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palavras-chave

resumo

Sistemas Frustrados Celulares, Sistemas Imunologicos Artificiais,
Discriminacéo Self/Nonself, Deteccéo de Perturbacdes Homeostaticas

Neste trabalho é desenvolvido um método de detecgdo de anomalias, baseado
no mecanismo da frustracdo celular. Este método é capaz de detectar com
grande precisao desvios de um comportamento caracteristico de um sistema
complexo. Estes desvios podem ser devidos a intrusdes ou a anomalias no seu
funcionamento.

O método propde ainda uma compreensao alternativa de diversos fenébmenos
observados em Imunologia.



keywords

abstract

Cellular Frustrated Systems, Artificial Inmune Systems, Self/Nonself
Discrimination, Detection of Abnormal Perturbations

This work develops a method for anomaly detection, based on the cellular
frustration mechanism. It is capable of detecting accurately deviations from a
characteristic behavior of a complex system. These deviations may be due to
intrusions or anomalies in the system’s normal functioning.

The method also proposes an alternative conceptual approach to a diverse
range of phenomena observed in immunology.
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Introduction and Motivation

The purpose of this thesis is to develop a method that detects deviations from nor-
mal behavior of a complex system. The need for a method that may be applied
in different contexts, trustable and easy to implement makes the challenge com-
plex but, at the same time, extremely relevant. Computer security, chemistry and
medicine are a few examples of fields in which complex strategies are needed to
detect deviations from a system’s normal behavior.

To better understand the complexity of this task, an analogy with proofread-
ing a text can be enlightening. Proofreading a text is also an anomaly detection
task. In what respects orthography, a check of every word against the contents in
a dictionary seems to solve the problem. Although the number of entries is huge,
different strategies can be thought to facilitate finding each word in the database,
a task that can be quickly accomplished. In this sense, the text could be verified
word by word, and mistakes due to misspellings or use of words that do not exist are
easily detected. However, other issues need to be considered in the task of verifying
a text.

The correction of a text comprises other issues, namely grammar considerations,
concordance of gender, number, etc., and even a more difficult one, the analysis
of the meaning of each word in the sentence in that specific context. In the case
of concordances, all the possible combinations of words allowed or alternatively all
the combinations of words forbidden could be listed, together with the words of the
language - considering that the storage of all this information is possible. Concerning
the analysis of meaning, the structure of the sentence can be correct, all words can
be spelled correctly, however their association in a given context can be incorrect.
In this case, databases can not detect this type of anomalies.

This simple example clearly illustrates problems that anomaly detection systems
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face when monitoring complex systems. In complex systems the number of patterns
required to code the normal behavior is huge. Just alike, the number of potential
anomalies is also enormous. In addition, it is also expected that this approach should
integrate all the features of an anomaly detection system: it should respond against
unseen patterns or wrong association of patterns.

The previous example of the text can be easily translated into a new scenario, in
which the words in a text are displayed by cells in interaction; the idiom that rules
the legitimate behavior is encoded in the interactions among cells, and the system
that detects anomalies in the text works as an immune system. A quick search on
the web about what the immune system is returns the following generic definition:
“A system of biological structures and processes within an organism that protects
against disease”*. In order to function properly, an immune system must detect a
wide variety of pathogenic derived antigens, arising from viruses to parasitic worms,
and distinguish them from the organism’s own healthy tissue.

It is widely accepted that the immune system works to keep the body healthy.
What is not consensual is how this is accomplished. Is this done by reacting against
what does not belong to the body and, if this is the case, how perfectly can this
be achieved? This is the basis of the so called self/nonself discrimination dilemma.
There are textbooks that maintain that this discrimination is imperfect [1], while
others argue that a better explanation is required [2]. The discrimination self/non-
self is “excellent but imperfect” ([1], p. 71), or “immunology is still struggling to
explain major phenomena such as discrimination of self from nonself” ([2], p. 726).
In any case it would be important to know if there is any mechanism that could
guarantee that perfect self/nonself discrimination could be achieved under immuno-
logical plausible conditions. This could have important implications as it could
have worked as an important evolutionary force that shaped the development of the
immune system.

The immune system has served as inspiration to explore different approaches
in the research of anomaly detection systems. However, up until now, none of the
approaches performs perfect discrimination self/nonself for systems with arbitrary
diversity [3-7]. To some extent, it has been questionable the relevance of these
approaches for computer security [8].

In the computer security field several other approaches have been proposed for

anomaly detection. Some use bayesian statistical analyses; others use databases for

*http://en.wikipedia.org/



the detection of foreign elements [9-11]. The first approach has the major advan-
tage of detecting illegitimate behaviors similar to legitimate behaviors. However, it
has difficulties to decide if deviations from “normal” behavior are fluctuations or
anomalies. The system only reacts when the anomalies have a significative impact
on a few features of the system’s behavior. Typically, these approaches lead to large
numbers of incorrectly signaled events (false positives), while the number of not
signaled anomalies (false negatives) is also low.

The approach based on the detection of foreign elements can be divided into
different perspectives: detection of anomalies already known and detection of un-
known anomalies. The methods based on detection of anomalies already known
require that all anomalies are stored in a database so that they can be recognized.
The storage of all the possibilities is impossible, because the number of anomalies
is huge and new anomalies are always appearing. Thus, the database should be
continuously updated so that the most relevant anomalies remain, while others are
discarded. In addition to this limitation, they can not detect new anomalies in the
system. Anomalies that were not in the database are classified as legitimate, so

there is always a considerable number of mistakes in the approach.

In this thesis, we propose a new method of detection that is closer to the last
class of methods. The singularity of this method is that it detects simultaneously
different types of anomalies that the remaining methods do not detect. To do so,
it takes advantage of a new organizing principle for complex systems to generate a
dynamical system of agents in interaction. The deviation from the “normal” behav-
ior of the system emerges from the complex dynamics of the population of agents in
interaction. An anomaly is promptly signaled by a type of generalized proofreading
mechanism embodied in the method [12-16]. This approach ensures perfect detec-
tion against invaders with total tolerance towards self agents. This kind of detection
can be combined with the detection of abnormal configurations of legitimate agents.
These features make the approach relevant for applications in anomaly detection in
different areas, but also increase the understanding of potential mechanisms ruling
the adaptive immune system in a physicists’ sense. Due to the fact that this ap-
proach is based on an agent-based dynamics, no information concerning anomalies
needs to be stored and the number of mistakes due to false positive or false negatives

is minimized. The detailed discussion of this approach is the goal of this work.

This thesis is divided into chapters according to the topics discussed. In the

next chapter basic immunology concepts that inspired the model will be briefly
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presented, followed by the introduction of the Principle of Maximal Frustration
which rules the dynamics responsible for the detection mechanism. Afterwards,
the model is presented by a set of definitions which clearly point out the most
important details. After this, the agent-based model and the associated algorithm is
presented. This is crucial for understanding the model developed. The Background
Theory chapter ends with the discussion of the main concepts related to the model,
which is discussed and compared in some respects with other models and other
conventional immunological perspectives. In the following chapter, the validity of
the results obtained by the cellular automata approach are discussed and compared
with the results of the mean field equations. The Main Results chapter presents an
exhaustive collection of results concerning different issues. The chapter starts with
the first system developed in this thesis and the main results concerning intrusion
detection are presented. After this, the results are presented in several sections
covering detectors repertoire education (positive and negative selection process) and
later anomaly detection. This work ends with a final discussion in which the main

achievements are presented, and the perspectives for future work proposed.



Background Theory

2.1 Basic Immunology Behind Cellular Frustrated

Systems

The immune system is, as mentioned before, the inspiration for the modeling of an
intrusion detection system based on the cellular frustrated ideas. For this reason,
it is necessary to understand which are the essential mechanisms that the immune
system uses to achieve its purpose. In this chapter only a brief description of the
main issues that will be integrated in the system will be presented, not an exhaustive
exposition of all the details of what is known in immunology. Throughout the thesis
the topics discussed here will be revisited and their meaning will be discussed in the
frustration framework.

In mammals, the immune system is a complex system in which proteins, cell and
organs interact in a complex network of interactions with the aim of protecting the
body from a wide range of potential threats such as microbes, viruses, etc [1, 17].
The immune system provides two main mechanisms of defense which interact coop-
eratively: the innate immune system (also called natural or native immunity) and
the adaptive immune system (specific or acquired immunity). The innate immune
system provides the first defense against invaders. If invaders are not blocked by
anatomic barriers, innate immunity provides a response where specialized cells are
activated ingesting these invaders. These responses are non-specific and eliminate a
big number of invaders. When the innate immune system fails for some reason, the
adaptive immune system receives a stimulus from the innate immune system and it
begins its action. In opposition to the innate immune system, the adaptive immune

system is adaptive, acquired and specific. This means that it can evolve during the
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lifetime, constantly adding patterns to its repertoire of defense, as well as increasing
the specificity of the recognition of a given foreign pattern [1, 17].

Adaptive immune responses are provided by cells named lymphocytes, which are
activated when they recognize antigens. Lymphocytes develop from stem cells but
they have two different lineages: in bone marrow and another in thymus, which
generate mature B lymphocytes and mature T lymphocytes, respectively. B lym-
phocytes recognize soluble or cell surface antigens and differentiate into antibody-
secreting cells [1, 17]. However, this thesis is not concerned with this type of re-
sponse, it will focus on the initiation of the immune system response by T lympho-
cytes.

T lymphocytes, as referred to earlier, mature in thymus|[1l, 17]. Mature T lym-
phocytes recognize in their receptor only antigens presented in specialized molecules
called major histocompatibility complex (MHC) molecules, which exist on the sur-
face of Antigen Presenting Cells (APCs). Antigen Presenting Cells are specialized
cells that capture microbial antigens in the body and transport them to peripheral
lymphoid tissues where these cells present the antigens to the T lymphocytes. APCs
are also responsible for the activation of T Lymphcytes. This specific antigen recog-
nition in T lymphocytes is performed by a cell surface protein called T cell receptor
(TCR). T Cell receptor could be able to bind and to recognize antigens in a close
range of affinities. The recognition of all the potential antigens demands that the
TCR should be prepared to cover an enormous diversity [1, 17].

The receptors diversity of T lymphocytes is generated in the maturation pro-
cess, which all T lymphocytes undergo. This maturation process comprises three
main stages: proliferation of immature cells, expression of antigen cell receptors
and of lymphocytes that express useful antigen receptors[l, 17, 18]. Firstly, in the
maturation process there is a huge proliferation of immature T lymphocytes. This
increase in number favors the expression of valid antigen receptors for a larger num-
ber of cells. This process will occur in other moments of the maturation process.
Secondly, the expression of the antigen receptor occurs. The antigen receptor has
variable regions that are originated by somatic recombination of the gene segments.
This process is responsible for the diversity of the antigen receptor of the immature
T lymphocytes. These two stages alternate in cycles in which functional antigen
receptors are selected and proliferated, and those lymphocytes that fail the expres-
sion of the antigen receptor die, because they do not receive the necessary survival

signals. Finally, in the last step of the maturation process, T lymphocytes undergo
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a final test to check the recombination of receptors: the positive and negative se-
lection. If thymocytes are enable of interacting with self-peptide-MHC complexes,
they undergo programmed cell death, a mechanism known as death by neglect [19].
In these way only a fraction of thymocytes are positively selected and proceed to
the next stage of the development process. During negative selection, the same fate
happens to lymphocytes that strongly bind with antigens, lymphocytes die by apop-
tosis. T lymphocytes with high affinity can start responses against cells of the body
and for this reason they should also be eliminated. From this maturation process, a
repertoire of T lymphocytes emerges with huge diversity of antigen receptors, which
ensures a prompt attack against invaders and moderate affinity against self antigens

and, consequently, total respect for what belongs to the body [1, 17].

After the maturation process, T lymphocytes are prepared to leave the thymus
and to start their task of searching for antigens in the periphery and starting an
immune response if necessary. The immune responses have sequential phases, which
are: the recognition phase, the activation phase, the effector phase, the decline and
memory [1, 17]. This work will focus on the recognition and activation phase of the
immune response. Further work is needed to cover the other phases of the immune
response.

The recognition phase takes place in lymph nodes [1, 17]. There mature T lym-
phocytes can locate and recognize antigens using their antigen receptors. However,
this recognition is not enough to trigger the first phase of the immune response. At
least a second signal is required in order to activate the lymphocyte. According with
the current view, the second signal is provided by microbial products or by prod-
ucts generated by the innate immune responses to them. It is called costimulator
because it acts as a stimulator in the presence of the antigen. If the second signal
is absent, the activation fails and the T lymphocyte becomes unresponsive. This
can also happen if the second signal that was provided is not the appropriate one.
The unresponsive state is designated as anergy. The anergy state is thought of as a
tolerance mechanism that avoid responses against self antigens|1, 17].

All the processes presented above are the basis of a remarkable discrimination
task performed by the adaptive immune system. On the first hand, the immune
system can be triggered against an invader, the source of nonself peptides and si-
multaneously maintain total tolerance against all the cells of the body sources of self
peptides. The task of discriminating self and nonself antigens is a hard one because

no a priori essential differences exist between them and yet the required response
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needs to be specific. This recognition of the immune system is called self/nonself
discrimination [1, 2, 17].

In spite of the large accumulated knowledge of the many mechanisms ruling the
immune system, an integrative view of the main processes involved is still needed.
Even today questions about basic issues lack coherent answers. Some of them we ad-
dressed in this work. For example: Why are positive or negative selection required?
What is the role of anergy and costimulation for the activation of the immune re-
sponse? What is the importance of the generation of diversity of T cell receptors for
the protection of the host? The model that will be studied in this thesis will give
new insights to these questions with the benefit of proposing an integrative view of

the Adaptive Immune System.

2.2 Maximally Frustrated Systems and the Prin-

ciple of Maximal Frustration

CFSs are a group of complex systems in which elements interact according to the
Principle of Maximal Frustration [15, 20]. In Cellular Frustration Systems only two
main assumptions are made: a) Cellular responses should be modeled as cellular
decisions; b) Cellular responses require a finite amount of time to take place. Any
element of the system interacts and potentially reacts with all the other elements.
However, instead of instantaneous memoryless reactions, each cell performs decisions
during which it interacts with other cells and each cell can change pair to optimize
its previous conjugations. A reaction will only take place if two elements form a
stable interaction that lasts longer than a threshold time.

These two assumptions are not only theoretical concepts, they have also gained
experimental support. It is already reported that the polarization of an APC can
be changed according to different stimulus provided by the cells with which it is
interacting. Experimental work shows that when a T cell is interacting with an
APC and another APC appears, the T cell stops the interaction with the first APC
and starts a new interaction with the second APC. Both APCs are equal, but the
second one has more peptides expressed [21, 22]. This could be seen as a probabilistic
fact. The T cell could have a given probability of remaining or changing conjugation
[23]. Alternatively, this change can be seen as a decision process, according to which

the T cell is always trying to interact with the cells providing the stronger stimulus.
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This is the view put forward by the CF framework.

Concerning the assumption that establishes that the time of the interaction is
crucial to trigger a response, recent experiments [24-27] indicate that the duration
of the antigen receptor signaling is crucial for T Cell activation or tolerance. Brief T
Cell-APC interactions result in tolerance, while prolonged interactions are associated

with activations and the development of effector cells.
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Figure 2.1: Decision dynamics for three agents: (A)ILists and the frustrated dy-
namics; (B) if cell C does not interact with cell B, then cross-reactivity is reduced
but the system’s reactivity increases.

The assumptions made in the CF framework lead to new ideas concerning re-
activity, tolerance and activation; there are emergent concepts resulting from the
dynamics of cellular frustrated systems. In order to better understand these con-
cepts in the CF framework, a simple frustrated system is represented (Figure 2.1A).
For simplicity, only three cells interacting and establishing conjugations are consid-
ered. All cells are very reactive and they always try to form stable conjugations with
a cell at a time. Conjugations between cells are decided according to an interaction
list (IList) for each cell, which ranks all the other cells in order of decreasing affinity.

In maximally frustrated systems the IList of each cell is built in such a way that
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on the top of its IList each cell has the cell that has it at the bottom of the IList -
while cell A has cell B on the top of its IList, cell B has cell A on the bottom. This
structure generates a maximal frustrated dynamics. If cell A and B are conjugated
and cell C is alone, cell C can destabilize cell B, the conjugation AB being destroyed.
While agent A is very satisfied because it is conjugated with the agent that is placed
in the top position of its IList, agent B is very dissatisfied due to the fact that it
is conjugated with the agent that occupies the bottom position of its IList, and
consequently, if given the chance, changes conjugation. A new conjugation BC is
formed and cell A turns into a non-conjugated state. Cell A is said to be frustrated
with the presence of cell C, because it could have a long-lived conjugation in the
absence of cell C. Each cell that is in a non-conjugated state tends to destabilize
the conjugation, so cell A destabilizes cell C that is in conjugation BC. Because of
the fact that cell A is ranked in the first position of cell C IList, cell C decides to
finish the conjugation with cell B and starts a new conjugation with cell A that is
alone and accepts any cell to pair up with. This frustrated dynamics goes on and
on. Cellular frustrated systems never reach stable states, they live in steady states
in which conjugations have characteristic lifetimes. If a response needs a time longer
than this lifetime to be triggered, no reaction will take place. Although all cells are
very reactive and are always trying to establish conjugations, an unresponsive state

is built using reactive cells.

Another interesting outcome of this framework is the effect of the reduction of the
reactivity of one cell on tolerance - for example by blocking one interaction. If the
interaction between C and B is forbidden, the conjugation AB becomes stable and
this lifetime increases, because no other cell can destabilize this pair (Figure 2.1B).

This increase in lifetime is enough to trigger a response.

In CFSs if the reactivity of one cell is reduced, the tolerance of the system
decreases and the system can change from a tolerant state to a reactive one. This
decrease of tolerance is the result of a decrease in the frustration of the system. In
maximally frustrated systems, conjugation lifetimes are minimum and conjugation
rates are maximal. When a cell decreases its frustration, its characteristic lifetime
with another cell increases and the dynamics signals this change. Hence, reactivity
and tolerance are emergent properties of CFSs. Despite the fact that all the cells of
the systems remain the same, a tolerant or a reactive state can emerge according to

the composition and dynamics that is generated in the system.

The decrease of frustration in the system is also the response of CFSs relative
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Figure 2.2: Intrusion in CFSs: (A) ILists of the system and (B) comparative desta-
bilizations in conjugations involving the invader.

an invader. An invader can be a cell that is a copy of another cell of the system and
that interacts according to an IList that is also copied from, a given cell, for instance
the first cell. Considering the invader as - C* - a copy of cell C, C* behaves as C.
However, C* was never been seen in the system and consequently cells A and B
place it in a random position in their ILists. Let us consider that both cells put C*
in the middle position of the ILists (Figure 2.2A). Only this small change in ILists
is enough to have a dramatic effect on the dynamics of the system (Figure 2.2B).
The introduction of C* leads the system to a stable state in which the cells in
conjugations BC and AC* do not optimize anymore. This final configuration is
independent of the initial conjugate considered. This stability in dynamics is easily

confirmed through a very simple mathematical analysis.

Considering the above system with the three cells, A, B, C, typical lifetimes
should be determined. The normalized frequencies of conjugated or single cells, are
given by n;;=N;/N, in which N;; is equal to the number of conjugations between i
and j or the number of alone i cells, when j=¢. Here N is the total number of cells in
the system. Dynamical equations valid in the mean field sense can then be written

when i=A and j=B, as:

dnAB
dt

:nA¢nB¢+nB¢nAC—nABnC¢ (21)

in which the positive terms consider the creation processes and the negative ones
their destruction. The remaining equations are obtained by substitutions (A, B,

C)—(B, C, A). These equations are valid a part from a time scaling factor. For the
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purpose of computational applications one scale time according to time, iterations.
Then, from one time step to the next, the normalized frequencies change according
to:

ni; (t+ 15 t0) = ny;(t;to) + nij(t; to) X 7';”1 —n;i(t;to) X 751_1]_ (2.2)

1
J

1
ij

in which 7 - is the rate of formation of conjugates and 7, is the rate of destruc-
tion of conjugates that dictate the lifetime of each conjugation. In the case of AB
conjugation it can be written:

rgiB ~ Nog (2.3)

When the invader is introduced in the system - C*-, the equations change with the

addition of the term relative to the invader. Thus:

TgiB ~ Nog + Neg (2.4)
TB;C ~ Nag (2.5)
Tgic ~ Npy + Nevy (2.6)
Tl;ic* ~ Npg (2.7)

The symmetry of the system is broken due to the introduction of the invader in
the middle position of ILists. The destabilization of conjugations is only performed
by the non-conjugated cell, as shown by the rates of destruction of each conjugation.
Nevertheless, the introduction of the invader leads the system to a stable state in
which all cells are conjugated: AC* and BC. Cells B and C* are conjugated with
their top preferences, so they do not want to change conjugation. Due to this fact,
cell A accepts C* that is its second choice and cell C is forced to be with B because
cell A prefers to be with cell C*. Thus, normalized frequencies of non-conjugated
species are zero, and the conjugation lifetimes - which are in inverse proportion to
the rate of conjugates destruction - are infinite, due to the fact that there are no
cells that destabilize both conjugations.

The toy model here presented suggests that Cellular Frustrated Systems could
be a promising framework to model intrusion detection systems. The development

of CFSs as intrusion detection systems is the aim of this work.
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2.3 Theoretical Model

The model here developed considers that a complex system has a normal behavior
which can be coded into a computational system of agents in interaction - Cellular
Frustrated System CFS (Figure 2.3).

Cellular Frustrated System

Sequence
I 0,0 ®°

10101010010100101(

Complex Computational
System System

Figure 2.3: Binary information extracted from a complex system can be coded into
sequences. These sequences that characterize the normal behavior of the complex
system is used in the computational system of agents in interaction (Cellular Frus-
trated System). Every change in the complex system changes the dynamics of the
agents in interaction. This change in the dynamics of the computational system
triggers events that signal a corresponding change in the normal behavior of the
complex system.

In CFSs only two main assumptions (section 2.2) are required to build a compu-
tational system of agents in interaction, in which every change in the complex system
changes the dynamics of the agents in interaction. This change in the dynamics of
the computational system is the triggering event that signals a corresponding change
in the behavior of the complex system, that can be due to different causes.

CFSs use the immunological inspiration of some mechanisms of the adaptive
immune system in a minimal model that considers APC and T cells defined in the
computational system as presenters and detectors, respectively. The inspiration is
extended to the function of these agents in the model [1, 17, 28]. Presenters display
information extracted from the complex system to detectors. Detectors recognize
this information and are triggered or not, leading to a response according to the
information presented.

The computational model here developed considers only two different types of
agents, instead of the three types considered in the previous section (Figure 2.4).
The frustration in this system with 2 types is ensured because there are differences

in all agents within a type. These differences allow each agent to optimize among
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Figure 2.4: Left: Decision dynamics, ILists and the frustrated dynamics for a model
with three types of agents, . Right) System with 2 types of agents. The frustration
in this system with 2 types is ensured because there are differences in all agents
within a type, which force agents to change conjugation due to interactions with
agents of the opposite type.

the agents of the opposite type. The interaction rule of Cellular Frustrated Systems
is maintained, each agent always tries to establish a conjugation with a preferred
agent. With the same interaction rules and due to the differences among agents, a
frustrated dynamics is also generated in systems with 2 types of agents.

To make the understanding of the model easier, the presentation of the main
concepts of CFSs will be initiated with a section of generic definitions. After this,
the algorithm implementation will be carefully described. Finally, the fundamental

ideas that differentiate this framework will be discussed.

2.3.1 Model Definitions

The computational model is based on a frustrated dynamics of agents in interaction.
Due to the immunological inspiration of the computational model, the agents’ set
(A) is divided into two different sets according to the agents’ type: presenters (P)
and detectors (D), such that: A =P U D and P N D=(). Each type of agents has a
fixed and equal number of elements, such that Ng4=Np+Np and Np=Np.

Definition 1. Agents An agent, A;, is a basic element of the dynamics of
interactions defined by VA€ A, A;={T;, L;, R;, ki, C;}, in which:

o T, is the type of agent, T,€{ Presenters, Detectors};
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o [; is the ligand of the agent, L;c{1, 2,..., Lyjax}, with Lyax defined as

the maximal value in the presenters or detectors space of ligands;

e R; is the receptor, which can be coded by an Interaction List(IList) that is
the ordered set of all the ligands of the opposite agent type in decreasing
order of affinity ;

e [; is the connectivity, which corresponds to the number of different ligands

from the opposite agent type with which the agent interacts, k € {1, .. ,
Naja}i

o (; is the connectivity list in which all agents with which the agent interacts

are listed.

Due to the fact that detectors should be continuously checking the information
presented by presenters, it is crucial to promote interactions between presenters and
detectors. Thus, presenters interact only with detectors and detectors interact only
with presenters. Interactions between agents from the same type are not allowed.
In addition, each agent interacts only with an agent at a time.

All agents interact according with the same interaction rules. In order to simplify
the presentation of the interaction rules, the interaction state and the ranking in

the other agents’ IList will be associated to each agent :

e s: the interaction state; indicates if an agent, A;, is in an interaction and with
which agent, such that sy, € {0, 1,..., N4}. If it is conjugated with A;, sz, =

A, if A; is alone, s4,=0.

e p: the position in the IList; indicates the position of ligand L; in the agent i
IList, such that p(L;, i)e{1, 2, ..., #(IList;)}. If L; is in the top position of
the IList of A;, p(L;, i)=1. On the contrary, p(L;, i)=#(IList;) if L; is placed
in the bottom position of the IList of agent A; .

The interaction rules which generate the dynamics of decisions among agents are
defined as:

Definition 2. Interaction Rules Considering two agents from opposite

types, a; and a;, they will start a new interaction if:
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o if s4,=0 N\ 54,=0
e Zf sAi:O A SA]'#O A p(LAw j)>p(LSAj} ])
d Zf sAﬁ'AO N SAj7é0 A p(LAw j)>p(LsAj; ]) N p(LAj; Z.)>p(LsAi7 7’)

All agents are always trying to establish interactions with the agents in the top
positions of the IList. If an agent is alone, it will accept any agent of the opposite
type. Nevertheless, if it is interacting, it will change pair only if a preferred agent
appears. The interaction lifetimes between agents have a crucial role in the triggering

of the activations in this model. It can be defined as follows:

Definition 3. Interaction or Conjugation Lifetime The interaction or
conjugation lifetime of an interaction is the number of iterations between the
formation and the destruction of a given interaction between 2 agents of oppo-

site types.

In the same way that it is possible to define the Interaction Lifetime, the inac-

tivity lifetime can also be defined:

Definition 4. Inactivity Lifetime or No-Conjugation Lifetime The
mactwity lifetime corresponds to the number of iterations that an agent re-

mains without establishing any interaction with an agent of the opposite type.

In CFSs interactions between agents should have minimal lifetimes and the inter-
activity among agents should be maximal, with minimal inactivity lifetimes, so that
small perturbations in dynamics are noticed. In order to maximize the frustration in
the dynamics, detectors should undergo an education process. This process selects
a repertoire of detectors which is capable of interacting with presenters in interac-
tions with minimal lifetimes. Two different processes of selection are considered.
One in which agents that do not interact are eliminated and replaced by others in a
process called positive education. The designation of the process is inspired by the
education process that is operated in the real immune system. It is defined in the

computational model as:
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Definition 5. Positive Education Fvery detector (D;) that does not estab-
lish interactions longer than a threshold time - Tpos, Tpos€N- is eliminated and
replaced by another arbitrary detector (D) such that Tp,=Tp Nkp,=kp;, Lp;

and Rp; are randomly drawn and Cp; is changed accordingly.

The second process operates in detectors that establish interactions with the
longest lifetimes, which are replaced by new arbitrary detectors. This process is
called negative selection, because it is inspired in the negative selection process that
is operated in the immune system. In the computational system it can be defined

as:

Definition 6. Negative Education (Initial Stage) Every detector (D;) that
establishes interactions longer than a threshold time - Tyeq, Tneg€N- is elim-
inated and replaced by another arbitrary detector (D) such that Tp,=Tp, N

kp;=kp; N Lp,=Lp;, Rp; is randomly drawn and Cp; is changed accordingly.

According to the ligands displayed by the presenters during the education process
it is possible to define ligands that belong to the system, called self ligands (S), and
ligands that do not, called nonself ligands (S). The ligands space (Lg) is composed
by the self and nonself ligands, such that Lg = S U S and S N S=0.

During the education process an extended repertoire of detectors is educated.
This repertoire will be used in the surveillance of anomalies in the later detection
stage, after the education process. The educated repertoire of detectors can be

defined as follows:

Definition 7. Educated Repertoire of Detectors The educated repertoire
of detectors is composed by an arbitrary number of educated populations of

detectors - Npops with Npo,s€N, selected during the education process.

After the education process, the CFS is prepared to start the monitoring stage
with the extended repertoire of detectors. Anergy ensures that during the dynamics
of the monitoring stage the surveillance of the systems is performed by a set of Np
detectors chosen arbitrarily from the extended repertoire of detectors. The anergy

mechanism is defined as follows:



18 Background Theory

Definition 8. Anergy Fvery time a detector, D;, establishes with a presenter
an interaction longer than the anergy time- 7., - it is replaced by another
equivalent detector from the repertoire of educated detectors (D) with Tp,=Tp,
N kp,=kp: N\ Lp,=Lp; N Ri#Ri N\ Cp,=Cp.

Each detector has a subset with N,,,; elements of equivalent detectors with
equal type, connectivity, ligand, and connectivity list, but different receptors. The
anergy mechanism ensures that only the most frustrated detectors are kept in the
system, and that the dynamics of the system is maximally frustrated regardless of
the detectors that are in the system in each iteration.

During the frustrated dynamics, the number of conjugations lasting longer than

7 1s denoted ¢¢

¢, for a population in the absence of pathogen(after the education

stage) and ¢;~, in the detection stage. The frequency of conjugations after W
iterations, can then be obtained from f§’7>7:c§’7>T/W and f;~,=c;~./W for both

cases. The detection ratio can be defined as:

fi, T
R, = fo—>>< (2.8)
6, >T I

i

in which F is a tolerance parameter defined per presenter, such that F&]1, +oof,
which allows detection to be done with perfect tolerance. Typically F=1.2. Every
time this ratio is greater than 1, it will be possible to distinguish presenters bearing
a foreign ligand from those that do not, depending on the rate of long encounters.
In the Figures of the following chapter presenting results from simulations, we will
be interested in calculating the number of presenters for which R> 1, which will be
represented as R>1.

If the rate of long contacts exceeds a threshold, it is possible to up-regulate
costimulatory molecules, and activate any further detector performing a long contact
with that presenter.

In the next section the algorithmic implementation of this model will be dis-

cussed.
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2.3.2 Model Algorithm

The complex system to protect generates data that will be used in the computa-
tional system for anomaly detection. This is an agent based-model which is divided
into 2 main phases: the repertoire education and the monitoring phase. Within the
monitoring phase two different stages are considered: the calibration and the detec-
tion stage (Figure 2.5). Different stopping criteria are defined so that the system

changes from one stage to the next or generates a given output.

Repertoire Education Galibration Detection
Complex Complex Complex
Training Training Testing
System System System

1 i 1
Strings Strings Strings
| ! |
Definition of Definition of Definition of
Agents Agents Agents
Selection Detection Detection
Dynamics Dynamics Dynamics

Detection

No Detection

Figure 2.5: Flowchart displaying the main steps in the algorithm. During repertoire
education, education process is applied until a pre-defined Threshold (Stopping Cri-
terion A); several repertoires can be educated if necessary (Stopping Criterion B);
the calibration and detection stages apply the frustrated dynamics for W iterations
(Stopping Criterion C); if a presenter agent exceeds a number given of long contacts,
detection is signaled for the present repertoire (Stopping Criterion D).

All the stages have very similar structures in the algorithm. They are initiated
with the codification of the information of the complex system into sequences to be
used in the definition of the agents. However, different information is used in the
3 stages. The set of data which characterizes the normal behavior of the complex
system is utilized in the first two stages, while the data that need to be tested

are used in the detection stage. Also the dynamics that is generated is similar in
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repertoire education, calibration and detection stages. Here, the difference is that
in the detectors selection, the dynamics comprises a selection process while the
detection dynamics comprises the anergy process.

During the education stage, the educated repertoire of detectors is selected to
frustrate maximally the dynamics. The repertoire is composed by N,,.,s sets of edu-
cated detectors, one population is generated in each passage by stopping criterion A.
The education process stops when all the N,,,, populations are educated - stopping
criterion B is then satisfied.

After the education stage, the monitoring phase is divided into calibration and
detection stages. During the calibration stage, the normal profile in the frequency
of the conjugation lifetimes is established through a detection dynamics for each
presenter - f7_ . The establishment of the normal profile of the conjugations dictates
the end of this phase - stopping criterion C is fulfilled.

The last stage of the algorithm is the detection stage. In this stage it is evaluated
if the frequency of the conjugation lifetimes changes or not with presenter agents
through the sequences which encode the complex system operation that is being
tested. After this evaluation, stopping criterion C is accomplished. Then, a detection
or a no-detection is signaled in the end of the detection stage - stopping criterion D.

In order to understand the algorithm and the model in general, the selection and
detection dynamics will be detailed in the next subsection, followed by the definition

of the detection or no-detection signaling.

2.3.2.1 Selection or Detection Dynamics

The algorithm distinguishes two dynamics: the education and the detection dy-
namics. All stages have a common algorithm that generates the same dynamics
which is independent of the stage. The common dynamics algorithm has the generic
pseudocode presented below (Figure 2.6).

From one iteration to the next, a random permutation of all the presenters and all
the detectors is generated. This random permutation avoids giving priority to any of
the agents in the system. Each position of the permutation originates an interaction
between the agent in this position of permutation, A;, and another random agent
selected within the first agent’s list of connectivity, A;. Per iteration, each agent
has, at least, one chance of optimizing with an arbitrary agent of its connectivity
list. Actually, on average, each agent has not one but two opportunities to optimize

per each iteration: one chance due to the random permutation, A;, and another
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for(iteration=1; iteration<=Max_iterations; iteration++)
{
Generate a random permutation of all the agents;
for(i=1; i<=N; i++)
{
Definition of the agent A,, in position i of permutation(A);
Possibility of dissociation (A;,conjugate[A;]);
Selection of a random agent A; from ai list of connectivity;
Possibility of dissociation (A;, conjugate[Aj]);
if (conjugate[A]! = A; AND A, A are favoured by the interaction)
{Save the conjugation lifetime(A;,conjugate[A]) or the
no-conjugated lifetime;
Save the conjugation lifetime(A;,conjugate[Aj]) or the
no-conjugated lifetime;
Formation of the conjugation A;, A;
}
end if
if (conjugate[A;]! = A; AND A, A are not favoured by the interaction)
{Verification of the conjugation lifetime of (A;, conjugate[A;]) and
(A;, conjugate[Aj]);
if(Lifetime(A;, conjugate[A]]) OR (A, conjugate[Aj])> =T o)
{Education(A;, conjugate[A;] OR A;, conjugate[A;])
OR Anergy(A;, conjugate[A;] OR A;, conjugate[Aj]);
}
end if
}
end if
if (conjugate[A] = A)
{Verification of the conjugation lifetime of A;, A;
if (Lifetime(A;, A)> =T )
{Education(A,;, conjugate[A;] OR A, conjugate[A;])
OR Anergy(A;, conjugate[A;] OR A;, conjugate[A]);

}
end if

}
end if
if (A; is alone AND Education Stage)
{Verification of A; no-conjugated lifetimes;
if (no-conjugated lifetime(A)> =T )
{Education(A));
}
end if
}

end if

}

end for

}

end for

Figure 2.6: Pseudocode used for the models in this thesis. For simplicity the out-
comes of Education and Anergy are not presented.
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because a random agent A; is selected to interact with A;.

A new conjugation (A;, A;) is initiated if both agents favor that interaction.
In this case, the conjugation state changes and lifetimes for conjugated and non-
conjugated agents are saved. In the negative selection case, both conjugation life-
times or non-conjugated lifetimes are checked, depending if A;, A; are or are not
in interaction. If the conjugation or no-conjugation lifetime is equal to a threshold
time, Tpeq OT Tpos, respectively, the detector is eliminated in the education stage. In
the detection stage, if the conjugation lifetime is equal to a threshold time, 7,4, the
detector becomes anergic and is replaced by another equivalent detector. Differences
in the education or in the detection dynamics are signaled education or anergy in
the pseudocode, respectively. The alternative algorithms will be presented below in

separate sections.

Education Algorithm

In order to simulate the negative and the positive education, a non-directional
selection process was implemented. Two different selection processes operate in
detectors to avoid that they stay without interacting or interact in a non-frustrated
dynamics. Thus, every time a detector remains 7, iterations without interacting or
Tneg iterations in an interaction with the same presenter, the detector is eliminated
and another arbitrary detector enters in the system. In the pseudocode in Figure 2.6
every time the education process is mentioned - lines 19, 28, 37 -, the pseudocode
in Figure 2.7 is used. The line marked with * represents an alternative instruction

for the negative education process.

Terminate the conjugation (A, conjugate[A.]);

Change the conjugation state for both agents;

Generate a random IList for the detector;

Generate a random ligand for the detector*;

Initializate the counters for the new detector and generate the Connectivity List;

U P WN -

Figure 2.7: Pseudocode for the generation of a new detector in the education stage.

The updating of 7,5 and 7,4 values are crucial for the convergence of the educa-
tion process. Although the update of these values is made in independent windows
of education in a fixed number of iterations, Wgp - one for each threshold -, they are
made in a similar way. At the beginning of the simulation both values of 7,., and 7,4,

are initiated with an arbitrary large value. After Wgp iterations, they are updated
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to the maximal non-conjugated lifetime or to the maximal conjugation lifetime that
established in Wgp. From here, every time an agent remains without interacting for
Tpos iterations or interacts for 7,4 iterations, the detector is eliminated and replaced
by another detector or the interaction is destroyed and the detector eliminated and

replaced by another detector, respectively, according to Figure 2.7.

If no detector is replaced in Wgp iterations in the positive or in the negative
education process, the corresponding 7,5 or 7,., values are updated in the cor-
responding process and the selection process starts again until a new updating is

required.

The process is repeated until the value of 7,., equals the 7.4 selected in stopping
criterion A (Figure 2.5). The population of detectors is saved and the number of

educated populations is increased by one.

The education of another population is initiated through a random permutation
of an established number of positions of the IList (k) of each detector of the first
population educated. This procedure ensures that the network of interaction es-
tablished in the first population of detectors is maintained. Due the fact that the
network is already established, these detectors only undergo the negative selection
process. Thus, each detector originates a subset of detectors with a different IList
(in the k top positions) but the same ligand, connectivity and connectivity list of
the detector. After N,,,s populations of educated detectors the stopping criterion

B (Figure 2.6) is accomplished and the repertoire education process finishes.

Anergy Algorithm

After the education the repertoire of educated detectors has been selected. Dur-
ing the calibration and the detection stages, every time a detector is left alone
after an interaction with a lifetime longer than the anergy time, 74y, it becomes
unresponsive or anergic and it is replaced by another equivalent detector from an
arbitrary educated population between 1 and Ny,,s. The new detector has the same
network of interactions, but a different IList - although all the ligands are the same.

The pseudocode for the anergy of the detectors is presented in Figure 2.8.

Due to anergy, the composition of the detectors’ population is continuously
changing, which ensures that the surveillance of the system is maintained by the
extended repertoire of detectors. In addition, anergy also reduces the number of

false positive activations, because it prevents wrong activations caused by poorly
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Terminate the conjugation (A ,conjugate[A,]);

Regist the conjugation lifetime for A and conjugate[A.];
Change the conjugation state for both agents;

Generate a random population p between 1 and Nyqp;
Replace the IList of the detector for its ILists in population p;

Uk WNBR

Figure 2.8: Pseudocode for the anergy in the detection stage.

educated detectors.
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2.3.3 Model Concepts

According to the main definitions presented before, a generic CFSs , in which pre-
senters and detectors are shown, is represented in Figure 2.9. The diversity in the
ligands of presenters is arbitrarily large, Lg, Ls,...,Lg, while the receptors are less
diverse. There are as many ligands in the presenters as the number of the sequences
that are necessary to code the “normal” behavior of the complex system. The recep-
tors in presenters are defined according to the ligand of the detectors for which each
presenter has maximal affinity with - here, only two different ligands are displayed
by detectors. All presenters within the same subtype have a common receptor. This
classification of the detectors in one or another subtype (or cluster) can correspond,

for example, to the expression or not of a molecule on the cells’ surface.

Presenters Detectors
Le Lo Ls Iy
Ly Ly Lo I,

Figure 2.9: A simple model with two agent types, presenters and detectors, and
with two subtypes in each. The diversity of ligands displayed by the presenters is
arbitrarily large, while their receptors are less diverse: all presenters within the same
subtype have the same receptor. On the contrary, detectors have a small ligands
diversity but arbitrarily large receptors diversity.

On the contrary, detectors have a small diversity in ligands which is dependent on
the ligand that each detector presents. In the system considered, only two different
ligands are presented - 1; and l,. Detectors are extremely cross-reactive which allows
them to recognize all the ligands displayed in the system. One within all the possible
approaches to model the diversity in the receptor of the agents is to define an
interaction list (IList) in which all the ligands of the opposite type are placed in
decreasing order of affinity.

Presenters and detectors engage in a frustrated dynamics in which all the agents

are continuously trying to optimize the ligand they interact with. Each agent favors
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interactions with agents that are in top positions of their ILists and it changes

pairing every time a preferred agent appears.

2.3.3.1 Dimensionality of Ligand’s Space

The definition of the size of the space is important in CFSs because it will affect
the functioning of the anomaly detection system. To illustrate this, Figure 2.10
shows binary information extracted from a complex system which will be coded into
sequences using a different number of bits (N Bits). The number of bits considered
defines the size of the ligand’s space that is obtained by the expression 2/V5is,

Binary Information 010101101010111000111000110011110011

_—

neis=2  010101101010111000111000110011110011
10101101010111000111000110011110011

101011/01010111000111000110011110011

N Bits=4

N Bits=6

Representation in the ligands' space of presenters
N Bits=2 N Bits=4 N Bits=6

4 16 64

Figure 2.10: Binary information extracted from a complex system can be coded into
sequences using sequences with a different number of bits, N Bits. The number of
bits considered defines the size of the sequences’ space. For N Bits = 2, all the 4
ligands are self patterns. If the same binary information is coded into sequences of
6 bits, 24 different sequences will be generated from out of the 64 possible ones.

An example of a system in which all ligands are self is the one with N Bits = 2.
Here, the binary information is coded in sequences with 2 bits, which means that all
the 4 ligands are self patterns. In systems with ligands in small dimensional spaces,
all the ligands are needed to characterize the normal behavior of the complex system:
Lg = S and S=0.

The increase in the number of bits used to code the same binary information
increases the size of the space and, consequently, the number of different ligands

used. If the same binary information is coded into sequences of 6 bits, 24 different
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sequences will be originated from 64 available ones. The normal behavior is coded
with a small fraction of the space, as there are ligands that are not used. Increasing
the space dimension further almost all ligands become distinctive and the number
of nonself ligands is much larger than the number of self ligands.

The selection of the right size will ensure a proper monitoring of the complex
system. The intrusion detection is not possible with N Bits = 2 due to the fact that
there are no foreign ligands available to display by presenters - all the ligands are self.
Thus, only self perturbations can be detected in this case at most. This shows that
Nbits = 2 is an insufficient space to code the binary information presented. In the
case of considering systems with NV Bits = 6 anomalies can be due to intrusion or due
to homeostatic perturbations. However, the selection of a higher space dimension
also have implications in the CFSs.

In CFSs the dimension of the space has implications in the size of the ILists which
code the receptor of the detectors. The ILists order all the ligands in the space, so
that there are 64!= 1.27x10% available ILists in the system with N Bits = 6. Due to
the fact that in educated systems ILists are randomly generated, the increase in the
space size increases exponentially the number of possible ILists that are available
for detectors.

The approach based on the ILists seems to have serious limitations due to the
increase of the size of the space. However, they can be seen as a mathematical func-
tion that for a given input (the ligand) gives an output value (an affinity measure).
Moreover, different approaches to compress the information contained in the ILists
were already developed in parallel, with the same results obtained for systems in
which the ILists are implemented [29, 30]. Several strategies will be discussed to
select the detectors’ ILists that maximally frustrate the dynamics of the system,
independently of the size of the space and the huge diversity generated for the de-
tectors’ receptors. How the whole diversity in detectors ILists is generated will be

the issue of the next section.

2.3.3.2 Diversity in the receptors of detectors.

The T Cell Receptor (TCR) serves a critical role in the differentiation, survival, and
function of T cells, and its triggering elicits a complex set of biological responses
that protects the organism from infectious agents [31-33]. The formation of TCR
is made using an assembly process with the combination of gene segments in each

T cell. This gene rearrangement is the process responsible for the diversity in the
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recognition of all the potential diversity of the antigens [34].

To better understand how this diversity can be generated with a finite number
of genes, the formation of the TCR is compared with the construction of sentences
with a finite number of possible words or groups of words, which represent the
gene fragments (adapted from [35]). Words are placed in 3 different groups that
correspond to the different groups of genes - constant, diversity and joining gene

segments - represented as Blocks 1, 2 and 3 .

Block 1 Block 2 Block 3
The Sun Shines Light
The Moon Reflects Water
The Star Is Red

Some resulting “T'CR combinations”
The Moon reflects light
The Sun is red
The Star shines water

This generation process ensures that in the immune system around 107 possible
TCRs could be generated [17]. This number can be increased to 10'¢ possible TCRs
when junctional diversity is considered. The diversity in the generation of TCR

structures is also considered in the CF'Ss.

Each detector has a receptor whose information is coded in a IList that orders all
the possible ligands in an arbitrary decreasing order of affinities. This is randomly
generated for each detector. No restrictions on possible ILists are taken - all receptors
are equiprobable -, so diversity of ILists is also huge - Nrpc=1.27x10% possible
receptors can be defined with 64 different ligands. An increase in the size of the

space increases exponentially the diversity of the receptors that can be generated.

Because all receptors are equiprobable, the probability of different detectors hav-
ing the same receptor is negligible. Thus, each detector senses differently all the
ligands displayed by presenters, which means that different detectors establish in-
teractions with different affinities with the same ligand due to the differences in
[Lists.
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2.3.3.3 Detectors Selection

Goal of the education process

In immunology, it is accepted that thymocytes undergo a selection process called
repertoire education in which T cells are selected according to their affinity for the
peptide-MHC complex displayed by the APC. Thymocytes that have low affinity
for the ligand presented in the thymus are eliminated by neglect. The remaining
positively selected lymphocytes recognize antigens displayed by self MHC molecules
[1, 17]. Within the positively selected set, thymocytes that strongly recognize self
antigens are negatively selected and are prevented from completing their maturation,
thus eliminating cells that would potentially react in harmful ways against self tissues
(Figure 2.11) [36, 37].
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Figure 2.11: Detectors’ selection process based on their receptors affinity [37]. TCRs
having higher or lower affinity towards antigens displayed by self MHC are elimi-
nated. Only detectors with intermediate affinities are selected - represented in the
figure between the 2 dash lines.

Figure 2.11 illustrates the process of detectors’ selection based on their affinity.
TCRs having higher or lower affinity towards antigens displayed by self MHC are

eliminated. Only the detectors with intermediate affinity are selected. According to
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this immunological view, T cells emerging from the education process should have
an optimal affinity range for antigens displayed by self MHC molecules to ensure
“normal immune homeostasis” (Figure 2.12)[38, 39]. Mistakes in affinity strengths
between T cells and self antigens are related with immune deficiencies or autoimmune
diseases. Ideally, T cells should have moderate reactivity against self and nonself to

ensure detection against foreign peptides and in total respect of self.

Hipersensitivity

disease

Normal immune
homeostasis

Non-Self-Reactivity

Immune
deficiency
disease

Self-Reactivity

Figure 2.12: Dependence between self-reactivity and non-self-reactivity after the
education process and associated diseases [38]. According to this immunological
view, T cells emerging from the education process should have an optimal affinity
range for antigens. Mistakes in affinity strengths between T cells and self antigens
are related with immune deficiencies or autoimmune diseases.

In CFSs, detectors should also be selected, so that only those maximizing the
frustration are chosen. On the one hand, it is necessary to select only detectors that
are able to interact with presenters, by positive selection. The positive education
in CFSs ensures that all detectors are able to interact frequently with presenters.
On the other hand, it is necessary to eliminate detectors that can not engage in a
frustrated dynamics, by negative selection. The main concern about the negative
education process in CFSs is not shaping the affinity value with which detectors
recognize ligands displayed by presenters, but to increase the frustration of the
interactions between detectors and presenters. Detectors interact with presenters
with maximal affinity if they are in a frustrated dynamics. In this case, there will
always be agents capable of destroying these conjugations, and no response will be
triggered.

The perspective of the negative education process in CFSs is one of the main dif-

ferences concerning the immunological view. While the conventional view assumes
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that all detectors have affinities around a given value, in CFSs detectors can have
maximal affinity for all the possible ligands displayed by presenters, that can frus-
trate the dynamics. The task of the education process is to ensure that all presenters

and all detectors interact in interactions with minimal lifetimes.

Complezity of the education process

The selection of the repertoire of detectors that frustrate the presenters dynamics
is not easy. Firstly, there is a huge diversity of possible receptors that are generated
even for small number of ligands, due to the random generation of the receptors. This
diversity increases the difficulty of the process. Secondly, the selection of detectors
depends also on the remaining detectors in the system. The presence or the absence
of some detectors can dictate the selection of some detectors and elimination of

others: the education process depends on the context.

Concerning the diversity of ILists, for instance, in a space with sequences of 6
bits, each detector has an IList within 1.27x 108 possibilities, which is an enormous
diversity. Within all the possible ILists the education process should converge to
form a set of ILists that allow the detectors to interact with a frustrated dynamics

with maximal interactivity and minimal interaction lifetimes.

In addition to the diversity available in the ILists, another mechanism contributes
to intricate the process. The selection of detectors is made in context, which means
that the presence or the absence of some detectors can dictate the selection of some
among all possible ones. Although detectors do not interact directly, different dy-
namics between presenters and detectors can be generated such that some detectors
can not be accepted in consecutive interactions or form a stable conjugation. Be-
cause of that, some detectors that have ILists that frustrate the system can be

eliminated by others.

After the education process, the selected detectors will be engaged in a frustrated
dynamics. Although the maximal affinity of the interactions is maintained, the
ordering of the ILists ensures that agents have in their top positions ligands of the
agents of the opposite type which have minimal affinity for the first ones. Actually,
the complete ordering of the ILists of the detectors is impossible even for small
systems; what is really crucial is that the top positions of ILists are educated. Thus,
reduced connectivities are considered in systems with larger space sizes during the

education process - despite the fact that ILists place all the ligands with which the
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detector can potentially interact. The connectivity of the detectors will be the issue

of the next section.

2.3.3.4 Connectivity

It is not completely clear if T Cells can potentially interact with all the self peptides
presented in the Thymus or if there is a restriction related with, for example, an
affinity threshold or a spacial limitation that prevents some interactions. In Im-
munology both assumptions can be more check work and, in CFSs they are both
relevant. The first approach considers that there is a threshold in the affinity value
below which detectors do not interact. In this case, each detector interacts with the
same number of different ligands which corresponds to a fixed range in the IList.
It is also possible to consider that during the education process, detectors interact
with a limited number of presenters that surround them.

To illustrate both approaches, let us consider that each detector has a restricted
connectivity equal to 3. Figure 2.13 represents ILists with arbitrary ligands together
with the representation in the presenters’ ligands’ space. The shaded areas in the
ligands’ space represent the interaction spaces that six arbitrary detectors cover in
their interactions. With a cross “x” different ligands are represented.

One of the approaches assumes that all detectors can only interact with the top
3 positions in a IList (Figure 2.13A). Potentially detectors interact with all these
ligands, regardless of the fact they are displayed by presenters or not and regardless
of the number of presenters displaying them. Bearing the same connectivity value
in mind, in the other approach, each detector interacts with 3 presenters, despite
the fact that 1, 2 or 3 different ligands were presented(Figure 2.13B). In case each
presenter displays a different ligand and all the ligands are in the system, both
definitions are equal.

In this work the first approach is considered. There is a value of affinity equal
for all the detectors that ensures that each detector interacts with the same num-
ber of different ligands. The restricted connectivity per detector is the mechanism
responsible for the scalability of the education process, independently of the size of
the system considered, as it will be demonstrated in the numerical results presented
later. The affinity between agents in CFSs is determined by the ILists of the agents
and it is responsible for the dynamics of the conjugations established. In the next

section, affinity will be discussed in the light of CFS.
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Figure 2.13: Representation of the interaction area covered by ILists of 6 detectors
(Dy,...,Dg) based on ligands (A) or on agents (B) in the ligands’ space of presenters.
Different ligands are represented with a cross “x”. (A) There is a threshold in
the affinity value below which detectors do not interact and establishing the grey
regions. In this case, each detector interacts with the same number of ligands which
corresponds to a fixed range in the IList - 3 top positions. Detectors interact with all
these ligands, regardless of the fact that they are displayed by presenters or not and
regardless of the number of presenters displaying them. (B) In this other approach,
detectors interact with a limited number of presenters surrounding them, despite
the fact that 1, 2 or 3 different ligands were presented by these 3 presenters.

2.3.3.5 Affinity of Interactions

In the context of CFSs agents interact with maximal affinity with agents placed in
the top position of their ILists. Maximal affinity is not a problem in CFSs, as it is
in other models described in the literature, in which the affinity of the interactions

needs to be reduced to ensure perfect tolerance towards the elements of the system.

In CFSs agents can interact with maximal affinity, as long as the dynamics is
frustrated. In this case, every time an agent interacts with maximal affinity with
another, the second one should interact with minimal affinity with the former. The
interaction is bidirectional and each direction - from presenter to detector or from
detector to presenter - has an affinity that depends on the position on the ILists.
The affinity D;-P; is determined by the position of the ligand of D; in the IList
of P;. On the other hand, the affinity P;-D; is determined by the position of the
ligand of Py in the IList of Dy, as presented in Figure 2.14, for 2 different cases.

The stability of the interaction is low when the affinity in one direction is maximal
and in the other, minimal, because one of the agents is very dissatisfied and it easily

finds an agent displaying a ligand placed higher in its IList. The stability of the
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Figure 2.14: Affinity of interactions in a CFS. In a CFS, interactions are bidirectional
and interactions on each direction - from presenter to detector or from detector to
presenter - have an associated affinity that depends on the position of the ligand
displayed by the opposite agent on its IList. The affinity in the interaction D;-P;
is determined by the position of the ligand displayed by D; in the P; IList. On
the other hand, the affinity in the interaction P;-D; is determined by the position
of the ligand of P; in the IList of Dy. (A) The stability of the interaction is low
when the affinity in one direction is maximal and in the other, minimal, because
one of the agents is very dissatisfied (D) and it easily finds an agent displaying a
ligand placed higher in its IList. (B) The stability of the interaction is higher for
agents displaying ligands with intermediate affinities in both directions because in
both cases preferences are fairly satisfied (D and P9).

interaction is higher for agents displaying ligands with intermediate affinities in both
directions because in both cases preferences are fairly satisfied. A more detailed
model concerning the stability of the interactions and the positions of the ligands

of the agents interacting in the opposite IList is presented in section 3.1.1.1.

2.3.3.6 Extended Repertoire of Educated Detectors

Throughout life, the thymus is continuously selecting T cells to generate an extended
repertoire of T cells [1, 35, 40]. This process is more intense in the first years of
life and it decreases with age, according to Figure 2.15 ([1], p. 45). Independently
of the education process in which each individual cell was generated, T cells should
cooperate in detection tasks. In addition to the task of shaping the affinity of
thymocytes, the education process also needs to ensure that all T cells will behave
similarly towards antigens in the periphery.

In CFSs an extended repertoire of detectors is educated to ensure that surveil-
lance is maintained by a large number of detectors, despite the fact that only a
population of Np detectors from the extended repertoire is in the system in each
iteration. This population is composed by detectors from different educated pop-

ulations obtained in different moments of the education process. Thus, each com-
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Figure 2.15: Continuous generation of T lymphocytes throughout life ([1], p. 45).
This process is more intense in the first years of life and it decreases with age.

position of the detectors within a detectors’ population should perform a frustrated
dynamics, in every iteration, regardless of the educated population in which each

detector was selected.

2.3.3.7 Anergy and Costimulation

The role of anergy and of costimulation in the immune system is not completely
clear. The receptor of the T cell engaged with antigenic peptide-MHC may induce
activation or clonal anergy with the presence or absence of the costimulatory signal,
respectively [1, 41-44].

In CFSs it is assumed that every time a detector establishes an interaction longer
than a characteristic lifetime, called anergy time 7,,, the detector becomes unrespon-
sive or anergic and it is replaced by an equivalent one from the repertoire of educated
detectors.

The anergy mechanism has a double effect on the dynamics. On the one hand,
it ensures that only the more frustrated detectors remain in the system - those
with lifetimes below 7,,. With this directional selection, presenters do not perform
long interactions with the same detectors twice, and, consequently, the number of
wrong activations (false positive) due to detectors that do not frustrate adequately
the dynamics is minimized. On the other hand, anergy ensures that an extended
number of detectors maintain the surveillance of the systems. The higher the number
of detectors, the higher the probability of the invader’s ligand being placed in the top
positions of the IList and the higher the probability that detection is accomplished.

After the education stage, presenters define the “normal” pattern of long conju-
gations, either in duration and in number. Every time presenters have a decrease in
frustration, the engage in longer conjugations with higher frequency. This can thus

up regulate costimulatory molecules signaling this decrease.
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Both mechanisms are crucial to increase the accuracy of the anomaly detection

system, as it will be presented in the next section.



Mathematical Approach

3.1 Mathematical Approach

3.1.1 Analysis of Perfect Systems

In order to gain a deeper understanding of cellular frustrated systems, mean field
equations were derived and numerically integrated for the simplest set of models.
For a simple first approach, a population with perfectly ordered ILists was chosen.
The system has an equal number of presenters and detectors, and each of them is
divided in two subtypes - denoted as 1 and 2, respectively-, such that Np=Np, +Np,
with Np, =Np,, and Np=Np,+Np, also with Np,=Np,. The total number of agents
is given by N=Np+Np. A schematic representation of the system is shown in
Figure 3.1. On the left are represented presenter agents. They have very diverse
ligands, denoted by L;, with i being the agent index. All presenters of a given
subtype have the same receptor and consequently the same IList. Detectors have
considerable diversity in their receptors. This is encoded in their ILists, different
for each detector. In this, simple first model, detectors ILists follow a well defined
order. First all subtype I detectors have on the top half positions of their ILists,
subtype II ligands and on the bottom, subtype I ligands.

For this system it is possible to define the normalized frequencies conjugations in-
volving subtype i presenter agents and subtype j detector agents by np,p,=Np,p,/N;
i, j=1,2, as well as the frequencies of the non-conjugated agents, np,,=Np,, /N, i=1,
2 or np,,=Np,, /N, i=1, 2. The dynamical evolution of these frequencies can be ob-
tained deriving mean field rate equations for each frequency. These have to account
for all contributions leading to the formation and destruction of each species, i.e., ei-

ther pairs of conjugated or non conjugated agents. For conjugates involving subtype
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Figure 3.1: Representation of a simple model with perfectly ordered ILists.
model considers two agent types, presenters and detectors.
different ligands, Ly, ..., Ly, but have only two possible receptors. These correspond
to only two different ILists. On the contrary, detectors have only two possible
ligands, 1; and l, but can have very diverse receptors. In this model all detectors
have a different ILists. To make the analysis simpler, their ILists follow the pre-

defined order indicated in the figure.

Presenters display all

I presenter agents, P; and subtype I detectors, Dy, P; Dy, all the contributions are

represented in Figure 3.2. On average, when detectors interact with agents of the

same subtype, they encounter a ligand placed higher in their ILists with probability

P-
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Figure 3.2: Formation and Destruction of conjugate P;D;, involving subtype I pre-

senter agents, P; and subtype I detectors, D;.

On the left are represented all

interactions that can form a new P;D; conjugate. On the right are represented all
interactions that contribute negatively in the first equation (Equations 3.1).

The evolution of the normalized frequencies follows the equations:



3.1 Mathematical Approach 39

dnpip, _
—a = MNP NDy T NDNP D, + PP NP D, T PP DI TUP Dy — nP1D1(
pnp,, +np,, +pnpp,)
dnp,p
di‘/ 2= np, (nD2¢> +np,D, +pnP1D2> —NpD, (nD1¢ + pnp b, +pnp1¢)
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19 __
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+pnp,p, +Npp, + pnPlDQ)
dTLD1¢ .
7% = nppnp,, + PppnpD, — npy, (NP, + np,, + npD,)

The remaining equations for the other species can be obtained by using the
substitution: (Py, P, D1, Dg)— (P2, Py, Do, Dy). Results from both approaches
are collected and represented in Figure 3.3. Lines represent results obtained from
the numerical integration of the differential equations while marks correspond to

results obtained from the cellular automaton. There is a good agreement between
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Figure 3.3: Normalized frequencies of all the species calculated by the cellular au-
tomaton (in markers) and by the integration of the mean field equations (in lines).

both approaches, which suggests that the dynamical model captures the dynamics
of the cellular automaton. The frequencies obtained with the equations tend to
constant values after a phase of convergence. This does not mean that the system
reaches a stable configuration with all agents stably conjugated. Rather a dynamical
equilibrium reached where the number of agents that change from a conjugated state

to the non-conjugated state is equal to the number of agents doing the reverse. In
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cellular automaton simulations, some oscillations around the steady state values can
also be appreciated. This is a result of finite size effects and the stochasticity in the
dynamics resulting from the random selection of the agents interacting at each time
step. Another finding is that np p,= np,p,>np p,= np,p,. This is results from
the fact that all detectors have the same ligand inside a cluster. Consequently, all
detectors of the same subtype are sensed equally by presenters and consequently
do not promote pair changes. The destabilization in conjugations is different for a

conjugation P1Dy or P1Dq, as can be understood from Figure 3.4.

Q- e Q0O

'

Figure 3.4: Destabilization of conjugations Py D; and P> D;. On the left the subtype
I detectors conjugated with subtype I presenters are destabilized by any subtype
IT presenters - destabilization with probability 1 - while this happens only with
probability p for presenters of the same subtype. On the left it is shown that a
P, Dy conjugate is destabilized with probability 1 due to interactions with subtype
IT detectors by the presenter agents, and it can also be destabilized with probability
p due to interactions with the detector agent in the conjugate.

In both conjugations one agent is satisfied. In the conjugation PiD;, Py is
satisfied. The destabilization in this case is performed only by interactions between
D; and P; or P,. In contrast, in a conjugation P,D1, although D, is satisfied, both
agents can be destabilized. D; can optimize with a given probability among agents
that belong to Dy. The presenter can be destabilized by Dy agents.

In order to better understand the difference in the stability of the conjugations
due to the positions of the ligands of presenters and detectors in the opposite ILists,
a more general system with an arbitrary number of subtypes is presented in the next

section.

3.1.1.1 Stability of the Interactions

To better understand the relation between the position of the ligands in the IList

of the agents in interaction and the stability of the interaction, a simple model was
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built. A system with 10 agents subtype was considered, with an equal number of
presenters and detectors in each subtype in a maximally frustrated system. In order
to simplify, it is considered that all agents belonging to the same subtype have the

same ligands and receptors.

The generic equations for the conjugate P1D; and non-conjugated agents P4
and Dy4 as well as the conjugation lifetimes for a system with an arbitrary number

of clusters are:

N¢ Nc
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in which 6 represents a discrete form of the Heaviside step function, such that

0— 0, n<0
1, n>0
and index i represents the subtype of the detector for conjugated species and N¢ is

equal to the number of clusters or subtypes in the system.

The equations for the remaining species can be obtained by substitution due to
the symmetry in the system. According to these conjugations, the corresponding
typical lifetimes can also be obtained. Because only the stability of the interaction

is analyzed, the generic 7, IDZ_ for the conjugated case is given by:

Tpip, ~ Z —1)0(i — k — V)np,e + Z 0(k —1)0(i — k —1)0(j — 2)
i,k=1 1,5,k=1
N¢ N¢
Ok — j)npp, + Y 0k —i—Dnpe+ > Ok —i—1)0( —k—1)
i,k=1 i,5,k=1
N¢
0(i — k)npp, + Y 0k —i—1)0(k —j—1)0(j —i — Vnp,p,
i,5,k=1

The normalized lifetimes of the interaction - 7/ Tps4, in which 774, corresponds
to the 7 of the most stable interaction - are represented as a function of the position
in the ILists for a generic agent (Figure 3.5A). The same profile of the interaction
lifetimes is obtained for an arbitrary presenter of every subtype as function of the

detectors’ subtype (Figure 3.5B).
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Figure 3.5: A) Normalized lifetimes of a generic agent with all the agents of the
opposite type as function of its ILists positions. B) Profile of the interaction lifetimes
obtained for an arbitrary presenter of every subtype as function of the detectors’
subtype.

This profile changes, when an invader is introduced in the system. Its ligand ap-
pears in a random position of the detectors’ ILists because it had not been presented
during the education process. The strength of the interaction is higher between the
invader and a number of detectors for which the invader has maximal affinity and
additionally these detectors have the invader’s ligand in the top positions of their
[Lists. Consequently, a less frustrated conjugation takes place, because both agents
are satisfied in the conjugation. It is interesting to notice that this reduction of
frustration naturally emerges from the frustrated dynamics in CFSs. This output
is responsible for the detection of perturbations no matter the cause, as it will be

shown in detail in the next sections.

3.1.2 Analysis of Educated Systems

For populations resulting from repertoire education, ILists cannot be considered to
be perfectly ordered. In this case mean field-like equations can still be derived for
the normalized frequencies of all the conjugated and non-conjugated agents. Three

different classes of interactions can be considered:

e A conjugated detector interacts with a ligand from the same subtype as the
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subtype of the ligand displayed by the presenter agent to which it is conjugated
(Figure 3.6A). A probability of destabilization of pp;=0.5 was considered in

these cases;

A conjugated detector interacts with a ligand displayed by presenters that rank
highly the detector agent, while the detector is conjugated to a presenter agent
that rank lower the detector agent (Figure 3.6B). In this case, the education
should reduced the probability that these processes destabilize the conjugate.

A probability of destabilization of p;=0.3 was considered in these cases.

A conjugated detector interacts with a ligand displayed by presenters that rank
lower the detector agent, while the detector is conjugated to a presenter agent
that rank highly the detector agent (Figure 3.6C). In this case, the education
should increased the probability that these processes destabilize the conjugate.

A probability of destabilization of ps=0.7 was considered in these cases.

Hence, detectors can always change from conjugate with a given probability, inde-

pendently of the subtype of the presenter.
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Figure 3.6: Schematic representation of the probabilities of destabilization of de-
tectors. Three examples are illustrated in which a detector D; changes pair with
three different probabilities. An arbitrary IList for D; is represented. The filled
rectangles represent different ligands from subtype I, while the ones with the blue
stroke represent different ligands from subtype II.
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The set of mean field equations which describe the system dynamics is given by:

dn
— = npe(npg +npp,) + Prp gD, + e, (PunP D, + PINP,D,)
PMNP,DyP¢ — TP, Dy (Pdiss + PMTp g + DSTp,, + PMTP, D)
dn
% = Np¢NDyg + Np (DM D, + PsTPD,) — NP Dy (Pdiss + Dy, + Dt
npp, + 201Mp,p, + PuNpy, + PINP,,)
dn
;145 = pdiss(nP1D1 + nPlDQ) +npp (pMnP1¢ t Psnpg + pMnPlDQ) + npD,
(pMnp g + Pinpyy + Pinp,D,) — nP1¢>(nD1¢, + Npyy + PMNP, D,
+pinp,p, + Punp b, + Dsp,D,)
dn
—% = Paiss(np Dy +1p,0,) + 1Py, (NDsg + PINP D, + PuNPD,) — Dy (NP

—H”Lp2¢ +np DQ)
(3.2)

The remaining equations can be easily obtained by using symmetry operations.
From the contributions for the destruction of conjugates, expressions for the char-

acteristic lifetimes can be derived:

—1
Tppy, ~ Pdiss T PMNP ¢ + PSTUp,, + PMTP, D,

. (3.3)
7-P11Dz ~  Pdiss + Dy, T PMNP D, T+ 2pimp,p, + DPMNPp, + PINp,,

To analyze the agreement between both methods, their values were calculated in
similar conditions. For the cellular automaton, the histogram characteristic lifetimes
were obtained by using an exponential fitting of P-, (Figure 3.7). P, represents
the probability that a presenter i performs a conjugation that lasts longer than 7

iterations and it can be mathematically defined as:

ZTIWAX ©
=T 1,>T

TMAX .0
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Py, = (3.4)

: .
in which ¢7 .,

The same characteristic lifetime was obtained from the mean field equations (Equa-

represents the number of conjugations lasting longer than 7 iterations.

tions 3.3). Both approaches are compared in Table 3.1 in which the parameters of
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the fittings are presented, as well as the characteristic lifetimes for each case.
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Figure 3.7: Probability of establishing conjugations lasting longer than 7 iterations,
P-, after the detection phase, and for pairs involving agents from the several sub-
types. Conjugations involving presenters, P, from cluster ¢ and detectors, D, from
cluster j are represented as P;D;.

Table 3.1: Comparison between the cellular automaton (CA) and the mean field
equations (MFE).

Fitting Parameters CA MFE
Conjugation P..= aexp o’ T T
P.D;,  a=0.89, b—0.05, ’=0.974 200 18.0
P.1Dy a=1.28, b=-0.26, r’=0.999 3.8 5.0
PoDy a=1.28, b=-0.26, 12=0.999 3.8 5.0
PyDsy a=0.88, b=-0.05, 1>=0.973 20.0 18.0

In spite of the imperfections in ILists due to the education process, it is pos-
sible to verify that 7p,p,=7p,p, and 7p, p,=7p,p,, as expected from the previous
analysis. Differences in lifetimes are due to the stochasticity in cellular automaton
dynamics and the estimation of the probabilities in mean field equations. Despite
the assumptions taken, the dynamics that is generated after the education process
in the cellular automaton simulation agrees with the dynamics predicted by mean

field equations.
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During the development of the computational system, several studies were performed
in order to increase the understanding of the optimal functioning of CF'Ss.

It is important to keep in mind that, whereas in the computational field all the
assumptions are scientifically acceptable and relevant, the same does not happen in
immunology. Here, so that the assumptions are valid, they should take into account
what is already known in the field about the basic mechanisms of the immune system
[45, 46]. Only in this case can the results obtained by the models have relevance in
the field.

In this section both perspectives are presented together although some systems
are closer to applications in the computational field, while others aim at understand-
ing the main mechanisms of the immune system in the light of the CFSs framework.
Despite the relevance of the results in one or another field, all the results about
the topic will be presented and discussed. The sequence of the presentation of the
results follows the development of this work.

Firstly, perfect systems which, were the starting point of this work are dis-
cussed. These systems accomplish perfect self/nonself discrimination and respond
to homeostatic perturbations. Their results were the clues for the development of
the computational algorithm for educated systems, which were the object this work.

As in perfect systems, in educated systems a maximally frustrated dynamics
should be generated for any arbitrary information presented in the sequences, such
that any change in the complex system would be signaled. In order to do that,
several studies concerning the education process - with the positive and the negative
education - were made. The main results are described in the subsections presented
next.

After the selection of the repertoire of detectors, two different types of detection
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were investigated: detection of foreign ligands and detection of self perturbations
(abnormal growth of some ligands and abnormal presentation of sequences). Both
phenomena can originate from invader, causing a change in the normal functioning
of the system, either in the computational or in the immune system. This thesis
starts by the study of the capacity of detecting invaders in educated systems. Since
the computational system is able to perform perfect self/nonself discrimination,
the capacity of detection other types of anomalies was studied. Afterwards, the
capacity of CFSs to perform detection of the change in the frequency of ligands
coding the normal behavior of the system, as well as the capacity of detecting
abnormal combinations of the same ligands which had already been presented, were
analyzed. Finally, the capacity of generalizing presentations as legitimate or no-
legitimate were tested when a small fraction of the possible presentations is displayed
in the education stage. In order to be better understood, all the main results were

summarized and presented in separate sections according to the different studies.

4.1 An Initial Model

The systems that will be presented here were the first systems developed in this
thesis. They appeared following the previous work done in Circular Frustrated Sys-
tems - shortly described in section 2.2 - and already published [15, 20, 47]. The
results obtained in these systems were very encouraging concerning intrusion detec-
tion tasks. For instance, a small number of agents is required to perform intrusion
detection; the time needed to perform the task is almost the same independently
of the amount of information to protect and, the most important result, the prob-
ability that an intruder escapes is almost zero and it decreases with the increase of
the size of the system. Also interesting results were obtained in the detection of an

abnormal growth of agents.

The circular frustrated system served as inspiration to build a system with 2
types of agents, presenters and detectors and arbitrarily large diversity. Each pre-
senter or detector has a different ligand and receptor. Different definitions of systems
could be made. Here it is assumed that L; = ¢, independently of the type of the

agent. Detectors have ILists built through the expression :

Li(j) = li+J]
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with i equal to the ligand of the detector and j equal to the position in the IList.
For the detector with i=1 and L;=1, the first and the bottom positions are:
Li(1)= [14+1]=2
Ly (N)= [1+N]=1

To maximize frustration presenters have ILists according to:
Li(j) =i+ —1]

For the presenter with i=1 and L;=1, the first and the bottom positions are:

Ly(1)= [141-1]=1
L;(N)= [14+N-1]=N

In order to better understand the structure of the ILists, their construction is
represented in a simple way in Figure 4.1. The agents’ ligands are represented in
a circle that indicates the ordering assumed and the boundary conditions imposed.
The ligands of the presenters are represented in roman numeral, while the detectors’
ligands are in arabic numerals. On the sides, the IList of both agents with L;=1 are
shown. This is one among other possibilities that will in the same way originate a
maximally frustrated dynamics.

) Top Position(D) i
(D IList Li)=[i+j-1] @1List
i Li(1)=[1+1-1]=1 m

7 | V]

% Y T LiG=li+)] @ ]

— / Hm=ie=2 W

N O® @ G @® [0
Presenters Detectors

Figure 4.1: Representation of the ordering of the ILists for presenters and detectors.

The method that is required for the anomaly detection system should be as gen-
eral as possible. The structure of the ILists should not be determinant in the per-
formance of the detection system, and it should warrant that for each presentation
made by presenters, detectors should be able to perform discrimination self/nonself.

These features are achieved for detection systems, in which presenters and de-

tectors are engaged in a maximally frustrated dynamics. Thus, a negative selection
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algorithm, which selects, within a set of detectors with random ILists, the ones
that maximally frustrate the dynamics in the system has been developed since then.
These systems are called educated systems. This was the beginning of the develop-
ment of the abnormal detection system, as it is now designated.

It is interesting to notice that the main concepts that will differentiate CFSs
from all the other models in the literature[48, 49] are already present in this initial
approach. The agents are seen as optimization makers, which interact with different
agents in order to be paired with agents for which they have maximal affinity. The
selection of detectors is made based on interaction lifetimes. Each detector that
exceeds the threshold of the conjugation lifetime is eliminated and another detector
is introduced to replace it. The new introduced detector has an arbitrary IList
that organizes all the ligands in the system in an arbitrary order. Finally, the
detection is ensured by an extended repertoire of detectors that acts in sequential
confined systems of detection. This first approach, which later inspired the anergy
mechanism, was inspired in the real immune system, in which a network of lymph
nodes promotes several different independent places of detection.

Although these systems are far from the final approach that is the object of this
thesis, the results obtained in these systems justify their discussion. Thus, the results
of the perfect system will be presented showing that, in a maximally frustrated
system, the perfect self/nonself discrimination can be accomplished. Then these
results are compared with the discrimination that is obtained in systems in which

the repertoire of detectors is selected by a negative selection process.

4.1.1 Parameters and Simulations

Both systems, perfect and educated, have 2 types of agents, presenters and detectors,
with 100 agents per type divided into 100 different subtypes. Each agent in the
system has a different ligand and receptor. It is assumed that the ligand of each
agent is equal to its subtype. Presenters in both systems have their receptors defined
in the same way (Figure 4.1). The receptors of detectors are different in educated
and in perfect systems. In the latter, the ILists are built with the strict order
presented in the previous section, while in educated systems the ILists place all the
ligands in the system in an arbitrary order.

The selection of the educated detectors that maximally frustrate the dynamics

of the system is ensured by the negative selection algorithm already defined in
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section 2.3.2. Nevertheless, a different stopping criterion is defined. The process
ends when around 97% of the detectors are eliminated - inspired by the 97% of
detectors that are eliminated in the education process in thymus [1, 2, 17] - , which

corresponds to a 7,.,=75 and typically to around 40000 iterations in the simulations.

Detection in perfect systems is perfectly ensured by a single perfect population
of detectors, as represented in Figure 4.2A. In educated systems a given number of
populations was educated to be integrated in a consecutive sequence of detection
systems as represented in Figure 4.2B. Here, ligands displayed by presenters are
consecutively presented to different independent populations of educated detectors,

represented with separated boxes in the figure, until a detection is signaled.

A

Ligands [pgrfect |Detection?
9. .

Population [NO

Detection?l YES

B
Ligands Pop 1 Detection? Pop 2 Detection? Pop N No
— e >
P NO P NO P Neops Detection
Detection?l YES Detection?l YES Detection?l YES

Figure 4.2: (A) Detection in perfect systems. (B) Detection scheme that uses a
sequential application of different detector repertoires during intrusion detection, in
educated systems.

To compare results from perfect and educated systems, the same systems were
simulated. To test the performance of the intrusion detection system, N;,,=1000
invaders were introduced in both the perfect population or for each educated pop-
ulation. A detection window of W pr7=5000 iterations was used in simulations. To
simulate the effect of introducing a non-educated ligand in the system, the foreign
ligand is placed in random positions on all detectors ILists. The invader is intro-
duced in consecutive populations of detectors until a detection is signaled. After

this, a new invader is introduced and the procedure is repeated.

A detection event is triggered every time a presenter increases the frequency
and the duration of the conjugations, which mathematically means that R>1, with
F=1.05. All the ratios are calculated for both systems at 7¢ :% XTrrax, With 7arax
equal to the maximal conjugation lifetime registered in interactions between self

agents.
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4.1.2 Numerical Results
4.1.2.1 Perfect Systems

Perfect systems have maximally frustrated dynamics due to the ordered structure of
the ILists of presenters and detectors. To estimate the probability of failing intrusion
detection in these systems, 1000 invaders were introduced in the system.

The typical histogram for the frequency of the interactions lasting longer than
T iterations is presented for the invader and for the remaining presenters in Fig-
ure 4.3A. The grey lines represent the probability of each self presenter performing
an interaction that remains for at least 7 iterations, while the black line marked with
circles shows the same curve for the invader. It is clear from the histogram that the
invader establishes consistently longer conjugations and more frequently than the
remaining presenters. An interaction lifetime above which only the invader estab-
lishes interactions can be defined. This means that detection can be surgical; the
response can be triggered towards the intruder without any damage to the agents
of the system.

The selection of a longer lifetime conjugation to evaluate the response can be
inconvenient. Longer conjugations have a small probability of occurring, as can be
seen in the histogram. Thus, a detection based on short contacts is more convenient
in an intrusion detection system, because these events are more likely to occur.
The shortness of the lifetime to trigger responses forces that more than a single
interaction should be required to initiate a response, in order to minimize false
positive errors. This quantification for smaller lifetimes is captured by the ratio R
- already defined in section 2.3.2, and calculated at 7o. The lifetime selected to
make the computation is represented by the vertical dashed line in the histogram.
The detection ratios R are ordered and presented for all the invaders as well as the
respective histogram (Figure 4.3B and C, respectively).

These results show, that as in circular frustrated systems, intrusion detection can
be perfectly achieved in perfect systems. An interaction with a lifetime longer than
Tc is, at least, one order of magnitude more probable for the invader than for a self
presenter. These results are independent of the value of 7¢, while the magnitude of
the value of R depends on the lifetime in which the analysis is made. Short lifetimes
have small associated ratios and big lifetimes have higher ratios.

These results agree with the results obtained for circular frustrated systems.

Perfect systems seem to be the solution for the algorithm of a computational system
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Figure 4.3: Numerical results obtained with an ideal system with 100 agents of
each type. (A) Frequency of contacts lasting longer than 7 iterations, for the agent
presenting the foreign ligand (circles) and for the other presenter agents (grey lines),
for Wppr=>5000 iterations. (B) Detection ratio R calculated at 7¢=8 for all foreign
ligands and (C) respective histogram.

which has a detection system as main goal. They do not seem a starting but an
ending point for the computational system. However, perfect systems are not so
general as required. One of the limitations of perfect systems is that all the ligands
should be known in order to be introduced in the strict order of the ILists. Every
new agent should be seen as a foreign agent, which means that every new self
agent should be introduced in the system after the ILists are built. In addition,
the increase in the system size requires the ILists to be modeled as a mathematical
function so that the algorithm has practical applications. The codification of the
ILists in mathematical functions is possible. However, the strict ordering of all the
ligands as in the IList is not possible in a simple way. Thus, it is necessary to develop
different approaches in CFSs so that the role of the structure of the ILists is not so

crucial to accomplish detection.
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The results of perfect systems were the beginning of an anomaly detection system
that combines not only the intrusion detection capacity, but also the detection of
anomalies related with homeostatic perturbations, the growth in the expression of
some ligands instead of other and the abnormal combination of ligands in a given

presentation shown by presenters.

4.1.2.2 Educated Systems

Emergent Repertoire of Educated Detectors

The main goal of the education process is to select a set of detectors that max-
imize frustration. About the real immune system is known that lymphocytes that
strongly react with self presenters are eliminated and replaced by other detectors
with different receptors. In the cellular frustration framework, the strength of a
reaction is measured not by the affinity between ligands and receptors, - as in the
traditional approaches -, but by the duration of the interaction. Thus, detectors that
interact with maximal affinity can stay in the system if the interactions that it es-
tablishes have short lifetimes. In this algorithm, detectors are eliminated when they
establish the longest interactions, independently of the affinity of the interaction.

In this method, every time a detector establishes an interaction longer than a
Tneg Value, its IList is randomly reshuffied, as if a new detector was introduced in the
system. Through a non-directional method of selection, all detectors that are not
frustrated are eliminated. Ideally, this process should be ended when all detectors
have ILists that allow the system to perform a maximally frustrated dynamics with
conjugation lifetimes similar to the ones registered in perfect systems. Nonetheless,
computationally this state is only possible with the ordered ILists. Different criteria
can be defined to finish the selection of the detectors. Inspired by the real immune
system, the population of detectors is educated when around 97% of the detectors
are deleted, which corresponds to a 7,.,=75. This process is accomplished after
around 40000 iterations, which means that the education process is not exhaustive.
The education process reduces dramatically the conjugation lifetimes established by
agents with a random and an educated population (Figure 4.4A and B, respectively).
Each grey line represents the frequency of the interactions lasting longer than 7
iterations (P~,) in both systems, random and educated.

To understand the effect of the education process on the ILists, all the detectors’
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Figure 4.4: (A, B) Frequency of pairs lasting longer than 7 iteration steps for every
self-presenting agents(grey lines) and the average for all agents(black line), for a
random and an educated population (7.4=75), respectively. (C, D) Average devi-
ation of the value in a given position of the ILists for all detectors in an educated
system and a random system, or between two educated systems with different levels
of education, respectively.

[Lists were analyzed and compared with the detectors’ ILists in the perfect system.
For each position of the ILists, the deviation between the ligand placed in the end
of the education process and the ligand that would be there in the perfect system

was calculated, D;:
N
1 . erf .
Dj=+ > Li(G) = L () (4.1)
i=1

where [j] = jO(j)+(j+N)0(—j) represents the deviation from the ideal position.
Here 60(j) is the Heaviside function. For instance, if in the first position of an IList
there is a ligand that should be on the bottom, then this adds a N-1 contribution
to the distance. The random and the educated systems have almost the same de-

viation in the ILists when compared to the perfect system (Figure 4.4C). A better
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ordering is achieved if an extensive education process is applied which increases the
number of deleted detectors (Figure 4.4D). Although random and educated sys-
tems have similar deviations, there is a dramatic effect on the frustrated dynamics
generated. While a reduction of almost one order of magnitude in conjugation life-
times is achieved with the education process, the typical interaction lifetimes are
much greater than in the perfect case. This means that the system is far from the

maximally frustrated dynamics generated in perfect systems.

Intrusion Detection in FEducated Systems

With educated populations, results of self/nonself discrimination are far from
perfect. Simulations were run introducing the same number of invaders, 1000 as in
the perfect case. The no-detection rate was around 76%. This rate is improved with
extensive education processes, but it never reaches 0%. After extensive education

processes, the no-detection rate is around 15%.

The solution for perfect self/nonself discrimination is to assume that in educated
systems intrusion detection is achieved not by a single population but by a set of
educated populations. Inspired by the real immune system, several populations were
educated with the same T,y (Tneg=75). Several independent populations of detec-
tion ensure detection in educated systems, according with the sequence presented

in Figure 4.2.

The invader has a ligand that is different from self, because it had never been
presented in the education process. While detectors’ ILists were shaped to avoid
placing the ligands of the agents that have maximal affinity for them in top po-
sitions, the ligand of the invaders is randomly placed in the ILists. The sequence
used increases the probability of the invader being detected. The increase in the
number of detectors that ensure detection increases the probability of the detectors
for which the invader has maximally affinity placing the ligand of the invader in the
top position of the ILists. The question here is how many populations are required

to ensure that a perfect discrimination is accomplished.

As in the previous section, 1000 invaders were introduced in the system and the
dynamics generated was analyzed. Typical cumulative distributions for conjugation
lifetimes that last longer than 7 iterations are presented for a single population,
in a no-detection and a detection case, in Figure 4.5 A and B, respectively. As in

the perfect case, each grey line represents the dynamics of each presenter, while
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Figure 4.5: Typical cumulative distributions of interaction lifetimes for (A) no-
detection and (B) detection cases. Cumulative distribution for conjugation lifetimes
are presented in thin grey lines for self-presenters and with circles for the foreign lig-
and presenter. (C) Number of invaders escaping detection as a function of the num-
ber of consecutive detector populations used for educated (circles) or non-educated
(dots). (D) Maximum detection ratios obtained after the sequence of detections, for
each foreign ligand introduced.

the black line marked with circles represents the dynamics performed by the pre-
senter that displays the foreign ligand. In Figure 4.5 B, the line that represents
the foreign element clearly stands out from the remaining ones which represent the
self presenters. It is interesting to notice, that both distributions have a dynamics
similar to the one performed by self presenters and illustrated by the grey lines in
the histograms. This last observation suggests that the education process generates
an equivalent set of detectors, independently of the process in which the detectors
are educated. The repertoire selection process is robust.

The number of invaders that escape detection decreases exponentially with the
increase of the number of consecutive populations - Nop - that scan the presen-

tation. After 30 populations, only one invader can escape detection, all the other
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999 invaders were detected at least by one population. If the same invaders are
introduced in a set of no-educated populations, the number of invaders that escape
detection linearly decreases at a slow rate with the number of consecutive random
populations (Figure 4.5C). The ratios obtained for each invader are presented in
Figure 4.5D. Only around 0.5% of the invaders have ratios below 2, whereas 75%
of the invaders have ratios higher than 10, which means that the probability of an
invader performing longer conjugations is 10 times higher for the invader than the
less frustrated self presenter. These differences could be greatly increased if the
triggering event was based on the frequency of formation of long conjugations. For
instance, if it required a consecutive number of events with a given lifetime to trigger
a response.

The detection ratios are smaller if compared with the ratios obtained for perfect
systems. This was antecipated because in educated systems the dynamics generated
by the educated ILists is not maximally frustrated. When the invader is introduced
in the system, its ligand appears in a random position of the ILists of all detectors.
Nevertheless, the relative order of the remaining ligands is not perfect either. Con-
sequently other self ligands perform conjugations that are longer than in the perfect
case. Thus, the ratios decrease.

An extensive education process or an increase in the number of populations
considered will be enough to obtain perfect self/nonself discrimination. However,
the main goal of this section is to show how the main ideas started and evolved
from this first approach. In the next sections better model concerns the intrusion
detection and homeostatic responses to perturbations will be discussed in the light
of the CF framework.
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4.2 Positive Education

In immunology, it is known that the positive education process ensures that T cells
that can not interact with APCs are not positively selected and die by neglect
1, 2, 17].

The positive education was the most puzzling concept in the CF framework.
Several disconnected results were obtained in different phases of this work, concern-
ing the goal of this selection process. In symmetric systems with total connectivity,
the positive education process seemed not to play any effect. On the other side, the
positive education process adjusts the number of subpopulations in asymmetric sys-
tems and it increases the interactivity between presenters and detectors, although
the interaction lifetimes registered in the dynamics were the same in most cases,
with or without the process. However, in systems with limited connectivity, it be-
came clear that the positive education can be responsible for the decrease of the
threshold 7., during the education process.

The discussion of the effect of the positive education will be held with different
systems throughout this section . These systems will never be used again in this
work. However, they were built to clearly highlight the effect of the positive educa-
tion on each case. Due to this fact, a small section of Simulations and Parameters
will be presented only with the parameters that are common to all the systems
considered. The details of each system will be presented in the Numerical Results

section together with the results obtained in each case.

4.2.1 Simulations and Parameters

During the positive education process, all the detectors that do not bind for 7,,s
iterations are eliminated and new incoming detectors are introduced in the system.
These new detectors have reshuffled ILists as well as a random ligand.

In the beginning of the positive education process, 7, is initiated with the value
5000, the value of the number of iterations Wgpy taken between its update. 7p,s
is updated to the maximal value that a detector remains without establishing an
interaction with a presenter. After this, every time a detector remains 7,5 iterations
without interacting, it is eliminated and another detector enters the system. If none
of the detectors interacts during Wgpy time steps, the value of 7, is again updated

and the process goes on.
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4.2.2 Numerical Results
4.2.2.1 Positive Education regulates detectors subpopulations

To understand the effect of positive education on the regulation in number of the
subpopulations, a 2-cluster asymmetric system is considered. Presenters were differ-
ently distributed: 60 and 40 presenters are placed in clusters 1 and 2, respectively.

All the detectors are placed initially in cluster 1 (Figure 4.6).

Begin of Positive Education Process End of Positive Education Process

60 Presenters 100 Detectors

0000 00000 0000 000 0
0@ . 9@ o0 -

40 Presenters

Figure 4.6: Assymetric system considered in the beginning and in the end of the
positive education process.

The evolution of the number of detectors in each cluster is presented with the
duration of the simulation (Figure 4.7). The total number of detectors in cluster 1 -
Np, - tends to be equal to the number of presenters in the same cluster - Np, - and
the same for cluster 2, that is, the number of detectors and presenters in the second

cluster is almost the same - Np, ~Np and Np,~Np,, as presented in Figure 4.7 .
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Figure 4.7: Evolution of the number of detectors in each cluster along the positive
education process: (A) cellular automaton model; (B) mean field equations approach
and (C) both cases.

To validate this result, mean field equations were derived for all the conjugated
and non-conjugated agents. Also as in the previous sections, the interactions that
contribute to the formation and to the destruction of each species were considered.
Whereas in the other case detectors have educated ILists (Section 3.1.2). Thus,
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different probabilities are considered according to the ligands of the presenters with
which the detector is interacting. In order to simplify the equations, only three
probabilities of optimizations were considered: pys, p; and pg - with py,=0.5, p;=0.3
and pg=0.7 as in section 3.1.2. Here, an additional term that models the change of

cluster of detectors during the education process is introduced in the equations:

dnplpl
Tat np,¢(Npg + Nppy) + PInp gD, + 1Dy (PMTP D, + PIME,D,)
— np, D, (Pdiss + PsNp,, + Pumnp, D)
dnpl Do
T — nplan + TLPI (pMnPng + pSnPQDQ) - nP1D2 (pdiss + nD1¢ + pMnP1D1+
2pp,p, + Punp, + PINp,,)
dnp1¢ .
T Paiss(p, D, + NP D,) + 1p Dy (PMNPy + PsTPg + PuTP Dy) + 1Py D,
(pmmnpy + pripg + Prnp,p,) — np¢(Np,, + NDyy + PUNP D,
+ Pimp,p, + PMmNp Dy + pSnP2D2)
d?’LD1¢ .
T Ddiss(Mp Dy + 1pyDy ) + pyDy (MDye + DIMp Dy + PMNPD,) — NDyo(Mp 6

+ NP, +npp, — O.5ﬁ1npl¢ + O.5ﬁ2np2¢)

Here 0.581mp,¢ and 0.589np,4 represents the fraction of detectors that are elimi-
nated and created due to the lack of interactions of D¢ and Dy¢ agents, respectively,
and Bis < (1-7, ,,)™* np, ,, models the triggering of positive selection. A small
probability of natural dissociation can be considered, pgss=0.001. The other equa-
tions can be easily obtained by the replacement of (P, Py, Dy, Dy)— (P2, Py, Do,
Dy).

More processes can be considered to account for the complex optimization pro-
cess performed by each agent. This would introduce more parameters. However,

the increase in the complexity would not be translated into a deeper comprehension
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of the positive selection process, which is captured with these simple assumptions.

The same system which was simulated with cellular automaton. There is a
good agreement between the results obtained in the cellular automata model and
the results obtained through the dynamical mean field-like equations(Figure 4.7C).
Despite the fluctuations, the positive education process leads the system to a config-
uration in which the number of detectors is equal to the number of presenters in the
same cluster, Np, ~Np =60 and Np,~Np,=40, in the end of the positive education
(Figure 4.6B).

The final configuration after the education process is the one that ensures that
detectors have presenters that will always accept them as preferred agents (Fig-
ure 4.8A). This prevents detectors from not being positively selected. Here, in the
configuration obtained all the numerous presenters P, will accept detectors D; if
they are alone or with a detector from the other subtype, Dy. This mechanism
ensures that detectors interact with these presenters and they avoid elimination due
to lack of interactions.

A Preferred by P, B

50 000 0000 0 000 00 °:

Preferred by P,
2 H H
10 @ o0 0O ©000-

Figure 4.8: (A) Configuration of the system after the selection process. (B) Alter-
native asymmetric configuration.

The opposite configuration Np, =Np, and Np,=Np, promotes that Dy will have
difficulties in interacting with P; because they prefer D; (Figure 4.8B). Conse-
quently, Do will only be able to interact with P; that are alone, because the non-
conjugated P; are the ones that will accept D;. None of the conjugated D; will
change conjugation because they are satisfied with D; and even if they are conju-
gated with other Dy, they will not change. Interactions with Py are also difficult
because they are in small number in comparison with Dy and the competition for
these presenters is high. In this configuration the detectors of Dy subtype have
difficulty in interacting with presenters and they can not easily avoid elimination.

It is easy to understand that the positive education balances the number of
presenters and detectors in systems with different numbers of agents within the
clusters. However, does this mechanism have any relevance in symmetrical systems

for which presenter agents in different subtypes appear in equal numbers? In order
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to better understand the relevance of the positive education process in symmetric
systems, three different education conditions were imposed to a 2-cluster system
with 50 agents per cluster. In the first simulation only the positive education was
considered (Figure 4.9A), while in the second it is assumed that detectors that
exceed the 7,., of conjugation are replaced and the new detectors are placed in an
arbitrary cluster - negative education process with change of ligands (Figure 4.9B).

Finally, in the last simulation both processes were considered (Figure 4.9C).
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Figure 4.9: Number of detectors in the first cluster along the education process, con-
sidering positive education, negative and both processes, A, B and C, respectively.

In systems in which only one process was considered, positive or negative edu-
cation, the number of agents in each cluster fluctuates much more than when both
precesses were considered. The positive education process ensures that during the
education process the number of detectors in each cluster is almost the same.

The positive education process is the mechanism responsible for the regulation of
the number of detectors in each cluster during the education process. Bearing this
in mind, symmetric systems will be considered from now on to discuss the remaining

goals of the positive education process.

4.2.2.2 Positive Education adjusts the Network of Interactions

The previous results show that positive education plays a role in the regulation of
the number of detectors in each subtype. This mechanism is responsible for ensuring
that although different detectors are continuously entering the system, the number
of detectors in each subtype is almost the same as the number of presenters in the
corresponding subtype. Here, the effect of the positive selection on the reduction
of the conjugation lifetimes will be studied. From the previous section, nothing
suggests that positive education process could favor the convergence of the system.

However, a deeper comprehension of the mechanisms in the detectors’ selection pro-
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cess imposes a detailed study. To emphasize the importance of positive education,
a system in which a ligand is presented by several presenters was selected. In addi-
tion, restricted connectivities were considered. The system selected plus the reduced
connectivity will favor the selection of ligands in the top positions of ILists will be
crucial for the selection or not of each detector. The ILists should ensure that each
detector interacts with presenters and should also ensure that this interaction is
frustrated. Any small mistake in the ILists concerning one of these two aspects will
dictate the elimination of the detector.

A system with Np=Np=60 and 2 clusters with the same number of agents was
considered (Figure 4.10). Agents are represented by circles, together with their
ligand - a number between 1 and 26 for the presenters and equal to 1 or 2 for the
detectors. The system has groups of agents sharing a common ligand (for example,
21 and 22 in the first cluster are presented by 5 presenters each). Presenters have
two types of receptors, all presenters of the first cluster have detectors of the first
cluster on the top of their IList, followed by the ones of the second cluster. In the

second cluster, presenters do the opposite.

Presenters Detectors
1
100 - 000000 O O
20 5 5 30
00000000 0 0
1
"""""""""""""""" 5 10 10 30

Figure 4.10: Population considered in the text, with repeated ligands displayed by
presenter agents.

To study the convergence of the education process with or without positive ed-
ucation, this system was simulated with 3 different connectivities. One in which
each detector interacts with all the presenters in the system, i.e. k=26. Another in
which each detector interacts with the top 20 ligands, k=20, and finally, a third one
which has even smaller connectivity, k=10. The generic decay of the 7,., during the

education process is presented in the case only negative selection is considered, NS,
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and in the case both processes were simulated - PS+NS. Ten independent decays
with different connectivities for the detectors were simulated in each case during 107

iterations each.
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Figure 4.11: Decay of 7,4 for systems with and without positive education, NS4+NP
and NS, and different connectivities: (A) k=26, (B) k=20 and (C) k=10.

In systems with total connectivity, the decay of the conjugation lifetime - 7,4
- is similar, with or without positive education (Figure 4.11A). A different result is
obtained if the connectivity of the detectors is restricted. For smaller connectivities,
positive selection is crucial for decreasing 7,4, as shown in Figure 4.11B and C. The
smaller the connectivity, the higher the difference between the final 7,4, with and
without positive selection.

To analyze the effect of the different education processes on the dynamics gener-
ated, cumulative histograms are presented for systems with different connectivities,
k=26 and k=10 (Figure 4.12 and Figure 4.13, respectively). The red lines represent
agents from the first cluster, while the black lines represent agents from the second.

The number and the duration of the interactions established are almost the
same with only negative education or with both processes for systems with total
connectivity (Figure 4.12A and B). There is a difference in the probability of each
detector staying in a non-conjugated state. In systems with only negative education,
agents from the first cluster have higher probability of staying alone (Figure 4.12C).
In systems with positive and negative education the probability is equal for all the
detectors (Figure 4.12D).

For systems with limited connectivity the results are completely different. Due

to the absence of the positive selection, detectors were not able to select the net-
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Figure 4.12: Probability of establishing a conjugation with a lifetime longer that
T iterations, P, for each detector (A, B) or the probability that detector stays
non-conjugated for a time longer that 7 iterations (C, D) for a system with k=26.
Different education processes are considered: only negative selection, NS (left), or
positive and negative selection processes, PS+NS (right). Red lines represent agents
from the first cluster, while black lines represent agents from the second.
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Figure 4.13: Probability of establishing a conjugation with a lifetime longer that
T iterations, P, for each detector (A, B) or the probability that detector stays
non-conjugated for a time longer that 7 iterations (C, D) for a system with k=10.
Different education processes are considered: only negative selection, NS (left), or
positive and negative selection processes, PS+NS (right). Red lines represent agents
from the first cluster, while black lines represent agents from the second.
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work that allows the minimization of 7,.,. Hence, longer conjugation lifetimes are
performed more frequently for the negatively educated system (Figure 4.13 A and
B). Furthermore, no-conjugation lifetimes are also more probable in this system
(Figure 4.13 C and D).

The smallest decrease of the 7,., during the education process in the absence
of the positive education can be easily understood with a toy model with small
diversity and restricted connectivity. A 2-cluster system with only 3 different ligands
presented by presenters is considered. If each detector is allowed to interact only
with 2 of the 3 possible ligands, 12 different ILists are available (Figure 4.14). In
black are represented the ILists that ensure a maximally frustrated dynamics in the
system. The ILists that should be eliminated by negative education are shown in
red, while the ILists that should be eliminated by positive education because the

detectors do not establish interactions properly are represented in blue.
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Figure 4.14: Representation of a simple model that highlights the importance of
positive selection in systems with limited connectivity. Presenters of the first subtype
present ligand 1, while presenters of subtype II present either ligand 2 or 3. Detectors
with ILists represented in red establish stable pairs and consequently are eliminated
by negative selection. Detectors represented in black form a frustrated set: and
conjugation involving these agents can always be destroyed either by a presenter or
a detector. Similarly detectors with ILists represented in blue do not establish long
contacts with presenters 2 or 3, because any detector of subtype II destabilizes the
pair.

In the absence of positive selection, the detectors in black are selected together
with the ones in blue (Figure 4.15 a, b). Moreover, the number of detectors with
the ILists in blue increases. Firstly, they are not eliminated by negative education,
because they almost never interact. Secondly, they are continuously created, that
is, for each eliminated detector by negative selection in cluster 1, a detector with the
green ILists is generated with ~17% of probability. As a consequence, the global
frustration of the system decreases and the 7,4 in the end of the education process is

higher than the final 7,., achieved in a selection process with positive and negative
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selection (Figure 4.15 ¢, d).
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Figure 4.15: Impact of positive and negative selection on the evolution of detec-
tors frequencies for the simplified model in Figure 4.14. In a) and c) only negative
selection is applied. In b) and d) positive and negative selection are applied simul-
taneously. Lines in blue in a) and b) represent the total number of detectors with
[Lists represented in blue in Figure 4.14; in red are represented the total number
of detectors that establish stable conjugations; in black are represented the total
number of detectors engaging in frustrated interactions. In c¢) and d) are displayed
conjugation lifetimes for the most relevant conjugates in the population. As stable
agents are eliminated, their lifetimes are not represented.

These results show that if no positive selection is applied, neglected detectors
accumulate, and the maximum conjugation lifetimes are larger than in the model in
which positive selection is applied and these detectors are eliminated. These results

agree with numerical results obtained for cellular automata with more ligands.
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4.3 Negative Education

In Immunology, the negative selection process eliminates all T cells which have
highest affinities to self peptides presented in the Thymus [1, 2]. This elimination
ensures that T cells do not react in a harmful way with self cells in the periphery.
The main mission of the negative education process is to reduce the maximal affinity
with which the MHC complex is recognized by detectors.

In CFSs the goal of the negative education is not to reduce the affinity of the
interactions between agents, but to increase the frustration of the dynamics that
is generated between presenters and detectors. This process should warranty that
detectors cooperate in the detection task, regardless of which detectors perform the
detection.

The selection of detectors by the education process is absolutely crucial in CFSs.
Without a frustrated dynamics the system can not perform any of the detection
tasks proposed. Due to this, several studies about the process were carried out,
concerning the convergence of the education process and the effect of the education
process on the ILists and on the dynamics of the system. All the knowledge about

this process will be presented along the next section.

4.3.1 Simulations and Parameters

Contrary to the previous section, in which different systems were used, in this section
the same generic system is considered: a symmetric system with 60 agents of each
type, equally divided into clusters - 2 or 3 clusters. The connectivity is total, all
agents interact without restrictions with the agents of the opposite type. Presenters
have different ligands within the cluster but the same receptor, which is built in

such a way that:
Ro(i) = (C+(i=1))0(Ne— (C+(i—1))) +(C+(i—=1) = N)O((C+(i—1) = Ne)) (4.2)

in which i represents the position in the receptor, C the cluster, No the number of
clusters and 6 represents a discrete form of the Heaviside step function as presented
in section 3.1.1.1. Detectors have the same ligand within the same cluster but
random receptors at the beginning of the education process.

All systems were simulated during ~107 iterations or until 7,,., of the education

process reached a predefined 7.4 value. This fixed value of 7.4 is the minimal value
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Tneg achieved the first educated population after 107 iterations. While the fixed
number of iterations is used to study the convergence of the education process, the
fixed 7.4 value is used to educate the extended repertoire of detectors - this criterion
ensures that all populations are almost at the same education stage. Regardless of
the stopping criterion selected, 7,4 is equal to 5000 at the beginning of the process
and it is updated if, none of the detectors remains conjugated during 7., iterations,
during the education window (Wgpy=5000). In this case, 7,., decreases to the
maximal conjugation lifetime established in Wgpy iterations. Every time that,
during the education process, a detector remains conjugated 7,., iterations with a
presenter, the detector is eliminated and replaced by a new incoming detector with
a random receptor.

To study the negative education process in different situations, several conditions
were changed, such as the number of agents, the number of clusters, the connectivity,
etc. The conditions that are changed in each case are properly presented before the
presentation of the corresponding numerical results.

In order to increase the comprehension of the results, this section is divided in
two parts. In the first, the convergence of the negative education process will be
presented. Then, the effect of the negative education process on the ordering of the

[Lists and on the dynamics that is generated in an educated system will be shown.

4.3.2 Numerical Results
4.3.2.1 Increase in number of clusters allows better convergence

To estimate the effect of the introduction of different subtypes, simulations with the
same number of agents - 60 agents per agent type -, but different number of subtypes
were performed (Figure 4.16). The first system considered is a 2-cluster system.
Presenters and detectors are equally divided into clusters (Np, =Np, =Np,=Np,=30).
The numbers inscribed represent the ligand of each agen