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resumo 
 
 

Neste trabalho é desenvolvido um método de detecção de anomalias, baseado 
no mecanismo da frustração celular. Este método é capaz de detectar com 
grande precisão desvios de um comportamento característico de um sistema 
complexo. Estes desvios podem ser devidos a intrusões ou a anomalias no seu 
funcionamento. 
O método propõe ainda uma compreensão alternativa de diversos fenómenos 
observados  em Imunologia.  
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abstract 
 

This work develops a method for anomaly detection, based on the cellular 
frustration mechanism. It is capable of detecting accurately deviations from a 
characteristic behavior of a complex system. These deviations may be due to 
intrusions or anomalies in the system’s normal functioning. 
The method also proposes an alternative conceptual approach to a diverse 
range of phenomena observed in immunology. 
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1
Introduction and Motivation

The purpose of this thesis is to develop a method that detects deviations from nor-

mal behavior of a complex system. The need for a method that may be applied

in di↵erent contexts, trustable and easy to implement makes the challenge com-

plex but, at the same time, extremely relevant. Computer security, chemistry and

medicine are a few examples of fields in which complex strategies are needed to

detect deviations from a system’s normal behavior.

To better understand the complexity of this task, an analogy with proofread-

ing a text can be enlightening. Proofreading a text is also an anomaly detection

task. In what respects orthography, a check of every word against the contents in

a dictionary seems to solve the problem. Although the number of entries is huge,

di↵erent strategies can be thought to facilitate finding each word in the database,

a task that can be quickly accomplished. In this sense, the text could be verified

word by word, and mistakes due to misspellings or use of words that do not exist are

easily detected. However, other issues need to be considered in the task of verifying

a text.

The correction of a text comprises other issues, namely grammar considerations,

concordance of gender, number, etc., and even a more di�cult one, the analysis

of the meaning of each word in the sentence in that specific context. In the case

of concordances, all the possible combinations of words allowed or alternatively all

the combinations of words forbidden could be listed, together with the words of the

language - considering that the storage of all this information is possible. Concerning

the analysis of meaning, the structure of the sentence can be correct, all words can

be spelled correctly, however their association in a given context can be incorrect.

In this case, databases can not detect this type of anomalies.

This simple example clearly illustrates problems that anomaly detection systems
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face when monitoring complex systems. In complex systems the number of patterns

required to code the normal behavior is huge. Just alike, the number of potential

anomalies is also enormous. In addition, it is also expected that this approach should

integrate all the features of an anomaly detection system: it should respond against

unseen patterns or wrong association of patterns.

The previous example of the text can be easily translated into a new scenario, in

which the words in a text are displayed by cells in interaction; the idiom that rules

the legitimate behavior is encoded in the interactions among cells, and the system

that detects anomalies in the text works as an immune system. A quick search on

the web about what the immune system is returns the following generic definition:

“A system of biological structures and processes within an organism that protects

against disease”⇤. In order to function properly, an immune system must detect a

wide variety of pathogenic derived antigens, arising from viruses to parasitic worms,

and distinguish them from the organism’s own healthy tissue.

It is widely accepted that the immune system works to keep the body healthy.

What is not consensual is how this is accomplished. Is this done by reacting against

what does not belong to the body and, if this is the case, how perfectly can this

be achieved? This is the basis of the so called self/nonself discrimination dilemma.

There are textbooks that maintain that this discrimination is imperfect [1], while

others argue that a better explanation is required [2]. The discrimination self/non-

self is “excellent but imperfect” ([1], p. 71), or “immunology is still struggling to

explain major phenomena such as discrimination of self from nonself” ([2], p. 726).

In any case it would be important to know if there is any mechanism that could

guarantee that perfect self/nonself discrimination could be achieved under immuno-

logical plausible conditions. This could have important implications as it could

have worked as an important evolutionary force that shaped the development of the

immune system.

The immune system has served as inspiration to explore di↵erent approaches

in the research of anomaly detection systems. However, up until now, none of the

approaches performs perfect discrimination self/nonself for systems with arbitrary

diversity [3–7]. To some extent, it has been questionable the relevance of these

approaches for computer security [8].

In the computer security field several other approaches have been proposed for

anomaly detection. Some use bayesian statistical analyses; others use databases for

⇤
http://en.wikipedia.org/
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the detection of foreign elements [9–11]. The first approach has the major advan-

tage of detecting illegitimate behaviors similar to legitimate behaviors. However, it

has di�culties to decide if deviations from “normal” behavior are fluctuations or

anomalies. The system only reacts when the anomalies have a significative impact

on a few features of the system’s behavior. Typically, these approaches lead to large

numbers of incorrectly signaled events (false positives), while the number of not

signaled anomalies (false negatives) is also low.

The approach based on the detection of foreign elements can be divided into

di↵erent perspectives: detection of anomalies already known and detection of un-

known anomalies. The methods based on detection of anomalies already known

require that all anomalies are stored in a database so that they can be recognized.

The storage of all the possibilities is impossible, because the number of anomalies

is huge and new anomalies are always appearing. Thus, the database should be

continuously updated so that the most relevant anomalies remain, while others are

discarded. In addition to this limitation, they can not detect new anomalies in the

system. Anomalies that were not in the database are classified as legitimate, so

there is always a considerable number of mistakes in the approach.

In this thesis, we propose a new method of detection that is closer to the last

class of methods. The singularity of this method is that it detects simultaneously

di↵erent types of anomalies that the remaining methods do not detect. To do so,

it takes advantage of a new organizing principle for complex systems to generate a

dynamical system of agents in interaction. The deviation from the “normal” behav-

ior of the system emerges from the complex dynamics of the population of agents in

interaction. An anomaly is promptly signaled by a type of generalized proofreading

mechanism embodied in the method [12–16]. This approach ensures perfect detec-

tion against invaders with total tolerance towards self agents. This kind of detection

can be combined with the detection of abnormal configurations of legitimate agents.

These features make the approach relevant for applications in anomaly detection in

di↵erent areas, but also increase the understanding of potential mechanisms ruling

the adaptive immune system in a physicists’ sense. Due to the fact that this ap-

proach is based on an agent-based dynamics, no information concerning anomalies

needs to be stored and the number of mistakes due to false positive or false negatives

is minimized. The detailed discussion of this approach is the goal of this work.

This thesis is divided into chapters according to the topics discussed. In the

next chapter basic immunology concepts that inspired the model will be briefly
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presented, followed by the introduction of the Principle of Maximal Frustration

which rules the dynamics responsible for the detection mechanism. Afterwards,

the model is presented by a set of definitions which clearly point out the most

important details. After this, the agent-based model and the associated algorithm is

presented. This is crucial for understanding the model developed. The Background

Theory chapter ends with the discussion of the main concepts related to the model,

which is discussed and compared in some respects with other models and other

conventional immunological perspectives. In the following chapter, the validity of

the results obtained by the cellular automata approach are discussed and compared

with the results of the mean field equations. The Main Results chapter presents an

exhaustive collection of results concerning di↵erent issues. The chapter starts with

the first system developed in this thesis and the main results concerning intrusion

detection are presented. After this, the results are presented in several sections

covering detectors repertoire education (positive and negative selection process) and

later anomaly detection. This work ends with a final discussion in which the main

achievements are presented, and the perspectives for future work proposed.
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Background Theory

2.1 Basic Immunology Behind Cellular Frustrated

Systems

The immune system is, as mentioned before, the inspiration for the modeling of an

intrusion detection system based on the cellular frustrated ideas. For this reason,

it is necessary to understand which are the essential mechanisms that the immune

system uses to achieve its purpose. In this chapter only a brief description of the

main issues that will be integrated in the system will be presented, not an exhaustive

exposition of all the details of what is known in immunology. Throughout the thesis

the topics discussed here will be revisited and their meaning will be discussed in the

frustration framework.

In mammals, the immune system is a complex system in which proteins, cell and

organs interact in a complex network of interactions with the aim of protecting the

body from a wide range of potential threats such as microbes, viruses, etc [1, 17].

The immune system provides two main mechanisms of defense which interact coop-

eratively: the innate immune system (also called natural or native immunity) and

the adaptive immune system (specific or acquired immunity). The innate immune

system provides the first defense against invaders. If invaders are not blocked by

anatomic barriers, innate immunity provides a response where specialized cells are

activated ingesting these invaders. These responses are non-specific and eliminate a

big number of invaders. When the innate immune system fails for some reason, the

adaptive immune system receives a stimulus from the innate immune system and it

begins its action. In opposition to the innate immune system, the adaptive immune

system is adaptive, acquired and specific. This means that it can evolve during the
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lifetime, constantly adding patterns to its repertoire of defense, as well as increasing

the specificity of the recognition of a given foreign pattern [1, 17].

Adaptive immune responses are provided by cells named lymphocytes, which are

activated when they recognize antigens. Lymphocytes develop from stem cells but

they have two di↵erent lineages: in bone marrow and another in thymus, which

generate mature B lymphocytes and mature T lymphocytes, respectively. B lym-

phocytes recognize soluble or cell surface antigens and di↵erentiate into antibody-

secreting cells [1, 17]. However, this thesis is not concerned with this type of re-

sponse, it will focus on the initiation of the immune system response by T lympho-

cytes.

T lymphocytes, as referred to earlier, mature in thymus[1, 17]. Mature T lym-

phocytes recognize in their receptor only antigens presented in specialized molecules

called major histocompatibility complex (MHC) molecules, which exist on the sur-

face of Antigen Presenting Cells (APCs). Antigen Presenting Cells are specialized

cells that capture microbial antigens in the body and transport them to peripheral

lymphoid tissues where these cells present the antigens to the T lymphocytes. APCs

are also responsible for the activation of T Lymphcytes. This specific antigen recog-

nition in T lymphocytes is performed by a cell surface protein called T cell receptor

(TCR). T Cell receptor could be able to bind and to recognize antigens in a close

range of a�nities. The recognition of all the potential antigens demands that the

TCR should be prepared to cover an enormous diversity [1, 17].

The receptors diversity of T lymphocytes is generated in the maturation pro-

cess, which all T lymphocytes undergo. This maturation process comprises three

main stages: proliferation of immature cells, expression of antigen cell receptors

and of lymphocytes that express useful antigen receptors[1, 17, 18]. Firstly, in the

maturation process there is a huge proliferation of immature T lymphocytes. This

increase in number favors the expression of valid antigen receptors for a larger num-

ber of cells. This process will occur in other moments of the maturation process.

Secondly, the expression of the antigen receptor occurs. The antigen receptor has

variable regions that are originated by somatic recombination of the gene segments.

This process is responsible for the diversity of the antigen receptor of the immature

T lymphocytes. These two stages alternate in cycles in which functional antigen

receptors are selected and proliferated, and those lymphocytes that fail the expres-

sion of the antigen receptor die, because they do not receive the necessary survival

signals. Finally, in the last step of the maturation process, T lymphocytes undergo
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a final test to check the recombination of receptors: the positive and negative se-

lection. If thymocytes are enable of interacting with self-peptide-MHC complexes,

they undergo programmed cell death, a mechanism known as death by neglect [19].

In these way only a fraction of thymocytes are positively selected and proceed to

the next stage of the development process. During negative selection, the same fate

happens to lymphocytes that strongly bind with antigens, lymphocytes die by apop-

tosis. T lymphocytes with high a�nity can start responses against cells of the body

and for this reason they should also be eliminated. From this maturation process, a

repertoire of T lymphocytes emerges with huge diversity of antigen receptors, which

ensures a prompt attack against invaders and moderate a�nity against self antigens

and, consequently, total respect for what belongs to the body [1, 17].

After the maturation process, T lymphocytes are prepared to leave the thymus

and to start their task of searching for antigens in the periphery and starting an

immune response if necessary. The immune responses have sequential phases, which

are: the recognition phase, the activation phase, the e↵ector phase, the decline and

memory [1, 17]. This work will focus on the recognition and activation phase of the

immune response. Further work is needed to cover the other phases of the immune

response.

The recognition phase takes place in lymph nodes [1, 17]. There mature T lym-

phocytes can locate and recognize antigens using their antigen receptors. However,

this recognition is not enough to trigger the first phase of the immune response. At

least a second signal is required in order to activate the lymphocyte. According with

the current view, the second signal is provided by microbial products or by prod-

ucts generated by the innate immune responses to them. It is called costimulator

because it acts as a stimulator in the presence of the antigen. If the second signal

is absent, the activation fails and the T lymphocyte becomes unresponsive. This

can also happen if the second signal that was provided is not the appropriate one.

The unresponsive state is designated as anergy. The anergy state is thought of as a

tolerance mechanism that avoid responses against self antigens[1, 17].

All the processes presented above are the basis of a remarkable discrimination

task performed by the adaptive immune system. On the first hand, the immune

system can be triggered against an invader, the source of nonself peptides and si-

multaneously maintain total tolerance against all the cells of the body sources of self

peptides. The task of discriminating self and nonself antigens is a hard one because

no a priori essential di↵erences exist between them and yet the required response
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needs to be specific. This recognition of the immune system is called self/nonself

discrimination [1, 2, 17].

In spite of the large accumulated knowledge of the many mechanisms ruling the

immune system, an integrative view of the main processes involved is still needed.

Even today questions about basic issues lack coherent answers. Some of them we ad-

dressed in this work. For example: Why are positive or negative selection required?

What is the role of anergy and costimulation for the activation of the immune re-

sponse? What is the importance of the generation of diversity of T cell receptors for

the protection of the host? The model that will be studied in this thesis will give

new insights to these questions with the benefit of proposing an integrative view of

the Adaptive Immune System.

2.2 Maximally Frustrated Systems and the Prin-

ciple of Maximal Frustration

CFSs are a group of complex systems in which elements interact according to the

Principle of Maximal Frustration [15, 20]. In Cellular Frustration Systems only two

main assumptions are made: a) Cellular responses should be modeled as cellular

decisions; b) Cellular responses require a finite amount of time to take place. Any

element of the system interacts and potentially reacts with all the other elements.

However, instead of instantaneous memoryless reactions, each cell performs decisions

during which it interacts with other cells and each cell can change pair to optimize

its previous conjugations. A reaction will only take place if two elements form a

stable interaction that lasts longer than a threshold time.

These two assumptions are not only theoretical concepts, they have also gained

experimental support. It is already reported that the polarization of an APC can

be changed according to di↵erent stimulus provided by the cells with which it is

interacting. Experimental work shows that when a T cell is interacting with an

APC and another APC appears, the T cell stops the interaction with the first APC

and starts a new interaction with the second APC. Both APCs are equal, but the

second one has more peptides expressed [21, 22]. This could be seen as a probabilistic

fact. The T cell could have a given probability of remaining or changing conjugation

[23]. Alternatively, this change can be seen as a decision process, according to which

the T cell is always trying to interact with the cells providing the stronger stimulus.



2.2 Maximally Frustrated Systems and the Principle of Maximal
Frustration 9

This is the view put forward by the CF framework.

Concerning the assumption that establishes that the time of the interaction is

crucial to trigger a response, recent experiments [24–27] indicate that the duration

of the antigen receptor signaling is crucial for T Cell activation or tolerance. Brief T

Cell-APC interactions result in tolerance, while prolonged interactions are associated

with activations and the development of e↵ector cells.

Figure 2.1: Decision dynamics for three agents: (A)ILists and the frustrated dy-
namics; (B) if cell C does not interact with cell B, then cross-reactivity is reduced
but the system’s reactivity increases.

The assumptions made in the CF framework lead to new ideas concerning re-

activity, tolerance and activation; there are emergent concepts resulting from the

dynamics of cellular frustrated systems. In order to better understand these con-

cepts in the CF framework, a simple frustrated system is represented (Figure 2.1A).

For simplicity, only three cells interacting and establishing conjugations are consid-

ered. All cells are very reactive and they always try to form stable conjugations with

a cell at a time. Conjugations between cells are decided according to an interaction

list (IList) for each cell, which ranks all the other cells in order of decreasing a�nity.

In maximally frustrated systems the IList of each cell is built in such a way that
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on the top of its IList each cell has the cell that has it at the bottom of the IList -

while cell A has cell B on the top of its IList, cell B has cell A on the bottom. This

structure generates a maximal frustrated dynamics. If cell A and B are conjugated

and cell C is alone, cell C can destabilize cell B, the conjugation AB being destroyed.

While agent A is very satisfied because it is conjugated with the agent that is placed

in the top position of its IList, agent B is very dissatisfied due to the fact that it

is conjugated with the agent that occupies the bottom position of its IList, and

consequently, if given the chance, changes conjugation. A new conjugation BC is

formed and cell A turns into a non-conjugated state. Cell A is said to be frustrated

with the presence of cell C, because it could have a long-lived conjugation in the

absence of cell C. Each cell that is in a non-conjugated state tends to destabilize

the conjugation, so cell A destabilizes cell C that is in conjugation BC. Because of

the fact that cell A is ranked in the first position of cell C IList, cell C decides to

finish the conjugation with cell B and starts a new conjugation with cell A that is

alone and accepts any cell to pair up with. This frustrated dynamics goes on and

on. Cellular frustrated systems never reach stable states, they live in steady states

in which conjugations have characteristic lifetimes. If a response needs a time longer

than this lifetime to be triggered, no reaction will take place. Although all cells are

very reactive and are always trying to establish conjugations, an unresponsive state

is built using reactive cells.

Another interesting outcome of this framework is the e↵ect of the reduction of the

reactivity of one cell on tolerance - for example by blocking one interaction. If the

interaction between C and B is forbidden, the conjugation AB becomes stable and

this lifetime increases, because no other cell can destabilize this pair (Figure 2.1B).

This increase in lifetime is enough to trigger a response.

In CFSs if the reactivity of one cell is reduced, the tolerance of the system

decreases and the system can change from a tolerant state to a reactive one. This

decrease of tolerance is the result of a decrease in the frustration of the system. In

maximally frustrated systems, conjugation lifetimes are minimum and conjugation

rates are maximal. When a cell decreases its frustration, its characteristic lifetime

with another cell increases and the dynamics signals this change. Hence, reactivity

and tolerance are emergent properties of CFSs. Despite the fact that all the cells of

the systems remain the same, a tolerant or a reactive state can emerge according to

the composition and dynamics that is generated in the system.

The decrease of frustration in the system is also the response of CFSs relative
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Figure 2.2: Intrusion in CFSs: (A) ILists of the system and (B) comparative desta-
bilizations in conjugations involving the invader.

an invader. An invader can be a cell that is a copy of another cell of the system and

that interacts according to an IList that is also copied from, a given cell, for instance

the first cell. Considering the invader as - C* - a copy of cell C, C* behaves as C.

However, C* was never been seen in the system and consequently cells A and B

place it in a random position in their ILists. Let us consider that both cells put C*

in the middle position of the ILists (Figure 2.2A). Only this small change in ILists

is enough to have a dramatic e↵ect on the dynamics of the system (Figure 2.2B).

The introduction of C* leads the system to a stable state in which the cells in

conjugations BC and AC* do not optimize anymore. This final configuration is

independent of the initial conjugate considered. This stability in dynamics is easily

confirmed through a very simple mathematical analysis.

Considering the above system with the three cells, A, B, C, typical lifetimes

should be determined. The normalized frequencies of conjugated or single cells, are

given by nij=Ni/N, in which Nij is equal to the number of conjugations between i

and j or the number of alone i cells, when j=�. Here N is the total number of cells in

the system. Dynamical equations valid in the mean field sense can then be written

when i=A and j=B, as:

dnAB

dt

= nA�nB� + nB�nAC � nABnC� (2.1)

in which the positive terms consider the creation processes and the negative ones

their destruction. The remaining equations are obtained by substitutions (A, B,

C)!(B, C, A). These equations are valid a part from a time scaling factor. For the
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purpose of computational applications one scale time according to time, iterations.

Then, from one time step to the next, the normalized frequencies change according

to:

nij(t+ 1; t0) ' nij(t; t0) + nij(t; t0)⇥ ⌧

�1
F
ij

� nij(t; t0)⇥ ⌧

�1
D

ij

(2.2)

in which ⌧

�1
F
ij

is the rate of formation of conjugates and ⌧

�1
D

ij

is the rate of destruc-

tion of conjugates that dictate the lifetime of each conjugation. In the case of AB

conjugation it can be written:

⌧

�1
D

AB

⇠ nC� (2.3)

When the invader is introduced in the system - C⇤-, the equations change with the

addition of the term relative to the invader. Thus:

⌧

�1
D

AB

⇠ nC� + nC⇤� (2.4)

⌧

�1
D

BC

⇠ nA� (2.5)

⌧

�1
D

AC

⇠ nB� + nC⇤� (2.6)

⌧

�1
D

AC

⇤ ⇠ nB� (2.7)

The symmetry of the system is broken due to the introduction of the invader in

the middle position of ILists. The destabilization of conjugations is only performed

by the non-conjugated cell, as shown by the rates of destruction of each conjugation.

Nevertheless, the introduction of the invader leads the system to a stable state in

which all cells are conjugated: AC⇤ and BC. Cells B and C⇤ are conjugated with

their top preferences, so they do not want to change conjugation. Due to this fact,

cell A accepts C⇤ that is its second choice and cell C is forced to be with B because

cell A prefers to be with cell C⇤. Thus, normalized frequencies of non-conjugated

species are zero, and the conjugation lifetimes - which are in inverse proportion to

the rate of conjugates destruction - are infinite, due to the fact that there are no

cells that destabilize both conjugations.

The toy model here presented suggests that Cellular Frustrated Systems could

be a promising framework to model intrusion detection systems. The development

of CFSs as intrusion detection systems is the aim of this work.
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2.3 Theoretical Model

The model here developed considers that a complex system has a normal behavior

which can be coded into a computational system of agents in interaction - Cellular

Frustrated System CFS (Figure 2.3).

Figure 2.3: Binary information extracted from a complex system can be coded into
sequences. These sequences that characterize the normal behavior of the complex
system is used in the computational system of agents in interaction (Cellular Frus-
trated System). Every change in the complex system changes the dynamics of the
agents in interaction. This change in the dynamics of the computational system
triggers events that signal a corresponding change in the normal behavior of the
complex system.

In CFSs only two main assumptions (section 2.2) are required to build a compu-

tational system of agents in interaction, in which every change in the complex system

changes the dynamics of the agents in interaction. This change in the dynamics of

the computational system is the triggering event that signals a corresponding change

in the behavior of the complex system, that can be due to di↵erent causes.

CFSs use the immunological inspiration of some mechanisms of the adaptive

immune system in a minimal model that considers APC and T cells defined in the

computational system as presenters and detectors, respectively. The inspiration is

extended to the function of these agents in the model [1, 17, 28]. Presenters display

information extracted from the complex system to detectors. Detectors recognize

this information and are triggered or not, leading to a response according to the

information presented.

The computational model here developed considers only two di↵erent types of

agents, instead of the three types considered in the previous section (Figure 2.4).

The frustration in this system with 2 types is ensured because there are di↵erences

in all agents within a type. These di↵erences allow each agent to optimize among
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Figure 2.4: Left: Decision dynamics, ILists and the frustrated dynamics for a model
with three types of agents, . Right) System with 2 types of agents. The frustration
in this system with 2 types is ensured because there are di↵erences in all agents
within a type, which force agents to change conjugation due to interactions with
agents of the opposite type.

the agents of the opposite type. The interaction rule of Cellular Frustrated Systems

is maintained, each agent always tries to establish a conjugation with a preferred

agent. With the same interaction rules and due to the di↵erences among agents, a

frustrated dynamics is also generated in systems with 2 types of agents.

To make the understanding of the model easier, the presentation of the main

concepts of CFSs will be initiated with a section of generic definitions. After this,

the algorithm implementation will be carefully described. Finally, the fundamental

ideas that di↵erentiate this framework will be discussed.

2.3.1 Model Definitions

The computational model is based on a frustrated dynamics of agents in interaction.

Due to the immunological inspiration of the computational model, the agents’ set

(A) is divided into two di↵erent sets according to the agents’ type: presenters (P)

and detectors (D), such that: A = P [ D and P \ D=;. Each type of agents has a

fixed and equal number of elements, such that NA=NP+ND and NP=ND.

Definition 1. Agents An agent, Ai, is a basic element of the dynamics of

interactions defined by 8Ai2A, Ai={Ti, Li, Ri, ki, Ci}, in which:

• Ti is the type of agent, Ti2{Presenters, Detectors};
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• Li is the ligand of the agent, Li2{1, 2,..., LMAX}, with LMAX defined as

the maximal value in the presenters or detectors space of ligands;

• Ri is the receptor, which can be coded by an Interaction List(IList) that is

the ordered set of all the ligands of the opposite agent type in decreasing

order of a�nity ;

• ki is the connectivity, which corresponds to the number of di↵erent ligands

from the opposite agent type with which the agent interacts, k 2 {1, .. ,

NA/2};

• Ci is the connectivity list in which all agents with which the agent interacts

are listed.

Due to the fact that detectors should be continuously checking the information

presented by presenters, it is crucial to promote interactions between presenters and

detectors. Thus, presenters interact only with detectors and detectors interact only

with presenters. Interactions between agents from the same type are not allowed.

In addition, each agent interacts only with an agent at a time.

All agents interact according with the same interaction rules. In order to simplify

the presentation of the interaction rules, the interaction state and the ranking in

the other agents’ IList will be associated to each agent :

• s: the interaction state; indicates if an agent, Ai, is in an interaction and with

which agent, such that sA
i

2 {0, 1,..., NA}. If it is conjugated with Aj, sA
i

=

Aj, if Ai is alone, sA
i

=0.

• p: the position in the IList; indicates the position of ligand Lj in the agent i

IList, such that p(Lj, i)2{1, 2, ..., #(IListi)}. If Lj is in the top position of

the IList of Ai, p(Lj, i)=1. On the contrary, p(Lj, i)=#(IListi) if Lj is placed

in the bottom position of the IList of agent Ai .

The interaction rules which generate the dynamics of decisions among agents are

defined as:

Definition 2. Interaction Rules Considering two agents from opposite

types, ai and aj, they will start a new interaction if:
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• if sA
i

=0 ^ sA
j

=0

• if sA
i

=0 ^ sA
j

6=0 ^ p(LA
i

, j)>p(Ls
A

j

, j)

• if sA
i

6=0 ^ sA
j

6=0 ^ p(LA
i

, j)>p(Ls
A

j

, j) ^ p(LA
j

, i)>p(Ls
A

i

, i)

All agents are always trying to establish interactions with the agents in the top

positions of the IList. If an agent is alone, it will accept any agent of the opposite

type. Nevertheless, if it is interacting, it will change pair only if a preferred agent

appears. The interaction lifetimes between agents have a crucial role in the triggering

of the activations in this model. It can be defined as follows:

Definition 3. Interaction or Conjugation Lifetime The interaction or

conjugation lifetime of an interaction is the number of iterations between the

formation and the destruction of a given interaction between 2 agents of oppo-

site types.

In the same way that it is possible to define the Interaction Lifetime, the inac-

tivity lifetime can also be defined:

Definition 4. Inactivity Lifetime or No-Conjugation Lifetime The

inactivity lifetime corresponds to the number of iterations that an agent re-

mains without establishing any interaction with an agent of the opposite type.

In CFSs interactions between agents should have minimal lifetimes and the inter-

activity among agents should be maximal, with minimal inactivity lifetimes, so that

small perturbations in dynamics are noticed. In order to maximize the frustration in

the dynamics, detectors should undergo an education process. This process selects

a repertoire of detectors which is capable of interacting with presenters in interac-

tions with minimal lifetimes. Two di↵erent processes of selection are considered.

One in which agents that do not interact are eliminated and replaced by others in a

process called positive education. The designation of the process is inspired by the

education process that is operated in the real immune system. It is defined in the

computational model as:
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Definition 5. Positive Education Every detector (Di) that does not estab-

lish interactions longer than a threshold time - ⌧ pos, ⌧ pos2N- is eliminated and

replaced by another arbitrary detector (D0
i) such that TD

i

=TD0
i

^kD
i

=kD0
i

, LD0
i

and RD0
i

are randomly drawn and CD0
i

is changed accordingly.

The second process operates in detectors that establish interactions with the

longest lifetimes, which are replaced by new arbitrary detectors. This process is

called negative selection, because it is inspired in the negative selection process that

is operated in the immune system. In the computational system it can be defined

as:

Definition 6. Negative Education (Initial Stage) Every detector (Di) that

establishes interactions longer than a threshold time - ⌧neg, ⌧neg2N- is elim-

inated and replaced by another arbitrary detector (D0
i) such that TD

i

=TD0
i

^
kD

i

=kD0
i

^ LD
i

=LD0
i

, RD0
i

is randomly drawn and CD0
i

is changed accordingly.

According to the ligands displayed by the presenters during the education process

it is possible to define ligands that belong to the system, called self ligands (S), and

ligands that do not, called nonself ligands (S). The ligands space (LS) is composed

by the self and nonself ligands, such that LS = S [ S and S \ S=;.
During the education process an extended repertoire of detectors is educated.

This repertoire will be used in the surveillance of anomalies in the later detection

stage, after the education process. The educated repertoire of detectors can be

defined as follows:

Definition 7. Educated Repertoire of Detectors The educated repertoire

of detectors is composed by an arbitrary number of educated populations of

detectors - Npops with Npops2N, selected during the education process.

After the education process, the CFS is prepared to start the monitoring stage

with the extended repertoire of detectors. Anergy ensures that during the dynamics

of the monitoring stage the surveillance of the systems is performed by a set of ND

detectors chosen arbitrarily from the extended repertoire of detectors. The anergy

mechanism is defined as follows:
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Definition 8. Anergy Every time a detector, Di, establishes with a presenter

an interaction longer than the anergy time- ⌧an - it is replaced by another

equivalent detector from the repertoire of educated detectors (D0
i) with TD

i

=TD0
i

^ kD
i

=kD0
i

^ LD
i

=LD0
i

^ Ri 6=Ri0 ^ CD
i

=CD0
i

.

Each detector has a subset with Npops elements of equivalent detectors with

equal type, connectivity, ligand, and connectivity list, but di↵erent receptors. The

anergy mechanism ensures that only the most frustrated detectors are kept in the

system, and that the dynamics of the system is maximally frustrated regardless of

the detectors that are in the system in each iteration.

During the frustrated dynamics, the number of conjugations lasting longer than

⌧ is denoted c

o
i,>⌧ for a population in the absence of pathogen(after the education

stage) and ci,>⌧ in the detection stage. The frequency of conjugations after W

iterations, can then be obtained from f

o
i,>⌧=c

o
i,>⌧/W and f i,>⌧=ci,>⌧/W for both

cases. The detection ratio can be defined as:

Ri =
fi,>⌧

f

o
i,>⌧ ⇥ F

(2.8)

in which F is a tolerance parameter defined per presenter, such that F2]1, +1[,

which allows detection to be done with perfect tolerance. Typically F=1.2. Every

time this ratio is greater than 1, it will be possible to distinguish presenters bearing

a foreign ligand from those that do not, depending on the rate of long encounters.

In the Figures of the following chapter presenting results from simulations, we will

be interested in calculating the number of presenters for which R� 1, which will be

represented as R�1.

If the rate of long contacts exceeds a threshold, it is possible to up-regulate

costimulatory molecules, and activate any further detector performing a long contact

with that presenter.

In the next section the algorithmic implementation of this model will be dis-

cussed.
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2.3.2 Model Algorithm

The complex system to protect generates data that will be used in the computa-

tional system for anomaly detection. This is an agent based-model which is divided

into 2 main phases: the repertoire education and the monitoring phase. Within the

monitoring phase two di↵erent stages are considered: the calibration and the detec-

tion stage (Figure 2.5). Di↵erent stopping criteria are defined so that the system

changes from one stage to the next or generates a given output.

Figure 2.5: Flowchart displaying the main steps in the algorithm. During repertoire
education, education process is applied until a pre-defined Threshold (Stopping Cri-
terion A); several repertoires can be educated if necessary (Stopping Criterion B);
the calibration and detection stages apply the frustrated dynamics for W iterations
(Stopping Criterion C); if a presenter agent exceeds a number given of long contacts,
detection is signaled for the present repertoire (Stopping Criterion D).

All the stages have very similar structures in the algorithm. They are initiated

with the codification of the information of the complex system into sequences to be

used in the definition of the agents. However, di↵erent information is used in the

3 stages. The set of data which characterizes the normal behavior of the complex

system is utilized in the first two stages, while the data that need to be tested

are used in the detection stage. Also the dynamics that is generated is similar in
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repertoire education, calibration and detection stages. Here, the di↵erence is that

in the detectors selection, the dynamics comprises a selection process while the

detection dynamics comprises the anergy process.

During the education stage, the educated repertoire of detectors is selected to

frustrate maximally the dynamics. The repertoire is composed by Npops sets of edu-

cated detectors, one population is generated in each passage by stopping criterion A.

The education process stops when all the Npops populations are educated - stopping

criterion B is then satisfied.

After the education stage, the monitoring phase is divided into calibration and

detection stages. During the calibration stage, the normal profile in the frequency

of the conjugation lifetimes is established through a detection dynamics for each

presenter - f o
i,>⌧ . The establishment of the normal profile of the conjugations dictates

the end of this phase - stopping criterion C is fulfilled.

The last stage of the algorithm is the detection stage. In this stage it is evaluated

if the frequency of the conjugation lifetimes changes or not with presenter agents

through the sequences which encode the complex system operation that is being

tested. After this evaluation, stopping criterion C is accomplished. Then, a detection

or a no-detection is signaled in the end of the detection stage - stopping criterion D.

In order to understand the algorithm and the model in general, the selection and

detection dynamics will be detailed in the next subsection, followed by the definition

of the detection or no-detection signaling.

2.3.2.1 Selection or Detection Dynamics

The algorithm distinguishes two dynamics: the education and the detection dy-

namics. All stages have a common algorithm that generates the same dynamics

which is independent of the stage. The common dynamics algorithm has the generic

pseudocode presented below (Figure 2.6).

From one iteration to the next, a random permutation of all the presenters and all

the detectors is generated. This random permutation avoids giving priority to any of

the agents in the system. Each position of the permutation originates an interaction

between the agent in this position of permutation, Ai, and another random agent

selected within the first agent’s list of connectivity, Aj. Per iteration, each agent

has, at least, one chance of optimizing with an arbitrary agent of its connectivity

list. Actually, on average, each agent has not one but two opportunities to optimize

per each iteration: one chance due to the random permutation, Ai, and another
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Figure 2.6: Pseudocode used for the models in this thesis. For simplicity the out-
comes of Education and Anergy are not presented.
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because a random agent Aj is selected to interact with Ai.

A new conjugation (Ai, Aj) is initiated if both agents favor that interaction.

In this case, the conjugation state changes and lifetimes for conjugated and non-

conjugated agents are saved. In the negative selection case, both conjugation life-

times or non-conjugated lifetimes are checked, depending if Ai, Aj are or are not

in interaction. If the conjugation or no-conjugation lifetime is equal to a threshold

time, ⌧neg or ⌧ pos, respectively, the detector is eliminated in the education stage. In

the detection stage, if the conjugation lifetime is equal to a threshold time, ⌧neg, the

detector becomes anergic and is replaced by another equivalent detector. Di↵erences

in the education or in the detection dynamics are signaled education or anergy in

the pseudocode, respectively. The alternative algorithms will be presented below in

separate sections.

Education Algorithm

In order to simulate the negative and the positive education, a non-directional

selection process was implemented. Two di↵erent selection processes operate in

detectors to avoid that they stay without interacting or interact in a non-frustrated

dynamics. Thus, every time a detector remains ⌧ pos iterations without interacting or

⌧neg iterations in an interaction with the same presenter, the detector is eliminated

and another arbitrary detector enters in the system. In the pseudocode in Figure 2.6

every time the education process is mentioned - lines 19, 28, 37 -, the pseudocode

in Figure 2.7 is used. The line marked with ⇤ represents an alternative instruction

for the negative education process.

Figure 2.7: Pseudocode for the generation of a new detector in the education stage.

The updating of ⌧ pos and ⌧neg values are crucial for the convergence of the educa-

tion process. Although the update of these values is made in independent windows

of education in a fixed number of iterations, WED - one for each threshold -, they are

made in a similar way. At the beginning of the simulation both values of ⌧neg and ⌧pos

are initiated with an arbitrary large value. After WED iterations, they are updated
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to the maximal non-conjugated lifetime or to the maximal conjugation lifetime that

established in WED. From here, every time an agent remains without interacting for

⌧ pos iterations or interacts for ⌧neg iterations, the detector is eliminated and replaced

by another detector or the interaction is destroyed and the detector eliminated and

replaced by another detector, respectively, according to Figure 2.7.

If no detector is replaced in WED iterations in the positive or in the negative

education process, the corresponding ⌧ pos or ⌧neg values are updated in the cor-

responding process and the selection process starts again until a new updating is

required.

The process is repeated until the value of ⌧neg equals the ⌧ ed selected in stopping

criterion A (Figure 2.5). The population of detectors is saved and the number of

educated populations is increased by one.

The education of another population is initiated through a random permutation

of an established number of positions of the IList (k) of each detector of the first

population educated. This procedure ensures that the network of interaction es-

tablished in the first population of detectors is maintained. Due the fact that the

network is already established, these detectors only undergo the negative selection

process. Thus, each detector originates a subset of detectors with a di↵erent IList

(in the k top positions) but the same ligand, connectivity and connectivity list of

the detector. After Npops populations of educated detectors the stopping criterion

B (Figure 2.6) is accomplished and the repertoire education process finishes.

Anergy Algorithm

After the education the repertoire of educated detectors has been selected. Dur-

ing the calibration and the detection stages, every time a detector is left alone

after an interaction with a lifetime longer than the anergy time, ⌧AN , it becomes

unresponsive or anergic and it is replaced by another equivalent detector from an

arbitrary educated population between 1 and Npops. The new detector has the same

network of interactions, but a di↵erent IList - although all the ligands are the same.

The pseudocode for the anergy of the detectors is presented in Figure 2.8.

Due to anergy, the composition of the detectors’ population is continuously

changing, which ensures that the surveillance of the system is maintained by the

extended repertoire of detectors. In addition, anergy also reduces the number of

false positive activations, because it prevents wrong activations caused by poorly
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Figure 2.8: Pseudocode for the anergy in the detection stage.

educated detectors.
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2.3.3 Model Concepts

According to the main definitions presented before, a generic CFSs , in which pre-

senters and detectors are shown, is represented in Figure 2.9. The diversity in the

ligands of presenters is arbitrarily large, L6, L2,...,L9, while the receptors are less

diverse. There are as many ligands in the presenters as the number of the sequences

that are necessary to code the “normal” behavior of the complex system. The recep-

tors in presenters are defined according to the ligand of the detectors for which each

presenter has maximal a�nity with - here, only two di↵erent ligands are displayed

by detectors. All presenters within the same subtype have a common receptor. This

classification of the detectors in one or another subtype (or cluster) can correspond,

for example, to the expression or not of a molecule on the cells’ surface.

Figure 2.9: A simple model with two agent types, presenters and detectors, and
with two subtypes in each. The diversity of ligands displayed by the presenters is
arbitrarily large, while their receptors are less diverse: all presenters within the same
subtype have the same receptor. On the contrary, detectors have a small ligands
diversity but arbitrarily large receptors diversity.

On the contrary, detectors have a small diversity in ligands which is dependent on

the ligand that each detector presents. In the system considered, only two di↵erent

ligands are presented - l1 and l2. Detectors are extremely cross-reactive which allows

them to recognize all the ligands displayed in the system. One within all the possible

approaches to model the diversity in the receptor of the agents is to define an

interaction list (IList) in which all the ligands of the opposite type are placed in

decreasing order of a�nity.

Presenters and detectors engage in a frustrated dynamics in which all the agents

are continuously trying to optimize the ligand they interact with. Each agent favors
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interactions with agents that are in top positions of their ILists and it changes

pairing every time a preferred agent appears.

2.3.3.1 Dimensionality of Ligand’s Space

The definition of the size of the space is important in CFSs because it will a↵ect

the functioning of the anomaly detection system. To illustrate this, Figure 2.10

shows binary information extracted from a complex system which will be coded into

sequences using a di↵erent number of bits (NBits). The number of bits considered

defines the size of the ligand’s space that is obtained by the expression 2NBits.

Figure 2.10: Binary information extracted from a complex system can be coded into
sequences using sequences with a di↵erent number of bits, NBits. The number of
bits considered defines the size of the sequences’ space. For NBits = 2, all the 4
ligands are self patterns. If the same binary information is coded into sequences of
6 bits, 24 di↵erent sequences will be generated from out of the 64 possible ones.

An example of a system in which all ligands are self is the one with NBits = 2.

Here, the binary information is coded in sequences with 2 bits, which means that all

the 4 ligands are self patterns. In systems with ligands in small dimensional spaces,

all the ligands are needed to characterize the normal behavior of the complex system:

LS = S and S=;.
The increase in the number of bits used to code the same binary information

increases the size of the space and, consequently, the number of di↵erent ligands

used. If the same binary information is coded into sequences of 6 bits, 24 di↵erent
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sequences will be originated from 64 available ones. The normal behavior is coded

with a small fraction of the space, as there are ligands that are not used. Increasing

the space dimension further almost all ligands become distinctive and the number

of nonself ligands is much larger than the number of self ligands.

The selection of the right size will ensure a proper monitoring of the complex

system. The intrusion detection is not possible with NBits = 2 due to the fact that

there are no foreign ligands available to display by presenters - all the ligands are self.

Thus, only self perturbations can be detected in this case at most. This shows that

Nbits = 2 is an insu�cient space to code the binary information presented. In the

case of considering systems with NBits = 6 anomalies can be due to intrusion or due

to homeostatic perturbations. However, the selection of a higher space dimension

also have implications in the CFSs.

In CFSs the dimension of the space has implications in the size of the ILists which

code the receptor of the detectors. The ILists order all the ligands in the space, so

that there are 64!= 1.27⇥1089 available ILists in the system with NBits = 6. Due to

the fact that in educated systems ILists are randomly generated, the increase in the

space size increases exponentially the number of possible ILists that are available

for detectors.

The approach based on the ILists seems to have serious limitations due to the

increase of the size of the space. However, they can be seen as a mathematical func-

tion that for a given input (the ligand) gives an output value (an a�nity measure).

Moreover, di↵erent approaches to compress the information contained in the ILists

were already developed in parallel, with the same results obtained for systems in

which the ILists are implemented [29, 30]. Several strategies will be discussed to

select the detectors’ ILists that maximally frustrate the dynamics of the system,

independently of the size of the space and the huge diversity generated for the de-

tectors’ receptors. How the whole diversity in detectors ILists is generated will be

the issue of the next section.

2.3.3.2 Diversity in the receptors of detectors.

The T Cell Receptor (TCR) serves a critical role in the di↵erentiation, survival, and

function of T cells, and its triggering elicits a complex set of biological responses

that protects the organism from infectious agents [31–33]. The formation of TCR

is made using an assembly process with the combination of gene segments in each

T cell. This gene rearrangement is the process responsible for the diversity in the
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recognition of all the potential diversity of the antigens [34].

To better understand how this diversity can be generated with a finite number

of genes, the formation of the TCR is compared with the construction of sentences

with a finite number of possible words or groups of words, which represent the

gene fragments (adapted from [35]). Words are placed in 3 di↵erent groups that

correspond to the di↵erent groups of genes - constant, diversity and joining gene

segments - represented as Blocks 1, 2 and 3 .

Block 1 Block 2 Block 3
The Sun Shines Light
The Moon Reflects Water
The Star Is Red

Some resulting “TCR combinations”
The Moon reflects light

The Sun is red
The Star shines water

This generation process ensures that in the immune system around 107 possible

TCRs could be generated [17]. This number can be increased to 1016 possible TCRs

when junctional diversity is considered. The diversity in the generation of TCR

structures is also considered in the CFSs.

Each detector has a receptor whose information is coded in a IList that orders all

the possible ligands in an arbitrary decreasing order of a�nities. This is randomly

generated for each detector. No restrictions on possible ILists are taken - all receptors

are equiprobable -, so diversity of ILists is also huge - NREC=1.27x1089 possible

receptors can be defined with 64 di↵erent ligands. An increase in the size of the

space increases exponentially the diversity of the receptors that can be generated.

Because all receptors are equiprobable, the probability of di↵erent detectors hav-

ing the same receptor is negligible. Thus, each detector senses di↵erently all the

ligands displayed by presenters, which means that di↵erent detectors establish in-

teractions with di↵erent a�nities with the same ligand due to the di↵erences in

ILists.
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2.3.3.3 Detectors Selection

Goal of the education process

In immunology, it is accepted that thymocytes undergo a selection process called

repertoire education in which T cells are selected according to their a�nity for the

peptide-MHC complex displayed by the APC. Thymocytes that have low a�nity

for the ligand presented in the thymus are eliminated by neglect. The remaining

positively selected lymphocytes recognize antigens displayed by self MHC molecules

[1, 17]. Within the positively selected set, thymocytes that strongly recognize self

antigens are negatively selected and are prevented from completing their maturation,

thus eliminating cells that would potentially react in harmful ways against self tissues

(Figure 2.11) [36, 37].

Figure 2.11: Detectors’ selection process based on their receptors a�nity [37]. TCRs
having higher or lower a�nity towards antigens displayed by self MHC are elimi-
nated. Only detectors with intermediate a�nities are selected - represented in the
figure between the 2 dash lines.

Figure 2.11 illustrates the process of detectors’ selection based on their a�nity.

TCRs having higher or lower a�nity towards antigens displayed by self MHC are

eliminated. Only the detectors with intermediate a�nity are selected. According to
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this immunological view, T cells emerging from the education process should have

an optimal a�nity range for antigens displayed by self MHC molecules to ensure

“normal immune homeostasis” (Figure 2.12)[38, 39]. Mistakes in a�nity strengths

between T cells and self antigens are related with immune deficiencies or autoimmune

diseases. Ideally, T cells should have moderate reactivity against self and nonself to

ensure detection against foreign peptides and in total respect of self.

Figure 2.12: Dependence between self-reactivity and non-self-reactivity after the
education process and associated diseases [38]. According to this immunological
view, T cells emerging from the education process should have an optimal a�nity
range for antigens. Mistakes in a�nity strengths between T cells and self antigens
are related with immune deficiencies or autoimmune diseases.

In CFSs, detectors should also be selected, so that only those maximizing the

frustration are chosen. On the one hand, it is necessary to select only detectors that

are able to interact with presenters, by positive selection. The positive education

in CFSs ensures that all detectors are able to interact frequently with presenters.

On the other hand, it is necessary to eliminate detectors that can not engage in a

frustrated dynamics, by negative selection. The main concern about the negative

education process in CFSs is not shaping the a�nity value with which detectors

recognize ligands displayed by presenters, but to increase the frustration of the

interactions between detectors and presenters. Detectors interact with presenters

with maximal a�nity if they are in a frustrated dynamics. In this case, there will

always be agents capable of destroying these conjugations, and no response will be

triggered.

The perspective of the negative education process in CFSs is one of the main dif-

ferences concerning the immunological view. While the conventional view assumes
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that all detectors have a�nities around a given value, in CFSs detectors can have

maximal a�nity for all the possible ligands displayed by presenters, that can frus-

trate the dynamics. The task of the education process is to ensure that all presenters

and all detectors interact in interactions with minimal lifetimes.

Complexity of the education process

The selection of the repertoire of detectors that frustrate the presenters dynamics

is not easy. Firstly, there is a huge diversity of possible receptors that are generated

even for small number of ligands, due to the random generation of the receptors. This

diversity increases the di�culty of the process. Secondly, the selection of detectors

depends also on the remaining detectors in the system. The presence or the absence

of some detectors can dictate the selection of some detectors and elimination of

others: the education process depends on the context.

Concerning the diversity of ILists, for instance, in a space with sequences of 6

bits, each detector has an IList within 1.27⇥1089 possibilities, which is an enormous

diversity. Within all the possible ILists the education process should converge to

form a set of ILists that allow the detectors to interact with a frustrated dynamics

with maximal interactivity and minimal interaction lifetimes.

In addition to the diversity available in the ILists, another mechanism contributes

to intricate the process. The selection of detectors is made in context, which means

that the presence or the absence of some detectors can dictate the selection of some

among all possible ones. Although detectors do not interact directly, di↵erent dy-

namics between presenters and detectors can be generated such that some detectors

can not be accepted in consecutive interactions or form a stable conjugation. Be-

cause of that, some detectors that have ILists that frustrate the system can be

eliminated by others.

After the education process, the selected detectors will be engaged in a frustrated

dynamics. Although the maximal a�nity of the interactions is maintained, the

ordering of the ILists ensures that agents have in their top positions ligands of the

agents of the opposite type which have minimal a�nity for the first ones. Actually,

the complete ordering of the ILists of the detectors is impossible even for small

systems; what is really crucial is that the top positions of ILists are educated. Thus,

reduced connectivities are considered in systems with larger space sizes during the

education process - despite the fact that ILists place all the ligands with which the
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detector can potentially interact. The connectivity of the detectors will be the issue

of the next section.

2.3.3.4 Connectivity

It is not completely clear if T Cells can potentially interact with all the self peptides

presented in the Thymus or if there is a restriction related with, for example, an

a�nity threshold or a spacial limitation that prevents some interactions. In Im-

munology both assumptions can be more check work and, in CFSs they are both

relevant. The first approach considers that there is a threshold in the a�nity value

below which detectors do not interact. In this case, each detector interacts with the

same number of di↵erent ligands which corresponds to a fixed range in the IList.

It is also possible to consider that during the education process, detectors interact

with a limited number of presenters that surround them.

To illustrate both approaches, let us consider that each detector has a restricted

connectivity equal to 3. Figure 2.13 represents ILists with arbitrary ligands together

with the representation in the presenters’ ligands’ space. The shaded areas in the

ligands’ space represent the interaction spaces that six arbitrary detectors cover in

their interactions. With a cross “x” di↵erent ligands are represented.

One of the approaches assumes that all detectors can only interact with the top

3 positions in a IList (Figure 2.13A). Potentially detectors interact with all these

ligands, regardless of the fact they are displayed by presenters or not and regardless

of the number of presenters displaying them. Bearing the same connectivity value

in mind, in the other approach, each detector interacts with 3 presenters, despite

the fact that 1, 2 or 3 di↵erent ligands were presented(Figure 2.13B). In case each

presenter displays a di↵erent ligand and all the ligands are in the system, both

definitions are equal.

In this work the first approach is considered. There is a value of a�nity equal

for all the detectors that ensures that each detector interacts with the same num-

ber of di↵erent ligands. The restricted connectivity per detector is the mechanism

responsible for the scalability of the education process, independently of the size of

the system considered, as it will be demonstrated in the numerical results presented

later. The a�nity between agents in CFSs is determined by the ILists of the agents

and it is responsible for the dynamics of the conjugations established. In the next

section, a�nity will be discussed in the light of CFS.
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Figure 2.13: Representation of the interaction area covered by ILists of 6 detectors
(D1,...,D6) based on ligands (A) or on agents (B) in the ligands’ space of presenters.
Di↵erent ligands are represented with a cross “x”. (A) There is a threshold in
the a�nity value below which detectors do not interact and establishing the grey
regions. In this case, each detector interacts with the same number of ligands which
corresponds to a fixed range in the IList - 3 top positions. Detectors interact with all
these ligands, regardless of the fact that they are displayed by presenters or not and
regardless of the number of presenters displaying them. (B) In this other approach,
detectors interact with a limited number of presenters surrounding them, despite
the fact that 1, 2 or 3 di↵erent ligands were presented by these 3 presenters.

2.3.3.5 A�nity of Interactions

In the context of CFSs agents interact with maximal a�nity with agents placed in

the top position of their ILists. Maximal a�nity is not a problem in CFSs, as it is

in other models described in the literature, in which the a�nity of the interactions

needs to be reduced to ensure perfect tolerance towards the elements of the system.

In CFSs agents can interact with maximal a�nity, as long as the dynamics is

frustrated. In this case, every time an agent interacts with maximal a�nity with

another, the second one should interact with minimal a�nity with the former. The

interaction is bidirectional and each direction - from presenter to detector or from

detector to presenter - has an a�nity that depends on the position on the ILists.

The a�nity D1-P1 is determined by the position of the ligand of D1 in the IList

of P1. On the other hand, the a�nity P1-D1 is determined by the position of the

ligand of P1 in the IList of D1, as presented in Figure 2.14, for 2 di↵erent cases.

The stability of the interaction is low when the a�nity in one direction is maximal

and in the other, minimal, because one of the agents is very dissatisfied and it easily

finds an agent displaying a ligand placed higher in its IList. The stability of the
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Figure 2.14: A�nity of interactions in a CFS. In a CFS, interactions are bidirectional
and interactions on each direction - from presenter to detector or from detector to
presenter - have an associated a�nity that depends on the position of the ligand
displayed by the opposite agent on its IList. The a�nity in the interaction D1-P1

is determined by the position of the ligand displayed by D1 in the P1 IList. On
the other hand, the a�nity in the interaction P1-D1 is determined by the position
of the ligand of P1 in the IList of D1. (A) The stability of the interaction is low
when the a�nity in one direction is maximal and in the other, minimal, because
one of the agents is very dissatisfied (D⇤

1) and it easily finds an agent displaying a
ligand placed higher in its IList. (B) The stability of the interaction is higher for
agents displaying ligands with intermediate a�nities in both directions because in
both cases preferences are fairly satisfied (Do

1 and Po
1).

interaction is higher for agents displaying ligands with intermediate a�nities in both

directions because in both cases preferences are fairly satisfied. A more detailed

model concerning the stability of the interactions and the positions of the ligands

of the agents interacting in the opposite IList is presented in section 3.1.1.1.

2.3.3.6 Extended Repertoire of Educated Detectors

Throughout life, the thymus is continuously selecting T cells to generate an extended

repertoire of T cells [1, 35, 40]. This process is more intense in the first years of

life and it decreases with age, according to Figure 2.15 ([1], p. 45). Independently

of the education process in which each individual cell was generated, T cells should

cooperate in detection tasks. In addition to the task of shaping the a�nity of

thymocytes, the education process also needs to ensure that all T cells will behave

similarly towards antigens in the periphery.

In CFSs an extended repertoire of detectors is educated to ensure that surveil-

lance is maintained by a large number of detectors, despite the fact that only a

population of ND detectors from the extended repertoire is in the system in each

iteration. This population is composed by detectors from di↵erent educated pop-

ulations obtained in di↵erent moments of the education process. Thus, each com-
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Figure 2.15: Continuous generation of T lymphocytes throughout life ([1], p. 45).
This process is more intense in the first years of life and it decreases with age.

position of the detectors within a detectors’ population should perform a frustrated

dynamics, in every iteration, regardless of the educated population in which each

detector was selected.

2.3.3.7 Anergy and Costimulation

The role of anergy and of costimulation in the immune system is not completely

clear. The receptor of the T cell engaged with antigenic peptide-MHC may induce

activation or clonal anergy with the presence or absence of the costimulatory signal,

respectively [1, 41–44].

In CFSs it is assumed that every time a detector establishes an interaction longer

than a characteristic lifetime, called anergy time ⌧an, the detector becomes unrespon-

sive or anergic and it is replaced by an equivalent one from the repertoire of educated

detectors.

The anergy mechanism has a double e↵ect on the dynamics. On the one hand,

it ensures that only the more frustrated detectors remain in the system - those

with lifetimes below ⌧an. With this directional selection, presenters do not perform

long interactions with the same detectors twice, and, consequently, the number of

wrong activations (false positive) due to detectors that do not frustrate adequately

the dynamics is minimized. On the other hand, anergy ensures that an extended

number of detectors maintain the surveillance of the systems. The higher the number

of detectors, the higher the probability of the invader’s ligand being placed in the top

positions of the IList and the higher the probability that detection is accomplished.

After the education stage, presenters define the “normal” pattern of long conju-

gations, either in duration and in number. Every time presenters have a decrease in

frustration, the engage in longer conjugations with higher frequency. This can thus

up regulate costimulatory molecules signaling this decrease.



36 Background Theory

Both mechanisms are crucial to increase the accuracy of the anomaly detection

system, as it will be presented in the next section.



3
Mathematical Approach

3.1 Mathematical Approach

3.1.1 Analysis of Perfect Systems

In order to gain a deeper understanding of cellular frustrated systems, mean field

equations were derived and numerically integrated for the simplest set of models.

For a simple first approach, a population with perfectly ordered ILists was chosen.

The system has an equal number of presenters and detectors, and each of them is

divided in two subtypes - denoted as 1 and 2, respectively-, such that NP=NP1+NP2

with NP1=NP2 , and ND=ND1+ND2 also with ND1=ND2 . The total number of agents

is given by N=NP+ND. A schematic representation of the system is shown in

Figure 3.1. On the left are represented presenter agents. They have very diverse

ligands, denoted by Li, with i being the agent index. All presenters of a given

subtype have the same receptor and consequently the same IList. Detectors have

considerable diversity in their receptors. This is encoded in their ILists, di↵erent

for each detector. In this, simple first model, detectors ILists follow a well defined

order. First all subtype I detectors have on the top half positions of their ILists,

subtype II ligands and on the bottom, subtype I ligands.

For this system it is possible to define the normalized frequencies conjugations in-

volving subtype i presenter agents and subtype j detector agents by nP
i

D
j

=NP
i

D
j

/N;

i, j=1,2, as well as the frequencies of the non-conjugated agents, nP
i�

=NP
i�

/N, i=1,

2 or nD
i�

=ND
i�

/N, i=1, 2. The dynamical evolution of these frequencies can be ob-

tained deriving mean field rate equations for each frequency. These have to account

for all contributions leading to the formation and destruction of each species, i.e., ei-

ther pairs of conjugated or non conjugated agents. For conjugates involving subtype
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Figure 3.1: Representation of a simple model with perfectly ordered ILists. The
model considers two agent types, presenters and detectors. Presenters display all
di↵erent ligands, L1, ..., LN , but have only two possible receptors. These correspond
to only two di↵erent ILists. On the contrary, detectors have only two possible
ligands, l1 and l2, but can have very diverse receptors. In this model all detectors
have a di↵erent ILists. To make the analysis simpler, their ILists follow the pre-
defined order indicated in the figure.

I presenter agents, P1 and subtype I detectors, D1, P1D1, all the contributions are

represented in Figure 3.2. On average, when detectors interact with agents of the

same subtype, they encounter a ligand placed higher in their ILists with probability

p.

Figure 3.2: Formation and Destruction of conjugate P1D1, involving subtype I pre-
senter agents, P1 and subtype I detectors, D1. On the left are represented all
interactions that can form a new P1D1 conjugate. On the right are represented all
interactions that contribute negatively in the first equation (Equations 3.1).

The evolution of the normalized frequencies follows the equations:



3.1 Mathematical Approach 39

dn
P1D1
dt = nP1�

nD1�
+ nD1�

nP1D2 + pnP1�
nP1D1 + pnP1D1nP1D2 � nP1D1(

pnP1�
+ nP2�

+ pnP1D2)

dn
P1D2
dt = nP1�

(nD2�
+ nP2D2 + pnP1D2)� nP1D2(nD1�

+ pnP1D1 + pnP1�
)

dn
P1�

dt = nP1D1(pnP1�
+ nP2�

+ pnP1D2) + pnP1D2nP1�
� nP1�

(nD1�
+ nD2�

+pnP1D1 + nP2D2 + pnP1D2)

dn
D1�

dt = nP2D1nD2�
+ pnP2D1nP2D2 � nD1�

(nP1�
+ nP2�

+ nP1D2)

(3.1)

The remaining equations for the other species can be obtained by using the

substitution: (P1, P2, D1, D2)!(P2, P1, D2, D1). Results from both approaches

are collected and represented in Figure 3.3. Lines represent results obtained from

the numerical integration of the di↵erential equations while marks correspond to

results obtained from the cellular automaton. There is a good agreement between

Figure 3.3: Normalized frequencies of all the species calculated by the cellular au-
tomaton (in markers) and by the integration of the mean field equations (in lines).

both approaches, which suggests that the dynamical model captures the dynamics

of the cellular automaton. The frequencies obtained with the equations tend to

constant values after a phase of convergence. This does not mean that the system

reaches a stable configuration with all agents stably conjugated. Rather a dynamical

equilibrium reached where the number of agents that change from a conjugated state

to the non-conjugated state is equal to the number of agents doing the reverse. In
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cellular automaton simulations, some oscillations around the steady state values can

also be appreciated. This is a result of finite size e↵ects and the stochasticity in the

dynamics resulting from the random selection of the agents interacting at each time

step. Another finding is that nP1D1= nP2D2�nP1D2= nP1D2 . This is results from

the fact that all detectors have the same ligand inside a cluster. Consequently, all

detectors of the same subtype are sensed equally by presenters and consequently

do not promote pair changes. The destabilization in conjugations is di↵erent for a

conjugation P1D2 or P1D1, as can be understood from Figure 3.4.

Figure 3.4: Destabilization of conjugations P1D1 and P2D1. On the left the subtype
I detectors conjugated with subtype I presenters are destabilized by any subtype
II presenters - destabilization with probability 1 - while this happens only with
probability p for presenters of the same subtype. On the left it is shown that a
P2D1 conjugate is destabilized with probability 1 due to interactions with subtype
II detectors by the presenter agents, and it can also be destabilized with probability
p due to interactions with the detector agent in the conjugate.

In both conjugations one agent is satisfied. In the conjugation P1D1, P1 is

satisfied. The destabilization in this case is performed only by interactions between

D1 and P1 or P2. In contrast, in a conjugation P2D1, although D1 is satisfied, both

agents can be destabilized. D1 can optimize with a given probability among agents

that belong to D2. The presenter can be destabilized by D2 agents.

In order to better understand the di↵erence in the stability of the conjugations

due to the positions of the ligands of presenters and detectors in the opposite ILists,

a more general system with an arbitrary number of subtypes is presented in the next

section.

3.1.1.1 Stability of the Interactions

To better understand the relation between the position of the ligands in the IList

of the agents in interaction and the stability of the interaction, a simple model was
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built. A system with 10 agents subtype was considered, with an equal number of

presenters and detectors in each subtype in a maximally frustrated system. In order

to simplify, it is considered that all agents belonging to the same subtype have the

same ligands and receptors.

The generic equations for the conjugate P1Di and non-conjugated agents P1�

and D1� as well as the conjugation lifetimes for a system with an arbitrary number

of clusters are:
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in which ✓ represents a discrete form of the Heaviside step function, such that

✓ =

(
0, n<0

1, n�0

and index i represents the subtype of the detector for conjugated species and NC is

equal to the number of clusters or subtypes in the system.

The equations for the remaining species can be obtained by substitution due to

the symmetry in the system. According to these conjugations, the corresponding

typical lifetimes can also be obtained. Because only the stability of the interaction

is analyzed, the generic ⌧

�1
P1D

i

for the conjugated case is given by:
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The normalized lifetimes of the interaction - ⌧/ ⌧Max in which ⌧Max corresponds

to the ⌧ of the most stable interaction - are represented as a function of the position

in the ILists for a generic agent (Figure 3.5A). The same profile of the interaction

lifetimes is obtained for an arbitrary presenter of every subtype as function of the

detectors’ subtype (Figure 3.5B).
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Figure 3.5: A) Normalized lifetimes of a generic agent with all the agents of the
opposite type as function of its ILists positions. B) Profile of the interaction lifetimes
obtained for an arbitrary presenter of every subtype as function of the detectors’
subtype.

This profile changes, when an invader is introduced in the system. Its ligand ap-

pears in a random position of the detectors’ ILists because it had not been presented

during the education process. The strength of the interaction is higher between the

invader and a number of detectors for which the invader has maximal a�nity and

additionally these detectors have the invader’s ligand in the top positions of their

ILists. Consequently, a less frustrated conjugation takes place, because both agents

are satisfied in the conjugation. It is interesting to notice that this reduction of

frustration naturally emerges from the frustrated dynamics in CFSs. This output

is responsible for the detection of perturbations no matter the cause, as it will be

shown in detail in the next sections.

3.1.2 Analysis of Educated Systems

For populations resulting from repertoire education, ILists cannot be considered to

be perfectly ordered. In this case mean field-like equations can still be derived for

the normalized frequencies of all the conjugated and non-conjugated agents. Three

di↵erent classes of interactions can be considered:

• A conjugated detector interacts with a ligand from the same subtype as the
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subtype of the ligand displayed by the presenter agent to which it is conjugated

(Figure 3.6A). A probability of destabilization of pM=0.5 was considered in

these cases;

• A conjugated detector interacts with a ligand displayed by presenters that rank

highly the detector agent, while the detector is conjugated to a presenter agent

that rank lower the detector agent (Figure 3.6B). In this case, the education

should reduced the probability that these processes destabilize the conjugate.

A probability of destabilization of pI=0.3 was considered in these cases.

• A conjugated detector interacts with a ligand displayed by presenters that rank

lower the detector agent, while the detector is conjugated to a presenter agent

that rank highly the detector agent (Figure 3.6C). In this case, the education

should increased the probability that these processes destabilize the conjugate.

A probability of destabilization of pS=0.7 was considered in these cases.

Hence, detectors can always change from conjugate with a given probability, inde-

pendently of the subtype of the presenter.

Figure 3.6: Schematic representation of the probabilities of destabilization of de-
tectors. Three examples are illustrated in which a detector D1 changes pair with
three di↵erent probabilities. An arbitrary IList for D1 is represented. The filled
rectangles represent di↵erent ligands from subtype I, while the ones with the blue
stroke represent di↵erent ligands from subtype II.
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The set of mean field equations which describe the system dynamics is given by:

dn
P1D1
dt = nD1�(nP1� + nP1D2) + pInP1�nP2D1 + nP1D2(pMnP1D1 + pInP2D1)

pMnP1D1nP1� � nP1D1(pdiss + pMnP1� + pSnP2�
+ pMnP1D2)

dn
P1D2
dt = nP1�nD2� + nP1�(pMnP1D2 + pSnP2D2)� nP1D2(pdiss + nD1�

+ pM

nP1D1 + 2pInP2D1 + pMnP1�
+ pInP2�

)

dn
P1�

dt = pdiss(nP1D1 + nP1D2) + nP1D1(pMnP1� + pSnP2� + pMnP1D2) + nP1D2

(pMnP1� + pInP2� + pInP2D1)� nP1�(nD1�
+ nD2�

+ pMnP1D1

+pInP2D1 + pMnP1D2 + pSnP2D2)

dn
D1�

dt = pdiss(nP1D1 + nP2D1) + nP2D1(nD2� + pInP1D2 + pMnP2D2)� nD1�(nP1�

+nP2� + nP1D2)
(3.2)

The remaining equations can be easily obtained by using symmetry operations.

From the contributions for the destruction of conjugates, expressions for the char-

acteristic lifetimes can be derived:

⌧

�1
P1D1

⇠ pdiss + pMnP1� + pSnP2�
+ pMnP1D2

⌧

�1
P1D2

⇠ pdiss + nD1�
+ pMnP1D1 + 2pInP2D1 + pMnP1�

+ pInP2�

(3.3)

To analyze the agreement between both methods, their values were calculated in

similar conditions. For the cellular automaton, the histogram characteristic lifetimes

were obtained by using an exponential fitting of P>⌧ (Figure 3.7). P>⌧ represents

the probability that a presenter i performs a conjugation that lasts longer than ⌧

iterations and it can be mathematically defined as:

Pi,>⌧ =

P⌧
MAX

i=⌧ c

o
i,>⌧P⌧

MAX

i=1 c

o
i,>⌧

(3.4)

in which coi,>⌧ represents the number of conjugations lasting longer than ⌧ iterations.

The same characteristic lifetime was obtained from the mean field equations (Equa-

tions 3.3). Both approaches are compared in Table 3.1 in which the parameters of
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the fittings are presented, as well as the characteristic lifetimes for each case.

Figure 3.7: Probability of establishing conjugations lasting longer than ⌧ iterations,
P>⌧ after the detection phase, and for pairs involving agents from the several sub-
types. Conjugations involving presenters, P, from cluster i and detectors, D, from
cluster j are represented as PiDj.

Table 3.1: Comparison between the cellular automaton (CA) and the mean field
equations (MFE).

Fitting Parameters CA MFE

Conjugation P>⌧= a exp�b⌧�1
C

⌧C ⌧C

P1D1 a=0.89, b=-0.05, r2=0.974 20.0 18.0
P1D2 a=1.28, b=-0.26, r2=0.999 3.8 5.0
P2D1 a=1.28, b=-0.26, r2=0.999 3.8 5.0
P2D2 a=0.88, b=-0.05, r2=0.973 20.0 18.0

In spite of the imperfections in ILists due to the education process, it is pos-

sible to verify that ⌧P1D1=⌧P2D2 and ⌧P1D2=⌧P2D1 , as expected from the previous

analysis. Di↵erences in lifetimes are due to the stochasticity in cellular automaton

dynamics and the estimation of the probabilities in mean field equations. Despite

the assumptions taken, the dynamics that is generated after the education process

in the cellular automaton simulation agrees with the dynamics predicted by mean

field equations.



4
Results

During the development of the computational system, several studies were performed

in order to increase the understanding of the optimal functioning of CFSs.

It is important to keep in mind that, whereas in the computational field all the

assumptions are scientifically acceptable and relevant, the same does not happen in

immunology. Here, so that the assumptions are valid, they should take into account

what is already known in the field about the basic mechanisms of the immune system

[45, 46]. Only in this case can the results obtained by the models have relevance in

the field.

In this section both perspectives are presented together although some systems

are closer to applications in the computational field, while others aim at understand-

ing the main mechanisms of the immune system in the light of the CFSs framework.

Despite the relevance of the results in one or another field, all the results about

the topic will be presented and discussed. The sequence of the presentation of the

results follows the development of this work.

Firstly, perfect systems which, were the starting point of this work are dis-

cussed. These systems accomplish perfect self/nonself discrimination and respond

to homeostatic perturbations. Their results were the clues for the development of

the computational algorithm for educated systems, which were the object this work.

As in perfect systems, in educated systems a maximally frustrated dynamics

should be generated for any arbitrary information presented in the sequences, such

that any change in the complex system would be signaled. In order to do that,

several studies concerning the education process - with the positive and the negative

education - were made. The main results are described in the subsections presented

next.

After the selection of the repertoire of detectors, two di↵erent types of detection
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were investigated: detection of foreign ligands and detection of self perturbations

(abnormal growth of some ligands and abnormal presentation of sequences). Both

phenomena can originate from invader, causing a change in the normal functioning

of the system, either in the computational or in the immune system. This thesis

starts by the study of the capacity of detecting invaders in educated systems. Since

the computational system is able to perform perfect self/nonself discrimination,

the capacity of detection other types of anomalies was studied. Afterwards, the

capacity of CFSs to perform detection of the change in the frequency of ligands

coding the normal behavior of the system, as well as the capacity of detecting

abnormal combinations of the same ligands which had already been presented, were

analyzed. Finally, the capacity of generalizing presentations as legitimate or no-

legitimate were tested when a small fraction of the possible presentations is displayed

in the education stage. In order to be better understood, all the main results were

summarized and presented in separate sections according to the di↵erent studies.

4.1 An Initial Model

The systems that will be presented here were the first systems developed in this

thesis. They appeared following the previous work done in Circular Frustrated Sys-

tems - shortly described in section 2.2 - and already published [15, 20, 47]. The

results obtained in these systems were very encouraging concerning intrusion detec-

tion tasks. For instance, a small number of agents is required to perform intrusion

detection; the time needed to perform the task is almost the same independently

of the amount of information to protect and, the most important result, the prob-

ability that an intruder escapes is almost zero and it decreases with the increase of

the size of the system. Also interesting results were obtained in the detection of an

abnormal growth of agents.

The circular frustrated system served as inspiration to build a system with 2

types of agents, presenters and detectors and arbitrarily large diversity. Each pre-

senter or detector has a di↵erent ligand and receptor. Di↵erent definitions of systems

could be made. Here it is assumed that Li = i, independently of the type of the

agent. Detectors have ILists built through the expression :

Li(j) = [i+ j]
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with i equal to the ligand of the detector and j equal to the position in the IList.

For the detector with i=1 and Li=1, the first and the bottom positions are:

L1(1)= [1+1]=2

L1(N)= [1+N]=1

To maximize frustration presenters have ILists according to:

Li(j) = [i+ j � 1]

For the presenter with i=1 and Li=1, the first and the bottom positions are:

L1(1)= [1+1-1]=1

L1(N)= [1+N-1]=N

In order to better understand the structure of the ILists, their construction is

represented in a simple way in Figure 4.1. The agents’ ligands are represented in

a circle that indicates the ordering assumed and the boundary conditions imposed.

The ligands of the presenters are represented in roman numeral, while the detectors’

ligands are in arabic numerals. On the sides, the IList of both agents with Li=1 are

shown. This is one among other possibilities that will in the same way originate a

maximally frustrated dynamics.
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Figure 4.1: Representation of the ordering of the ILists for presenters and detectors.

The method that is required for the anomaly detection system should be as gen-

eral as possible. The structure of the ILists should not be determinant in the per-

formance of the detection system, and it should warrant that for each presentation

made by presenters, detectors should be able to perform discrimination self/nonself.

These features are achieved for detection systems, in which presenters and de-

tectors are engaged in a maximally frustrated dynamics. Thus, a negative selection
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algorithm, which selects, within a set of detectors with random ILists, the ones

that maximally frustrate the dynamics in the system has been developed since then.

These systems are called educated systems. This was the beginning of the develop-

ment of the abnormal detection system, as it is now designated.

It is interesting to notice that the main concepts that will di↵erentiate CFSs

from all the other models in the literature[48, 49] are already present in this initial

approach. The agents are seen as optimization makers, which interact with di↵erent

agents in order to be paired with agents for which they have maximal a�nity. The

selection of detectors is made based on interaction lifetimes. Each detector that

exceeds the threshold of the conjugation lifetime is eliminated and another detector

is introduced to replace it. The new introduced detector has an arbitrary IList

that organizes all the ligands in the system in an arbitrary order. Finally, the

detection is ensured by an extended repertoire of detectors that acts in sequential

confined systems of detection. This first approach, which later inspired the anergy

mechanism, was inspired in the real immune system, in which a network of lymph

nodes promotes several di↵erent independent places of detection.

Although these systems are far from the final approach that is the object of this

thesis, the results obtained in these systems justify their discussion. Thus, the results

of the perfect system will be presented showing that, in a maximally frustrated

system, the perfect self/nonself discrimination can be accomplished. Then these

results are compared with the discrimination that is obtained in systems in which

the repertoire of detectors is selected by a negative selection process.

4.1.1 Parameters and Simulations

Both systems, perfect and educated, have 2 types of agents, presenters and detectors,

with 100 agents per type divided into 100 di↵erent subtypes. Each agent in the

system has a di↵erent ligand and receptor. It is assumed that the ligand of each

agent is equal to its subtype. Presenters in both systems have their receptors defined

in the same way (Figure 4.1). The receptors of detectors are di↵erent in educated

and in perfect systems. In the latter, the ILists are built with the strict order

presented in the previous section, while in educated systems the ILists place all the

ligands in the system in an arbitrary order.

The selection of the educated detectors that maximally frustrate the dynamics

of the system is ensured by the negative selection algorithm already defined in
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section 2.3.2. Nevertheless, a di↵erent stopping criterion is defined. The process

ends when around 97% of the detectors are eliminated - inspired by the 97% of

detectors that are eliminated in the education process in thymus [1, 2, 17] - , which

corresponds to a ⌧neg=75 and typically to around 40000 iterations in the simulations.

Detection in perfect systems is perfectly ensured by a single perfect population

of detectors, as represented in Figure 4.2A. In educated systems a given number of

populations was educated to be integrated in a consecutive sequence of detection

systems as represented in Figure 4.2B. Here, ligands displayed by presenters are

consecutively presented to di↵erent independent populations of educated detectors,

represented with separated boxes in the figure, until a detection is signaled.

Figure 4.2: (A) Detection in perfect systems. (B) Detection scheme that uses a
sequential application of di↵erent detector repertoires during intrusion detection, in
educated systems.

To compare results from perfect and educated systems, the same systems were

simulated. To test the performance of the intrusion detection system, Ninv=1000

invaders were introduced in both the perfect population or for each educated pop-

ulation. A detection window of WDET=5000 iterations was used in simulations. To

simulate the e↵ect of introducing a non-educated ligand in the system, the foreign

ligand is placed in random positions on all detectors ILists. The invader is intro-

duced in consecutive populations of detectors until a detection is signaled. After

this, a new invader is introduced and the procedure is repeated.

A detection event is triggered every time a presenter increases the frequency

and the duration of the conjugations, which mathematically means that R�1, with

F=1.05. All the ratios are calculated for both systems at ⌧C =2
3⇥⌧MAX , with ⌧MAX

equal to the maximal conjugation lifetime registered in interactions between self

agents.
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4.1.2 Numerical Results

4.1.2.1 Perfect Systems

Perfect systems have maximally frustrated dynamics due to the ordered structure of

the ILists of presenters and detectors. To estimate the probability of failing intrusion

detection in these systems, 1000 invaders were introduced in the system.

The typical histogram for the frequency of the interactions lasting longer than

⌧ iterations is presented for the invader and for the remaining presenters in Fig-

ure 4.3A. The grey lines represent the probability of each self presenter performing

an interaction that remains for at least ⌧ iterations, while the black line marked with

circles shows the same curve for the invader. It is clear from the histogram that the

invader establishes consistently longer conjugations and more frequently than the

remaining presenters. An interaction lifetime above which only the invader estab-

lishes interactions can be defined. This means that detection can be surgical; the

response can be triggered towards the intruder without any damage to the agents

of the system.

The selection of a longer lifetime conjugation to evaluate the response can be

inconvenient. Longer conjugations have a small probability of occurring, as can be

seen in the histogram. Thus, a detection based on short contacts is more convenient

in an intrusion detection system, because these events are more likely to occur.

The shortness of the lifetime to trigger responses forces that more than a single

interaction should be required to initiate a response, in order to minimize false

positive errors. This quantification for smaller lifetimes is captured by the ratio R
- already defined in section 2.3.2, and calculated at ⌧C . The lifetime selected to

make the computation is represented by the vertical dashed line in the histogram.

The detection ratios R are ordered and presented for all the invaders as well as the

respective histogram (Figure 4.3B and C, respectively).

These results show, that as in circular frustrated systems, intrusion detection can

be perfectly achieved in perfect systems. An interaction with a lifetime longer than

⌧C is, at least, one order of magnitude more probable for the invader than for a self

presenter. These results are independent of the value of ⌧C , while the magnitude of

the value of R depends on the lifetime in which the analysis is made. Short lifetimes

have small associated ratios and big lifetimes have higher ratios.

These results agree with the results obtained for circular frustrated systems.

Perfect systems seem to be the solution for the algorithm of a computational system
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Figure 4.3: Numerical results obtained with an ideal system with 100 agents of
each type. (A) Frequency of contacts lasting longer than ⌧ iterations, for the agent
presenting the foreign ligand (circles) and for the other presenter agents (grey lines),
for WDET=5000 iterations. (B) Detection ratio R calculated at ⌧C=8 for all foreign
ligands and (C) respective histogram.

which has a detection system as main goal. They do not seem a starting but an

ending point for the computational system. However, perfect systems are not so

general as required. One of the limitations of perfect systems is that all the ligands

should be known in order to be introduced in the strict order of the ILists. Every

new agent should be seen as a foreign agent, which means that every new self

agent should be introduced in the system after the ILists are built. In addition,

the increase in the system size requires the ILists to be modeled as a mathematical

function so that the algorithm has practical applications. The codification of the

ILists in mathematical functions is possible. However, the strict ordering of all the

ligands as in the IList is not possible in a simple way. Thus, it is necessary to develop

di↵erent approaches in CFSs so that the role of the structure of the ILists is not so

crucial to accomplish detection.
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The results of perfect systems were the beginning of an anomaly detection system

that combines not only the intrusion detection capacity, but also the detection of

anomalies related with homeostatic perturbations, the growth in the expression of

some ligands instead of other and the abnormal combination of ligands in a given

presentation shown by presenters.

4.1.2.2 Educated Systems

Emergent Repertoire of Educated Detectors

The main goal of the education process is to select a set of detectors that max-

imize frustration. About the real immune system is known that lymphocytes that

strongly react with self presenters are eliminated and replaced by other detectors

with di↵erent receptors. In the cellular frustration framework, the strength of a

reaction is measured not by the a�nity between ligands and receptors, - as in the

traditional approaches -, but by the duration of the interaction. Thus, detectors that

interact with maximal a�nity can stay in the system if the interactions that it es-

tablishes have short lifetimes. In this algorithm, detectors are eliminated when they

establish the longest interactions, independently of the a�nity of the interaction.

In this method, every time a detector establishes an interaction longer than a

⌧neg value, its IList is randomly reshu✏ed, as if a new detector was introduced in the

system. Through a non-directional method of selection, all detectors that are not

frustrated are eliminated. Ideally, this process should be ended when all detectors

have ILists that allow the system to perform a maximally frustrated dynamics with

conjugation lifetimes similar to the ones registered in perfect systems. Nonetheless,

computationally this state is only possible with the ordered ILists. Di↵erent criteria

can be defined to finish the selection of the detectors. Inspired by the real immune

system, the population of detectors is educated when around 97% of the detectors

are deleted, which corresponds to a ⌧neg=75. This process is accomplished after

around 40000 iterations, which means that the education process is not exhaustive.

The education process reduces dramatically the conjugation lifetimes established by

agents with a random and an educated population (Figure 4.4A and B, respectively).

Each grey line represents the frequency of the interactions lasting longer than ⌧

iterations (P>⌧ ) in both systems, random and educated.

To understand the e↵ect of the education process on the ILists, all the detectors’
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Figure 4.4: (A, B) Frequency of pairs lasting longer than ⌧ iteration steps for every
self-presenting agents(grey lines) and the average for all agents(black line), for a
random and an educated population (⌧ed=75), respectively. (C, D) Average devi-
ation of the value in a given position of the ILists for all detectors in an educated
system and a random system, or between two educated systems with di↵erent levels
of education, respectively.

ILists were analyzed and compared with the detectors’ ILists in the perfect system.

For each position of the ILists, the deviation between the ligand placed in the end

of the education process and the ligand that would be there in the perfect system

was calculated, Dj:

Dj =
1

N

NX

i=1

[Li(j)� L

perf
i (j)] (4.1)

where [j] = j✓(j)+(j+N)✓(�j) represents the deviation from the ideal position.

Here ✓(j) is the Heaviside function. For instance, if in the first position of an IList

there is a ligand that should be on the bottom, then this adds a N-1 contribution

to the distance. The random and the educated systems have almost the same de-

viation in the ILists when compared to the perfect system (Figure 4.4C). A better
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ordering is achieved if an extensive education process is applied which increases the

number of deleted detectors (Figure 4.4D). Although random and educated sys-

tems have similar deviations, there is a dramatic e↵ect on the frustrated dynamics

generated. While a reduction of almost one order of magnitude in conjugation life-

times is achieved with the education process, the typical interaction lifetimes are

much greater than in the perfect case. This means that the system is far from the

maximally frustrated dynamics generated in perfect systems.

Intrusion Detection in Educated Systems

With educated populations, results of self/nonself discrimination are far from

perfect. Simulations were run introducing the same number of invaders, 1000 as in

the perfect case. The no-detection rate was around 76%. This rate is improved with

extensive education processes, but it never reaches 0%. After extensive education

processes, the no-detection rate is around 15%.

The solution for perfect self/nonself discrimination is to assume that in educated

systems intrusion detection is achieved not by a single population but by a set of

educated populations. Inspired by the real immune system, several populations were

educated with the same ⌧neg (⌧neg=75). Several independent populations of detec-

tion ensure detection in educated systems, according with the sequence presented

in Figure 4.2.

The invader has a ligand that is di↵erent from self, because it had never been

presented in the education process. While detectors’ ILists were shaped to avoid

placing the ligands of the agents that have maximal a�nity for them in top po-

sitions, the ligand of the invaders is randomly placed in the ILists. The sequence

used increases the probability of the invader being detected. The increase in the

number of detectors that ensure detection increases the probability of the detectors

for which the invader has maximally a�nity placing the ligand of the invader in the

top position of the ILists. The question here is how many populations are required

to ensure that a perfect discrimination is accomplished.

As in the previous section, 1000 invaders were introduced in the system and the

dynamics generated was analyzed. Typical cumulative distributions for conjugation

lifetimes that last longer than ⌧ iterations are presented for a single population,

in a no-detection and a detection case, in Figure 4.5 A and B, respectively. As in

the perfect case, each grey line represents the dynamics of each presenter, while
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Figure 4.5: Typical cumulative distributions of interaction lifetimes for (A) no-
detection and (B) detection cases. Cumulative distribution for conjugation lifetimes
are presented in thin grey lines for self-presenters and with circles for the foreign lig-
and presenter. (C) Number of invaders escaping detection as a function of the num-
ber of consecutive detector populations used for educated (circles) or non-educated
(dots). (D) Maximum detection ratios obtained after the sequence of detections, for
each foreign ligand introduced.

the black line marked with circles represents the dynamics performed by the pre-

senter that displays the foreign ligand. In Figure 4.5 B, the line that represents

the foreign element clearly stands out from the remaining ones which represent the

self presenters. It is interesting to notice, that both distributions have a dynamics

similar to the one performed by self presenters and illustrated by the grey lines in

the histograms. This last observation suggests that the education process generates

an equivalent set of detectors, independently of the process in which the detectors

are educated. The repertoire selection process is robust.

The number of invaders that escape detection decreases exponentially with the

increase of the number of consecutive populations - NCP - that scan the presen-

tation. After 30 populations, only one invader can escape detection, all the other
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999 invaders were detected at least by one population. If the same invaders are

introduced in a set of no-educated populations, the number of invaders that escape

detection linearly decreases at a slow rate with the number of consecutive random

populations (Figure 4.5C). The ratios obtained for each invader are presented in

Figure 4.5D. Only around 0.5% of the invaders have ratios below 2, whereas 75%

of the invaders have ratios higher than 10, which means that the probability of an

invader performing longer conjugations is 10 times higher for the invader than the

less frustrated self presenter. These di↵erences could be greatly increased if the

triggering event was based on the frequency of formation of long conjugations. For

instance, if it required a consecutive number of events with a given lifetime to trigger

a response.

The detection ratios are smaller if compared with the ratios obtained for perfect

systems. This was antecipated because in educated systems the dynamics generated

by the educated ILists is not maximally frustrated. When the invader is introduced

in the system, its ligand appears in a random position of the ILists of all detectors.

Nevertheless, the relative order of the remaining ligands is not perfect either. Con-

sequently other self ligands perform conjugations that are longer than in the perfect

case. Thus, the ratios decrease.

An extensive education process or an increase in the number of populations

considered will be enough to obtain perfect self/nonself discrimination. However,

the main goal of this section is to show how the main ideas started and evolved

from this first approach. In the next sections better model concerns the intrusion

detection and homeostatic responses to perturbations will be discussed in the light

of the CF framework.
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4.2 Positive Education

In immunology, it is known that the positive education process ensures that T cells

that can not interact with APCs are not positively selected and die by neglect

[1, 2, 17].

The positive education was the most puzzling concept in the CF framework.

Several disconnected results were obtained in di↵erent phases of this work, concern-

ing the goal of this selection process. In symmetric systems with total connectivity,

the positive education process seemed not to play any e↵ect. On the other side, the

positive education process adjusts the number of subpopulations in asymmetric sys-

tems and it increases the interactivity between presenters and detectors, although

the interaction lifetimes registered in the dynamics were the same in most cases,

with or without the process. However, in systems with limited connectivity, it be-

came clear that the positive education can be responsible for the decrease of the

threshold ⌧neg during the education process.

The discussion of the e↵ect of the positive education will be held with di↵erent

systems throughout this section . These systems will never be used again in this

work. However, they were built to clearly highlight the e↵ect of the positive educa-

tion on each case. Due to this fact, a small section of Simulations and Parameters

will be presented only with the parameters that are common to all the systems

considered. The details of each system will be presented in the Numerical Results

section together with the results obtained in each case.

4.2.1 Simulations and Parameters

During the positive education process, all the detectors that do not bind for ⌧ pos

iterations are eliminated and new incoming detectors are introduced in the system.

These new detectors have reshu✏ed ILists as well as a random ligand.

In the beginning of the positive education process, ⌧ pos is initiated with the value

5000, the value of the number of iterations WEDU taken between its update. ⌧ pos

is updated to the maximal value that a detector remains without establishing an

interaction with a presenter. After this, every time a detector remains ⌧ pos iterations

without interacting, it is eliminated and another detector enters the system. If none

of the detectors interacts during WEDU time steps, the value of ⌧ pos is again updated

and the process goes on.



60 Results

4.2.2 Numerical Results

4.2.2.1 Positive Education regulates detectors subpopulations

To understand the e↵ect of positive education on the regulation in number of the

subpopulations, a 2-cluster asymmetric system is considered. Presenters were di↵er-

ently distributed: 60 and 40 presenters are placed in clusters 1 and 2, respectively.

All the detectors are placed initially in cluster 1 (Figure 4.6).

Figure 4.6: Assymetric system considered in the beginning and in the end of the
positive education process.

The evolution of the number of detectors in each cluster is presented with the

duration of the simulation (Figure 4.7). The total number of detectors in cluster 1 -

ND1 - tends to be equal to the number of presenters in the same cluster - NP1 - and

the same for cluster 2, that is, the number of detectors and presenters in the second

cluster is almost the same - ND1⇡NP1 and ND2⇡NP2 , as presented in Figure 4.7 .

Figure 4.7: Evolution of the number of detectors in each cluster along the positive
education process: (A) cellular automaton model; (B) mean field equations approach
and (C) both cases.

To validate this result, mean field equations were derived for all the conjugated

and non-conjugated agents. Also as in the previous sections, the interactions that

contribute to the formation and to the destruction of each species were considered.

Whereas in the other case detectors have educated ILists (Section 3.1.2). Thus,
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di↵erent probabilities are considered according to the ligands of the presenters with

which the detector is interacting. In order to simplify the equations, only three

probabilities of optimizations were considered: pM , pI and pS - with pM=0.5, pI=0.3

and pS=0.7 as in section 3.1.2. Here, an additional term that models the change of

cluster of detectors during the education process is introduced in the equations:

dnP1D1

dt

= nD1�(nP1� + nP1D2) + pInP1�nP2D1 + nP1D2(pMnP1D1 + pInP2D1)

� nP1D1(pdiss + pSnP2�
+ pMnP1D2)

dnP1D2

dt

= nP1nD2 + nP1(pMnP1D2 + pSnP2D2)� nP1D2(pdiss + nD1�
+ pMnP1D1+

2pInP2D1 + pMnP1�
+ pInP2�

)

dnP1�

dt

= pdiss(nP1D1 + nP1D2) + nP1D1(pMnP1� + pSnP2� + pMnP1D2) + nP1D2

(pMnP1� + pInP2� + pInP2D1)� nP1�(nD1�
+ nD2�

+ pMnP1D1

+ pInP2D1 + pMnP1D2 + pSnP2D2)

dnD1�

dt

= pdiss(nP1D1 + nP2D1) + nP2D1(nD2� + pInP1D2 + pMnP2D2)� nD1�(nP1�

+ nP2� + nP1D2 � 0.5�1nD1� + 0.5�2nD2�)

Here 0.5�1nD1� and 0.5�2nD2� represents the fraction of detectors that are elimi-

nated and created due to the lack of interactions of D1� and D2� agents, respectively,

and �1/2 / (1-⌧B1/2�
)⌧pos nB1/2�

models the triggering of positive selection. A small

probability of natural dissociation can be considered, pdiss=0.001. The other equa-

tions can be easily obtained by the replacement of (P1, P2, D1, D2)!(P2, P1, D2,

D1).

More processes can be considered to account for the complex optimization pro-

cess performed by each agent. This would introduce more parameters. However,

the increase in the complexity would not be translated into a deeper comprehension
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of the positive selection process, which is captured with these simple assumptions.

The same system which was simulated with cellular automaton. There is a

good agreement between the results obtained in the cellular automata model and

the results obtained through the dynamical mean field-like equations(Figure 4.7C).

Despite the fluctuations, the positive education process leads the system to a config-

uration in which the number of detectors is equal to the number of presenters in the

same cluster, ND1⇡NP1=60 and ND2⇡NP2=40, in the end of the positive education

(Figure 4.6B).

The final configuration after the education process is the one that ensures that

detectors have presenters that will always accept them as preferred agents (Fig-

ure 4.8A). This prevents detectors from not being positively selected. Here, in the

configuration obtained all the numerous presenters P1 will accept detectors D1 if

they are alone or with a detector from the other subtype, D2. This mechanism

ensures that detectors interact with these presenters and they avoid elimination due

to lack of interactions.

Figure 4.8: (A) Configuration of the system after the selection process. (B) Alter-
native asymmetric configuration.

The opposite configuration ND1=NP2 and ND2=NP1 promotes that D2 will have

di�culties in interacting with P1 because they prefer D1 (Figure 4.8B). Conse-

quently, D2 will only be able to interact with P1 that are alone, because the non-

conjugated P1 are the ones that will accept D1. None of the conjugated D1 will

change conjugation because they are satisfied with D1 and even if they are conju-

gated with other D2, they will not change. Interactions with P2 are also di�cult

because they are in small number in comparison with D2 and the competition for

these presenters is high. In this configuration the detectors of D2 subtype have

di�culty in interacting with presenters and they can not easily avoid elimination.

It is easy to understand that the positive education balances the number of

presenters and detectors in systems with di↵erent numbers of agents within the

clusters. However, does this mechanism have any relevance in symmetrical systems

for which presenter agents in di↵erent subtypes appear in equal numbers? In order
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to better understand the relevance of the positive education process in symmetric

systems, three di↵erent education conditions were imposed to a 2-cluster system

with 50 agents per cluster. In the first simulation only the positive education was

considered (Figure 4.9A), while in the second it is assumed that detectors that

exceed the ⌧neg of conjugation are replaced and the new detectors are placed in an

arbitrary cluster - negative education process with change of ligands (Figure 4.9B).

Finally, in the last simulation both processes were considered (Figure 4.9C).

Figure 4.9: Number of detectors in the first cluster along the education process, con-
sidering positive education, negative and both processes, A, B and C, respectively.

In systems in which only one process was considered, positive or negative edu-

cation, the number of agents in each cluster fluctuates much more than when both

precesses were considered. The positive education process ensures that during the

education process the number of detectors in each cluster is almost the same.

The positive education process is the mechanism responsible for the regulation of

the number of detectors in each cluster during the education process. Bearing this

in mind, symmetric systems will be considered from now on to discuss the remaining

goals of the positive education process.

4.2.2.2 Positive Education adjusts the Network of Interactions

The previous results show that positive education plays a role in the regulation of

the number of detectors in each subtype. This mechanism is responsible for ensuring

that although di↵erent detectors are continuously entering the system, the number

of detectors in each subtype is almost the same as the number of presenters in the

corresponding subtype. Here, the e↵ect of the positive selection on the reduction

of the conjugation lifetimes will be studied. From the previous section, nothing

suggests that positive education process could favor the convergence of the system.

However, a deeper comprehension of the mechanisms in the detectors’ selection pro-
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cess imposes a detailed study. To emphasize the importance of positive education,

a system in which a ligand is presented by several presenters was selected. In addi-

tion, restricted connectivities were considered. The system selected plus the reduced

connectivity will favor the selection of ligands in the top positions of ILists will be

crucial for the selection or not of each detector. The ILists should ensure that each

detector interacts with presenters and should also ensure that this interaction is

frustrated. Any small mistake in the ILists concerning one of these two aspects will

dictate the elimination of the detector.

A system with NP=ND=60 and 2 clusters with the same number of agents was

considered (Figure 4.10). Agents are represented by circles, together with their

ligand - a number between 1 and 26 for the presenters and equal to 1 or 2 for the

detectors. The system has groups of agents sharing a common ligand (for example,

21 and 22 in the first cluster are presented by 5 presenters each). Presenters have

two types of receptors, all presenters of the first cluster have detectors of the first

cluster on the top of their IList, followed by the ones of the second cluster. In the

second cluster, presenters do the opposite.

Figure 4.10: Population considered in the text, with repeated ligands displayed by
presenter agents.

To study the convergence of the education process with or without positive ed-

ucation, this system was simulated with 3 di↵erent connectivities. One in which

each detector interacts with all the presenters in the system, i.e. k=26. Another in

which each detector interacts with the top 20 ligands, k=20, and finally, a third one

which has even smaller connectivity, k=10. The generic decay of the ⌧neg during the

education process is presented in the case only negative selection is considered, NS,
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and in the case both processes were simulated - PS+NS. Ten independent decays

with di↵erent connectivities for the detectors were simulated in each case during 107

iterations each.

Figure 4.11: Decay of ⌧neg for systems with and without positive education, NS+NP
and NS, and di↵erent connectivities: (A) k=26, (B) k=20 and (C) k=10.

In systems with total connectivity, the decay of the conjugation lifetime - ⌧neg

- is similar, with or without positive education (Figure 4.11A). A di↵erent result is

obtained if the connectivity of the detectors is restricted. For smaller connectivities,

positive selection is crucial for decreasing ⌧neg, as shown in Figure 4.11B and C. The

smaller the connectivity, the higher the di↵erence between the final ⌧neg, with and

without positive selection.

To analyze the e↵ect of the di↵erent education processes on the dynamics gener-

ated, cumulative histograms are presented for systems with di↵erent connectivities,

k=26 and k=10 (Figure 4.12 and Figure 4.13, respectively). The red lines represent

agents from the first cluster, while the black lines represent agents from the second.

The number and the duration of the interactions established are almost the

same with only negative education or with both processes for systems with total

connectivity (Figure 4.12A and B). There is a di↵erence in the probability of each

detector staying in a non-conjugated state. In systems with only negative education,

agents from the first cluster have higher probability of staying alone (Figure 4.12C).

In systems with positive and negative education the probability is equal for all the

detectors (Figure 4.12D).

For systems with limited connectivity the results are completely di↵erent. Due

to the absence of the positive selection, detectors were not able to select the net-
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Figure 4.12: Probability of establishing a conjugation with a lifetime longer that
⌧ iterations, P>⌧ for each detector (A, B) or the probability that detector stays
non-conjugated for a time longer that ⌧ iterations (C, D) for a system with k=26.
Di↵erent education processes are considered: only negative selection, NS (left), or
positive and negative selection processes, PS+NS (right). Red lines represent agents
from the first cluster, while black lines represent agents from the second.
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Figure 4.13: Probability of establishing a conjugation with a lifetime longer that
⌧ iterations, P>⌧ for each detector (A, B) or the probability that detector stays
non-conjugated for a time longer that ⌧ iterations (C, D) for a system with k=10.
Di↵erent education processes are considered: only negative selection, NS (left), or
positive and negative selection processes, PS+NS (right). Red lines represent agents
from the first cluster, while black lines represent agents from the second.
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work that allows the minimization of ⌧neg. Hence, longer conjugation lifetimes are

performed more frequently for the negatively educated system (Figure 4.13 A and

B). Furthermore, no-conjugation lifetimes are also more probable in this system

(Figure 4.13 C and D).

The smallest decrease of the ⌧neg during the education process in the absence

of the positive education can be easily understood with a toy model with small

diversity and restricted connectivity. A 2-cluster system with only 3 di↵erent ligands

presented by presenters is considered. If each detector is allowed to interact only

with 2 of the 3 possible ligands, 12 di↵erent ILists are available (Figure 4.14). In

black are represented the ILists that ensure a maximally frustrated dynamics in the

system. The ILists that should be eliminated by negative education are shown in

red, while the ILists that should be eliminated by positive education because the

detectors do not establish interactions properly are represented in blue.

Figure 4.14: Representation of a simple model that highlights the importance of
positive selection in systems with limited connectivity. Presenters of the first subtype
present ligand 1, while presenters of subtype II present either ligand 2 or 3. Detectors
with ILists represented in red establish stable pairs and consequently are eliminated
by negative selection. Detectors represented in black form a frustrated set: and
conjugation involving these agents can always be destroyed either by a presenter or
a detector. Similarly detectors with ILists represented in blue do not establish long
contacts with presenters 2 or 3, because any detector of subtype II destabilizes the
pair.

In the absence of positive selection, the detectors in black are selected together

with the ones in blue (Figure 4.15 a, b). Moreover, the number of detectors with

the ILists in blue increases. Firstly, they are not eliminated by negative education,

because they almost never interact. Secondly, they are continuously created, that

is, for each eliminated detector by negative selection in cluster 1, a detector with the

green ILists is generated with ⇡17% of probability. As a consequence, the global

frustration of the system decreases and the ⌧neg in the end of the education process is

higher than the final ⌧neg achieved in a selection process with positive and negative
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selection (Figure 4.15 c, d).

Figure 4.15: Impact of positive and negative selection on the evolution of detec-
tors frequencies for the simplified model in Figure 4.14. In a) and c) only negative
selection is applied. In b) and d) positive and negative selection are applied simul-
taneously. Lines in blue in a) and b) represent the total number of detectors with
ILists represented in blue in Figure 4.14; in red are represented the total number
of detectors that establish stable conjugations; in black are represented the total
number of detectors engaging in frustrated interactions. In c) and d) are displayed
conjugation lifetimes for the most relevant conjugates in the population. As stable
agents are eliminated, their lifetimes are not represented.

These results show that if no positive selection is applied, neglected detectors

accumulate, and the maximum conjugation lifetimes are larger than in the model in

which positive selection is applied and these detectors are eliminated. These results

agree with numerical results obtained for cellular automata with more ligands.
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4.3 Negative Education

In Immunology, the negative selection process eliminates all T cells which have

highest a�nities to self peptides presented in the Thymus [1, 2]. This elimination

ensures that T cells do not react in a harmful way with self cells in the periphery.

The main mission of the negative education process is to reduce the maximal a�nity

with which the MHC complex is recognized by detectors.

In CFSs the goal of the negative education is not to reduce the a�nity of the

interactions between agents, but to increase the frustration of the dynamics that

is generated between presenters and detectors. This process should warranty that

detectors cooperate in the detection task, regardless of which detectors perform the

detection.

The selection of detectors by the education process is absolutely crucial in CFSs.

Without a frustrated dynamics the system can not perform any of the detection

tasks proposed. Due to this, several studies about the process were carried out,

concerning the convergence of the education process and the e↵ect of the education

process on the ILists and on the dynamics of the system. All the knowledge about

this process will be presented along the next section.

4.3.1 Simulations and Parameters

Contrary to the previous section, in which di↵erent systems were used, in this section

the same generic system is considered: a symmetric system with 60 agents of each

type, equally divided into clusters - 2 or 3 clusters. The connectivity is total, all

agents interact without restrictions with the agents of the opposite type. Presenters

have di↵erent ligands within the cluster but the same receptor, which is built in

such a way that:

RC(i) = (C+(i�1))✓(Nc�(C+(i�1)))+(C+(i�1)�Nc)✓((C+(i�1)�Nc)) (4.2)

in which i represents the position in the receptor, C the cluster, NC the number of

clusters and ✓ represents a discrete form of the Heaviside step function as presented

in section 3.1.1.1. Detectors have the same ligand within the same cluster but

random receptors at the beginning of the education process.

All systems were simulated during ⇡107 iterations or until ⌧neg of the education

process reached a predefined ⌧ ed value. This fixed value of ⌧ ed is the minimal value
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⌧neg achieved the first educated population after 107 iterations. While the fixed

number of iterations is used to study the convergence of the education process, the

fixed ⌧ ed value is used to educate the extended repertoire of detectors - this criterion

ensures that all populations are almost at the same education stage. Regardless of

the stopping criterion selected, ⌧neg is equal to 5000 at the beginning of the process

and it is updated if, none of the detectors remains conjugated during ⌧neg iterations,

during the education window (WEDU=5000). In this case, ⌧neg decreases to the

maximal conjugation lifetime established in WEDU iterations. Every time that,

during the education process, a detector remains conjugated ⌧neg iterations with a

presenter, the detector is eliminated and replaced by a new incoming detector with

a random receptor.

To study the negative education process in di↵erent situations, several conditions

were changed, such as the number of agents, the number of clusters, the connectivity,

etc. The conditions that are changed in each case are properly presented before the

presentation of the corresponding numerical results.

In order to increase the comprehension of the results, this section is divided in

two parts. In the first, the convergence of the negative education process will be

presented. Then, the e↵ect of the negative education process on the ordering of the

ILists and on the dynamics that is generated in an educated system will be shown.

4.3.2 Numerical Results

4.3.2.1 Increase in number of clusters allows better convergence

To estimate the e↵ect of the introduction of di↵erent subtypes, simulations with the

same number of agents - 60 agents per agent type -, but di↵erent number of subtypes

were performed (Figure 4.16). The first system considered is a 2-cluster system.

Presenters and detectors are equally divided into clusters (NP1=ND1=NP2=ND2=30).

The numbers inscribed represent the ligand of each agent. Presenters have the same

receptor inside the cluster which codes the same IList. In opposition, detectors have

di↵erent receptors that code di↵erent ILists, which randomly rank all the ligands.

The ILists of presenters are represented on the left, while the ILists of two arbitrary

detectors are presented on the right .

The negative education process was performed five times with the same system

but di↵erent random seeds, during 1x107iterations. For each simulation, the decay

of ⌧neg was registered. A linear interpolation was applied to all decays, and the
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Figure 4.16: Generic system with 2 clusters or subpopulations.

average of all decays, as well as the error bars were calculated and presented in

Figure 4.17. The ⌧neg in a 2-cluster system decays to half of the initial value.

Figure 4.17: ⌧neg decay for a system with two clusters. A linear interpolation was
applied to five independent decays of ⌧neg, and the average of all decays, as well as
the error bars were determined.

To study the e↵ect of the introduction of more clusters, the generic decay ob-

tained in a 2-cluster system was compared with the decays obtained is systems with

3, 4, 6 and 10 clusters and the same number of agents. The simulation was repeated

with the same number of agents equally distributed in di↵erent number of clusters.

Five independent decays were collected for each system. The decay of ⌧neg/⌧neg
I

throughout the simulation is represented for all systems (Figure 4.18). Also, the av-

erage initial and final value are presented - ⌧neg
i

and ⌧neg
f

-, as well as the respective
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error bars.

Figure 4.18: Top Left: Average initial threshold times of the negative education
process, ⌧neg

I

, and respective standard deviations as a function of the number of
clusters, NC . Top Right: Final average threshold times of the negative education
process, ⌧neg

F

and respective error bars, as a function of the number of clusters, NC .
Bottom: Decay of ⌧neg/⌧neg

I

throughout the simulation, for systems with 2, 3, 4, 6
and 10 clusters.

The initial value of the ⌧neg is independent of the number of clusters and it

is similar in all systems. In opposition, its final value depends on the number of

clusters considered. The smallest ⌧neg is obtained for the 10-cluster systems while

the biggest ⌧neg is registered for a 2-cluster system, 52±1 and 461±69, respectively.

The results obtained indicate that the smaller the number of clusters, the smaller

the decrease of ⌧neg during the negative education process. It is also interesting to

notice that the same generic curve is obtained for all the systems - a sharp decrease

of ⌧neg occurs in the beginning of the simulation, followed by a much slower decrease



74 Results

in the end. The higher the number of clusters, the higher the sharp initial decrease

is. Both the ⌧neg and the standard deviation decrease with the introduction of

subtypes. Table 4.1 summarizes the composition of the systems and the final value

of the ⌧neg obtained.

Table 4.1: Final ⌧neg with the composition of the system

Clusters Agents per cluster ⌧neg

2 30 451±69
3 30 168±54
4 15 89±2
6 10 56±2
10 6 52±1

The introduction of more clusters allows better education. Di↵erent time scales

in the conjugation lifetimes are added with the increase of the number of clusters.

This can be easily understood when 2 and 3-cluster systems are compared. If another

cluster is added to the system, the total number of the agents is equally divided by

the 3 clusters. While in a system with two clusters one half of the ligands should

be avoided in the first half of the top positions for each detector, in the case of 3

clusters there are now only one third of ligands to avoid. The number of longer

conjugations due to detectors that have maximal a�nity for presenters which also

prefer them will be also reduced with the additional clusters. Hence, a lower number

of iterations is needed to select a population with the same value of ⌧ ed.

The results discussed here were obtained for small systems (NP=ND=60). Can

these results be extended to bigger systems? Is the negative selection process scal-

able? The scalability of the negative education process will be discussed in the next

section.

4.3.2.2 Convergence is more di�cult in larger systems

In the previous section it was shown that the negative education process is possible

and that it is favored by the increase in the number of clusters. However, only

systems with 60 agents per type were considered. In this section the scalability of

the negative education process will be discussed. Simulations were performed with

a system with 3 clusters, due to easier convergence when compared with 2-cluster

systems. Presenters display a di↵erent ligand per agent while detectors have ligands
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equal to 1, 2 or 3 depending on the cluster. Presenters have the same receptor within

the cluster. Detectors have arbitrary receptors that list all ligands in a random

order. Symmetric systems with 90, 150, and 300 agents per type were considered.

The respective education processes were analyzed and compared with that obtained

for the 60-agents system presented in the last section. As in the previous section,

the decay of the ⌧neg/⌧neg
I

is presented, for all the systems in Figure 4.19.

Figure 4.19: ⌧neg/⌧neg
I

decay for systems with 60, 90, 150 and 300 agents per type.

The final value of ⌧neg/⌧neg
I

is minimal for a system with 60 agents (0.150±0.10),

followed by the systems with 90 (0.260±0.06), 150 (0.520±0.05), and finally for

systems with 300 (0.92±0.04). In the latter case, the ⌧neg/⌧neg
I

is almost the same

before and after the negative education process.

The reason why the complexity of the education process increases with the in-

crease in the number of ligands is easy to understand. A linear increase in the num-

ber of ligands represents an exponential increase in the number of possible ILists.

For example, an increase of thirty ligands, from 60 to 90 ligands, corresponds to an

increase in the number of possible ILists from 60!⇡8.3x1081 to 90!⇡1.5x10138. In a

system with 300 ligands, 300! ILists are possible. This diversity in the ILists makes

the decrease of ⌧neg more and more di�cult. The scalability of the negative selec-

tion process is compromised with the increase of the systems’ size. A more general

approach to perform the selection of the repertoire of detectors in bigger systems is

required. This will be the issue of the discussion of the next section.
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4.3.2.3 Limited connectivity allows education in bigger systems

Up until now, it was considered that agents interact with all the agents from the

opposite type. The approach considered here assumes that each detector interacts

only with a fraction of all the ligands in the system. Positive education ensures

that a network of interactions is established that guarantees that all agents are

continually interacting, while negative selection orders the ligands in ILists.

To study the e↵ect of limited connectivity, the system with 300 ligands presented

in the previous section, in which ⌧neg does not decrease is selected. The composi-

tion of the system was the same of the last section, but di↵erent connectivities for

detectors were considered: k=300, k=200, k=100, k=60 and, finally, k=15. The

decay of ⌧neg/⌧neg
I

as a function of the interactions in each system is presented in

Figure 4.20.

Figure 4.20: ⌧neg/⌧neg
I

decay for a 300-agents per type system and di↵erent connec-
tivities as a function of the iterations.

The e↵ect of the reduced connectivity on the decay of ⌧neg is remarkable. If

it is considered that each detector can interact with 5% of all presenters (k=15),

⌧neg/⌧neg
I

decreases to 0,13±0,09 of its initial value. Higher connectivity implies

more ligands to order and, consequently, smaller decreases in ⌧neg. The connectivity

reduction ensures that the education process is not made more di�cult with the

increase in the size of the systems. Hence, the scalability of the education process

is guaranteed with the selection of the appropriate connectivity in each system

according to the size of the system.
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4.3.2.4 Negative education prevents stable conjugations

From the previous results it is clear that ⌧neg decreases during the negative selection

process, even for big systems. Here, the impact of the negative education on the

ordering of the ILists will be analyzed.

For simplicity, systems with 2 and 3 clusters were analyzed. The composition of

the systems was the same as considered before: 60 agents per type equally divided

into clusters, and with the same definition for detectors and their receptors. How-

ever, instead of considering an established computational time - 1x107 iterations,

as previously -, the education process finishes when ⌧neg achieves an established

threshold value - ⌧ ed=450 - equal for both systems. Forty independent educated

populations were educated in each system. For each population, the number of de-

tectors that placed ligands of presenters that have higher a�nity for them in each

IList position is determined. According to this value, the probability of one arbi-

trary detector placing a ligand of a presenter that has higher a�nity with it, P, in a

given position of the IList, POS, is represented for both systems (Figure 4.21). The

same probability is determined for a detector that does not undergo the education

process for systems with 2 and 3 clusters. All probabilities are shown with the error

bars represented with shaded areas.

Figure 4.21: Probability of a detector of an arbitrary population avoiding a ligand
displayed by a presenter having high a�nity for it as function of the position of the
IList, POS, in a 2 and 3-cluster system (top and bottom, respectively) and with an
educated and no-educated repertoire.
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Detectors that undergo the negative education process have probability almost

zero of placing a ligand of a presenter that has high a�nity for them in the top

position. For every 150 educated detectors, there is always 1 detector that places

in the top position a ligand that has high a�nity for it in a 2-cluster system. For

a system with 3 clusters, this value decreases to 1 detector in every 588. Moreover,

the associated variability is extremely small when compared with the remaining

positions in the ILists. This result is remarkable when compared with systems that

did not undertake the education process. In random systems, for every 2 or 3

detectors in the repertoire, 1 detector places a ligand that has high a�nity for it in

the top position, in a 2-cluster or 3-cluster system, respectively. The probability is

around 50% or 30%, and it is approximately equal for all positions in the IList.

Another interesting analysis concerns the range of educated positions in ILists.

The number of educated positions is defined as the number of positions until the

slope of the function P(POS) in Figure 4.21 is maximal. According to this definition,

the education of 3 top positions in ILists is enough to decrease ⌧neg to 450 in a system

with 3 clusters (Figure 4.21), while in systems with 2 clusters 6 top positions are

required. In addition, these positions have small associated errors, which indicates

that the ILists are more uniformly ordered in the educated positions.

The results presented here demonstrate that detectors undergoing this process

have ligands of presenters that have low a�nity for them in the top positions of

their IList, and, consequently, a frustrated conjugation will be established. In the

next section, the possibility of increasing the range of educated positions will be

investigated.

4.3.2.5 Extensive education increases the ordering of ILists

The previous results showed that the top positions of ILists can be ordered by means

of a negative education process. However, the education process in the previous

section was finished before 1x107iterations. Is there any di↵erence in the ordering

of the ILists if a more exhaustive education process?

In order to analyze the e↵ect of an extension of the education process on ILists,

systems with 60 di↵erent ligands equally distributed into 3 clusters were simulated,

using di↵erent computational times. As in the previous section, 40 educated popu-

lations were obtained and ⌧ ed was reduced to 150. The probability that an arbitrary

detector places a ligand of a presenter that has high a�nity to it as function of

the position of ILists, for these more lengthy education processes are shown in Fig-
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ure 4.22. This probability is compared with the same probability calculated for

systems educated with ⌧ ed=450.

Figure 4.22: Probability of a detector of an arbitrary population of having ligands
displayed by presenters having high a�nity for it as a function of the ILists positions,
POS, for a two educated repertoires of detectors with ⌧ ed (⌧ ed=150) and (⌧ ed=450).

The value of ⌧ ed required in the negative education process has a crucial e↵ect on

the range of positions that are educated during the negative education process. A

decrease of 300 iterations in ⌧ ed - from 450 to 150 - increases the number of educated

positions from 3 to 11. Another interesting result is that in a sample of 40 educated

populations, none of the detectors placed a ligand of a presenter that has higher

a�nity for it in the top position. The probability is much smaller, at least one order

of magnitude smaller, in the first six positions of the IList, in systems educated

with ⌧ ed=150. This probability remains smaller in the next six positions. However,

the smaller probability in the 12 top positions is counterbalanced by an increase

of the probability in the remaining positions. These results support that extensive

education processes increase the ordering on ILists. Detectors that undergo extensive

education processes have higher probability of avoiding ligands of presenters that

have higher a�nity for them. In the next section another strategy to increase the

ordering of ILists will be discussed.

4.3.2.6 Ordering of ILists is facilitated by the introduction of clusters

An extensive education can increase the order in ILists for a given system. In this

section the relationship between the ordering of the ILists and the number of clusters

will be discussed.

In order to do that, di↵erent configurations, in which the 60-agents per type were

equally divided into 2, 3, 4, 6 and 10 clusters were considered. In each configuration

40 populations were educated with the ⌧neg achieved in Table 4.1. The probability

that an arbitrary detector places a ligand of a presenter that has high a�nity for



80 Results

it as function of the position of ILists was represented for all the systems. The

same probability was determined for 40 populations of random detectors with the

same system’s composition. For each system, both probabilities were compared in

Figure 4.23. The vertical dashed line represents the region in which ligands with the

highest a�nity for each detector should not be present. For instance, for a system

with 2 clusters, no ligand presented by agents in the first cluster should appear in

the first half of the subtype I detectors ILists. This value decreases to 60/3 for a

system with 3 clusters.

An increase in the number of clusters corresponds to a decrease in the number

of agents in each cluster. Hence a small number of agents has maximal a�nity for

each cluster of detectors, and, consequently, the probability that a detector places

a ligand that has maximal a�nity for it in the forbidden range also decreases. In

a system with 2 clusters it is around 0.5 while in a 10-cluster system it is only 0.1;

thus, the negative education process is less complex in a 10-cluster system. Another

consequence of the introduction of clusters is that, di↵erent lifetime conjugations

will be established, and any longer conjugation signals an incorrect ligand placed

in the top positions of a detector’s IList. Thus, for each longest conjugation, the

corresponding detector is deleted and replaced by a new incoming detector.

It is also interesting to notice that the small probability of placing ligands that

have maximal a�nity for a detector is counterbalanced by a higher probability in

the remaining positions. The more e↵ective this di↵erence, the more frustrated

the dynamics. This structure ensures that detectors and presenters never establish

stable conjugations and the system never reaches stable configurations.

In order to clearly see the result of the negative education, the probability that

a detector places ligands of presenters that have maximal a�nity to it only for the

top position (PTP ) as a function of the number of clusters (NC) is presented for a

random (RAND) and an educated (EDU) detector, as well as its theoretical value

(THEO) calculated for an arbitrary population of detectors by the ratio:

PTHEO =
NHA

NT
(4.3)

between the number of ligands that have high a�nity for a given detector, NHA,

and the total number of ligands in the system, NT (Figure 4.24).

Educated systems have probability almost zero of placing in the top position a

ligand of a detector that has maximal a�nity for it, for every systems’ composition.
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Figure 4.23: Probability of a detector of an arbitrary population of having a ligand
of a presenter that has higher a�nity for it, P, as a function of the ILists positions,
POS, for systems with 2, 3, 4, 6 and 10 clusters, from the top to the bottom,
respectively.

Moreover, systems with more than 2 clusters never placed a wrong ligand in the

top position of its IList. For random systems this probability decreases with the

introduction of clusters, as predicted by the theoretical value.

Also the e↵ect of the number of clusters in the number of educated positions,

NEP , is analyzed as a function of the number of clusters, NC , for an equivalent
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Figure 4.24: Probability that a detector places ligands of presenters that have max-
imal a�nity to it on the top position, PTP , as a function of the number of clusters,
NC , for an arbitrary (RAND) and an educated (EDU) detector, as well as its theo-
retical value (THEO).

Figure 4.25: Number of educated positions, NEP , as a function of the number of
clusters, NC .

education time (Figure 4.25). On one hand, the increase of the number of clusters

decreases the range of positions in which the ligands of the detectors that have max-

imal a�nity for each detector, should be avoided - this range ends with the vertical

line represented in each plot. Despite the fact that a smaller number of positions

should be educated to avoid maximal conjugation lifetimes, with the increase of

the number of clusters, for the same computational time the number of educated

positions increases with the increase of the number of clusters. Actually, this is an

expected result, due to the decrease in the complexity of the education process due

to the increase of the number of clusters. As already mentioned, the conjugations

established in systems with higher number of clusters have smaller durations and

the decision dynamics that is generated is more frustrated.

From these results it is clear that the introduction of clusters reduces the com-

plexity of the education process, which is corroborated by the ⌧neg decrease and by

the ordering of the ILists. However, it is also important to bear in mind that the

increase in the number of clusters reduces the di↵erence between the probabilities

in educated and in random systems. This is due to the fact that random systems
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with a big number of clusters have a small probability of placing a “wrong” ligand

in the top positions.

The results obtained in the previous sections suggest that the education process

really increases the frustration in the system. Can this be visible in the dynamics

of the system? This is the question that will be answered in the next section.

4.3.2.7 Frustrated Conjugations depend on the negative education pro-

cess

In order to analyze the e↵ect of the negative education in the dynamics, di↵erent

systems were simulated in the monitoring phase. The dynamics generated by an

arbitrary population of detectors educated with di↵erent ⌧ ed values. Both dynamics

were compared with the dynamics generated by an arbitrary population of detectors

that do not undergo the education process. A 3-cluster system with 60 agents of each

type equally distributed and with the typical composition of ligands and receptors

is considered. All systems were simulated for the same computational time, 10000

iterations.

The decay of ⌧neg during the education of the 40 populations as function of

the maximal number of iterations required to accomplish the process is represented

(Figure 4.26 top). Letters A, B and C point the end of the education process in

the systems considered: A corresponds to random populations of detectors, while B

and C correspond to educated populations after ⌧ ed=450 and ⌧ ed=150, respectively.

The generic histograms that represent the probability of each presenter establishing

a conjugation with a lifetime longer than ⌧ are presented for all systems (Figure 4.26

bottom). Vertical dashed lines represent the values of ⌧ ed used to stop the education

process.

The computational cost of the education process depends on the ⌧ ed chosen to

finish the education process. The education of a population of detectors with a

⌧ ed=450 takes less than one tenth of the iterations that are required to finish the

process with a ⌧ ed=150. Lowering ⌧ ed increases the number of iterations required to

accomplish the education process, but also increases the frustration of the system

after the education process.

In the monitoring phase, the probability of a given presenter to establish stable

conjugations decreases with the decrease of the ⌧ ed used to finish the education pro-

cess. In systems without education, all conjugation lifetimes are allowed; detectors

placed all presenters’ ligands in random orders. Hence, a large number of presen-
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Figure 4.26: Top: The decay of ⌧neg during the education of 40 populations as
function of the maximal number of iterations required to accomplish the process.
Letters A, B and C point the end of the education process in three di↵erent systems.
Bottom: Probability of establishing a conjugation with a lifetime longer that ⌧

iterations, P>⌧ for each presenter and (A) for a random system and for detectors
educated with thresholds (B) ⌧ ed=450 and (C) ⌧ ed=150.

ters frequently establish long conjugation lifetimes with detectors (Figure 4.26A).

For the educated systems the behavior is di↵erent (Figure 4.26B and C). Presenters

and detectors engage in a decision dynamics in which the probability of a presenter

establishing long conjugations decreases considerably. The education process is very

e�cient in increasing frustration. However, occasionally, some conjugation lifetimes

exceed the value of ⌧ ed for which detectors are educated (Figure 4.26B). These events

should be eliminated, because they could signal a triggering event and a response

could be initiated against agents belonging to the system. How to eliminate false

activations is the topic of the next section.
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4.3.3 Education Process: Final Discussion

The education process is crucial in CFSs due to the fact that it is responsible for

generating a maximally frustrated dynamics. The most important results can be

summarized in two di↵erent parts which correspond to the positive and negative

education processes:

Positive Selection(PS)

• Asymmetric systems converge from configurations with the same number of

presenters and detectors of each subtype;

• PS reduces fluctuations on the number of detectors of each subtype;

• Maximally frustration dynamics takes place in systems with restricted con-

nectivity if PS shapes the detectors’ network of interactions, so that they

continually interact with presenters.

Negative Selection(NS)

• The convergence of the education process is quicker in systems with more

clusters;

• Restricted connectivity allows scalability of the education process;

• Stable conjugations are eliminated by NS;

• Extensive education processes increase the ordering of the detectors’ ILists

and increase the frustration of the dynamics;

The education process increases the global frustration of the dynamics that is

generated in the system. It is interesting to notice that an educated repertoire

of detectors can only be generated if both processes operate during the education

process.

From a deeper understanding of the educated process emerged the role of both

processes. PS operates to guarantee the interactivity of the detectors: it prevents

them from not interacting. The NS process does not decrease the a�nity of the

interactions, as suggested in the literature, rather it reduces conjugation lifetimes
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by eliminating detectors that do not frustrate the dynamics. These results suggest a

new perspective on the function of both systems either in artificial immune systems

models or in the immune systems.
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4.4 Detection of Foreign Ligands

The relevance of the perfect discrimination in Immunology or in other fields is com-

pletely di↵erent. In Immunology, whether responses depends on discrimination be-

tween self and nonself and whether this can be perfect, is not consensual [3, 50, 51].

Textbooks refer that self/nonself discrimination is “excellent but imperfect” ([1], p.

71), leading occasionally to “reactions against self antigens” ([1], p.71).

Even if discrimination can not be perfect in the immune system, several other

issues concerning its functioning remain without answer. In addition, in di↵erent

fields like for example computer security, the relevance of the perfect discrimination

between what belongs or not to the system is crucial. Thus, the study of systems

capable of performing perfect discrimination is relevant. In this section questions

concerning how perfect discrimination self/nonself in CFSs can be achieved will be

discussed.

4.4.1 Simulations and Parameters

To investigate the performance of the detection of foreign ligands, 1000 invaders were

introduced in systems with di↵erent number of clusters. Typically, 2 or 3-cluster

systems were considered with 60 agents per type - the same systems discussed in

the previous section for the education processes. Due to the fact that systems with

di↵erent compositions have di↵erent ⌧ ed, the ratios were calculated for di↵erent

values of ⌧ in each system. Three di↵erent lifetimes were analyzed corresponding at

15%, 30% and 60% of the ⌧ ed of each system - denoted by ⌧1, ⌧2 and ⌧3, respectively.

Furthermore, all conjugations longer than ⌧ sep, ⌧ sep=1.5⇥⌧ ed, were destroyed. This

makes the dynamics more uniform. The several parameters used in the detection

analysis are presented in Table 4.2.

Table 4.2: Parameters Considered in Simulation.

Cluster Agents per Cluster ⌧ ed ⌧ 1 ⌧ 3 ⌧ sep

2 30 450 68 270 675
3 20 150 23 90 223
4 15 90 14 54 135
6 10 65 10 39 98
10 6 50 8 30 75
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The extended repertoire of detectors is usually composed by 40 educated popu-

lations (i.e. 60⇥40=2400 detectors), which interact with the presenters. The anergy

characteristic time was ⌧an= 2. In order to perform the detection stage it is neces-

sary to perform the calibration stage, so that the “normal” profile of interactions is

established for each presenter. To to this, 1000 independent systems without per-

turbation were simulated, during 104 iterations, - as many as later used during the

detection stage. The same procedure was repeated with introduction of foreign lig-

ands. In this section, the comparison between the frequency of conjugations lasting

longer than ⌧ established by presenter Pi - f i,>⌧ - is compared not with its reference

f

o
i,>⌧ but with the maximal value of f o

i,>⌧ registered in the calibration stage for all

the presenters. This corresponds to WS frequencies. The detection ratio calculated

to establish the detection criterion is given by:

Rfl =
fi,>⌧

Max{f o
i,>⌧ ⇥ F} (4.4)

the tolerance parameter F being equal to: F=1.01. This was chosen to allow

detection with perfect tolerance against self. Any changes in these conditions is

presented in detail in the beginning of each section.

4.4.2 Numerical Results

4.4.2.1 Detection of foreign ligands in educated populations

In section 2.2 it was shown that all intruders could be potentially detected in CFSs.

In order to investigate the number of invaders that escape, 1000 invaders were intro-

duced in the 2-cluster systems presented before with a restriction on the repertoire

of detectors. The same simulation was performed for non educated populations.

It is assumed that an invader is a presenter that displays a ligand never presented

during the education process.

For both populations of detectors - with and without education- the detection

ratios are determined and presented (Figure 4.27). Ratios obtained for the educated

population are presented in blue, while ratios obtained with detectors with random

ILists are presented in black. The same markers correspond to the same ⌧ .

As expected, the education process is crucial to perform detection of foreign lig-

ands. In systems without education 980 intruders escape detection (at ⌧=150). This

value decreases to 331, when one educated population of detectors in the repertoire.
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Figure 4.27: Detection ratios, R, for 1000 foreign ligands, Ninv , at ⌧=70 and ⌧=150,
in a 2-cluster system, 2C, and 1 population of detectors.

By adding another cluster, 216 invaders escape detection (Figure 4.28).

Figure 4.28: Detection ratios, R, as a function of the foreign ligands simulated, Ninv,
at ⌧=70 and ⌧=150, for systems with 2 and 3 clusters (blue and red, respectively).

Figure 4.29 shows typical histograms obtained in the monitoring phase for two

di↵erent invaders, for a detection and a non-detection events. For ⌧=150 the values

used to calculate the detection ratio, R, are pointed in each case.

Figure 4.29: Generic histograms obtained in the monitoring phase for two di↵erent
foreign ligands. FL and WS point the values used for calculating the detection ratio
R at ⌧ = 150.

Despite the e↵ect of the education or the system considered, perfect detection
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of foreign ligands can not be successfully achieved by a single population of de-

tectors. To achieve perfect self/nonself discrimination two fundamental mechanisms

are required in monitoring the dynamics. They will be the issue of the next sections.

4.4.2.2 Anergy as a mechanism that maximizes frustration

In CFSs each detector that establishes a longer conjugation becomes anergic or unre-

sponsive and it is replaced by an equivalent. This mechanism ensures that detectors

that establish short conjugation lifetimes remain in the system, while detectors that

establish long conjugation lifetimes become unresponsive and are replaced. Hence,

the surveillance is maintained by an extended repertoire of detectors, and the prob-

ability of a long conjugation is small.

Anergy was introduced in the monitoring phase and the systems of the last

section were simulated: a system without education and two educated ones (⌧ ed=150

and ⌧ ed=450). In order to better understand this mechanism, two di↵erent sizes

of the repertoire of detectors were used, one with five and another with twenty

populations of detectors - Npops=5 and Npops=20, respectively. The dynamics that

is generated in the monitoring phase with the introduction of anergy is presented in

Figure 4.30. In order to simplify the analysis, typical histograms obtained without

anergy (Npops=1) are also represented. While each column illustrates the impact of

anergy with the same size of the repertoire in di↵erent systems, each row shows the

impact of the size of the repertoire in the same system.

Anergy increases frustration in the monitoring phase: conjugation lifetimes are

reduced, as well as the dispersion in the lifetimes. If several detectors establish long

conjugations, this signals a modification in the system and it is not the result of a

weak education. In the next section, the second main mechanism that allows perfect

self/nonself discrimination will be presented.

4.4.2.3 Di↵erentiated activation ensures perfect monitoring

Anergy increases the frustration of interactions between agents, which is crucial

to ensure detection of foreign ligands. However, frustration is not uniform for all

presenters. They can have di↵erent probabilities of establishing longer conjugations,

which is expressed by a di↵erent range of P>⌧ for a given ⌧ (Figure 4.31). The

larger the ⌧ , the widest the range of P>⌧ with occurrences, as shown by the vertical

dashed line in ⌧=70. Also, it is possible to verify from the histogram that events
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Figure 4.30: Probability of establishing a conjugation with a lifetime longer that ⌧
iterations, P>⌧ , for each presenter, and (Black) for detectors with random ILists and
(Blue and Red) with populations of detectors educated at two di↵erent ⌧ ed values,
pointed out with vertical lines. While each column illustrates the impact of anergy
with the same size of the repertoire in di↵erent systems, each row shows the impact
of the size of the repertoire in the same system.

with lifetimes longer than the education threshold - 400 in this system - occur in

the monitoring phase.

This heterogeneity in conjugation lifetimes is enough to compromise the prompt

attacks of invaders with total tolerance towards self. Actually, the second mechanism

proposed takes advantage of this heterogeneity due to the education process. In
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Figure 4.31: Probability of establishing a conjugation with a lifetime longer that ⌧
iterations, P>⌧ , as a function of ⌧ during the monitoring phase. The vertical line
highlights results at a fixed lifetime ⌧=70.

CFSs each presenter selects its activation threshold in a calibration phase - foi,>⌧

which is proportional to Pi,>⌧ . This di↵erentiated response is called costimulation.

In order to establish the activation threshold, 1000 simulations were performed

in the absence of perturbations. It is considered a 2-cluster system and a repertoire

of 40 populations with ⌧an= 2. The lifetime analyzed was ⌧=70. Figure 4.32A

presents the average value of P>⌧ for all simulations and its value in a specific

system as a function of the presenter - with blue and black dots, respectively. Also

shown is, the maximal value of P>⌧ - red dots - together with the system considered

(Figure 4.32B). To simplify the comparative analysis, the respective histogram of

each case is included. All histograms have the same scale in both axes.

It is clear that the value above which each presenter should trigger responses is

the maximal value of P>⌧ that is registered in the calibration stage. If the average

is considered as threshold, 30% of the presenters could be wrongly activated against

the agents of the system. Notwithstanding the average can not be used as activation

threshold, it indicates an interesting aspect of the dynamics. Despite fluctuations,

all presenters have a similar average value for P>⌧ . This indicates that all the

presenters are almost equivalent for an arbitrary large calibration stage. It should

be expectable that for an infinite window of calibration, the activation threshold

will be similar for all the presenters.

In the monitoring phase, presenters with R�1 will trigger a response (Fig-

ure 4.33). To verify the e↵ect of the introduction of an intruder on the profile

of P>⌧ the first presenter displayed a foreign ligand, which had never been pre-

sented during the education phase. The frustration of the conjugations decreases
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Figure 4.32: Probability of establishing a conjugation with a lifetime longer that ⌧
iterations, P>⌧ , for the several presenters and calculated at ⌧=70. (A) Blue dots
represent the average of the Pi,>⌧ values registered for each presenter, during the
calibration phase and black dots represent the same quantities for a given typical
system. (B) Red dots represent the maximal Pi,>⌧ value registered for each presenter,
during the calibration phase and black dots the same as before. Histograms in inner
boxes group all the information for the corresponding plots.

substantially for this presenter, its P>⌧ increased 63.7% when compared to with its

activation threshold. It is also important to notice that P>⌧ is below the activation

value for all the other presenters.

This is an example of perfect detection of foreign ligands with perfect tolerance

towards the agents of the system. The costimulation mechanism provides a di↵eren-

tiated activation. For the same P>⌧ , some presenters deliver activation signals and

trigger a response, while for others no responses are signaled. In the next section,
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Figure 4.33: Probability of establishing a conjugation with a lifetime longer that ⌧
iterations, P>⌧ , for the several presenters, calculated at ⌧=70. Red dots represent
the maximal value registered during the calibration phase and black dots represent
the same quantities when a foreign ligand is introduced as presenter 1.

the performance of the detection of foreign ligands will be presented, considering

anergy and costimulation.

4.4.2.4 Anergy and costimulation provide perfect discrimination self/

nonself in educated systems

After the discussion about anergy and costimulation, the performance of the detec-

tion of foreign ligands will be tested, with the introduction of both mechanisms. In

order to do that, simulations were repeated for di↵erent sizes of the repertoire of de-

tectors, 1, 3, 5, 10, 20, 30 and 40 populations of educated detectors in the 2-cluster

system presented were considered. All simulations were performed during 10000

iterations with populations of educated detectors (⌧ ed=400), considering ⌧an=2. In

each system, 1000 invaders were introduced and the detection ratio was calculated.

It is important to notice that the ratios are calculated with the worst self, which

corresponds to the maximal foi,⌧ , so this is the lowest possible ratio. The horizontal

black line represents the value above which the invaders are detected. According to

these ratios, the number of foreign ligands that escaped detection was determined

and represented as a function of the repertoire size (Figure 4.34).

In systems with only 1 population more than 40% of the invaders escape detec-

tion. This value decreases exponentially to 0.1% when 20 populations are considered,

and it is 0% for a repertoire with 30 or more populations. These results show that

perfect detection of foreign ligands is possible, the probability of no detection (pndet)
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Figure 4.34: (A) Detection ratios, R, calculated for 1000 foreign ligands, considering
1, 3, 5, 10, 20, 30 and 40 educated populations. (B) Probability of evasion pndet -
no detection - as a function of the repertoire size, Npops.

is below 1/1000. This result is only possible if detection is performed by a repertoire

of detectors that undergo the positive and negative education process and costimu-

lation and anergy are considered in the monitoring phase. This is the starting point

to investigate the performance of the detection system in di↵erent conditions. In

the next section, the impact of an extension of the education process is discussed.

4.4.2.5 Better education provides better detection

The result obtained for detection of foreign ligands in systems with extended popu-

lations of detectors suggests that systems without education can also perform detec-

tion of foreign ligands. Actually, this is not true (Figure 4.35). In systems without

education all ligands are potential invaders because ILists order ligands randomly.

Thus, all presenters have a high probability of performing long conjugations. In these

systems, more than 97% of invaders escape detection and this value is independent
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of the size of the repertoire. Not even anergy decreases this value.

Figure 4.35: Detection ratios, R, for 1000 foreign ligands, considering systems with
40 educated populations in the repertoire, non-educated (RAND) or educated with
education thresholds ⌧ ed=450 and ⌧ ed=400.

Concerning detection in educated populations, the smaller ⌧ ed, the higher the

ratio obtained and the smaller the fraction of invaders escaping detection. For the

same size of the repertoire, the ratios obtained with ⌧ ed = 400 are, on average, above

the ones obtained with ⌧ ed=450. Also the performance of the detection system is

di↵erent. While in the first system all intruders were detected (pndet < 0.001), for

higher values of ⌧ ed 10 invaders escape detection (pndet=0.01). From these results

it is clear that the ordering of ILists has a crucial importance in the detection of

foreign ligands task and an extensive negative education processes promote better

detections in the monitoring phase. In the next section the e↵ect of the number of

clusters in the detection will be discussed.

4.4.2.6 Detection becomes easier in systems with more clusters

As presented before, the increase in the number of clusters makes the convergence

of the education process less complex. To evaluate the detection of foreign ligands

performance with the increase of the number of clusters, 1000 foreign ligands were

introduced, in systems with di↵erent compositions - 2, 3, 4, 6 and 10-cluster systems

educated using the ⌧ ed in Table 4.2. In order to compare these systems, the detection

ratios were calculated using time duration points.

Di↵erent repertoire sizes with 1, 3, 5, 10, 20, 30 and 40 populations of educated

detectors were considered. To analyze the performance of the detection system, the

the probability of invaders escaping detection, pndet, as a function of the repertoire

size is represented, Npops, in Figure 4.36 when the number of clusters was varied.



4.4 Detection of Foreign Ligands 97

Figure 4.36: Probability of detection evasion, pndet, as a function of the repertoire
size, Npops, calculated at ⌧ 1, and as a function of the number of clusters.

Figure 4.36 shows that increasing the number of clusters decreases the number of

invaders that escape detection. For systems with more than 2 clusters, none of the

invaders escapes detection when more than 5 populations compose the repertoire.

For 2-cluster systems 10% of the invaders escape detection. However, this value

decreases to zero if the extension of the education process increases, as presented

before.

To evaluate the performance of the detection system, the analysis of detection

ratios are presented for all systems and for two time durations ⌧1 and ⌧3 (Figure 4.37).

It is interesting to notice that for conjugations lasting at least ⌧1 iterations, de-

tection ratios are higher than in the systems with 3 and 4 clusters. For conjugations

lasting ⌧3 iterations, the result is di↵erent. The highest ratios are accomplished for

the systems with 6 and 4 clusters. For conjugations lasting ⌧3 iterations all systems

have similar ratios, with exception of the 2-cluster system in which the ratios are

smaller. To illustrate the dynamics for di↵erent systems, histograms of the maximal

ratio obtained in each system are presented in Figure 4.38. A generic conjugation

duration ⌧ used for calculating the detection ratio is also clearly shown. Colored

lines show the histogram for presenter presenting the foreign ligand, while black

lines show the remaining presenters.

According to these results, it is possible to verify that the increase in the number

of clusters favors the task of detecting foreign ligands in the system. The perfor-

mance of the system is optimal in systems with 3 and 4 clusters, considering the

number of invaders that escape and their detection ratios. However, perfect de-

tection with smaller ratios can be obtained in a 6-cluster and a 10-cluster system,

at ⌧1. This result reinforces the remarkable ability to detect any foreign ligand in

CFSs. Up until now all the results were obtained for systems with only 60 agents.

In the next section, the detection in systems with a higher number of agents will be
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Figure 4.37: Detection ratios, R, obtained for 1000 invaders, for systems with 2,
3, 4, 6 and 10 clusters and calculated at two di↵erent conjugation lifetimes ⌧ 1(top)
and ⌧ 3(bottom).

discussed.

4.4.2.7 Perfect detection is also possible for systems presenting an ar-

bitrary number of ligands

It was already shown that the education process converges independently of the

number of agents in the system for detectors with limited connectivity. Here, the

performance of the detection of foreign ligands in these systems will be discussed.

The same 3-cluster system with 300 presenters and 300 detectors are considered. In

order to study the performance of the detection system, 1000 foreign ligands were

presented in a system with a repertoire of 40 educated populations of detectors with

di↵erent connectivities - k=15 and k=60. Detection ratios, R, between the invader

and the worst self-presenter are shown in Figure 4.39, at ⌧ 1 and ⌧ 3, respectively.

Despite the number of agents, perfect detection is achieved when small connectiv-

ities are considered. With both connectivities none of the invaders escape detection,
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Figure 4.38: Probability of establishing a conjugation with a lifetime longer that
⌧ iterations, P>⌧ for each presenter and for foreign ligands leading to the maximal
ratios in the results in figure 4.37 and for systems with (A) 3, (B) 4, (C) 6 and (D)
10 clusters. Vertical lines represent the conjugation duration ⌧ at which detection
ratios are calculated.

Figure 4.39: Detection ratios, R, calculated as a function of the invader, Ninv,
calculated at two di↵erent conjugation times, for a population with 300 agents of
each type and two di↵erent connectivities 15 and 60.
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for the two durations times chosen for the analysis; this shows that the analysis is

robust relatively to the choice of the duration of the conjugation analyzed.

These results show that perfect self/nonself detection can be obtained in systems

displaying an arbitrary number of ligands, if connectivity is restricted. Thus, there

are no limitations on scalability of the detection task in CFSs.

4.4.2.8 Detection is more di�cult in asymmetric systems

In order to study the impact of an inadequate positive education, a system with

a di↵erent number of detectors on each cluster, - 48 in the first cluster and the

remaining 12 in the second one, - was considered for a 2-cluster system. The negative

education process was performed in this system and 40 populations were educated.

After the education phase, 1000 invaders were introduced in the first and in the

second cluster and denoted - invC1 and invC2, respectively in Figure 4.40. The the

fraction of invaders that escape detection as function of the size of the repertoire is

presented.

Figure 4.40: Probability of escaping detection when the foreign ligand is presented
in the first or in the second cluster, invC1 and invC2, as function of the number of
populations in the repertoire, Npops.

Detection of foreign ligands that are presented in the first cluster is easily ac-

complished. The result is completely di↵erent if the foreign ligand appears in the

second cluster. The number of invaders that escape detection is higher than 60%

and does not decrease with the increase of the repertoire of detectors. In order to

better understand what happens in the dynamics, the histogram of conjugations by

subtypes is presented (Figure 4.41). From the histogram it is clear than character-

istic lifetimes change with the asymmetry in the number of detectors. Conjugations

involving presenters from the second cluster are more frustrated than the equivalent

ones in the first cluster. In order to be detected, an invader presented in the second

cluster needs to perform a conjugation less frustrated than the one performed by
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the presenters of the first. This is the reason why in this case, the detection is not

accomplished. Because of the fact that the system is not symmetric, the agents of

both clusters are not equivalent and the ratio calculated with the number of events

for the worst self does not make sense. What makes sense in this case is to define

the detection of foreign ligands by using the worst self of each cluster - denoted as

WC in Figure 4.42 - instead of the worst self of all presenters - designated WS.

Figure 4.41: Probability of establishing conjugations lasting longer than ⌧ itera-
tions, P>⌧ after the detection phase, and for pairs involving agents from the several
subtypes. Conjugations involving presenters, P, from cluster i and detectors, D,
from cluster j are represented as PiDj.

Figure 4.42: Probability of escaping detection when the foreign ligand is presented
in the first or in the second cluster, invC1 and invC2, as function of the number of
populations in the repertoire, Npops, and the definition used: the worst self in each
cluster, WC, or the worst self from all presenters, WS.

If the foreign ligand is signaled with the worst presenter of each cluster, the num-

ber of invaders that escape detection in the second cluster decreases considerably.

However, with 40 populations, 17 invaders escape detection (pndet=0.017). For the

invaders presented in the first cluster, despite a fluctuation in the first point, the

decay is equal with both criteria. Actually, this is the expected result because the

maximal foi,>⌧ used in the ratio is dictated for presenters of the first cluster - as

shown in the histogram in Figure 4.41.
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The positive education plays a role in the performance of detection systems.

Despite being possible in asymmetric systems, detection of foreign ligands is not

perfect as seen in the corresponding symmetric system discussed in the previous

sections.

4.4.3 Detection of Foreign Ligands: Final Discussion

In this section, several interesting results were obtained concerning the detection of

foreign ligands task. These findings can be briefly summarized as:

• Educated populations of detectors perform significantly better detection than

random populations. However, around 33% of the invaders escape detection

when only one educated population of detectors ensures detection. This value

increases to 98% when a random population is considered;

• The anergy mechanism globally reduces the frequency of long interactions

between presenters and detectors. This reduction is higher for a bigger number

of populations in the repertoire;

• Extended repertoires of detectors ensure perfect self/nonself discrimination,

when costimulation is used to signal detection of foreign ligands;

• Repertoires generated after extensive education processes have a higher de-

crease in frustration for the presenter that displays the foreign ligand, conse-

quently, higher detection ratios;

• There is an optimal in the performance of the detection system which is ob-

tained in 3 and 4-cluster systems;

• If restricted connectivity is considered, perfect self/nonself discrimination is

independent of the number of agents in the system;

• Both the positive and the negative education process are crucial to achieve

perfect discrimination self/nonself.

The education process ensures that for an arbitrary presentation of ligands, the

set of selected detectors will perform interactions with maximal a�nity but in a

frustrated dynamics. When the invader is introduced in the system, each detector

has its ligand in a random position of the IList, because the invader’s ligand has
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not shaped ILists in the education process. Consequently, there is an arbitrary

number of detectors that have maximal a�nity for the ligand of the invader and,

additionally, the invader high a�nity for these detectors. Thus, the a�nity of this

interaction is maximal in both directions and none of the remaining agents is capable

of destabilizing this interaction.

This frustration reduction is amplified by anergy, due to the fact that the proba-

bility of the invader’s ligand being in the top position of the detectors’ IList increases

with the increase of the number of ILists available in the extended repertoire of de-

tectors. The change in the “normal” profile of the interactions of the presenter that

displays the foreign ligand is signaled through the costimulation process and the

invader is detected.

To summarize, this section demonstrates that perfect self/nonself discrimination

is possible in CFSs. These results suggest that CFSs can be seen as a valuable

option for intrusion detection systems (IDS) in complex systems. In addition, these

results can also provide insights to more deeply understand the functioning of the

immunological mechanisms from a completely di↵erent perspective.
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4.5 Detection of Abnormal Self Presentations: Ab-

normal Growth of Self Ligands

The previous sections show that CFSs respond to ligands, which had never been

presented during the education stage. Returning to the example of proofreading a

text, the detection of a foreign ligand corresponds to finding a foreign word which

does not belong to the idiom in which the text was written. As stated before, this

kind of detection is important, but it is easily accomplished with algorithms based

on a database, in which all words of a given idiom are listed. Hence, this type of

detection by itself may not be so interesting from a computational point of view. If

the anomaly detection system can join the ability of detect other kinds of perturba-

tions, extra value to the anomaly detection system could be added. Thus, di↵erent

types of anomalies will be investigated in this and in the next sections concerning

anomalies that comprise perturbations on the number of ligands presented and that

belong to the system - homeostatic perturbations.

In order to better understand what kind of studies will be performed concerning

the detection of changes in the frequency of self ligands, the example of proofreading

a text will be used as example. Figure 4.43 illustrates the type of perturbation that

will be investigated, using as example the 2nd article of the The Universal Declaration

of Human Rights.

Figure 4.43: Detection of abnormal presentations concerning changes in presentation
frequency: original and perturbed text, at the top and at the bottom, respectively.

The original and the abnormal text di↵er only on the number of “as”, which

means that the frequency of its appearance increased in the perturbed text. How-

ever, the word belongs to the idiom and it appeared in the normal text. Returning

to CFSs, if the same happens in a complex system as when, suddenly, an arbitrary

sequence starts appearing more often than usually did in the education and calibra-

tion stages, the computational system presented an increase in the ligand coding
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that sequence. Due to the fact that the system works with a constant number

of agents, the increase in frequency of a given ligand implies the disappearance of

others in the presentation.

The capacity of detecting changes in the presentation frequency coding normal

behavior is crucial in an anomaly detection system. In this sense, the anomaly

detection system should detect both perturbations due to foreign information, and

perturbations caused by a change in the frequency of presented ligands.

How detecting changes in the frequency of appearance of educated ligands can

be accomplished will be discussed in the light of CFSs framework next.

4.5.1 Simulation and Parameters

In order to investigate the capacity of CFSs to detect changes in the frequency of

the ligands presented, a 3-cluster system of 60 agents of each type, equally divided

was considered. The repertoire of 40 populations of detectors was educated with

⌧ ed=150 to ensure the surveillance of the system. As in the previous section, the

ratio was calculated at ⌧ 1=0.15⇥⌧ ed, ⌧ 2=0.3⇥⌧ ed and ⌧ 3=0.6⇥⌧ ed. The separation

time of the interactions is ⌧ sep= 1.5⇥⌧ ed, after which the interaction is stopped and

the detector changed through the anergy process, ⌧an=2.

The change in frequency was simulated by the sequential repetition of the ligands

of the first column of ligands in the next ones. In order to better understand the

changes made in the di↵erent stages, the presentation used in the education and in

the calibration stage versus one of the presentations used in the detection stage is

shown in Figure 4.44. In the detection stage the ligands placed in columns 2 and

3 were replaced by the ligands of column 1, which were pointed out in red. The

repetition of ligands was made by cluster which means that there are no changes

concerning the cluster in which the repeated ligands were displayed.

For each perturbation, 100 systems were used in the calibration and in the mon-

itoring phase without and with perturbation, during 104 iterations each. The values

of foi,>⌧ per presenter were determined in the calibration stage, which corresponds

to the maximal value of fSi,>⌧ in an arbitrary system, in a given ⌧ of analysis. After

the calibration phase, the response in the absence of perturbation is tested, to de-

termine the response in this case. Finally, di↵erent perturbations were introduced

in presentations to investigate the capacity of detecting changes in the frequency of

presentation of the ligands. Sequentially, the ligands in 1, 2, 4, 6 and 8 columns were
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Figure 4.44: Presentations used during the education and calibration stages (Left)
and during the detection stage (Right).

replaced by the ligands presented in column 1, which corresponds to a perturbation

of 5%, 10%, 20%, 30% and 40%, respectively.

In order to better understand the presentations in each stage, the histogram of

the ligands displayed in calibration and in 2 di↵erent detection stages are shown

(Figure 4.45, A, B and C, respectively). During the calibration stage all ligands

were displayed with equal frequency - each ligand appears 100 times, each presenter

displays one of the ligands in each simulated system (Figure 4.45A). This presen-

tation was the same of the education stage. To illustrate the detection stage two

di↵erent perturbations were selected. In the first case, the ligands of column 2 - 2,

22, 42 - were replaced by the ligands of column 1 - 1, 11 and 41 -, which corresponds

to a perturbation of 5% in the columns. Thus, the last ones have the double of

the occurrences when compared with the remaining ones, while the first ones are

absent (Figure 4.45B, Perturbation 5%). In the biggest perturbation imposed, 40%

of the columns were changed, which means that ligands 2, 3, 4, 5, 6, 7, 8, 9, ligands

22, 23, 24, 25, 26, 27, 28, 29, and, finally, ligands 42, 43, 44, 45, 46, 47, 48, 49

were replaced by ligands 1, 21 and 41, respectively. Thus, ligands 1, 21 and 41

register 900 occurrences while the remaining ligands were presented once in each

perturbed presentation, so each has 100 occurrences, one per system (Figure 4.45C,

Perturbation 40%).

For each system simulated the number of presenters that respond to the pertur-

bation is quantified according with the ratio, R �1, with F=1.2. Responses to the

perturbations were analyzed for di↵erent connecivities: total and limited connec-

tivity were considered, k = 60, k = 30 and k = 15, respectively. The parameters

considered are presented in the table below (Table 4.3).
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Figure 4.45: Histograms representing the number of times each ligand was presented.
(A) Histograms obtained for the calibration state. (B, C) Histograms obtained after
the monitoring stage with abnormal presentation - perturbation of 5% and 40%,
respectively.

Table 4.3: Parameters considered in simulations of the responses against abnormal
frequencies.

k ⌧ ed ⌧ 1 ⌧ 2 ⌧ 3 ⌧sep

15 73 11 22 44 110
30 87 13 26 53 131
60 150 23 45 90 225
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4.5.2 Numerical Results

4.5.2.1 CFSs detect abnormal growth of agents

To analyze the e↵ect of the perturbations introduced on frustration, the number of

presenters that decreased their frustration relatively to the calibration stage - the

number of presenters that have R �1, nR�1 , is calculated and it is represented for

each simulated system, S, according to the perturbation imposed in ⌧ 1 (Figure 4.46).

In order to compare the responses in the remaining lifetimes analyzed, the average

number of presenters, which have R �1, nR�1 are listed (Table 4.4).

Figure 4.46: Number of presenters with R �1, nR�1, as function of the perturbation
imposed with the system simulated, S.

Table 4.4: nR�1±std for all systems and lifetimes simulated.

Perturbation (%) ⌧ 1 ⌧ 2 ⌧ 3

0 0±0 0.05±0.2 0.25±0.5
5 0.03±0.2 0.13±0.4 0.49±0.7
10 0.11±0.3 0.83±0.9 0.95±1.0
20 3.27±2.3 8.14±3.2 6.43±2.2
30 34.50±4.1 37.97±2.9 30.58±3.5
40 57.40±1.5 55.44±2.0 53.20±2.3

It is interesting to notice that the system tolerates smaller perturbations. There

is almost no response when 1 or 2 columns are replaced by ligands of the column 1.

This changes considerably with the increase of the perturbation. When 6 columns

are copied - perturbation of 30% - , more than 50% of the presenters have a less

frustrated dynamics, and in case 8 columns are copied - perturbation of 40% - almost

all the presenters register a decrease in frustration in their dynamics.
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Another interesting result is that the extended repertoire of detectors and the

anergy mechanism is crucial to perform detection of self perturbations in the fre-

quency of the educated ligands, as well as the costimulation. As in the detection

of foreign ligands, in the absence of anergy, the detection is poorer, as shown in

Figure 4.47.

Figure 4.47: Average Number of Presenters with R �1, nR�1, as a function of the
system simulated, S, and according to perturbation.

The number of presenters that have R �1 in each case increases, in general, with

the number of populations considered in the repertoire of detection.

These results indicate that responses to homeostatic perturbations in frequency

are possible in CFSs. Similarly to the results obtained in the detection of non

self ligands, restricted connectivity can also improve, responses to the abnormal

expression of ligands. The performance of the anomaly detection system in the case

of restrict connectivity is the subject of the next section.

4.5.2.2 Amplification of responses with limited connectivity

The results obtained with total connectivity show that there is a global decrease in

the frustration of the system, proportional to the size of the perturbation imposed.

In order to increase the responses for even smaller perturbations, the connectivity

of detectors was reduced to k=30 and k=15. All the systems were simulated again.

The same plot concerning the number of presenters that have R �1 is presented for

limited connectivity (Figure 4.48).

The reduction of the connectivity increases the number of presenters that de-

crease their frustration for each perturbation. The lower the connectivity consid-

ered, the stronger the response to the perturbation. In the case of k=15, even the

repetition of a single column starts to be noticed with the decrease of the frustration

of a macroscopic number of presenters.
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Figure 4.48: Number of presenters with R �1, nR�1 as function of the system
simulated and according with the perturbation and the connectivity considered.

Also, the magnitude of the responses increases with the reduction of the connec-

tivity considered in the system. A typical dynamics of a system in the calibration

and in the monitoring stage is presented in Figure 4.49 for 2 di↵erent perturbations

- 5% and 40% - and for di↵erent connectivities - k=60, k=30 and k=15.

It is important to point out that the results presented in Figure 4.49 for both cases

represent typical results. Other 99 systems were considered, from which the average

of the number of presenters having R �1, nR�1, was calculated and represented as

function of the perturbation for each perturbation (Figure 4.50). For these results

ratios were calculated at ⌧=⌧1.

For k=15, only a column change causes a decrease in frustration, which increases

with the increase of the number of repeated columns. Repeating 4 columns, all the

60 presenters have R �1. For the double of connectivity, k=30, the responses start

with more than 1 column changed, while the decrease of the frustration of all the

presenters is accomplished for more than 4 columns changed. If none of the columns

is changed, none of the presenters has R �1, independently of the connectivity

considered, as expected and also consistently with the choice of F.
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Figure 4.49: Probability that each presenter establishes a conjugation longer than ⌧

iterations, P>⌧ , as a function of ⌧ , depending on the perturbation and the connec-
tivity considered. Black: Histograms obtained during the calibration phase. Red:
Histograms obtained during the monitoring stage with perturbation. Two di↵erent
perturbations (5% and 40%) and 3 di↵erent connectivities were considered. In these
results ⌧sep was set equal to 225, 131 and 110, respectively.

Figure 4.50: Average of the number of presenters having R �1, nR�1, as a function
of the perturbation imposed, Pert, for di↵erent connectivities.
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4.5.3 Abnormal Growth of Self Ligands: Final Discussion

In the previous section it was shown that CFSs are capable of performing perfect

self/nonself discrimination if an extended repertoire of educated detectors ensures

detection and, additionally, if anergy and costimulation are considered. This was

an interesting result especially from an immunological point of view. However,

from a computational point of view, other approaches can equally well perform

discrimination self/nonself with more or less di�culty.

More interesting than having a method that ensures perfect self/nonself discrim-

ination is having a method that combines perfect self/nonself discrimination with

the detection of homeostatic perturbations, for example due to changes in the fre-

quency of presentation of the ligands. Along this section, it was shown that CFSs

simultaneously produce both types of detections. Briefly, the main findings of this

section were:

• CFSs are capable of detecting changes in frequency for perturbations above a

given value - for instance 20% of ligands changed in the system - if an extended

repertoire of detectors is considered with anergy. Perturbations below this

value are tolerated as normal;

• Lower connectivities increase the response to abnormal presentations, both in

the number of presenters that deliver activation signals and in the amount of

the signal delivered.

Based on an analysis of detectors ILists, it is easy to understand why CFSs are

capable of detecting these perturbations. The increase in the number of some lig-

ands in the system implies that others are not expressed. There is an increase in the

connectivities’ list of the number of presenters that display the same ligand. Conse-

quently, interactions leading to changes of conjugations are less frequent because the

probability that a detector encounter two presenters with the same ligand increases.

Every time this happens, the possibility of optimization fails and, consequently, the

stability of the interactions increases.

The capacity of detecting homeostatic perturbations, due to changes in the fre-

quency of presentation of some ligands is not a surprising result: despite the fact

that the system is di↵erent, frustrated systems presented in [20] already suggested

that this type of detection would be possible. However, this is not the only type of

homeostatic perturbation that can be defined in a CFS. The detection of homeo-
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static perturbations not related with frequencies of ligands presentations will be the

issue of the next section.
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4.6 Detection of Abnormal Self Presentations: Pre-

sentations with Di↵erent Sets of Self Ligands

Presenters can display di↵erent configurations of self ligands. Some configurations

are not presented during the education process and hence their occurrence during

the monitoring phase can provide information concerning a deviation from normal-

ity. Abnormal presentations thus correspond to the presentation of a never seen

combination of self ligands. In the examples explored in this section, all ligands

are presented during the education process with the same frequencies, and it is

imposed that some ligands are never presented together. It is the purpose of this

section to show that cellular frustrated systems can also detect perturbations of this

kind. These perturbations are denominated by abnormal self detections or detect of

abnormal self presentations.

To understand the relevance of detecting this type of perturbations consider

again the example of proofreading a text. Abnormal self detection corresponds to

the ability of detecting sequences of words written in an improper order, as when if

words are reshu✏ed in a text. In those cases, all words are self, but their ordering

spoils the meaning in the sentence.

In cellular frustrated systems abnormal presentations occur when presenters dis-

play ligands that have never been presented together during the education process.

Consider the possible presentations of two di↵erent presenters. In the example in

Figure 4.51, presenters display 2 di↵erent ligands from 4 available ones. One agent

presents ligand L1 and the other ligand L2. Four di↵erent configurations are pre-

sented during repertoire education and defined in the Table in Figure 4.51A. For

instance, the first agent could present L1=1 while the second presents L2=2, during

the first configuration. An abnormal configuration in this example would correspond

to the simultaneous presentation of L1=1 by the first presenter and L2=3 by the

second (Figure 4.51B).

Abnormal self detection requires detecting abnormality even when all ligands are

presented during repertoire education and all ligands are presented with the same

frequency. The motivation of this section is to discuss whether anomaly detection

can be context dependent. This will be the issue of this section.
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Figure 4.51: Representation of self and abnormal self presentations. A) Two dif-
ferent presenters display 2 di↵erent ligands from 4 available ones. Four di↵erent
configurations are presented during repertoire education, as listed in the table of
Self Presentations. B) Abnormal presentations would correspond to the presenta-
tion of L1=1 by the first presenter and L2=3 by the second, or L1=2 by the first
presenter and L2=4 by the second, as listed in the table on the right.

4.6.1 Simulations and Parameters

In order to investigate the capacity of detecting abnormal presentations, a 3-cluster

system with 60 agents per type was considered. For the study of abnormal presenta-

tions, it is necessary to present at least two di↵erent presentations in the education

phase. Here, two presentations of ligands were presented in alternance having half

of the ligands in common. Presentations can be divided in three blocks of ligands:

one fixed block (block 2) that is always present and two blocks alternating (blocks

1 and 3) in regular windows of presentation - lasting 5000 iterations (Figure 4.52).

Presentation 1 corresponds to the presentation of the combination of blocks 1 and

2 and presentation 2 to the presentation of blocks 2 and 3. These presentations

could be accomplished when each presenter displays only two di↵erent ligands. For

example, presenter number one could show ligands 1 and 11, during presentations

1 and 2, respectively. All ligands were displayed independently of the stage by the

same presenter.

During the education stage, 40 educated populations were selected with three

di↵erent connectivities: total connectivity (k=90) and limited connectivity (k=30

and k=15). It is assumed that ⌧ ed is the maximal conjugation lifetime registered for

the first population after the 1x107 iterations.

After the education process, the calibration stage is performed. This involves

presenting a set of configurations, CS , representative of the configurations presented
during the education stage - in this case only 2 di↵erent configurations are considered

(Figure 4.53)- and calculating the frequency of conjugations lasting longer than ⌧ for

each presentation j, f j
i,>⌧ . The maximum frequency of conjugations lasting longer
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Figure 4.52: Alternative presentations displayed by presenters in the education pro-
cess. Top: during repertoire education configurations 1 and 2 are sequentially pre-
sented for 5000 iterations. Bottom: all ligands presented in the two configurations
are di↵erent. A sub-set of ligands is present in both configurations (Block 2), while
the remaining ligands are specific to each configuration.

than ⌧ for the ensemble of presentations can then be defined by:

f

o
i,>⌧ = maxj{f j

i,>⌧} (4.5)

where the j index runs over the set of representative configurations.

Figure 4.53: Alternative presentations displayed by presenters in the calibration and
monitoring phase. Only 2 di↵erent configurations are considered - Presentation 1
and Presentation 2. The abnormal presentation illustrated testes a configuration
corresponding to a mixture of the presentations 1 and 2 in di↵erent proportions.

Using these generalized definitions for the calibration frequencies f o
i,>⌧ , detection

ratios are defined as before, in section 2.3.1. Furthermore, the number of presenters

responding to a perturbation - i.e., having R �1 will also be determined as in the

previous section. The abnormal presentations tested mix presentations 1 and 2 in

di↵erent proportions as shown in Figure 4.54. In practice, successive columns of

block 1 were replaced by equivalent columns of block 2, until only one column of

block 1 is presented.
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Figure 4.54: Example of perturbations imposed to the system. Successive columns
of ligands corresponding to block 1 were replaced by equivalent columns of ligands
from block 2, until only one column of ligands from block 1 is presented - ligands
from block 1 were replaced by ligands from block 2.

4.6.2 Numerical Results

4.6.2.1 Anergy ensures robust collective responses

The first study concerning abnormal presentations tested the impact of the anergy

on the response of one particular agent to the perturbation. In the absence of anergy

a presenter may or may not respond, even if other agents respond in the population.

In the example in Figure 4.55, the dynamics of a presenter was analyzed for the 100

simulations run during calibration (CAL) and monitoring stages, without and with

the perturbation (MWP and MP, respectively). When no anergy is considered, the

population of presenters and detectors is always the same. However, the dynamics

of the presenter agent varies somewhat considerably. For instance, it can establish

a negligible number of long conjugations or a much more considerable number.

Results can also vary considerably depending on the set of detectors present in the

population, as can be appreciated from the di↵erence on the histograms presented

in figure 4.55 A and B.

Responses to abnormal perturbations are also very di↵erent. In one case the

presenter responds vigorously (Figure 4.55 B) or it does not respond (Figure 4.55A).

However, it should be noted that in both cases there are agents responding in the

population.

The introduction of anergy averages responses over the di↵erent combinations

of detectors. As a result, responses become less intense but more constant for all

presenters that will ever respond (Figure 4.55C). In this sense, one can argue that

anergy renders the response of the population more homogeneous and less confined

to a sub-set of presenters. In other words, with anergy abnormal self detection

becomes a collective phenomenon.
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Figure 4.55: Histogram of P>⌧ for the same presenter and di↵erent repertoires. Two
repertoires with 1 population are represented in (A) and (B), while a repertoire
with 40 populations and anergy is presented in (C). The dynamics of a presenter
was analyzed after 100 simulations run during the calibration (CAL) and monitoring
stages, without and with the perturbation (MWP and MP, respectively).
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These results can be even better for small connectivities. The study of the e↵ect

of limited connectivity on detection will be discussed in the next section.

4.6.2.2 Limited connectivity promotes better responses

Limited connectivity promotes better education in large systems without prejudice

of foreign ligands detection. In this section, the e↵ect of limited connectivity on the

detection of abnormal self presentations is analyzed. In order to do that, the con-

nectivity of each detector was reduced to 30 or 15 ligands and several perturbations

were imposed on the system. All simulations were performed with a repertoire of

40 populations. The average number of presenters with R �1, nR�1, as a function

of the size of the perturbation imposed and for several connectivities is presented in

(Figure 4.56), for a presentation mixing configurations 1 and 2.

Figure 4.56: The average number of presenters with R �1, nR�1, as function of
the size of the perturbation and for di↵erent connectivities, registered at ⌧ 1. The
perturbation corresponds to the replacement of columns of ligands, represented in
Figure 4.54, from one configuration into the other. When the size of the perturbation
equals 0.05, 5% of the ligands were replaced, corresponding to the replacement of
a single column. The other perturbations considered involved changing 10%, 15%,
25%, 40% and 50% of the ligands.

If 50% of the columns of the second presentation are replaced by columns of

the first, a massive response involving 59.0±1 agents is mounted - within the 60

presenters available. The number of activations decreases to 54.9±1 or 5.5±2 when

the perturbation decreases to 25% or 5%, respectively. All perturbations imposed

were detected for k=15, with none of the presenters activated in the absence of

perturbation.

In order to see the impact of perturbations on the dynamics, histograms of con-

jugation lifetimes for populations with 50%, 25% and 5% of the columns changed are

shown in Figure 4.57 A, B and C, respectively. Red lines correspond to the perturbed

system, while the black are relative to the presentation without perturbation.
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Figure 4.57: Histograms demonstrating the response to perturbations when pop-
ulations have 50%, 25% and 5% of the columns changed (A, B and C). Here the
connectivity is k=15. Red lines correspond to the perturbed system, while black
lines are relative to a presentation without perturbation.

The system responds to all abnormal perturbations when the connectivity is

k=15. At the same time it is tolerant when the educated presentations are displayed.

Tolerance is not perfect in this case as can be concluded from the results obtained

in the absence of perturbation listed in Table 4.5. Eventually one agent can be

activated, although this occurs only in 3% of the populations. Tolerance could

be reduced by increasing the tolerance F factor, although in that case reactivity

would be reduced. Other possible strategies to increase tolerance would be to use

a sequence of detection systems. Indeed, these 3% of activations occur in di↵erent

agents, and hence by considering independent populations their impact should be

reduced.

Table 4.5: nR�1 in the absence of perturbation.

⌧ 1

k 15 30 90
m±std 0.03±0.2 0.03±0.2 0±0

4.6.3 Abnormal Presentations of Di↵erent Self Ligands: Fi-

nal Discussion

In addition of being capable of performing perfect discrimination self/nonself and

detecting perturbations due to changes in frequencies of presentation of the self-

ligands, CFSs are also capable of detecting abnormal self-presentations. These im-
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portant results rely on a number of other interesting features exhibited by these

systems and summarized below:

• The education process is capable of educating detectors for 2 independent

sets of ligands presented. After the education process, detectors ILists have

information concerning correlations among the ligands presented in each con-

figuration.

• During the monitoring stage, detectors can be tolerant relatively any of the

two configurations presented. For a repertoire of 40 educated populations,

activations are negligible in number, and even if a single activation would

take place, it is possible to distinguish this from the activation of a nonself

presenting ligand.

• The change of a single column is enough to trigger a response for k=15, which

signals the perturbation.

• Stronger responses are obtained for the strongest perturbations imposed and

smallest connectivities in the system.

At first sight, it seems that connectivity should be the smallest possible. However,

this is not true. Although the limited connectivity ensures stronger responses, it is

important to bear in mind that the reduction of connectivity has a double e↵ect.

Smaller connectivities increase responses against perturbations, because ILists can

be better educated (or ordered) in order to guarantee maximal frustration. Further-

more, small changes in the presentation can have dramatic e↵ects on the dynamics,

when the connectivity is limited.

The abnormal self detection discussed in this section rely on the existence of

correlations in ILists organization to produce detection. These results can be eas-

ily understood with a simple and yet general model, involving only 4 ligands and

2 di↵erent presentations. This is illustrated in Figure 4.58, where two di↵erent

presentations presented during the education stage are represented. In the first con-

figuration an agent from the first cluster presents ligand A, while an agent from

the second cluster presents ligand B. On the second configuration these two agents

present instead ligands C and D, respectively. As a result, several detectors can have

emerged from the education process. Detectors from the first cluster will certainly

rank ligand B before ligand A, and ligand D before ligand C. This, however, does

not establish what the relative order of ligands A and D and B and C will be. In
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fact, all the ILists represented in Figure 4.58A would have maximally frustrate the

dynamics of the population during the presentation of configurations 1 and 2.

The abnormal self detection phenomenon appears when the presentation 3 repre-

sented in Figure 4.58B is presented during the monitoring stage. When this happens

it is clear a detector belonging to the first cluster and having the IList favors in-

teractions with a ligand displayed by a presenter from the first cluster rather than

the second. This will necessarily lead to large conjugation times and a reduction in

frustration.

Figure 4.58: Generic representation of a 3-cluster system with abnormal presenta-
tion. A) In Presentation 1 an agent from the first cluster presents a ligand A, while
an agent from the second cluster presents a ligand B. On the second configuration
these two agents present instead ligands C and D, respectively. As a result, several
detectors can have emerged from the education process. Detectors from the first
cluster will certainly rank ligand B before ligand A, and ligand D before ligand C.
This, however, does not establish what the relative order of ligands A and D and B
and C will be. B) When Presentation 3 is presented during the monitoring stage, a
detector belonging to the first cluster and having the IList shown, favors interactions
with a ligand displayed by a presenter from the first cluster rather than the second.
This will necessarily lead to a reduction in frustration.

Until now, only one or two presentations were shown in the education process.

In both cases, the system learns correlations present in the configurations presented

and signals deviations from them. This result allows applications of the algorithm in

systems in which one or two presentations are enough to capture the normal behavior

of the system under analysis. However, more complex behaviors can require a larger

diversity in presentations. Can CFSs capture correlations in a more general class of

systems displaying a larger diversity? This is the subject of the next section.
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4.7 Detection of Abnormal Self Presentations: Ab-

normal Presentations of Di↵erent Self Ligands

and Generalization

4.7.1 Simulation and Parameters

In order to test the capacity of generalization with the increase in the number of

the configurations presented, a large set of di↵erent presentations was generated

and sequentially presented during the education stage. Presentations were built by

selecting 60 di↵erent ligands - one per agent - within a set of the 126 available ligands

in a 3-cluster system. In order to understand what correlations can be learnt in these

systems, presentations were controlled. Ligands were distributed into 6 blocks, each

one with 126/6 = 21 ligands, i.e. 21/3 = 7 possible ligands per block, as presented

below:

Table 4.6: Distribution of the ligands per block and cluster.

Cluster Block 1 Block 2
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 43 44 45 46 47 48 49 50 51 52 53 54 55 56
3 85 86 87 88 89 90 91 92 93 94 95 96 97 98

Cluster Block 3 Block 4
1 15 16 17 18 19 20 21 22 23 24 25 26 27 28
2 57 58 59 60 61 62 63 64 65 66 67 68 69 70
3 99 100 101 102 103 104 105 106 107 108 109 110 111 112

Cluster Block 5 Block 6
1 29 30 31 32 33 34 35 36 37 38 39 40 41 42
2 71 72 73 74 75 76 77 78 79 80 81 82 83 84
3 113 114 115 116 117 118 119 120 121 122 123 124 125 126

In each presentation, a random sample of 5 ligands is drawn from the 7 available

ligands per block and per cluster. This procedure is repeated for all blocks and

clusters. After this selection, ligands are placed in ascending order and displayed by

presenters (Figure 4.59). The aim of the ordering is only to reduce the diversity of

ligands displayed by each presenter. This diversity in presentation is not a problem
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in the education process. Nevertheless, this ordering reduces the variability during

the detection (Section 4.7.2.3).

It was assumed that “normal” presentations follow an established sequence of

blocks’ presentation rule. In this section, “normal” presentations fixed two blocks

(blocks 3 and 4) and the remaining alternated (blocks 1 and 2 with blocks 5 and

6), every 2000 iterations. Here, blocks 1 and 2 always appeared together, as well

as block 5 and 6. Thus, the two combinations of blocks allowed in the education

stage were 1, 2, 3 and 4 and 3, 4, 5 and 6. According to these specifications, more

than 2⇥((7C5)4)3=1015 di↵erent configurations could be displayed. This number of

di↵erent configurations is too large and consequently they have never been presented.

Hence, agents are required to gain generalization capabilities.

Figure 4.59: Illustration of the random drawing of ligands and their association to
presenters, for configurations in which the first five presenters display ligands either
of block 1 or block 3. A similar procedure is applied for the remaining presenters.

A repertoire of 40 populations of detectors was educated, considering three di↵er-

ent values of connectivity: one in which detectors had maximal connectivity (k=126)

and the remaining ones in which detectors had limited connectivity (k=30 and

k=15). The ⌧ ed selected for each connectivity was the one achieved in the first

registered population after 1x107 iterations.

After the education process, 3 di↵erent stages were performed: calibration and

monitoring without and with perturbation. In the first two stages, the presenta-

tion followed the rules established for the education, while in the monitoring phase

with perturbation abnormal combinations of blocks were displayed. The abnormal

presentation are consisted of combinations that do not follow the rule used in the

education process presenting for example blocks 1, 2, 5, 6. Figure 4.60 shows the

profiles of presentations of the ligands in the calibration and the monitoring stage
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without and with perturbation. Ligands that belong to blocks 3 and 4 appear two

times more frequently then the remaining ligands, in the first two stages. However,

during the detection, they are absent.

Figure 4.60: Number of presentations for each ligand, presented during the calibra-
tion and monitoring stages without and with perturbation. Ligands that belong to
blocks 3 and 4 appear two times more frequently then the remaining ligands, in
the Calibration and monitoring stage without perturbation. During the monitoring
stage with perturbation, ligands belonging to blocks 3 and 4 are absent.

In the calibration stage the activation value (foi,>⌧ ) was defined as in section

4.5.1 per presenter while in the monitoring stage without perturbation, the response

against educated presentations was tested. After this, perturbations were introduced

in the presentation.

In each of these stages, 100 systems were simulated during 5000 iterations. De-

tection responses were triggered when R � 1, F=1.2 and using ⌧an= 2. As in the

previous section, the activations were analyzed at three di↵erent lifetimes, corre-
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sponding to 15% , 30% and 60% of the ⌧ ed - ⌧1, ⌧2, ⌧3, respectively. The discussion

concerning the capacity of generalizing and detecting abnormal presentations will

be the subject of this section.

4.7.2 Numerical Results

4.7.2.1 CF Systems are able to generalize “normal” behavior

Before studing responses against abnormal presentations, it is crucial to determine

how tolerance can be maintained for populations displaying a large diversity on the

ligands presented, in the absence of perturbation. As important as the activation

of presenters in abnormal presentations is to ensure tolerance in the absence of

perturbation. In order to quantify the response in this case, the simulation was run

with sequential presentations of blocks shown - blocks 1, 2, 3, 4 and 3, 4, 5, 6 -

during the education process. For each simulation, the number of presenters, nR�1,

that deliver activation signals as well as the sum of the deviations, D, concerning

foi,>⌧ , for each presenter were calculated and represented in descending order of their

value (Figure 4.61).

Figure 4.61: Number of presenters with R �1, nR�1, and the corresponding sum of
deviations from foi,>⌧ , D, in each system S, for di↵erent connectivities.

The repertoire of detectors should recognize as “normal” presentations shown

in the monitoring phase, which are equivalent to those displayed in the education

process. As seen in Figure 4.61, in most of the systems none of the presenters is

activated. When activations are triggered, only a single presenter is activated within

the 60 possible ones. The only exception occurs with the activation of 3 presenters

in a system with k=15, out of the 100 simulated.

The activation of presenters depends on the connectivity of detectors: small
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connectivities originate very reactive systems and have stronger responses. Here

and due to the fact that only one presenter was activated, the D sum corresponds to

the response of that activated presenter. In the triple activation, the sum does not

correspond to the first point as it might seem, but to the 7th point (Figure 4.61),

which means that the response of the three presenters is only 0.055/3⇡0.02, per

presenter, a little above the activation foi,>⌧ .

This confirms the results obtained in the previous sections - in systems with

smaller connectivities detectors capture more detailed correlations among the ligands

with which they interact. Hence, small changes in presentation, even in “normal”

presentations, can have an e↵ect on the dynamics and can be enough to trigger

activations.

Educated detectors develop tolerance towards “normal” presentations. This

might seen an obvious result. However, it is important to notice that only a fraction

of the universe of the possible combinations of ligands is presented during the educa-

tion. Despite this fact, CFSs are capable of learning correlations in the presentations

characterizing the “normal” presentations and become tolerant to them. CFSs are

also capable of signaling as abnormal deviations from these normal configurations.

The responses against abnormal presentations will be discussed in the next section.

4.7.2.2 CFSs consistently detects abnormal presentations

CFSs become tolerant towards a wide range of presentations, even if the exact

configuration has not been presented in the education process. Can the capacity of

generalizing compromise the detection of abnormal configurations? In the following

set of experiments the perturbation imposed was presented ligands from blocks 1,

2, 5 and 6. In spite of the fact that all ligands have been presented during the

education stage, blocks 1 and 2 have never been presented together with blocks 5

and 6.

As can be appreciated in the histograms in Figure 4.62 the abnormal presentation

of ligands decreases the frustration in the dynamics. In Figure 4.62A the red lines

refer to the dynamics resulting in the presence of the abnormal presentation, while

the black lines refer to the system in the calibration stage. In Figure 4.62 B two

di↵erent histograms (in blue and black) corresponding to the dynamics in di↵erent

“normal” presentations are displayed.

Histograms in Figure 4.62A seem to indicate that a strong response against

the abnormal presentation should be expected. However, it is important to bear in
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Figure 4.62: Histograms for the probability that each presenter establishes a conju-
gation longer than ⌧ iterations, for each presenter in the population and registered:
(Black) in the calibration stage, (Red) after an abnormal presentation, (Blue) during
the monitoring stage without abnormal presentation (hence, similar to histograms
registered during the calibration).

mind that the foi,>⌧ is selected from their maximum values registered over all systems

simulated during the calibration phase. Hence, the number of presenters that have

R �1 is smaller than is could have been expected from a naive analysis of these

histograms. The number of presenters with R �1, nR�1, for all systems and the

sum of the deviations from foi,>⌧ , D, are registered at ⌧ 1 are shown in Figure 4.63.

The remaining results are presented in Table 4.7.

Figure 4.63: Number of presenters with R �1, nR�1, and the corresponding sum of
deviations from foi,>⌧ , D, in each system S and for di↵erent connectivities.

CFSs are capable of performing detection of abnormal presentations. There is

an optimal value of connectivity for which detection of abnormal combination of
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Table 4.7: Results for Detection of Abnormal Presentations (nR�1±std).

Presented Blocks ⌧ 1 ⌧ 2 ⌧ 3

k=15
1, 2, 5, 6 0.3±0.5 0.4±0.7 0.6±0.7

1, 2, 3, 4+3, 4, 5, 6 0.1±0.4 0.2±0.5 0.4±0.6
k=30

1, 2, 5, 6 4.3±2.3 4.8±2.2 4.3±1.9
1, 2, 3, 4+3, 4, 5, 6 0.1±0.3 0.2±0.4 0.3±0.5

k=126
1, 2, 5, 6 1.1±1.1 1.6±1.3 1.7±1.4

1, 2, 3, 4+3, 4, 5, 6 0.04±0.2 0.14±0.4 0.22±0.4

ligands is stronger. For systems with k=15, there are many fluctuations in the

dynamics even during the calibration stage. Consequently, calibration thresholds

become more demanding which makes detection di�cult. For k=30, fluctuations

have a smaller impact in the dynamics leading to better detections.

Another point that is worth mentioning is that the individual agents’ responses

are, on average, considerably less intense than in the case of the detection of foreign

ligands. However, contrary to what happens in that case, many agents can re-

spond to a perturbation, which makes the response a more collective phenomenon.

Mechanisms of quorum sensing could then be useful to amplify these responses.

4.7.2.3 The ordering of ligands is crucial for detection

The activation of agents is intimately related to the experience of long conjugations

formed by each presenter during the calibration stage. Consequently, if a presen-

ter displays many di↵erent ligands, a wider range of typical dynamical behaviors

should be expected, which tends to increase the calibration threshold associated to

that agent. In order to reduce the variability in the ligands they present, simple or-

dering strategies were implemented. These are important to achieve good responses

in the monitoring stage. Figure 4.64 shows the ligands displayed by the same pre-

senter, throughout all stages, for a random or an ordered sequence of ligands in the

presentation. While for the random case a single presenter could display almost all

ligands available, when ordering is applied only 6 ligands are shown. Similar results

are obtained for the remaining presenters. Thus, for random presentations, the lig-

ands that are less frustrated will increase foi,>⌧ of all presenters. This increase can
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be seen in Figure 4.65 in which P>⌧ as function of the presenter is represented, for

a calibration phase performed with a random or a ordered presentation of ligands.

Figure 4.64: Histograms representing the number of times each ligand was presented
by a given presenter when (Left) the ligands are assigned to presenters in a random
order or (Right) ranking ligands in increasing order. (Top) histograms obtained
for the calibration state, (Middle) after the monitoring stage without abnormal
presentation and (Bottom) after an abnormal presentation of self ligands. It is clear
that an ordering scheme reduces the number of di↵erent ligands each presenter will
display. Similar results are obtained for the remaining presenters.

Non-ordered presentations of ligands produce activation criteria that are close

to those used in section 4.4, in the detection of foreign ligands. In fact, in this

case all agents have thresholds close to the maximal values of foi,>⌧ . As a result, the
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Figure 4.65: The maximal probability for establishing conjugations lasting longer
than ⌧ iterations registered after the calibration stage and for each presenter when
ligands are randomly distributed among the presenter or distributed according to
an order.

foi,>⌧ values per presenter increase which has a dramatic e↵ect on the performance

of the detection of abnormal presentations. Figure 4.66 presents the number of

presenters with R �1 in the presence or absence of perturbation - red and black

lines, respectively - and considering a random or an ordered distribution of ligands

by presenters.

Figure 4.66: Number of presenters with R � 1, measured at ⌧1, nR�1, as a function
of the system S, when ligands are randomly distributed by presenter agents or are
distributed according to an ordering scheme.

If ligands were randomly distributed by presenters, 0.03±0.2 presenters have

R �1, on average, against the 6.00±2.3 presenters with R �1 for the system in

which they are ordered (considering k=30 and ⌧ 1). This result points out the im-

portance of the correct selection of foi,>⌧ per presenter. In systems in which ligands

are ordered, each presenter displays only a small number of di↵erent ligands, and

foi,>⌧ is representative of the dynamics established by the ligands displayed by these

presenters. If the dynamics of some ligands are not as frustrated, presenters that

show these ligands have foi,>⌧ values that can barely be overcome. If all the presen-

ters can display all the ligands available in the system, it is highly probable that all

of them have foi,>⌧ which prevents presenters from responding to small changes in

dynamics. Consequently, the system loses its capacity to detect abnormal presenta-
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tions.

4.7.2.4 CFSs detect abnormal repetition of ligands.

Another study concerning abnormal presentations involves responses to a repetition

of blocks of presented ligands. To study the response to an abnormal repetition

of ligands, the presented blocks were doubled and presented in sequences such as

1123 and 1122. In this case the e↵ect of the repetition of the ligands adds to the

presentation in di↵erent contexts. For example, in the presentation of blocks 1133,

blocks 1 and 3 had already been presented together, in contrast with the combination

1166 in which block 1 had never been presented with block 6. Figure 4.67 shows

the number of presenters that have R �1 for di↵erent simulations, for presentations

in which two blocks were repeated. The black line represents the response in the

absence of the perturbation, while the red and the blue lines to systems in which

blocks were repeated. In red are pointed systems that combine blocks that had

already been presented together, while in blue are represented systems that add two

e↵ects, the repetition of ligands and presentations in di↵erent contexts.

Figure 4.67: Number of presenters with R � 1, measured at ⌧1, nR�1, as a function
of the system S, for connectivity k=30 and with two repeated blocks.

Responses are stronger when the repetition is combined with the abnormal pre-

sentation of ligands: on average, 32.0±6 and 30.8±6 presenters were activated for

the combination of blocks 1166 and 1155, respectively, at ⌧1. Smaller responses are

obtained for presentations with a repetition of the fixed block 1133 and 1144: 15.4±5

and 13.0±4 presenters have R �1 respectively, also at ⌧1. All responses against the

repetition of ligands are accomplished with total tolerance relative to the system

in the absence of perturbation in which case none of the presenters was activated:

0.1± 0.
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The response decreases with the decrease of the number of blocks repeated.

The repetition of two blocks originates stronger response than if only one block is

repeated. Figure 4.68 shows the number of presenters withR �1 as a function of the

system, for di↵erent presentations with only one block repeated. The correspondence

of colors is the same: the black line represents the absence of perturbation, while

red and blue lines show perturbed systems with only repetition of ligands or the

repetition of ligands together with abnormal presentation, respectively.

Figure 4.68: Number of presenters with R � 1, measured at ⌧1, nR�1, as a function
of the system S, for connectivity k=30 and with only one block repeated.

Also in these systems, presentations combining the repetition of blocks with an

abnormal presentation have stronger responses: on average, 15.6±5, 14.4±5 and

8.9±4 presenters are activated for the combinations 1156, 1126 and 1136, respec-

tively, at ⌧1. These responses decrease to 4.2±5 and 2.4±2 presenters activated for

the presentations 1123 and 1134, respectively.

These results suggest that the responses obtained depend on the blocks pre-

sented together with their repetition. Combinations of blocks that combine abnor-

mal presentations with their repetition have stronger responses when compared to

presentations that only repeat blocks. In spite of the di↵erent responses obtained,

all CFSs performed detection with tolerance towards self.

4.7.3 Abnormal Presentations of Di↵erent Self Ligands and

Generalization: Final Discussion

CFSs are capable of learning patterns of normality from a large set of possibilities.

CFSs are capable of inferring information concerning the simultaneous presenta-

tion of ligands. In this sense CFSs have generalizations capabilities, learning from

a small sub-set of “normal” configurations, configuration towards which the sys-
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tem should remain tolerant. Simultaneously it becomes reactive towards abnormal

presentations.

In a summarized way, in this section it was shown that:

• CFSs are capable of generalizing presentations within a large set of “normal”

configurations and become tolerant to them;

• Presentations that do not belong to the educated pattern of presentations are

recognized as abnormal and a reaction is triggered against them;

• There is an optimal value of connectivity that ensures tolerance towards self,

but reaction against abnormal presentations.

• Presentations that combine abnormal presentation due to the repetition of

ligands and anomalies in context are easily detected because of the combination

of both mechanisms of detection.

This last section of results finishes the presentation of the main results concerning

the potentialities of CFSs. These combine the perfect discrimination self/nonself,

the ability to produce homeostatic responses and with the capacity of generalizing

legitimate patterns from an arbitrary large set. All these features open the possi-

bility of developing applications in di↵erent fields involving anomaly and intrusion

detection.
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The Cellular Frustrated Approach: Final Discussion

The method developed in this thesis uses a new conceptual approach to understand

cellular interactions in the adaptive immune system and proposes a new direction in

artificial intelligence. The inspiration to the cellular frustration framework arouse

from a distant problem in computational optimization, namely the stable marriages

problem (SMP) [52]. This problem was first addressed by Gale and Shapley in

1962 [53]. In the stable marriages problem a set of men and women have to be

paired in a stable arrangement so that no men or women can find a better partner

that also accepts them. Stated in this way, the problem resembles the cellular

frustration scenario described in Section 2.3.3. However, the problem that has long

been concerning computer scientists consists in finding e�cient algorithms capable

of finding the stable configuration in polynomial time. This is a nontrivial problem

because for some instances of the game the problem is NP-hard [54], in which case

no algorithm can find a solution in polynomial time [55]. In those cases, there

would be individuals in a population that cannot be arranged in a stable pair, at

least within a reasonable time. However, at the same time, some individuals may

easily find a stable matching, as when perfect matches exist in a population - i.e.,

when a man and a woman prefer each other, ranking each other in the top of their

ILists. This observation led the supervisor of this thesis to formulate models for

which such a dramatic di↵erence in the dynamics could lead to di↵erent outcomes

for the di↵erent individuals in the population. It became apparent that in any such

model, the di↵erent outcomes would have to depend on the duration of contacts,

a measure of pairs’ stability. The duration of contacts in immunology [15], or the

duration of matings in evolutionary biology [16], would have to play a major role,

and indeed the individuals’ fitness can be understandably linked to matings stability
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[56, 57], and likewise conjugation lifetimes’ are well acknowledged in immunology as

being associated to di↵erent cellular e↵ector functions [25].

At this point it should be mentioned that some theoretical approaches had al-

ready attributed importance to the duration of intermediate processes before major

signals are triggered [12]. In the context of immunology, Mckeithan proposed that

the kinetic proofreading could be essential to account for the highly specific T cell

activations [13]. In McKeithan’s only the interactions between two cells (an APC

and a T cell) are considered and consequently this model is certainly important to

describe how cells distinguish the several ligands they interact with. However, it

cannot be produce context dependent responses, like the abnormal self-detection

we described. These properties are collective properties and consequently can only

result from an emergent property of the collective set of cells. In the cellular frustra-

tion framework this results from the collective frustrated dynamics of the system.

In fact the cellular frustrated dynamics also embodies a generalized form of a ki-

netic proofreading mechanism, first found in [16], and discussed in the context of the

kinetic proofreading scheme in [15, 30]. This amplification mechanism has new prop-

erties. In particular it is context dependent, whereas in the classical description the

amplification constant depends only on (fixed) kinetic a�nity constants [30]. This

is an important property conferring robustness to the discrimination task.

The cellular frustration framework uses the frequency of stable contacts as a

threshold for cellular activation. Grossman and collaborators [58, 59] had already

proposed that cells in the immune system should respond when the level of stimula-

tion they were submitted to exceeded a threshold. This was inspired in the neuronal

system, which sparked inspiration among immunologists [60–63]. In the tunable ac-

tivation thresholds scenario, thresholds can vary on context and be di↵erent for each

cell. Cellular stimulation would be a function of the avidity of interactions and it

would result from the integration of multiple signals. It could also depend on the

sharpness of the stimulation [58], which suggests that pathogens could use smooth

invasion strategies. Hence, to a certain sense, the tunable activation thresholds

hypothesis proposes dissociating foreignness from the peptide, which clearly is not

the case in the cellular frustration discrimination of self from nonself. It should be

noted that the tunable activation threshold hypothesis remained largely as a verbal

hypothesis by the original authors, and consequently it did not show, for instance,

that robust protection could be achieved in this way. This has nevertheless been

suggested by further works in the artificial immune systems’ community, where in-
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teresting results, although with no indication of perfect discrimination, have been

achieved [64, 65].

The cellular frustration framework also uses activation thresholds that are tuned

during repertoire education, and which can be di↵erent for each cell. The main dif-

ference between the two approaches is on the mechanisms of cellular stimulation. In

the cellular frustration approach, stimulation depends only on the most stable con-

tacts, forcing the T cell repertoire to be organized so that cells engage in a maximally

frustrated dynamics. This has numerous consequences, and in particular anergy and

costimulation are explained di↵erently. In the cellular frustration framework they

are intimately related to the elimination of stochastic fluctuations to achieve perfect

self nonself discrimination, whereas in the tunable activation thresholds anergic T

cells can be used to suppress co-activated cells [59].

The inspiration arising from the stable marriage problem was extremely prolific.

Not only it suggested a di↵erent way of addressing cellular interactions, but also

o↵ered new explanations for a number of well documented phenomena. First, it

became natural to admit that all cells could play more symmetrical roles than usu-

ally assumed. All cells should display ligands and use receptors to read information

displayed on the other cell’s membranes. This represented an original assumption,

which is not even too revolutionary, since as it was discussed in this thesis the

information displayed by T cells to APCs can be much more limited than the in-

formation displayed by APCs to T cells. However, so far all literature focused on

the information displayed by APCs to T cell receptors, which may have also been

due to the fact that experimentalists have always questioned how the information

presented by MHC molecules triggers an e↵ector function. The more symmetrical

role played in cellular interactions needs to be tested and can be seen as a prediction

or a requirement of the cellular frustration approach to immunology.

Although involving a di↵erent set of agents, antigen and antibody, a proposal

initially put forward by Niels Jerne [60] on the formation of idiotypic networks, also

requires that each agent has two components, one to read antigenic information,

the paratope, and the other displaying it, the epitope. Hence, in this case as well,

each agent works as both, the presenter and the detector [60]. This approach was

also considerably prolific [62], and drove a considerable range of work [66–71], and

it even had an impact in artificial intelligence [72]. The field of idiotypic networks

has nevertheless failed to find experimental support, and an interesting account of

the rise and fall of this scientific paradigm can be found in [73].
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Our approach has marked di↵erences with the idiotypic approach, not only at

the level of agents and mechanisms involved, but also at the level of concepts. For

instance, while the duration of contacts is crucial to induce perfect tolerance and

strong reactivity against nonself in the cellular frustration, it plays no role on idio-

typic network approaches. Furthermore, in the cellular frustration framework self-

nonself discrimination plays a special role, whereas idiotypic networks are mainly

concerned with interactions with self [62, 66]. This however, does not mean that

idiotypic networks cannot explain antigenic elimination. Indeed, one of the achieve-

ments of the idiotypic network formulation is that it o↵ers a simple conceptual view

on di↵erent responses to antigen, ranging from a weak response in a naive state, a

strong response in the immune state, and a suppressed response in the tolerant state

[74, 67]. Di↵erent responses depend on the di↵erent relative concentrations of the

several antibody linked to the antigen. What I believe the idiotypic network formu-

lation has di�culty in establishing is in discriminating robustly when to deliver a

strong or a weak response in face of the introduction of a new antigen determinant.

This, I believe, limits the applicability of idiotypic network approaches to anomaly

detection, which indeed have never found applications in the artificial intelligence

field in relation to anomaly detection. Rather, most sought applications have been

related to clustering [72].

An alternative approach to the adaptive immune system that has been tested in

artificial intelligence [75], is the crossregulatory model proposed by J. Carneiro [76].

This model got its inspiration in the idiotypic immune system although it is con-

cerned with the modeling of T cell activation and the ability to maintain tolerance

in the periphery in the absence of pathogens. Similarly to the idiotypic network

approach, it also uses the idea that the activation of the population of e↵ectors

can be suppressed by another type of cells - the regulatory T cells - if they are

more numerous. In that way two cell types are required (in the idiotypic network

tolerance was achieved due to the interaction of anti-idiotypes upon idiotypes) to

achieve tolerance, and in the absence of regulatory T cells, autoimmunity or nonself

detection would be triggered. Several variants of this idea were studied in a series of

papers[76–78], to better meet experimental observations. In our work, tolerance is

achieved in a di↵erent way, although both approaches achieve tolerance due to the

presence of a third cell. However, the cellular frustration induces tolerance with-

out requiring the elimination of cells, whereas, both the crossregulatory model or

idiotypic network approaches require a continuous elimination of cells and replen-
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ishment. Since T cells can live up to 10 years in humans [79], this suggests that

probably a tolerance mechanism not requiring cellular elimination may be more ap-

propriate. Another point worth considering is that so far the cellular frustration

model did not require a regulatory T cell to achieve perfect tolerance. This may

look problematic at first sight, since it is known that regulatory T cells are essential

to avoid autoimmunity in mice [80]. However, it is possible that regulatory T cells

become either essential or simply beneficial, when other immunological phenomena

are considered. For instance, this could be related to the clonal expansion of the T

cell repertoire, or the adaption to time varying perturbations. Hence, it cannot be

ruled out that the cellular frustration framework could not benefit from inspiration

from the crossregulatory modeling work when further immunological scenarios are

considered.

The stable marriages problem also called a special attention to how cellular

interactions should be modeled. In the stable marriages problem all individuals

attempt to optimize a “preference” function. This suggested considering that, in a

population, individuals would continuously perform decisions to accomplish this goal

and that only when su�ciently stable pairs are formed, outcomes, like reproduction

or e↵ector functions, would be triggered. This was proposed in [16] for a model for

sympatric speciation, and in the seminal paper relating this approach to immunology

[15]. This modeling approach allowed the identification of frustration in cellular

interactions as an essential ingredient to establish tolerance as discussed in [15].

In this respect it should be mentioned that frustration is a well-known concept

in physics. It was first found by Wannier in 1950 [81] when studying the Ising spins

in a triangular lattice, having led to an intense field of research that still lasts to

this day. The term frustration was likely coined for the first time by G. Toulouse

in 1977 [82]. In this field, researchers have been mainly concerned with the unusual

physical properties that the existence of multiple ground-state configurations could

produce. Unusual physical properties, like the slow magnetic relaxation in spin

glasses, are mainly dynamical properties, stemming from the fact that the system

never stabilizes in a single state, even at zero-temperature [81].

In our work frustration operates in a similar fashion, in the sense that it requires

that no stable pairs are formed if perfect tolerance is to be achieved. This was the

reason why F. Vistulo de Abreu coined this scenario“cellular frustration”. However,

cellular frustration gives a special attention to the time duration of conjugations as

only stable pairs trigger e↵ector functions. This establishes a clear di↵erence with
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the approach in physics, which is concerned with macroscopic properties. Further-

more, in the cellular frustration it became clear in [20] that if the immune system

is to be tolerant to self, then it should be highly organized in the sense of maxi-

mizing frustration so that a characteristic lifetime could be defined for interactions

involving cells presenting self-peptides. This led us to propose a new principle of

organization of a complex system which should be relevant to the immune system.

This was called the principle of maximal frustration and it should guide repertoire

education in the thymus.

The application of the idea of frustration is not new in the immunological lit-

erature. Indeed Bersini and Calenbhur [83, 84] used frustration to promote the

appearance of chaos in idiotypic networks. They also suggested that tolerance could

benefit from frustration in these models. The definition of tolerance is nevertheless

di↵erent in both approaches, as in idiotypic network models no role is played by

the duration of contacts. Furthermore, in the cellular frustration model the aim

is not only on promoting tolerance, but also on being able to maintain extreme

reactivity against nonself. The principle of maximal frustration establishes a quan-

titative criterion for reacting or not reacting, which has a clear consequence on the

performance in the discrimination task. For instance, in poorly educated T cell

repertoires, perfect (or almost perfect) tolerance towards self could be maintained

even if reactivity against nonself would be poor. Hence, the suggestion that the

immune system wants to be maximally frustrated became a natural outcome of the

cellular frustration approach[20].

The mathematical approach to the stable marriages problem provided also in-

spiration for mapping the information sensed by T cell receptors on APC ligands in

a di↵erent way. In fact, in most theoretical models in immunology [49, 76, 85], the

a�nity controlling the strength of interactions is seen as a continuous function in

the space of peptide sequences. On the contrary, mating preferences in humans were

considered to be highly diverse in the SMP, with preference lists ranking individuals

of the opposite sex in potentially arbitrary orders. As it was discussed in Subsec-

tion 2.3.3., this can also be a reasonable approach in the immunological context,

given the intricate diversity of generation mechanisms of T cell and B cell recep-

tors. Interestingly this view on how the information in T cell receptors is mapped

is crucial to achieve perfect self-nonself discrimination in the cellular frustration

framework, because it allows di↵erent cells to establish interactions of a completely

di↵erent strength with two di↵erent antigen. This has also an important immunolog-
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ical implication because if o↵ers a new explanation on how crossreactivity promotes

specificity in immunological responses. Indeed, if receptors diversity allows each cell

to perceive ligands’ space using completely di↵erent topologies, then the cellular

frustration framework guarantees that a finite fraction of the T cell repertoire can

interact with a foreign ligand, which guarantees prompt and specific responses. It

should be mentioned that crossreactivity seems to work against building very specific

interactions. However, in an influential paper [86], Don Mason argued that immuno-

logical interactions had to be extremely crossreactive, as otherwise the number of

di↵erent T cells required would occupy a volume many times greater than the actual

body size. Any immunological mechanism should rely of extensive crossreactivity

to gain robustness. Otherwise it would need to explain how extremely specific cells

would e�ciently encounter their cognate antigen [87].

The previous mapping in ILists has also important implications in the artificial

intelligence field. Indeed, it opens the door to a new type of artificial intelligence

algorithms for anomaly detection. Anomaly and novelty detection are demanding

classification tasks. Intrusion detection can be considered even harder, given that the

intruder can have an active role. The main di�culty with these tasks it due to the

high dimensionality of the space that needs to be considered. The number of di↵erent

configurations characterizing the system’s normal behavior can be potentially very

large. However, the number of configurations characterizing an abnormal behavior

can certainly be even larger. Algorithms to address these problems thus need to have

generalization capabilities. All methods use some a priori hypothesis on the data.

Some are more explicit than others. For instance clustering methods assume that

a certain metric is good to capture neighborhood properties in a data set, di↵erent

metrics being more suitable for some problems than others [88, 89]. Similarly, many

probabilistic density function estimation methods assume that distribution functions

are approximate gaussians in regions of the space, and in this way they classify as

outliers events whose frequencies are far from the expected frequency, beyond some

threshold value. Other methods, like neural networks, have less explicit assumptions.

In a certain sense they act as black boxes. They are known to reproduce perfectly

logical functions, and they can also be good at performing function approximations

[90, 91]. Neural networks, like other methods such as support vector machines

[88, 92], can perform a complex optimization classifying points in a continuous space

in classes. These methods assume nevertheless that this classification is continuous,

in the sense that most points in a close neighborhood are classified in the same way.
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This assumption may not be appropriate in many practical applications, such as in

text classification, as in that case single substitutions can change a correctly spelled

word into a misspelled word. Indeed, in this case, one should expect that words

are sparsely distributed in space, correctly spelled words being distant points in an

almost empty space.

The cellular frustration approach o↵ers a new approach to data classification

that can be useful to tackle problems in which “self-data” is sparsely distributed in

a high dimensional space. Indeed, the method we presented is capable of classifying

correctly self-data points as self and react when any other point is presented. At

the same time the cellular frustration approach also classifies patterns of self-points,

depending on whether they have been presented during the education process or

not. Clearly this part of the task was not so thoroughly studied in this thesis, but

simple mechanisms have been identified that show that cellular algorithms should

be capable of detecting when sets of points that are consistently presented together

during the education phase, are absent in the detection phase. This means that the

cellular frustration algorithm can work as a complex correlation function calculator

of sparsely distributed data points. I believe that this type of artificial intelligence

algorithm is new as it performs an anomaly detection task di↵erent from any other

method I know in the literature [7, 93], and using a conceptual di↵erent method of

calculation.

A new understanding of the phenomena of positive selection in the thymus, and

costimulation and anergy in the periphery has also been suggested in this thesis. So

far it has been di�cult to explain why these phenomena are required for a proper

function of the adaptive immune system. However, our proposal is not completely

unexpected. Indeed, it should have been expectable that positive selection could

be required to avoid having useless T cells in the repertoire. However, it has been

di�cult to prove with theoretical quantitative models [94–96] that without positive

selection the adaptive immune system could fail its function. Similarly, costimulation

and anergy have long been associated to mechanisms required to increase specificity

and tolerance, respectively. However, most theoretical models in the literature do

not require them to perform self-nonself discrimination [48, 49]. Alternatively and

in clearer contrast with our proposal, Janeway’s infectious nonself model [97] and

Matzinger’s [98] danger model, propose that costimulatory ligands signal the pres-

ence of infection or danger signals in the host [43]. These should originate from

outside the lymph node, not being upregulated during the sequence of dynamical
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interactions in lymph nodes as the cellular frustration framework proposes.

The cellular frustration framework also proposes that the strength of interactions

is not reduced in magnitude during negative selection. Rather, it is the direction of

these interactions that is modulated. I.e., T cells receptors should have the high-

est a�nities towards ligands displayed by APCs whose receptors sense the ligands

displayed by these T cells with lowest a�nities. This is a new proposal that calls

attention to the ligands displayed by T cells to APCs receptors.

It should also be mentioned that the present thesis did not address important

issues concerned with selection criteria for data presentation. This corresponds

to modeling how APCs select which peptides are presented in MHC molecules.

In an artificial intelligence perspective, this can be seen as a preprocessing data

stage. Some work has been done in this respect in the artificial immune systems

community using the danger theory inspiration [99, 100]. It is possible that this type

of algorithms could be useful for selecting which data APCs should display in order

to render algorithms more e�cient. This may indeed be necessary since the number

of cells that can be considered in numerical algorithms is considerably smaller than

in the actual immune system.

This thesis had an important concern: to build a consistent theory that could,

under a single set of initial simple assumptions, explain a wide range of phenomena

in immunology. As guiding inspiration it was assumed that the adaptive immune

system should be capable of performing self-nonself discrimination without errors,

at least in certain limits. This requirement is clearly grounded to the view that the

adaptive immune system is a robust and flexible anomaly detection system. The

purpose was ambitious, because the vast range of well documented phenomena we

addressed seemed conflicting, even paradoxical. Consistency is extremely important

in any modeling approach. Quoting Einstein, a model should be the simplest but

not simpler. In this sense I feel that having been able to propose explanations for

phenomena like positive selection, costimulation and anergy, without having built

models specifically addressing these issues seems an encouraging result. Science

however is not merciful as only those predictions agreeing with experiments sur-

vive. Furthermore I would add that technology can also be ungrateful, as only

those methods and products that make their way into our lives, live. However, in

this respect the cellular frustration framework gave auspicious signs of a successful

future. This thesis unveiled mechanisms that guarantee that two main modes of

anomaly detection - detection of nonself sequences and detection of the presentation
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of abnormal combinations of sequences - can be performed. However, only future

work can confirm in full extent the validity of our bold initial pretensions.



6
Personal Perspective

One never notices what has been done;

one can only see what remains to be done

Marie Curie, 1894

The development of an anomaly detection system to monitor the behavior of

complex systems is extremely relevant and challenging. Complex systems are present

in a wide range of fields. A common anomaly detection system is the antivirus

software that runs in our computers. When we think about how it works, one

concern comes to our minds - what happens if the antivirus fails? Nobody desires

a virus infecting their computers, nor an antivirus software that acts as a virus,

continually using computer resources even in the absence of an anomaly. Until

now, these are considered the two sides of the same coin. Ideally, an anomaly

detection system should detect any anomaly in the system with zero false alarms.

Can a monitoring system o↵er perfect detections? Yes, I think that it is possible.

Actually, I was not the first person with this belief. Regarding perfect detection in

the anomaly detection systems, my supervisor always mumbled: “nothing less than

perfection!” and he was right.

Now, looking back, it might seem unreal, even to me, that we started this research

only with the strong conviction that a system that accomplishes perfect anomaly

detection was possible. Additionally, we had the belief that the solution was a

new organizing principle of complex systems and two plausible assumptions. We

thought that the interactions between agents could be modeled as decisions instead

of instantaneous reactions and that the time of interactions should play a critical role

in the triggering of a response. The development of an anomaly detection system
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in these conditions was exciting but not an easy task. A hard work of development

was required to achieve these results. Almost every day, a new idea was discussed

and tested in order to find the right direction to follow in the research. An amazing

number of possibilities was studied; most were abandoned, because they did not meet

our requirements. Nevertheless, in the midst of unsuccessful results, the first positive

results started to appear. The first important achievement was the understanding

of the reactive and tolerant state in this framework. Here, a tolerant state is built

with maximally reactive agents which interact in a frustrated dynamics. From the

interactions established in this dynamics tolerant or reactive states emerge. These

concepts are not seen as attributes of each agent but as emergent properties of the

system. Tolerance and reactivity were understood in an unconventional way and the

apparent paradox between maximal reactivity and perfect tolerance disappeared.

This new perspective set the direction regarding the dynamics that should be

imposed in anomaly detection systems and another result appeared: perfect intru-

sion detection in perfect systems. This was a very encouraging result at that time.

It showed that, at least in principle, perfect detection was possible and that work

was going in the right direction.

Having obtained the result that perfect detection is possible, the next step was

to explore how to generalize this result to an arbitrary system. This generaliza-

tion to every arbitrary system would allow di↵erent applications in di↵erent fields.

However, how this could be done was not clear for a long time. After several un-

successful attempts, we decided to look at the real immune system. The question

was: how does the immune system address this problem? Firstly, we introduced in

the method the random generation of detectors’ receptors and the education pro-

cess inspired in Immunology. These two concepts were crucial to the selection of an

extended repertoire of detectors that ensures frustrated interactions among agents.

However, more or less education and diversity in receptors resulted in no-detection

rates around 20% for intrusion detection. These values were very far from the ex-

pected 0%. Something crucial was missing. But, what was missing? Which were

the mechanisms responsible for ensuring perfect detection?

Again, the idea was to focus on the immune system and to search for answers.

These answers were the anergy and the costimulation mechanisms. Both are present

during the monitoring process in the body, so they could play a role in the detection

process. Actually, in the model they were crucial. Anergy and costimulation solved

the problem of imperfect detection. Their implementation was responsible for going
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from a no-detection rate around 20% to 0%. Voila, what seemed almost impossible

in the beginning of this work was achieved: an anomaly detection system capable

of performing perfect self/nonself discrimination and abnormal self presentations

simultaneously and with the same mechanisms.

Thus, perfect anomaly detection is possible in systems with arbitrary diversity

and independently of the size of the system considered. However, to achieve this

result detectors’ diversity should be taken into account, so that di↵erent a�nities

towards presenters are established. Additionally, positive and negative selection are

required to increase the frustration of the conjugations among agents. Finally, an-

ergy and costimulation are crucial to the monitoring stage. While costimulation

signals that presenters decrease the frustration in their interactions during the mon-

itoring stage, anergy ensures that the increase in the stability is not due to a single

detector. It is amazing how the work that took 4 years to be developed is now

reduced to a single paragraph. The novelty of the work and the remarkability of

the results obtained contributed for the submission of a patent which credits the

method [101].

Even if this work may seem the end of a story, this is definitely not true. This

is only the beginning of the development of a promising framework. Until now, the

goal was perfect discrimination in perfect systems, perfect discrimination in arbi-

trary systems, perfect discrimination in everything. Now that perfect discrimination

has been achieved, di↵erent other issues start to pop up. Personally, I look forward

to understanding the role of the TREG in this framework. I am also interested in the

mechanisms involved in the termination of the immune responses and in the mech-

anisms responsible for the returning to the equilibrium state after a perturbation. I

have already started this latter study, but no complete results have been achieved.

Much work remains to be done in these systems. The quotation that starts this

chapter completely describes my feeling after this thesis: one never notices what has

been done; one can only see what remains to be done.
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