Similar to the epidemic models, one can study if a finite foacof the population is reached
by the information or if there is aepidemic thresholdor the rate of spreading, in which a&m-
demic statés reached. The model introduced by Daley and Kendalll[162bants for spreader,
ignorant and stifler agents. For this model in the case of lygmeous mixing, for any rate of
spreading information, a finite fraction of the populatisnréached by the information. This
model of information spreading was studied also in compkbworks. For scale-free networks,
the fraction of population reached is smaller than the casehich homogeneous networks are
considered[[103]. For small-world networks, there is ardepiic threshold dependent on the
rewiring parametep. If p is greater than certain valyeg, the information reaches a finite frac-

tion of the population. Fop < p., the information remains around its origin [104].

3.5 Opinion Models

The dynamics of opinion sharing and competing attractezhaitin from physicists and nu-
merous different models have been proposed to investigatedompeting opinions among
agents evolve in populations. The dynamics opinion modelsabout how a group of people
reaches an agreement. The dynamics of agreement and @isegeis treated in terms of the
variation of the number of different opinion states in p@tian, where each agent (individual)
can have a few opiniobis

It is clear that these models are reductive since we have adaables representing opinions
about an issue. On the other hand, as pointed by Castedlaalo [102], “in everyday life(...)
people are sometimes confronted with a limited number oitjpos on a specific issue, which
often are as few as two: right/left, Windows/Linux, buyiseiling...”. The main problem is how
to describe the interaction among people by rules and shiggvolution.

The first physicist who created an opinion model, based orobamilistic framework of

In this thesis we will only discuss the cases where the opitsoa discrete variable. For some models of

continuous opinions, see the review of Castellabal. [102]
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sociodynamics was Weidlich in 1971 [105]. After that, S. #&akt al. used the Ising model to
describe opinion dynamics [106, 107]. In these models, thpling of the spins represents the
interaction between agents. The magnetic field plays a faleagss media acting as an external
field. Depending on the field, the system may reach total cense(all agents with the same
opinion) or a state where both opinions are present (in the cbonly two opinions are allowed).

In the past few years new models have been proptsed([102109B,Here we will discuss
the models that have been received more attention such astliemode[3.511, the Majority
rule mode[3.52 and the Sznajd model3.5.3.

3.5.1 Voter model

The voter model was first considered by Cliford and Sudbl®@] as a model for compe-
tition of species. The name “voter model” was gived by Hobeyl Liggett[111] in 1975. Itis
a type of contact process which is one of the few non-equilibmprocesses that can be exactly
solved in any dimension [102]. The voter model became pofyldeing a model with simple
non-equilibrium dynamics with a nontrivial behavior.

This model is a simple model of opinion in which an agéefdr in this case, voter) is located
at a node of a network. Each agent has a binary opinipr=( +1), and at each time step a
randomly chosen agent assumes the opinion of one of its beigh, s; = s;.

The average opinion (magnetization) is calculated sumroveg all the agent’s opinions in

the network:

1 N
m = sti' (3.25)
=0
The system evolves until reaches a consensus state witlpesitsawith the same opinion,1
or +1, and stays there forever. So, these two states are absathaiteg. One can see that this
model also shown the up-down symmetry. Starting the proeébsa random configuration of
opinions, the dynamics of the voter model will increase ordéhe system.
In Fig.[3.8 one can see the evolution of the agent’s opiniotihévoter model defined on

a square lattice with 250000 agents. The simulation statts apinions randomly distributed
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Figure 3.8: Evolution of the Voter Model on a square lattiZB0000 agents start with opinions
randomly distributed (left panel) and, at each time stegent assumes the opinion of one of its
neighbors. Each opinionH) is represented by a black () or white (+1) region in the picture.
From left to the right we can see three different time steps(), t = 2500 andt = 5000.

among the agents and three different time steps are shown.

The steady state is reached when= 1 orm = —1, solutions corresponding to the absorbing
states[[112]. For the voter model in one- or two-dimensiadnsse are the only possibilities
for the steady state. For higher dimensions no consenseadhed and domains of different
opinions can coexist. According to Castellagbal, the lack of consensus is related to the
nature of random walks id > 2: diffusing active interfaces have a finite probability toehand

annihilate each other [102].

3.5.2 Majority rule model

The majority rule model is a sociophysics model proposeddrg&Galam in 2002 [113]. In
this model the network is a complete graph (where each agaert@ammunicate with each other)
composed byV agents with opinions-1 or —1. At each instant of time agents are selected at
random and all agents in this group (called discussion grfmljew the majority opinion inside
the group as one can see in Kig.J3.9. The unity of time is medsomumber of updates per spin
for the majority rule model.

The discussion groupdoes not have a fixed size and it is, at each time step, seleotac
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Figure 3.9: Majority rule model: the majority opinion insid discussion group (inside the box)

(a) is taken by all agents at the next time step (b).

given distribution. If the number of agents in the group id dtere is always a majority opinion.
On the other hand, if is an even number there is a possibility of a tie, and in th&®ca bias is
introduced in favor of some opinion. The introduction ofsthias is inspired in the principle of
social inertia, where people are reluctant to accept ameiothe case where the majority is not
clear [102[108].

One can see the evolution of the Majority Rule model in Eii03The agent’s opinion, start-
ing from p;,,;, evolves until the steady state. The simulations were padd with the discussion
groupr selected from a gaussian distribution (mean zerocardl). In our simulations, in case
of a tie among agents, the opinierl is favored.

The steady state is reached when all the agents have the gamno If the initial density
of agents.; (p_1) with opinion-+1 (—1) is higher than a critical valug., all agents will finally
reach consensus. The time to reach the consensus scaledaggitithm of the number of agents
in the systems. If if odd, p. = 5 due to the symmetry of opinions. ifis evenp, < 1 favoring
the biased opinion.

This model was solved analytically by Krapivsky and Redne2003 by mean field analysis
[114]. In their solution the authors have considered an addber of agents in the discussion

groupr.
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Figure 3.10: Evolution of the agent’s opinion in the MajpfRule Model for different values of
the initial fractionp;,,;. In case of a tie, the opinior1 is favored. Each curve corresponds to a

single realization.

The average magnetization is

1
m = N Z Si = P+1 — P-1, (3.26)

wheres; is the opinion of the agent The size ofr is 3 and at each time step, the number of
agents with some opinion increases or decreases by one.afilation of the number of agents

with same opinion can be written as

1
dNy1 = 3(pLap1 = prapZs) = =6psa(pin = 5)(pn — 1) (3.27)
and so
dN. 4 N . 1
N+1 5 =P = —2p41(p1 — 5)(/)“ - 1), (3.28)

where the time step i& = 3/N. Equatior 3.28 has 3 fixed points;; = 0,1/2,1. The point
p+1 = 1/2 is unstable and the poings; = 0,1 are stable, so all agents will have the same

opinion as the initial majority, as was found by Galam.
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The average time until the system reaches consensus isrpooyab to the logarithm of the
number of agentd’ in the mean-field limit. Computer simulations suggested tti@consensus
time grows asV?, for the bidimensional case. For higher dimensions, theegysnay be trapped
into metastable states evolving even slower. Numericalitions of the critical properties
of the majority voter model od—dimensional hypercubic lattices show that the upper @alitic

dimension is 6, reproducing the mean-field results[115].

3.5.3 The Sznajd model

The rationale behind the Sznajd model is the emergence @lsmtlective behavior due
to interactions between individuals, constituting the nmscopic level of a social system. Two
agents having the same opinion can convince other agente inetwork. In the original one-
dimensional version of the model, each individual can haxeeaf two opinions represented by
Ising spins (‘yes’ or ‘no’, ‘up’ or ‘down’). A pair of parallespins on siteg andi + 1 forces its
two neighbors; — 1 and: + 2, to have the same opinion (orientation), while for an amafel
pair (i, i + 1), the left-hand neighboi (- 1) takes the opinion of spih-+ 1, while the right-hand
neighbor { + 2) takes the opinion of spin[116].

In this simplest formulation of the Sznajd model, two typésteady states are reached: ei-
ther complete consensus (ferromagnetic-state) or stégimavhich every agent has an opinion
which is different from that of its neighbors (antiferro-gmeetic state). The Sznajd rule for the
antiparallel pair is unrealistic and it is usually repladgedhe extensions of Sznajd models, so
if a pair of agents are in disagreement, the neighbors maittiair opinions[[102]. The orig-
inal model in one dimension has no phase transition due tadkgistence of two (ferro- and
antiferromagnetic) stationary states.

Considering the Sznajd model defined on a square lattice aina pair of neighbors, but a
2 x 2 plaquette with four neighbors, Stauffet al. [L17] made each fully polarized plaquette
convince its eight neighbors. For this model, they found asgttransition for an initial density
of up spinsi = 1/2. In the most common version of the Sznajd model, a pair of isggmvince

all their neighbors, as shown in Fig. 3111.
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Figure 3.11: The standard version of the Sznajd model definetthe square lattice: a pair of
agents with same opinion (inside the box) convince all theighbors (a), while in the case of

disagreement the neighborhood keep their opinions (b).

This model has been extensively studied, and numerous matitiins have been proposed,
e.g., square [117], trianguldr [118], and cubic latticeBd]1 increased interaction rande [120]
and number of states of the variable [121,]122] 123]; andslih of the agents [123, 124]. The
model was also applied to areas such as politics, marketprgad of opinions among traders
and finance [125, 126].

An exact solution for a Sznajd-like dynamics on a comple@pgrwas given by Slanina
and Lavickal[12]7]. In their model two agentsnd; interact with a third agent, all taken at
random. If the opinions of the first two agents are the sanegthtind follows the previous agents,
otherwise nothing happens.

Other studies focused on the Hamiltonian formulation of tiedel. In this approach an
equivalent dynamics is considered, based on minimizatiahsagreement functigressentially
a spin-spin interaction function [128, 129, 130].

50



Chapter 4

Consensus Model

In this Chapter we study numerically a modified version of §za@ajd Opinions model, in-
troduced in the last Chapter. We include in our model repurta mechanism which limits the
capacity of persuasion of the agents. The reputation isdotted as a time-dependent score,
which can be positive or negative. The introduction of thechranism avoids dictatorship (full
consensus, all spins parallel) for a wide range of parametiethe model. Two different situa-
tions were considered in this study: the case where theagputof the agents increases for each
persuaded neighbor (case 1) and the case where the repuih#in agent can increase for each

persuasion but can also decrease when a neighbor keepsr@qgase 2).

Our results show that the introduction of the reputationrdgs full consensus even for initial
densities of up spins greater thafR2. The relaxation times follow a log-normal-like distribu-
tion in both situations, but they are greater in case 2 dub@éaompetition of reputations. In
addition, we show that the usual phase transition occursdapénds on the initial concentra-
tion of individuals with same opiniod, but the critical pointsl. are different in the two cases

considered.
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4.1 Reputation in the Sznajd Model

The explanation of the emergence of consensus in a populattb interaction agents was
the great success of the Sznajd model. Since the model waduiced in 2000, many different
modifications were proposed and successfully applied to/rddiierent areas. The Sznajd model
is robust against the following situation: if one convintes neighbors only with some proba-
bility p, and leaves them unchanged with probability p, the consensus will be still reached

after a long time.

Unfortunately the dynamics of social relationships in neafld shows a large number of
details which are commonly neglected in many models, sucheamfluence of mass media in
the opinions formation or the authoritarianism forcing #ggents to follow some standardized

opinion or a persuasion of an agent to follow a group’s opinio

In order to formulate a more realistic model, we introducéhis work a reputation mecha-
nism. We believe that the inclusion of reputation in our mddes it closer to a real system,
where not only the number of individuals with same opiniorttera. We believe that the repu-
tation of the agents who holds an opinion is an importanbfaict persuasion the agents across
the community. In other words, an individual more easilyrgfes their opinion if he or she is

influenced by people with good reputation.

On the other hand, people with bad reputation are usuallyregh The reputation limits the
capacity of persuasion of the agents, compared to the sthnuadel. In fact, our results con-
sidering the simple microscopic rules of the model show tlm&only a full consensus situation

occurs, but a democracy-like situation is possible.

As was pointed byCastellano et al.we probably would not pay much attention to a single
guy staring at the sky, but instead, if a group of people staréhe sky at same time, we probably
may be tempted to do the same [102]. Convincing somebodsisrefar a group of people than
for a single individual. Moreover, convincing somebody v&® easier for a group with very

good reputation.
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4.2 Description of the Model

We consider the generalization of the Sznajd model defindd@square lattice witlh, x L
agents[[131]. Our model is based on the rules explained irdElg According to these rules a
plaquette of agents with same opinion convince all theihtergighbors. This differs from the
one-dimensional original model where a pair of neighboaggnts and: + 1 determines the
opinions of their two nearest neighbars 1 and: + 2. In addition, an integer numbegY) labels
each playerj, and represents its reputation across the community, ilogyao the Naming

game model considered by Brigatti [132].
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Figure 4.1: Generalization of the Sznajd model defined orstjuare lattice by Stauffeat al.
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a plaquette of agents with same opinion (inside the box)ioasvall their eight neighbors (a),

while in the case of any disagreement the neighbors keepdpgiions (b).
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The reputation (agent’s scor&)(t) is time dependent. The agents start the dynamics with a
Gaussian distribution oR, and during the time evolution, the reputation of each aghahges
according to its capacity of persuasion, following the sud&plained in this section. The initial
state of the system is a populationofx L agents with randomly assigned opinioasl(lsing
spins) and a Gaussian distribution Bf centered a0 with standard deviatiom. As will be
shown, the model displays the same results for various atdraeviations of the distribution of
reputation.

At each time step, the following microscopic rules contnat model:

[ —

. Randomly choose a2 2 plaquette of four neighbors on the lattice.

2. If not all four spins in the plaquette are parallel, leaganeighbors unchanged and return

to step 1.

3. Otherwise we calculate the average reputation of thguyatie:

4
>R
i=1

whereR;,i = 1,2, 3,4 is the reputation of each plaquette’s agent.

R:

] =

4. Compare the reputations of each neighbor with the averggeation of the plaquette. If
the reputation of a neighbor is less than the average orseéighbor follow the plaquette

orientation. On the other hand, if the neighbor reputatsagréater thak, nothing occurs.

5. For each persuasion, the plaquette agents’ increasadpeitation by 1. If the plaquette

fails to convince its neighbors, then the reputations dachangg.

If an agent convinces many others, his reputation increa®aesthe other hand, as will be
shown in subsectidn 4.4.2, the persuasion abilities magedse if fails to convince other indi-

viduals.

Lif the plaquette and their neighbors have all parallel spiegghbors and reputation are kept unchanged.
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4.3 Reputation Dynamics

We considered two distinct situations: in the first situatithe reputation of each agent in-
creases in the case of successful convincing other agehtseas in the second situation the
reputation may increase and decrease according with th#'agaccess convincing their neigh-
borhood.

Case 1

In the first situation, if the plaquette convince their ndigts, then the reputation of each
of the agents in this plaquette increases by 1. Otherwiseeihaation do not change, as was
explained before.

We will show that the introduction of the reputation desgrdlye final ferromagnetic (dicta-
torship) state on the standard Sznajd model. In our modeffinll state (the end of evolution)

is characterized by not all agents holding the same opinfdemocratic consensus”.

Case 2

In the second situation which we consider, the agent’s egjaut decreases if the plaquette
does not convince a neighbor. Our rules for this situatiapkenchanged for the previous steps

1 - 4. The only difference is in the step 5 which changes in dlewing way:

5. For each persuasion, the plaquette agents’ increasadpeitation by 1. If the plaquette
fails to convince their neighbors, the reputation of themag@side the plaquette decrease

by 1.

4.4 Numerical Results

Our results will be presented separately for the two casesase 1 we will show the phase
transition occurring at an initial density of up spims,greater than 1/2. Differently, in case 2,

this transition only occurs faf — 1.
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Figure 4.2: Time evolution of the magnetization (case 1)fet 53, initial densities of up spins
d = 0.4 andd = 0.6 and different samples (a). The system approaches steadyrstahich the
total consensus is not reached, in contrast of the standarajdmodel defined on the square
lattice [117]. In figure (b) we show the results tor= 0.1 andd = 0.9. In these cases the system

reaches consensus.

441 Casel

In the simulations, we used the agent’s initial reputatifmi®wing a Gaussian distribution
with standard deviation = 5. Following the previous works on the Sznajd model, we cart sta

studying the time evolution of the magnetization per site,

m:iZsi, (4.1)

whereN = L2 is the total number of agents ard= +1. In the standard Sznajd model defined
on the square lattice, fat < 1/2 (> 1/2) the system goes to a ferromagnetic state with all spins
down (up) in all samples, characterizing a phase transitiadn= 1/2 in the limit of largeL.

We show in Fig[ 4R the evolution of the magnetization as &tion of the simulation time
in our model, for the case 1. Figure .2 (a) the evolutionstaom the initial density of spins
d = 0.6 (which is equivalent to the case @f= 0.4). One can see that the total consensus with all
spins up (down) will not be achieved in any sample, indigathmat a democracy-like situation is
possible in the model without introduction of some kind oésijpl agents (like contrarians and

opportunists)[133]. In Fid._412 (b), the evolution of thegnatization show situations where the
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consensus is obtained starting frein= 0.9 andd = 0.1. In this situation the total consensus
is finally reached, so one could expect the transition@t< d. < 0.9 (or, equivalentlyp.4 <
d. < 0.1).

We have also studied the relaxation times of the model,the.time needed to find all the
agents at the end having the same opinion (a dictatorshig) sta the original Sznajd model.
In our model, the relaxation time is the time needed to reaftked point. In the case where
full consensus is reached, the dynamics stops and the nieajiat of the steady state is always
m = +1. On the other hand, in the cases where democratic statesaatead, the magnetization
of these steady state fluctuates around a mean value but tlaeniys evolves continuously. In
addition, the times to reach democratic steady states aneatly larger than the times to reach
full consensus.

The distribution of the times needed to reach the fixed pawgraged ovet0* samples, is
shown in Fig[4.B (a). We can see that the distribution of tine is compatible with a log-
normal one for all values of the standard deviatignwhich corresponds to a parabola in the
log-log plot of Fig.[4.8 (a). The same behavior was observedther studies of the Sznajd
model [117] 1383, 134]. In Fid._4.3 (b) we show the averagexatian timer (also averaged
over10* samples) versus latice siZein the log-log scale. We can verify a power-law relation
between these quantities,~ L°/2, for all values of the standard deviation, A power-law
relation between and L was also found in a previous work on the Sznajd model, wittoagpt
2.6 [134].

Let us analyze the phase transition of the model. In sinanatia phase transition is never
sharp, but it is indicated numerically by the change of tlopaslas L is becoming larger, as
one can see in Fig. 4.4 (a). Only in an infinite lattice one cqueet a sharp transition (step
function) for f versusd. For this purpose, we simulated the system for differenickasizesL
and measured the fraction of samples having final statesalVispins up when the initial density
of up spinsd is varied in the rang6.4 < d < 1.0. In other words, this quantity gives us the
probability that the population reaches the total consgrfsu a given value od.

We have considereth00 samples for, = 31 and53, 500 samples for, = 73 and101 and

200 samples forl. = 121, all samples using = 5. The results are shown in Fig._#.4 (a). One
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Figure 4.3: Log-log plot of the histogram of relaxation tengase 1) fo, = 53 andd = 0.8,
obtained from10* samples, with agents’ initial reputations following a Gsias distribution
with different standard deviations(a). The distribution is compatible with a log-normal one fo
all values ofo, which corresponds to the observed parabola in the logHioig phe relaxation

time 7, averaged over(*! samples, versus latice siZein the log-log scale (b). The straight line

has slope 5/2. The result is robust with respeet.to

12 ‘ Lt @ b ovAl
i " (=31 '(r“
1F o L=53 (b)
St
A =
0.8 L=121] ¢ ]
© [ &
—0.6F g 4
= :
0.4- £ ]
i ¥
0.2- ; s
0;( 43—k *-J ! :
-3 2 -1 A 0 1
(d-d) L

Figure 4.4: Fractiory of samples (case 1) which show all spins up when the initiakig of
up spinsd is varied in the rang8.4 < d < 1.0, for a set of lattice sizeg ando = 5 (a). The
total number of samples at®00 (for L = 31 and53), 500 (for L = 73 and101) and200 (for

L = 121). Itis also shown the corresponding scaling plofdb). The best collapse of data was

obtained fore = 0.035, b = 0.444 andd,. = 0.88.
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can see that the transition point is precisely in the region1/2. In order to locate the critical

point, we performed a finite-size scaling (FSS) analysisetiaon the standard FSS equations

[134,135],

fd,L) = L™ f((d—d) L, (4.2)
d(L) = d,+cL™, (4.3)

wherec is a constant and is a scaling function. The result found is

d.=0.88+0.01. (4.4)

in the limit of large L, as shown in Fi. 4.4 (b). In additiohetbest collapse of data was obtained
for a = 0.035 andb = 0.444.

In the original Sznajd model on a square lattice, the systamsswith half of the spins up
and half down. Varying the initial density, the system fipddhs all spins down (ifl < 1/2) or
all spins up (ifd > 1/2). Ford. = 0.5, half of the samples reaches steady state with spins up and
half with spins down.

This difference of the critical point may be easily undesstoat each time step, the randomly
chosen X% 2 plaquette that may convince 8, 7, 6, ..., 1 or 0 neighboes é\the plaquettes’ spins
are parallel. That will depend on the reputation of an agedttae average reputation of the
plaguette. In the standard model, if the plaquettes spinshtations are the same, then all the
8 plaquette’s neighbors are convinced immediately. Thesusual phase transition of the SM
also occurs in our model, for the case 1, but for a larger vafué This transition is the same

for different values ofr as one can see in Fig. #.5.

442 Case?

As was discussed in Sectign 4.2, in the second case the sigeptitations may also de-
crease, which introduces a competition of reputationsergime. The resulting evolution of the

magnetization per site is shown in Hig.14.6.
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Figure 4.5: Fractiory of samples (case 1) which show finally spins up when the Irdgasity
d is varied in the rang8.4 < d < 1.0, for L = 53, 1000 samples and various values®of The

behavior off does not change with.

At intermediate initial densitied (aroundd = 0.5) the system reaches steady states with
m < 1, i.e., we have a democracy-like situation. The results tiealess show a variety of steady
states, differently from the results of the case 1,[Fig 4)2r&aching different steady states for
the samel. We believe this is due to the evolution of the reputationiciwHor this case, may

increase or decrease depending on the evolution of thegevegputation of the plaquettés [136].

Another characteristic observed in case 2 of our model it tth&a magnetization evolves
slowly to the steady state, even for large and small initadsities = 0.9 andd = 0.1. This
fact can be observed in the inset of Hig.]14.6 (b), in which th&tesn evolves untill x 10°
time steps (observation time). The dashed linsis= 1 and we observe that one of the three
realizations reaches consensus before the observatien fitvus, for the case 2 of our model,

the full consensus is harder to reach and the emergence afodatic steady states is favored.

We have also studied the statistics of relaxation timesmodel for case 2. The distribution
of the number of sweeps through the lattice is shown in[Eig (d) for differents. One can see

that, as in case 1, the relaxation time distribution is caibfeawith a log-normal one for alt.
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Figure 4.6: Time evolution of the magnetization (case 2)lifet 53, o = 5 and initial densities
of up spinsd = 0.4 andd = 0.6. Different samples reach different democracy-like stestdyes
for the samel. The results forl = 0.1 andd = 0.9 are shown in (b). Observe in the inset
the system reaches full consensus in only one of the threpleamuring the observation time,

7 x 10° time steps. The dashed line in the insetis= 1 (full consensus).

However, as one can expect, due to competition of reputgtitie relaxation times in case
2 are greater than the corresponding relaxation times ia tasin Fig.[4Y (b) we show the
relaxation timer (averaged ovet0* samples) versus latice siZein the log-log scale. In this
case, we verify the same power-law behavior observed intase- L°/2, for largeL and any
g.

Following the approach described in the last subsectiose(dd, we simulated the system
for different lattice sized and measured the fraction of samples which show all spinshgnw
the initial density of up sping is within the range).5 < d < 1.0. We considered the same
number of samples as in the last subsection, and the reselshawn in Fig[4]8. One can see
that the transition poind. > 0.88, i.e., the critical density in case 2 is greater than in case 1
as expected due to the competition of reputations. In otleedsy when the reputation of an
agent can increase for each successful persuasion an@skeéoe each unsuccessful persuasion,
a higher initial densityl is needed to reach a full consensus state.

One can observe in Fig. 4.8 that, for= 31, the curvef(d) is qualitatively distinct from
those for larger sizes, mostly due to finite size effects. $hmulations show that, differently

from the case 1f(d) = 1 is only obtained ford = 1. This result may indicate that the phase
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obtained from10* samples, with agents’ initial reputations following a Gsias distribution
with different standard deviations(a). The distribution is compatible with a log-normal one fo
all values ofo, which corresponds to the observed parabola in the logilag | is also shown
the relaxation time-, averaged ovet0* samples, versus latice siZein the log-log scale (b).

The power-law behavior for largeis 7 ~ L>/?, for all values of.
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Figure 4.8: Fractiorf of samples (case 2) which have finally all spins up versumlriraction
of up spins, for different lattice sizes. The total number of samplesi900 (for L = 31 and
53), 500 (for L = 73 and101) and200 (for L = 121). The simulations were performed for a

maximum observation time x 10° time steps.
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Figure 4.9: Fractionf of samples (case 2) which show all spins up for the obsernvdiine
2 x 105 time steps. The initial density is within the range).5 < d < 1.0, for L = 53, 1000

samples and two different values®f The behavior off (d) is independent of.

transition found in our model for the case 1 is absent for e @. However, we can not draw
this conclusion, since the resuls are dependent on theatser time and, in our simulations,
the largest observation time was< 10° time steps. In Fig._4]9 one can see that the behavior of
f(d) is independent of.

4.5 Remarks and Chapter Conclusions

We studied a modified version of the Sznajd sociophysics inddparticular we considered
reputation, a mechanism that limits the capacity of petisnasf the agents. The reputation is
introduced as a score for each player and is time dependaiying due to the model’s rules.
The agents start with a random distribution of reputatidnes and during the time evolution,
the reputation of each agent changes according to its dgmd@ersuasion. We assumed that the
initial values of the agents’ reputation follow a Gaussigtribution centered dt with standard

deviationo. We studied two different situations: (i) the situation ihiah the reputations increase
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due to each persuaded individual, and (ii) where the rejoustincrease for persuasion and
decrease if a group of agents fail to convince one of its rmgh

In the first case, we observed a log-normal-like distributid the relaxation times, i.e., the
time needed to reach a state with all the agents having the spmion. In addition, the average
relaxation times grow with the linear size of the lattice;/as L°2. The system undergoes a
phase transition, which was identified by measurement dirtfotion f of samples which show
all spins up when the initial density of up spihg varied. f is the probability that the population
reaches the full consensus for a given valué.oVe localized the transition point by finite-size
scaling analysis, and fountl = 0.88. This critical density is greater thar'2, the value found
by Staufferet al. [117] in the standard formulation of the Sznajd model. Theudations indicate
that the observed phase transition is independemnt of

In the second case, we also found that the relaxation tineegrnormally distributed, but
they are greater than the relaxation times in case 1. We haserwed the same power-law
behaviorr ~ L>2, for largeL. The competition of reputations in case 2 increases thgatim

times and we cannot draw conclusions about the phase tcamiitthis case.
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Chapter 5

Evolution of Spatially Embedded

Branching Trees with Interacting Nodes

In this Chapter we study the evolution of branching treesestdbd in Euclidean spaces,
which have suppressed branching of spatially close nodeis. cboperative branching process
accounts for the effect of overcrowding of nodes in the erdbegispace and mimics the evolu-
tion of life processes (the so-called “tree of life”) in whia new level of complexity emerges
as a short transition followed by a long period of gradual@won or even complete extinction.
We consider the models of branching trees in which each nel® nan produce up to two twigs
within a unit distance from the node in the Euclidean spaaethis branching is suppressed if
the newborn node is closer than at distandeom one of the previous generation nodes. This
results in an explosive (exponential) growth in the inipatiod, and, after some crossover time
t, ~ In(1/a) for smallq, in a slow (power-law) growth. This special point is also ansi-
tion from “small” to “large worlds” in terms of network sciea. We show that if the space is

restricted, then this evolution can end by extinction.
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5.1 Introduction

A growing tree-like network can model different processashsas a technological or bio-
logical systems represented by a set of nodes, where eatiergén the network can create
new elements. Innovation and discovery [137], artisticregpion and culture [138], language
structures([139, 140] and the evolution of life [141, 142} te represented by a branching pro-
cess in a tre€ [143]. Growing trees naturally represent & wadige of real-life processes and
phenomené |6, 14, 142, 144, 145, 146]

“The evolution of life is, obviously, a nonuniform procesd41]. For biological evolu-
tion, this means that new types of biological objects emalgeptly with subsequent gradual
evolution. This evolutionary process can be schematiachlyicted as a tree (“the tree of life”
[141,[142]), where branches, are, for example, differeat&s. Importantly, the growth of this
tree is complicated by interaction and competition betwsggties. In this Chapter we discuss

one of the simplest models of growing trees which can mimgghocess.

The Galton-Watson branching process [147] provides a sirapample of a growing tree
with non-interacting nodes and so uncorrelated branchingoot node generates a number of
daughter nodes distributed according to a Poisson funetitnmeany. In that case, the whole
network goes to extinction only if each of the root’s daughtdies. In this case, the survival
probability Z satisfiesl — Z = ¢ ##, which has a non-zero solution only when> 1. The
phase transition in the GW model that occurguat 1 is a general property of models with
independent branching.

Interacting branching processes are much more interestidglifficult for analysis [137]. In
this work we study evolving trees whose evolution is inflleshby interaction between some of
the existing nodes, for example, nodes of the previous gépar representing a competition of
species for resources in a limited space. We assume thatdheng tree is embedded in some
metric space and assume that spatially close nodes of thi®psegeneration suppress mutually
their ability to born new nodes. In other words, overcrovgdaf nodes in the embedding space
suppresses their “fertility”. We also consider the evolvinees embedded in restricted areas

of metric spaces, and investigate the possibility of cotepéxtinction under certain model’s
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parameters.

This kind of interaction (competition), leading to supmmies of branching, emerges if there
is no sufficient space, no niches for the new nodes and brar{species). Due to the embed-
ding space, we can introduce distance between two nodesthtdrethe shortest path internode
distance for this tree. For the sake of simplicity, we coesaD-dimensional Euclidean space,
although the results do not depend qualitatively/on Networks embedded in metric spaces
and their evolution already attracted much attention |[1488,[150/ 151, 152, 153]. We are
particularly interested in a transition (actually, cros=) between different regimes of the net-
work growth, namely, explosive (exponential) evolutior @madual (power-law) one. Here the
evolution of the network is characterized by the variatibthe number of its nodes (which cor-
responds to biological diversity, for example). We find tlosigion of this transition and express
it in terms of a single model parameter. This transition cmias with crossover from a “small
world” to “large world” network architectures [154], whesenall worlds show a logarithmic de-
pendence of network diameters on their sizes (total nundfaredes) and large words show a
power-law dependence [13,140].

One should emphasize a principal difference from the previstudies of this crossover.
In Ref. [154], the crossover was controlled by a model patamevhile in the present study
the small-world and large-world architectures are redlina different stages of the network
evolution. In addition we find how the spatial distributidimodes evolves and the possibility of

complete extinction.

5.2 The Model

The model of interacting nodes, which we use, is schemétiegresented in Fig. 5.1, show-
ing the grow of the tree embedded in a two-dimensional spioe growth of the tree starts from
a root node (dark black circle in Fig. 5.1). At each time stgch of the nodes of the tree at-
tempts to emit two leaves (leaf is a link with a new node, kgltircles), so at each time step a
new generation of nodes is given birth. The network is embéddid aD-dimensional Euclidean

space, and the root has zero coordinates.

67



Figure 5.1: The scheme of the network growth on a plane. Taeklshode shows the root, the
nodes of the first and the second generations are dark andtayh respectively. The furthermost
left node attempts to born two children. The first attempft)lis abandoned because of the
nearby second generation node. The second attempt (cengergcessful since the new node

has no second generation node within radidiom it. This results in the network (right).

At each time step, we make the following:

1. Choose uniformly at random a nodécoordinatesk;) from the previous generation and
make an attempt to create its leaf with a new node at the pohtA,;. Here the random

vectorA,; is uniformly distributed within-1<A, ; <1, —-1<A,; <1, ... —1<Ap,<1.

2. If among the nodes of the previous generation (excludiegparent nodé) and among
the nodes already created at this time step, no nodes aer thas at distance from the
point, x; + A;, then create the leaf. If such nodes exist, abandon thisiptteMake the

next attempt to create the second leaf from this node usegdme rules.

3. From the rest nodes of the previous generation, choo$aronty at random nodes one by
one and repeat the steps (1) and (2) until all the nodes ofréhequs generation will be

updated.

We will also consider a variation of this model, in which fach attempted node birth,

closeness to all existing nodes should be checked and notmtiie previous generation nodes.
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In this case, we are taking into account the possibility thate than one generation can coexist.
These two variations of our model are related with the SISSIRdepidemic models, which will

be discussed in the next Section.

5.3 Connection between our model and epidemic models

In the first situation considered in our model (Case 1), ohg/pirevious generation nodes
are take into account when testing node closeness from atg@dteewborn node. In the second
situation (Case 2), all existing nodes are checked beferbitth of a new node. Case 1 has some

similarities with the SIS model, while the case 2 is relatéith\8IR epidemic model.

5.3.1 SIS

In the SIS model, described in Sec. 312.2, a susceptiblelmaxtames infected if it has contact
with an infected neighbor, but it also can recover and becguseeptible again. One can describe
case 1 of our model as a version of the SIS model. The metresigdilled with susceptible
nodes and the root is the infected one. At each time step, tiemats to infect are made by each
node. The number of new nodes can be seen as the number dédhfexdes in the epidemic

outbreak.

5.3.2 SIR

In the SIR model, described in Séc. 312.3, the nodes can beinfdhe three states, infected,
susceptible or recovered. Similarly, one can describeZaseur model, as a version of the SIR
model. The only difference is that, in previous case, theesa@n recover and get infected again,
while in case 2 reinfections are not allowed. There is alsoraection with SIR model and the
percolation problem. John Cardy and Peter Grassberger tfatthe SIR model is in the same
universality class as percolatidn [155].

Considering these connections between our branching naodehe SIS and SIR models, it

is possible to indicate some differences: i) in our modelttial population is not constant and
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i) the spreading process is spatially localized.

5.4 Network size evolution

Figure[5.2 shows the result of simulation of this model for= 1 and sufficiently small
a, namely, the evolution of the number of nod¥$t) of generatiort which plays the role of
time. Initially, N grows exponentiallyN = 2!. One can see that after certain crossover time
t.., the network growth is slower than exponential. For an eabjtdimensionD, one can easily
estimateV = const(t/a)” at larget. To obtain this estimate, we assume that nodes of generation
t are within a hypersphere which radius grows with a constetof the order of (the rate is
actually smaller tharl). This average rate of expansion is explained by the fadtdhiddren
in this tree are born within unit distance from their pareatles. Since the neighboring nodes
cannot be closer than a distancave obtainV ~ ¢” /a”.

Note that if the parameteris sufficiently large N does not grow at all. I is, say2, N =1
for anyt, and our tree is a chain of nodes.

D
FromN(t <t,) =2'andN(t = t,) ~ (5) , we have very roughly

t D
te (2%
2 (a) , (5.1)
which leads to the estimate
D 1
e~ s (3) (5-2)

at smalla. In Sec[5.B, we will demonstrate that this simple estimat®nsistent with the results
of our simulations.

Data similar to Fig[.5]2 are shown on the normal-log plot,. (a), for a few values of
a (D = 1). The straight line in the figure is the dependefiteand the crossover from the
exponential to a slower growth is clearly seen. Fiduré 5)3Mas obtained from the model
formulated in Sed. 512, in which the previous generatioresaffect the branching process. We

performed similar simulations for the model, in which newbaodes cannot be closer than at
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Figure 5.2: General picture of the number of new nodes as @itumof time, for initial time

steps of case 1) = 1 anda = 0.1.

distance: from any of existing nodes (apart of their parents). Theltesi the simulations (the
evolution of the number of nodes of generatipare shown in Fid. 513 (b). In contrast to Hig.]5.3
(a), in the network in which all nodes influence branching, tamber of nodes of generation

approaches a constant valyg, ., (a) at larget.

In the Fig[5.8 (c) we have the same situation as in[Eig. 5,2f@ept in this case much larger
values ofa and time are considered. One can see that for larger valutbe gfarametet the
branching process can stop for all samples considered pamsh the inset. Fid. 513 (d) shows
the same situation as shown in Hig.]5.3 (b) but for longersink®r this case of the model, when
we take into account all the interactions with all existiraglas, the branching process always

stops for sufficient long times.

One can easily obtain the plateau in Hig.]5.3 (b) using amesé similar to that from the
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Figure 5.3: Evolution of the number of new nodes in the nelkwdor different values of the
parameter. (D = 1). The data were obtained after averaging over 100 samm@gd.he trees
evolve according to the rules introduced in Secl 4.2, imy the previous generation nodes in-
fluence the branching process. (b) The trees in which newglannot be closer than at distance
a from any of existing nodes (apart of their parents), i.e.lt@ching process is influenced by
all existing nodes. (c) Same situation as seen in (a) butofog times and larget. (d) Same
data as shown in (b) but for long times. One can see that fahéchranching process stops for
for larger values ofi while in (d), the number of new nodes always vanish, independfa, for

suficient long times.
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previous sectiony,,; = const(t/a)”. The only difference is that now,,; in that estimate is the

total number of nodes in the network, and so for the numbeodénr of generatiof) we have

_ dNyu(t)  DtP!

N,
K dt aP ’

(5.3)

and, in particular,
1
N, ~-atD = 1. (5.4)
a

The results of simulations for this model, which give,.. ~ 0.4/a, see Figl5}4, agree with

this simple estimate.

1() : T T T T T T T T T T I T T T :
: — N_ (@=041%a"" :
5 2
E - ]
z 10 g
1 1 1 11 I 1 1 1 1 1 1 11 I 1 1 1
10 : .
10” 10°
a

Figure 5.4: Log-log plot ofV,,,., versusa obtained by simulating the model of trees in which
newborn nodes cannot be closer than at distanfrem any of existing nodes (apart of their

parents). The straight line has slope -1.

The crossover time between two regimes of the network eeslus obtained in Figl 55

for the growing tree modell§ = 1) from the previous section. Note that the resulfa) =

73



—0.34 + 1.46In(1/a), agrees well with EqQL(619),. ~ (D/In2)1In(1/a), sincel/In2 ~ 1.44.
Clearly, the timet is of the order of the diametef of this tree (the maximum separation
between two nodes in a network). So we have the logarithnpemigence of the diameter
on the total numberV,,; of nodes in these trees for< t,, and the power-law dependence
d(Ny) for t > t,, which corresponds, respectively, to the small-world amgd-world network

architectures.
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Figure 5.5: Finding of the crossover timefrom simulation data for the model from the previous
section.N = N, is the number of the-generation nodes. The dependencigg’ versust — ¢,

for different values ofa and D = 1 (a) collapse into a single curve for the crossover times
t.(a) shown on panel (b). Fitting gives(a) = —0.34 + 1.46In(1/a), which is consistent with
Eq. (6.9).

5.5 Spatial restriction

The majority of populations are restricted by geographicalndaries. It is natural to intro-
duce a spatial restriction into the model. If our networknsbedded in an infinite Euclidean
space, the evolution is actually determined by the onlypatara (recall that we set the scale

of displacements of children nodes from their parent$, toe., this is the unit distance in this
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problem). If the area of the space, in which the network is eshdled, is restricted, then the
model has an extra parameter, namely the linear size of ## ar For simplicity, we assume
that this area does not change with time.

Let the Euclidean coordinates of all nodes in the network be within the ared < z; < L,

—L <y <L,...,—L < D; < L. In our simulations we use periodical boundary conditions,
but, in principle, this is not necessary./lfis finite, then one may expect that the size of the tree
will finally approach some limiting value. The network hage\a chance to extinct if at some
moment all its nodes occur in one small area. It is well knoat tn, e.g., population biology,
the smaller a population, the more susceptible it is to ektin by various causes [156].

Figure[5.6 demonstrates an example of the evolution of theark, fora = 0.1 andL = 1.
The network rapidly enters the fluctuation regime, in whi¢hfluctuates around a mean value
N,..e» and extincts before 900 time steps. After that we agaiméhiced a new root node and
restarted the process.

The picture that we observe agrees with traditional viewsximction processes which show,
as pointed by (D. M. Raup) “relatively long periods of stédpiblternating with short-lived ex-
tinction events”[[157]. This kind of extinction may occurrandom branching annihilating and
other related processes studied in Refs. [158 159]. Irr attoelels of biological evolution, ex-
tinction may require external factors or an environmertralss [160] or an internal mechanism,
such as a mutation may lead to evolutionary events that,mesmases, cause extinction [161].

For the same model, we investigated the state of the bragp@hotess aftetopservaion= 10°
generations (i.e., time steps) for variaus> 1 anda < 2 (for a > 2, the network turns out to be
a chain). In other words, we analyzed if the extinction timedgivenZ anda is smaller thari0®
generations or not. On the /2, L./2) diagram, Fig[.5]7, the boundary separating the extinction
and non-extinction regions is a monotonously growing cutye). Note that with increasing
observation time, the area of extinction should increase.

We suggest that if,psenationtends to infinity, than for any finité and non-zera, the network
may finally extinct, though it was impossible to verify thisggestion in our simulations. We
investigated the probability of extinction for differerdraples of our model. Figuie 5.8 shows

the probability of extinctiorl,,,, i.e., the fraction of samples in which the branching preces
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Figure 5.6: Evolution of the number of new nodes (number afason the generatiot) for a
single realization of the network of Séc. 5.2 defined on adineensional interval- L < x < L,

whereL = 1,a = 0.1.

stops before 0" generation of the process, for differeht One can see that this picture is a

different representation of the phase diagram in the[Fify. 5.

Figure[5.9 (a) shows the evolution &f, for a few different values ofi. The averageV,
(averaged over times before extinction, ..., decreases with as Fig[5.D (b) demonstrates.
The simplest estimation gives,,..(a, L) ~ L/a. Figure[5.9 (b) confirms that this estimate
is reasonable]N,,., is indeed inversely proportional g although these simulations indicate

deviation from proportionality o for sufficiently largeL.

Since new nodes are born uniformly random in the intefval, 1) from their parents, the
case ofL = 1is special. In this situation, new nodes are actually boemgpoint of the ring with

equal probability independently of the positions of thergnts, and so a network structure here
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Figure 5.7: Extinction of the network embedded in thel, L) during 10° generations. The

extinction and non-extinction regions are present on/tfievs. a/2 diagram.

is not essential. One can consider this specific model witih mades born at arbitrary points
with equal probability at arbitrary, and find N,,...(a, L) ~ 0.5L/a. Figure[5.9 (b) for our
original model shows a functionally faster growth f,,..(a, L) with L than this proportional
dependence. Note finally that the deviations of fluctuafiagrom the mean values/,,,, in
Fig.[5.9 (a) are of the order af' N, for eachZ anda.

5.6 Node spatial distribution

In general, the nodes of the growing trees under considerate non-uniformly distributed
in the embedding spaces. Only if the embedding area isct=strithe spatial distribution finally
becomes uniform, see Fig. 5110 (a). For infinite embeddiagegthe evolution of the node spa-
tial distributions is shown in FigE. 5.110 (b) and (c) for tihees in which the birth of new nodes

is determined only by a previous generation and by all exgstiodes, respectively. The distri-
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Figure 5.8: Probability of extinction versusfor 100 different samples and various valued.of

during10® generations.

butions in three instances are shown. The triangular shigghese distributions in Fig. 5.10 (b)
indicate that the spatial distribution of nodes of generatihas a symmetric step-function form
with boarders moving away from the center (root) with consteaelocity equal approximately

to 0.5, so that their coordinates increase proportionally.tdhe density of nodes between the
borders is a constant equal approximatel§.&ya. In the second case, Fig. 5110 (c), this expand-
ing step-function form describes the evolution of the spatistribution of all nodes in the tree.
The border speed is approximatély, and the density of nodes between borders is a constant
equal approximately t06.45/a. (Note that, as it should be, this value is close to the number

Noae = 0.4/a of new nodes found for this tree in Séc.15.4, see [Eid. 5.4.)s@ lwbservations

explain the high quality of simple estimates obtained in. B&z.

Finally, for the networks embedded in a restricted area, hickvthe birth of new nodes is
determined by a previous generation, we also measuredstréodtion of the number of nodes
in one generation. We observed that this distribution igered atN,,., and is close to the

normal distribution.
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Figure 5.9: (a) Variation of the number of nod&% in the current generation with time, for

different values ofi. The network is embedded in the interval. < x < L, whereL = 1, and

only the previous generation influences the branching gsocEhe average value 6f; at large

t, Noas, is represented by a solid straight line. (8),., versusa for different L.
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Figure 5.10: Distribution of nodes of the growing trees ias@ (a) The node spatial distribution
of the tree embedded in the interval < x < +1 after 1000 time steps. The birth of new nodes
in the tree is influenced only by a previous generatios; 0.01. The vertical columns of the
histogram show the numbers of nodes within bins of widdth (b) The node spatial distributions
for the tree embedded in a one-dimensional space at differstants of the growth. The birth
of new nodes in the tree is influenced only by a previous ge¢ineraz = 0.01. The vertical
columns of the histogram show the numbers of nodes withis dinvidth 1. (c) The same as for
(b), but the birth of new nodes in the tree is influenced byaliteng nodesq = 0.001. Each of

the results was obtained from a single realization.

5.7 Conclusions

In this Chapter we have studied an evolving tree network fheih interacting nodes em-
bedded into a Euclidean space, in which the branching psosedetermined by the relative
position of nodes in space. The branching process starts drgingle root node and, at each
time step, each existent node in the network can branch thupeoup to two new daughter nodes
at the next generation. The new nodes are not allowed to encdsger than a certain distance
of a pre-existent node, defined by a parametere., overcrowding suppresses the “fertility” of
nodes. Thus, our model generates a competition betweerespedndividuals (represented by
the nodes) for resources, which can limit the density of sadehe network and therefore the
total population.

We have investigated two regimes of the evolution of thesestand crossover between them.
In the initial stage of evolution, the network growth is erpatially fast, and the network is a

small world. After some crossover time, this network becsrtegrow much slower, and, in
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this regime, the network has a large world architecture imseof network science. We have
demonstrated that the embedding of the network into a céstiarea, which is natural for general
evolution, set limits to growth and can result in completeretion. The simplest models which

we analyzed can only schematically describe real evolyironesses in biology.
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Chapter 6

Optimization in Networks

Numerous networks, such as transportation, distributahdelivery networks, have optimal
design aimed at increasing efficiency, lowering costs, owimg stability of function, etc. The
optimal design fixes a network architecture, including t@tiag, degree distribution, hierarchic-
ity, community structures and other structural metrics.

We have mentioned in Sdc. 3.11.4, the preferential attachmechanism in generating com-
plex network architectures. An alternative mechanism gimegy complex networks is the op-
timization based process. In this Chapter we will consi@roptimization of flows running
on a network with a given architecture and (b) specific optation driven network evolution,
generating scale-free networks. In the first part, we dseusansportation network model in
which we optimize (minimize) some cost function, for the fluxcurrent at each channel (link)
of the network. In the second part of this Chapter we studysach@ptimization based model

generating networks with power-law degree distribution.

6.1 Flow optimization process

In this section we will consider a transportation networkl apecifically optimization of
flows running on it. Networks that distribute goods, such lastecity, water, gas, telephone

and data (Internet), or services as mail, railway, road aaen@les of transportation networks.
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These networks are specifically designed for efficient partation, minimizing transit times
and costs.

All sort of transportation networks are faced with the sagseie: traffic congestion among
their channels. The traffic and its dynamics has been extegsionsidered by physicists [162,
[163,[164| 165]. The study of optimization in transport natgas a topic of growing interest for
theoretical researchers in the last years [166)| 167,168/ 114)].

Let us consider a transportation network wifrchannels. The curreritflows on the network
channels (links, bonds), between the intersections in gteark (nodes), satisfying the flow
conservation rule at each intersection, taking into actthatj; > 0. The cost associated with
transport through the channels is usually related to the tmguired to transport goods to their

destination. Considering that, one can write the totalspantation cost’ as

C=> e (Aji+Bj}), (6.1)

wheree; is a positive coefficient associated with each channel oh#tevork andA and B are
coefficients. Here we have neglected the higher order temtiwi Eq[6.11 and, for convenience,
we considered! = 1 andB = 1/2.

When input current is small, apparently the optimal flow rtimeugh a single chain of links
with lower costs. When the input current increases, thenwgdtflow splits and the channels with
higher costs become used. The resulting distribution ofdlower links has the minimal value
of C'. One can determine the optimal current configuration ambaghannels by minimizing
the cost function.

Considering the simplest case, a single node with an inpuéct/ is connected with two
outgoing channelg; andj,, see Figl 6l1. Here, we consider a local optimization, wittepen-
dent nodes, and the current flows in just one direction. Fgrdimple case, one can write the

cost function as

o1 1
C = ei( + 51) + ea(ja + 573)- (6.2)

By using the current flow conservation rulg, + j» = J, one can minimizing the cost
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Figure 6.1: Distribution of currents within two outgoingasinels of a node. The input curreht

is divided in two,j; andj,, associated with costs andes,.

function,gj? — 0. The current flow is
J+1) —
j=et ©3)
€1+ es
and
J+1) —
=D 6.4)
e+ e

These solutions allow negative current flows, which is aalidhsituation, since we consider
only positive currents. Thus, we can write the minimum inputrent/. asl. = ey/e; — 1.
One can see that for small input currentsg 1., only one outgoing channel will be used (that
one with minimal cost). On the other hand, fér> 1., both outgoing channels will be used,

minimizing the cost function.

6.1.1 Simulations

Depending on the input flow, smaller or greater fraction oéawork is used, so the quantity
of interest on this problem is the number of used (with curranning through them) channels.
One can perform computer simulations on this transponatetwork and measure the number
of empty channeld3. We consider a directed network, with four channels (twe@ming and
two outgoing) for each node. In our simulations we considéheee different situations: two-

dimensional lattice, three-dimensional lattice and migld- (infinite long-range connections)
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Figure 6.2: The “lattices” for the simulations in the flow wpization model. Each node is
connected with four directed channels (links), two from tiye and two from the bottom layer,
both for the two- a) and three-dimensional b) simulationg Wfed in our simulations periodic

boundary conditions.

case. For all the cases the current flows from top to bottom,rs&ig.[6.2. To perform our
simulations for the mean-field case, we have consideredtleving: sites in the neighboring
are connected uniformly at random, so each site is connézt® randomly chosen sites from
the previous layer.

In our simulations we locally optimize the current flow. Atbanode, the current from two
incoming channels are summed. This currémd then divided into the two outgoing currenis
andj,, as shown in Fid. 6l1. I¥ < I, the current will flow through just one outgoing channel.
On the other hand, iff > 1., the current will flow through both outgoing channels. Omeeti
step consists in optimizing the current flow for the entingela so time corresponds to thé”
layer. Note that the total curre x (j) is conserved, i.e., it is the same for every layer.

We start our simulations by injecting a total currénk (;) at the first layer, when the costs of
each channel are uniformly distributed in the inteivat ¢; < 1. The fraction of used channels
1 — B as function of time, i.e., the number of the current layeshewn in Fig[6.B, for the two
dimensional simulations, using = 1000, () = 10~* and averaged over 100 samples.

In our simulations we have used two different initial confafions. In the first one we set

the total input current equally divided between all chasnéh the second one we put the total

86



—— all channels with flow <j>

0.04 — one channel with flow N*<j3

0.03| —

1-B

0.02

0.01

time
Figure 6.3: Two different initial configurations for the cent flow in 2D. For the same amount
of total current flow, in the first case (red line) the totalremt is equally divided for all channels.
For the second case (black line), the total current is ihytiatroduced in only one channel. For
both cases the results are for 1000 channgls= 10~* and averaged over 100 samples. One
can see that, despite having different relaxation timeth situations reach the same steady state

with the same fraction of used channels.

current only in one channel. As one can see, the initial candigon is not important for the
stationary regime, since after relaxation both configoretihave the same result.

After the initial transient, the fraction of used channkls B on the network stays constant.
One can plot1 — B) at steady state as function gf). Remarkably, this result does not depend
on lattice (2D, 3D, or long-range connections), as one carirsEig.[6.4. All the configurations
show the same result, for a wide range pfin the small currents limit.

For the case of the high current limit, whefg — 1, all channels on the network become
used. In the small current limitj) < 1, we observe that the fraction of used channels has the
dependencél — B) ~ 2jz.

From our simulations we obtained the distribution of therents, P(j). For large input
currents,(j) ~ 1, P(j) follows a gaussian distribution, see in FHig.16.5. The beswifih the

gaussian distribution is obtained for the valueg.ef 1.01 ando? = 0.0872 ~ 1—12 On the other
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Figure 6.4: Fraction of used channels as function(gf for mean-field, two- and three-
dimensional results. One can see that 2D, 3D and mean-fielbries provide the same sta-

tionary results, following th@(jﬁ law in the limit of small current (red straight line).

hand, when we consider the limit of the small current floyy$,< 1, we found that the current
distribution has an exponential dependence \jih 2, as shown in Fig_616.

Simulations were supported by a mean-field thebry|[171] tvhiges

1- B =2({j))7, (6.5)
and _
P(j) = 4V (6.6)

for small(j), as it is shown in Fig 6]16. Our simulations demonstrate thegé laws work also in

2D and 3D and for largéj), beyond the limits of the applicability of any MF theory.
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Figure 6.5: The current distribution for a channel in theitiof large input currents, in this case,
(7) = 1. The points are the result of our simulations and the redgsirdine is a gaussian fit

with = 1.01 (mean) and® = 0.0872 ~ & (variance).
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Figure 6.6: The current distribution in the limit of smallroent flows for different values of the
—2j

(7). The straight line is the asymptotic valii¥j) = 4ev© and the points are the results from
our simulations foKj) = 5 x 107° (a), (j) = 5 x 107¢ (b), and(j) = 5 x 107 (c).
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6.2 Emergence of Scale-free Architectures from Optimizatn

Process

Numerous real-world networks have a power-law degreeiligion. Preferential attachment
is a standard mechanism producing power-laws in growingarés. Thanks to its simplicity
this mechanism is realized in most of the models of scalke-fretwork, but, unfortunately, it
rather mimics scale-free networks and not explains thentin@gation based mechanisms have
a much greater potential to explain the evolution of scede-inetworks. We consider one of
the simplest optimization based models generating posvemgrowing networks. Our model is
defined as follows. At each time step, a new node is createdamukected ton previous nodes in
the network, which are selected to minimize the prodtiet wheres is the birth time of the node
andr is a random number drawn from some distribution. In the cds®mplete optimization,
the networks grown from this model have a power law degregilision with the exponent
v = 1+ 1/a for a wide range of the random number distributions. Foriglagptimization,

including a finite fraction of nodes in a network, we obsemegponential degree distribution.

6.2.1 A simple model for optimization

A generic feature of numerous real-world networks, obskiwenany different real systems,
as the Internet, scientific collaborations, WWW, proteid gene interaction networks, etc., is
their scale-free organization. For all these examplesntireber of nodes of degregefollows
a power-law distributionP(q) ~ ¢~ with the exponenty typically in the range < v <
3. One of the most studied mechanisms producing such topofoggtworks is preferential
attachment[11, 40, 172]. Optimization is an alternativelnamism explaining complex network
architectures [92, 178, 1174, 175, 176].

Although the idea of preferential attachment is simple alegant, often the preferential
attachment itself cannot be explained. Furthermore, stangreferential attachment models are
often not realistic. It was shown recently that a refinedropation model, incorporating trade-

off between popularity and similarity of nodes, can desrieal-world network architectures
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remarkably well [177]. In the present study we demonstraéd e€ven within a very simple
optimization based evolution model, essentially more $&ntipan in Ref.[[17]7], one can obtain
a scale-free network having exponenin a wide range of values. This result is valid only
for complete optimization, in which information about athdes in the network is taken into
account. For partial optimization, which accounts for atérfraction of the network at each
step, or even for a few randomly selected nodes, the degsa@diion of a growing network

has an exponential form.

6.2.2 Optimization based model for growing networks

Our model of a growing network is formulated as follows. Atledime step we

e Create a new node which will be connecteditaodes in the network.

e Calculate for each node in the network the prodiiet, where the labet is the birth time
of the nodey, is a random number taken from a distributigr) and the exponent is

non-negative.

e Connect the new node ta nodes with minimak®r,.

In the case whem < t we add onlyt connections for the new nodes. Here the random variable
r actually plays the role of multiplicative noise.

Our simulations demonstrate that if the optimization pssd@corporates all existing nodes
at each step (complete optimization), then the growing agtwexhibits a scale-free topology.
In Fig.[6.7 we show the cumulative degree distribution of awek generated by the complete
optimization model, in whicla is set tol andm = 1, 2, 5, 10, after averaging over 100 samples.

The random numbers are uniformly distributed and the priibablensity function is

1 for0<r<1
p(r) = ,
0 otherwise.
One can see that the exponenbf the power-law node degree distribution in our model
approaches 2 for any.. Introducinga < 1 leads toy > 2, as one can see in Hig 6.8, when

arbitrary« are considered.
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Figure 6.7: Cumulative degree distribution for a complgdé&mization process with various
values ofm, a = 1, generating a network of0® nodes, after averaging over 100 different
samples. The distributiop(r) is uniform,p(0 < r < 1) = 1 andp(r > 1) = 0. The resulting

power law has exponent= 2 (dashed line).
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picture.
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6.2.3 Generation of power-law degree distributions

Let us derive the degree distribution for our model. Here wy present a simple estimate
in the case ofr = 1, m = 1, and for a random number uniformly distributed from O to 1.
In the case of the uniform(r) defined above, the distribution of the prod@®sr;) is also

uniform, namely

for0 < sry <s

P(sr,) = (6.7)

1
0 forsry > 0.
Consequently, for small values ef,, we haveP(srs) = 1/s. This means that the probability
that nodes has the smallest produst:, is proportional tol/s. Therefore, the mean degree
(q)(s,t) of nodes increases according to the following relation:
Ng)(s,t) 1

~ 6.8
ot sint’ (6.8)

where the factofl / Int is due to normalization. So we havye)(s) ~ 1/s. In the continuum

approximation which is applicable to scale-free netwotkis corresponds to the degree distri-

bution

1 /0q(s)\ ! 1
Pq) = —~ ]
(q) t ( 0s ) s=s@~1/g G

where, as is usual in the continuous approximation, wegét, t) = ¢(s,t). This result agrees

(6.9)

with our simulation, Figl_6]7.

For arbitrary values ofy, the distribution of the produd®(sr,) in Eq.[6.T is non-uniform
and becoméP(s“r;) ~ 1/s* which means that the probability that nosi&as the smallest
products®r is now proportional td /s®.

Thus, for arbitrary (but positive)y, we have the relationy = 1 + é For the case when
0 < a < 1, assuming(r = 0) # 0, one can obtainy > 2 as indicated in Fig 618 (a). For
a > 1, the exponent < 2 as one can see in our results in Eigl 6.8 (b) and the degreddisin
IS non-stationary.

For non-stationary degree distribution the initial and eads of the distribution change in

time. One can estimate how the number of nodes with only oneexdiony,,;, evolvesin time.
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From the condition

(@) =1= /1 c(t)qq " dq, (6.10)
we have

c(t) ~ (2 =)t (6.11)

Due to normalization condition, = fqt - c¢(t)g~"dgq, one can estimatg,,;,, which leads

to

=)
Gin ~ £ 51, (6.12)

The end part of the distribution has a rapid decay, a cutdie dutoff has dependence with

~ andt and we estimated from our data,

Geut (7, 1) ~ C()t (6.13)

This constant, obtained from our simulations(igy) = 2.859 — 1.421~.

In the work [178], attachment to a node of the maximal degedecsed from a random
sample of n nodes was studied. The degree distributionseofetbulting networks was found
to be rapidly decaying in the range of degrees n . Inspired by these ideas we modify our
model and consider a partial optimization process, in whicbach step, the optimal node for
attachment is selected from a finite fraction of the exishegvorks, namely from a uniformly
randomly chosen fractiofi of all nodes.

In Fig.[6.9 we show a linear-log plot of the cumulative degtestribution for the result of the
partial optimization process, in which= 0.01. One can see that for various valuesofthe
degree distribution decays exponentially. In Eig. .10 @sthe cumulative degree distribution
obtained for various values ¢gf wheref = 1 corresponds to complete optimization resulting in
the scale-free network having= 2, while f = 0 actually corresponds to the standard random
recursive tree. Note that if at each time step, the optingmahcludes only a finite number of
nodes, we arrive at thé = 0 case.

The well-known result for the random recursive graph [403 ha exponentially decaying
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Figure 6.9: Linear-log plot of the cumulative degree digition of the network ofi0°> nodes

generated by a partial optimization procegss 0.01, m = 1,2,5,10, a = 1.
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Figure 6.10: Log-log plot of the cumulative degree disttibn of the network ofl0° nodes

generated by a partial optimization procegss 0,0.1,0.5,1,m =1, a = 1.
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degree distribution in the form

P(q) = %el—%. (6.14)

On the other hand, we find that considering the optimizatimegss for a finite fraction of the
network,0 < f < 1, produces an exponential cutoff of the power-law degregiliigion as one
can see in the Fig. 6.110.

6.3 Chapter conclusions

In the first part of this Chapter we discussed a flow optimazrathodel, in which the current
flows through a random network, actually a lattice, in whilse tandomness is due to random
coefficients of a cost funcion defined at lattice bonds. Waiokt the exponential current dis-
tribution for small and large currents limit, as well as tlever-law dependence of the fraction
of used channels with the mean input curréfijt We found that if(j) is small, all the current
flows through a tiny fraction of the channels, and that MF dbss even 2D and 3D cases.

In the second part of this Chapter, we introduced an optmizdtased model for growing
networks. We considered, maybe, the simplest example obplienization driven evolution
of complex networks. The resulting networks are scale-freg each step, the optimization
involves all existing nodes in a network. If the optimizatiis partial, i.e., it includes only a
finite fraction of a network or a few nodes, the result is anomential cut-off of a power-law
degree distribution or even an exponential degree disiobuWe suggest that the optimization

driven evolution is a widespread mechanism generating omgtworks architectures.
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Chapter 7

Conclusions and Further Work

In this thesis we studied the interaction of agents on coxmpéworks and their basic proper-
ties by means of computational simulations and statigblegsics techniques. In the first Chapter
we presented a brief historical introduction to complexweek, followed by description of the

basic properties of networks, in Chapter 2.

Chapter 3 provides the background and the related work opt®metworks necessary to
our investigation. Due to a large volume of work in this arga,restricted this Chapter to a few

selected topics which are directly related to this predegdis.

In Chapter 4 we have studied an Ising spin model of opiniomadycs, namely a general-
ization of the Sznajd model. In our model, we included refoiia a mechanism that limits the
capacity of persuasion of the agents. The reputation is e-tiependent score for each agent,
which varies due to the dynamics of the model. The agentswsitr a random distribution of
reputation values, and during the time evolution, the rafart of each agent may increase or
decrease according to agent’s capacity of persuasion. Wuestin this Chapter two different
situations: (i) the case where the reputations increaseéadeach persuaded individual, and (ii)
the case where the reputations increase for persuasioneznelade if a group of agents fail to
convince one of its neighbors. For both cases we observegtadonal-like distribution of the
relaxation times, i.e., the time needed to find all the agantke end having the same opinion,

but the relaxation times are greater for the second case.aweshown that the average relax-
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ation times grow with the linear dimension of the latticeras L°/2. The system undergoes a
phase transition, identified by measurements of the fragtiof samples which show all spins
up when the initial density of up spinkis varied. The model represents realistic situations of
democracy, where our results show that the introductioheféputation avoids full consensus
even for large initial fraction of up spins.

In Chapter 5 we studied an evolving tree network model witkracting nodes embedded
into a Euclidean space. In our model, the network grows tjinca branching process starting
from a single root node and, at each time step, each existeiat in the network can branch to
produce up to two new daughter nodes at future generatioa.n&w nodes are not allowed to
grow closer than at distanedrom a pre-existent node. Thus, our model generates a cdropet
between species or individuals for resources, which camtiva density of nodes in the network
and therefore the total population. Our model can demaiesér&ransition from an explosive to
gradual evolution accompanied by a dramatic change of ttveonke structure. We have studied
the time evolution of the network, which evolves in two diffat regimes. The initial regime
is characterized by an exponentially fast grow, and the odtws a small-world. After some
crossover time,, this network becomes to grow much slowly, and, in this regithe network
has a large-world architecture. For the crossover time waioéd?, ~ In(1/a). We also
embedded the network into a restricted area, as is naturgkefeeral evolution. This situation
sets limits to growth and can result, for some cases, in ce@gxtinction. Our results suggest
that the dependency of the maximum number of nod®,is.(L, a) ~ L - a~*, for all L.

Even these null models however are sufficient to demonstratieansition from an explosive
to gradual evolution accompanied by a dramatic change aféheork structure. We believe that
the significance of the network representation of evol@rgmprocesses, e.g., the so-called “tree
of life”, is greater than simply being a convenient visualian. We suggest that through explo-
ration of the structural organization of the empirical se¢ life and their analogies on different
stages of evolution will essentially improve our underdtag of evolutionary processes.

In the first part of the Chapter 6 we studied a general tratgpon network in which current
flows though the network’s channels, with randomness inized by the random cost function in

the channels. The resulting distribution of currents oés the total cost function. We obtained
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—2j

the current distribution for small and large currents linf(j) = 4eVv®, and the fraction of

empty channels as function of the mean input currert,B = 2((j)).

Finally, in the last part of the Chapter 6 we studied a simjpi#noization based model for
growing networks. It is well known that a basic characterigtesent in many complex networks
and observed in different real systems are their scaletbpelogy. One of the most studied
mechanisms to produce power-law degree distribution ipteterential attachment mechanism.
However, some models based on optimization process haveasegmotential to explain the
evolution of scale-free networks. In this Chapter we shothatl networks grown by our simple
model are scale-free networks (with> 2) if at each step, the optimization process involves all
existing nodes in a network, corresponding to completenupttion. On the other hand, if the
optimization process is partial, i.e., it includes only atérraction of a network or a few nodes,
the result is an exponential cut-off of a power-law degresritiution or even an exponential
degree distribution. One can see that the optimizatioredrevolution is a natural source of
complex networks architectures.

Exploring some of the ideas presented in this PhD thesispvesée a number of generaliza-

tions and issues for future work of our resuls and models:

¢ In the social opinion model studied in Chapter 4, we can duoe inflexible contrarians,
a fraction of agents which hold a strong opinion, that is theyer change their opinion

while they can influence others.

e Regarding the social opinion model, we can also study trecetif the authoritarianism,
where an agent or a group of agents are “forced” to follow spneeletermined agent’s
opinion. In this case we may have the opposite situationeadiputation, in which the

capacity of persuasion of agents is not limited.

e We can study the introduction of reputation in others opinieodels, namely the Voter

model and the Majority rule model.

¢ In the evolving trees whose evolution is influenced by irtBoe among some of existing

nodes which we studied in Chapter 5, we can introduce moredha species in the model
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and study the model embedded into a non-Euclidean space.

¢ In evolving networks that we studied in Chapter 6, we canastan extention of our work

the determination of the time of the expoential cutoff of plosver-law degree distribution.
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