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resumo 
 

 

Os neurónios são celulas especializadas do Sistema Nervoso, cujas funções 
se baseiam na correta formação de três compartimentos subcelulares 
primários – corpo celular, axónio e dendrites – e na rede neuronal que formam 
para passar a informação entre si. 
A análise quantitativa das características destas estruturas pode ser usada 
para estudar a relação entre a morfologia e função neuronal, e monitorizar 
alterações que ocorram em células individuais ou ao nível da rede, que se 
possam correlacionar com doenças neurológicas. 
Nesta tese foi efetuada uma pesquisa de ferramentas digitais disponíveis 
dedicadas ao processamento e análise de imagens neuronais, com enfoque na 
sua aplicabilidade para analisar as nossas bioimagens neuronais de 
fluorescência adquiridas no dia-a-dia. Nos programas selecionados (NeuronJ, 
NeurphologyJ e NeuriteQuant) foi primeiro avaliada a necessidade de pre-
processamento, e os programas foram subsequentemente utilizados em 
conjuntos de imagens de culturas primárias de córtex de rato para comparar a 
sua eficácia no processamento destas bioimagens. Os dados obtidos com os 
vários programas foram comparados com a análise manual usando o ImageJ 
como ferramenta de análise.  
Os resultados demonstraram que o programa que aparenta funcionar melhor 
com as nossas imagens de fluorescência é o NeuriteQuant, porque é 
automático e dá resultados globalmente semelhantes aos da análise manual, 
especialmente na avaliação do Comprimento das Neurites por célula. Uma das 
desvantagens é que a quantificação da ramificação das neurites não dá 
resultados satisfatórios e deve continuar a ser realizada manualmente.  
Também realizamos uma pesquisa de ferramentas de processamento de 
imagem dedicada a imagens de contraste de fase, mas poucos programas 
foram encontrados. Estas imagens são mais fáceis de obter e mais acessíveis 
economicamente, contudo são mais difíceis de analisar devido às suas 
características intrínsecas. 
Para contornar esta lacuna, estabeleceu-se e otimizou-se uma sequência de 
processamento e análise para melhor extrair informação neuronal relevante de 
imagens de contraste de fase utilizando o programa ImageJ. 
A sequência desenvolvida, na forma de uma macro do ImageJ designada 
NeuroNet, foi aplicada a imagens de contraste de fase de culturas neuronais 
em diferentes dias de diferenciação, na presença ou ausência de um inibidor 
farmacológico, com o objetivo de responder a uma questão científica. 
A macro NeuroNet desenvolvida provou ser útil para analisar estas 
bioimagens, existindo contudo espaço para ser aperfeiçoada. 
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abstract 

 
Neurons are specialized cells of the Nervous System, with their function being 
based on the formation of the three primary sub cellular compartments – soma, 
axons, and dendrites – and on the neuritic network they form to contact and 
pass information to each other. 
The quantitative analysis of the characteristics of these structures can be used 
to study the relation between neuronal morphology and function, and to monitor 
distortions occurring in individual cells or at the network level that may correlate 
with neurological diseases. 
In this thesis a survey of freely available digital tools dedicated to neuronal 
images processing and analysis was made with an interest in their applicability 
to analyse our routinely acquired neuronal fluorescent bioimages. The selected 
program´ (NeuronJ, NeurphologyJ and NeuriteQuant) preprocessing 
requirements were first evaluated, and the programs were subsequently 
applied to a set of images of rat cortical neuronal primary cultures in order to 
compare their effectiveness in bioimage processing. Data obtained with the 
various programs was compared to the manual analysis of the images using 
the ImageJ analysis tool. 
The result show that the program that seems to work better with our 
fluorescence images is NeuriteQuant, since it is automatic and gives overall 
results more similar to the manual analysis. This is particularly true for the 
evaluation of the Neurite Length per Cell. One of the drawbacks is that the 
quantification of neuritic ramification does not give satisfactory results and is 
better to be performed manually.  
We also performed a survey of digital image processing tools dedicated to 
phase contrast microphotographs, but very few programs were found. These 
images are easier to obtain and more affordable in economic terms, however 
they are harder to analyse due to their intrinsic characteristics. 
To surpass this gap we have established and optimized a sequence of steps to 
better extract relevant information of neuronal phase contrast images using 
ImageJ. 
The work-flow developed, in the form of an ImageJ macro named NeuroNet, 
was then used to answer a scientific question by applying it to phase contrast 
images of neuronal cultures at different differentiating days, in the presence or 
absence of a pharmacological inhibitor. 
The developed macro NeuroNet proved to be useful to analyse the images 
however there is still space to improvement. 
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Chapter 1

Introduction

1.1 Neuronal imaging

This thesis focuses on the characterization and comparison of freely available processing
tools for the analysis of neuronal bioimages. These are images recorded from biological
samples, mainly through the use of microscopes, and are named ’bio’ in contrast to images
of neurons and neural networks digitally created.

The neuronal bioimages are difficult to analyse, mainly due to their biological nature.
Neurons develop a complex neuritic network and therefore neuronal cultures can present
huge variations of morphology and intensity from image to image. Problems such as low
contrast and uneven illumination are relatively common and, besides deriving from imaging
technical limitations, they also derive from unevenly distributed neuronal populations, out
of focus neurites, typical shorter dimensions of neuronal cells (in terms of height), resulting
in lower phase contrast[1].

For example Figure 1.1 and 1.2 are images from fluorescence and phase contrast mi-
croscopy, respectively, and represent typical images routinely acquired in the Neuroscience
Laboratory (CBC). It is possible to see in Figure 1.1 that the quality of the image is
low due to low contrast and low signal to noise ratio, as thick and thin and bright and
dim neurites coexist in the same image. Figure 1.2 is further complicated by a poorly
differentiated background (very low signal to noise ratio), in which the neurites appear dis-
continuous along their paths, the cell body and neurites can be out of focus, and various
dead cells can be observed that may be considered as false positives.

Neuronal bioimage processing has evolved since its beginning four decades ago, when
processing was made by elementary manual interaction with computer recorded images
obtained through standard light microscopy. Nowadays, despite several academic and
commercially available tools, neuroanatomists still struggle with the lack of generalized
applicability of the available tools, and the vast majority of axons and dendrites are still
traced manually [2] [3].

This thesis will present some techniques and tools that have been successfully used in
quantitative image analysis tasks and thus provide a relevant contribution towards neu-
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ronal morphology assessment. The major goal is to develop successful work-flows for the
quantitative analysis of fluorescence and phase contrast photomicrographs obtained in the
CBC.

Figure 1.1: Routine fluorescence microscopy bioimage of a single neuron expressing the
fluorescent protein GPF in a non-fluorescent background, in a cortical primary neuronal
2D culture at 4 div.

Figure 1.2: Typical phase contrast microscopy bioimage of a primary neuronal 2D culture
(10 days in vitro).
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1.2 Neuronal morphology and neuronal networks

The central nervous system (CNS) is constituted by the brain and the spinal cord, with
the brain being located inside the skull, and the spinal cord inside the vertebral canal.
The peripheral nervous system (PNS) is external to the CNS and is constituted by sensory
receptors and nerves.

The CNS is composed of neurons and non neuronal cells, called glial cells, that account
for over half of the brain’s weight. Glial cells have several roles such as maintaining the
ionic milieu of nerve cells, modulating the rate of nerve signal propagation, modulating
synaptic action by controlling the uptake of neurotransmitters at or near the nuclear cleft,
etc [4] [5]. The neuron is the functional communication nervous cell, with the ability to
receive, process and transmit information; this ability is based in its polarized organization
into axons and dendrites [6].

1.2.1 Neuronal morphology

Proper neuronal function depends on forming three primary subcellular compartments:
soma, axons, and dendrites [7]. Dendrites receive signals that are processed and integrated
at the cell body [8], and structurally they are typically shorter than axons, taper as they
leave the cell body, and decrease in diameter as they branch [6] [7]. Dendrites, in contrast to
axons, contain polyribosomes and can synthesize proteins, possess specific bungarotoxin-
binding sites expressed on their surface, and contain Microtubule-associated protein 2
(MAP2) as one of its microtubule-associated proteins [9].

Additional integration of the signal occurs at the soma [10], where most of the cellular
components are produced [7], with this postsynaptic cell integrated response being trans-
ferred to the next postsynaptic neuron by the axon [10]. Morphologically, axons possess
a diameter relatively constant, which does not decrease with branching [6] [7]. Axons do
not have polyribosomes, MAP2, and bungarotoxin receptors, but contain synaptic vesicle-
associated proteins and Tau as its microtubule-associated protein [9].

Neurons are usually classified by their structure that is based on the number of processes
that extend from the cell body [4].

- Multipolar neurons have many dendrites and a single axon. The dendrites vary in
number and degree of branching.

- Bipolar neurons have two processes, one dendrite and one axon. They are located in
some sensory organs, such as in the retina of the eye, and in the nasal cavity.

- Unipolar neurons only have a single process extending from the cell body. This
process divides into two branches, with one branch extending to the CNS and the
other to the periphery.

In this thesis our object of study are cortical primary neurons, which are multipolar
neurons cultured “in vitro” upon their dissociation from rat embryos (E18) cortex. These
neurons have therefore many dendrites and a single axon.
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1.2.2 Neuronal morphology vs function

Neurons are highly specialized cells and the morphological properties of the axonal and
dendritic trees are a determinant factor of the neuronal phenotype and maturation level,
being essential for neuronal function in network connectivity. The quantitative analysis
of neuronal morphology can have important applications to study the relation between
neuronal structure and function, to monitor distortions occurring in individual cells or
at the network level that may correlate with neurological diseases, and to discover and
monitor molecules’ ability to influence neuronal differentiation and regeneration in high
throughput assays, including specific substances potentially useful for therapeutic drug
development [11] [12].

1.2.3 Neuronal differentiation

The establishment of morphological polarity in hippocampal neuronal cells needs seven
days in culture, after which the cell displays a characteristic shape, one long axon with
relatively uniform diameter, and several dendrites shorter than the axon and with a de-
creasing diameter. The sequence of events that leads to the establishment of polarity can
be divided in five stages [9] [13]:

Stage 1: Formation of lamellipodia. Shortly after the cells attach to the substrate,
motile lamellipodia start to appear around the cell; their appearance in culture may be
a cell adaptation to growth on a 2-dimensional substract. The lamellipodia that initially
surrounds most of the cell circumference break up into discrete patches at intervals, along
the cell periphery.

Stage 2: Outgrowth of minor processes. In this stage the lamellipodia are transformed in
distinct processes that will extend to a length of 10-15 µm in a few hours. After they have
this length, they exhibit little net elongation, remain motile, and extend and retract short
distances. At light-microscope level, all of the minor processes are similar in appearance
and growth characteristics. This occurs within the first days in vitro (div).

Stage 3: Formation and growth of the axon. After several hours of the appearance
of minor processes, one of these starts to grow faster. After this, its rate of growth will
be in average 5-10 times greater than the other processes of the cell. This process is the
axon and can be identified as soon as its fast growth begins. At this point the cell has
become polarized. Some cells develop 2 axons, initially one process begin to growth at
a rate typical of axons, then its growth stops and retracts to become a dendrite, and a
different process take the axonal characteristics. Several, maybe all, of the initial processes
are capable of becoming axons, but when one of them acquires the axonal properties the
remaining processes are prevented from becoming axons.

Stage 4: Growth of dendrites. Dendrites develop from the minor processes that appear
during the first day in culture, but significant dendritic growth begins only after about 4
days in culture, 2-3 days after axonal outgrowth. Unlike the axons, several dendrites grow
at the same time, and they growth five times slower than the axon .

Stage 5: Maturation of axonal and dendritic arbors. After the axons and dendrites are

6



morphologically mature, neurons form synaptic contacts that enable the transmission of
electrical activity [14]. To achieve the stage five of development, neurons need the presence
of synapses, which in turn depend on the presence of several proteins. Among the proteins
needed are synaptic vesicle proteins (synaptophysin, synaptobrevin) and plasma membrane
proteins (Synaptosomal-associated protein 25 (SNAP-25), syntaxin). Synaptophysin is a
glycoprotein within the membrane of presynaptic vesicles and is needed for the exocitosys
of synaptic vesicles. Synaptossomal associated protein SNAP-25 is important in docking
and fusion of membranes, and its appearance during development is associated with the
ability of the neuron to neurotransmission. The expression of SNAP-25 and synaptophysin
during development means that the neurons established synaptic contacts.

In this work we have used images of primary neuronal cultures acquired at 4 div (fluo-
rescence images; stage four of differentiation) and 4, 10 and 14 div (phase contrast images;
stages four and five of differentiation). These phase contrast images have clear increasing
network densities and were therefore useful to test neuritic related parameters.

1.3 Imaging neuronal cells and networks

In order to study neuronal morphology in development and regeneration research areas,
neuronal bioimages have to be acquired. They are usually obtained with a microscope and
some kind of image digitizing apparatus.

1.3.1 Light microscopy

A light microscope is any microscope that uses visible light to illuminate and image a
specimen. This includes white light composed of all wavelengths, as well as the light of a
specific wavelength used in fluorescent microscopy, although when someone refers to light
microscopy they usually mean nonfluorescent microscopy [15].

The most common and general form of light microscopy is bright field microscopy,
where the light passes directly through or is reflected off a specimen. It is desirable that the
specimen is pigmented to better differentiate structures, and there are several procedures to
preserve and stain specimens in order to enhance contrast. However, most of the procedures
result in the death of cells to preserve the specimen. Methods of manipulating light to
enhance contrast have been developed to make resolvable details observable to the eyes
without the application of special dyes[15].

Variations in density within the cells cause tiny differences in the way regions scat-
ter light, because different cellular structures have different index of refraction. Phase-
contrast microscopy takes advantage of these slight differences, amplifying them into
larger intensity differences with high contrast that can be easily seen. Because this does
not require special treatment of the specimen to see the many details, phase contrast mi-
croscopy is often used to examine cultured cells, including the development of neurons and
neuronal networks. Phase contrast microscopy of live cells without staining is therefore
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possible and allows the study of living specimens, an advantage in time-course experiments.
An example of phase contrast neuronal microphotographs is present in Figure 1.3 [15].

Figure 1.3: Routine phase contrast microscopy bioimage of a cortical primary neuronal 2D
culture at 4 div.
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1.3.2 Fluorescence Microscopy

Fluorescence microscopy takes advantage of specialized molecules called fluorophores
that have the property of absorbing light at a specific wavelength and then emitting it at a
different wavelength. Fluorophores can be linked to antibodies or other molecular probes to
signal the presence of specific proteins or organelles and mark particular structures within
a cell [15].

In fluorescence microscopy the structures tagged with the fluorophores light up against
a dark background. Because the background is dark, even a tiny amount of the glowing
fluorescent reagent is visible, making fluorescence microscopy a very sensitive technique
[15].

However, this technique also has some disadvantages, being the most important one
the limited time that fluorescent reagents remain illuminated. The intensity of the light
emitted from a fluorophore will decrease overtime as it is continuously exposed to light
in a process called photobleaching and, because of this, it is necessary to limit the light
exposure of fluorescently tagged specimens and capture their images before the fluorescence
becomes too dim. Another limitation is the background noise that can mask the actual
signal of interest, with background noise being non-specific and non-meaningful signal. A
third important limitation, only occurring in live cell imaging, is phototoxicity, in which
illumination (excitation ligth) leads to the death of cells expressing the fluorophore due to
free-radical generation.

Fluorescence can be performed by either direct or indirect methods. Direct fluorescence
involves the conjugation of the protein of interest at the cDNA level (’fusion protein’)or
its primary antibody with a fluorophore. In indirect fluorescence the primary antibody
is visualized using a fluorophore-conjugated secondary antibody raised against the im-
munoglobulins of the species in which the primary antibody was raised.

Epifluorescent microscopy is the most used elementary form of fluorescence mi-
croscopy. In this technique the specimens labelled with fluorescent probes are illuminated
by light of a specific excitation wavelength (or a defined interval of wavelengths). The
specimen is viewed using a second filter that is opaque to the excitation wavelength but
transmits the longer wavelength(s) of the emitted light, so that the only light transmitted
through the eyepiece is the light emitted by the specimen. The major disadvantage of
epifluorescence is that excitation light excites fluorophores throughout the entire depth of
the specimen and fluorescence signals are collected not only from the plane of focus but
also from areas above and below this plane. Such background fluorescence can lead to
hazy, out-of-focus images that appear blurry and lack contrast.

Confocal microscopy produces clear images of structures within relatively thick spec-
imens by selectively collecting light from thin regions (the plane of focus) of the specimen.
The key aspect of confocal microscopy is that the pinhole aperture in front of the detector
is at a position that is confocal with the illuminating pinhole, so only light coming from
the same plane in the specimen, where the illuminating light comes to a focus, reaches
the detector. This minimizes background fluorescence and maintains a sharp focus on a
single plane. The detected light is digitized and sent to a computer for display, storage,
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and subsequent manipulation. The major advantage against epifluorescence microscopy
is the ability to produce sharp images of cells and cellular structures without background
fluorescence. This technique has also disadvantages, since confocal lasers scan specimens
point by point to form a complete image of the specimen. This exposes samples to intense
light for a longer time period than epifluorescent microscopes, making photobleaching and
phototoxicity more problematic. The longer time to capture also makes it less desirable
for live cell imaging of extremely fast events. Further, since only the light coming from
the same plane in the specimen is collected to form the image, the confocal image is less
brighter than epifluorescence images taken with similar excitation light intensities [15].

In general, freely available digital processing tools for neuronal bioimages analysis ac-
cept both epifluorescence and confocal fluorescent microphotographs, without any distinc-
tion between these types of images.

In our work we will analyse fluorescence microphotographs of cells expressing a known
fluorophore, green fluorescent protein (GPP) as shown, for example, in Figure 1.2. In this
kind of experimental design one or a few neurons are ’lighted up’ against a dark background
constituted by non-fluorescing neurons (not expressing the fluorescent protein) and the
bottom of the cell plate (when not occupied by cells).

1.4 Aims and structure of the thesis

The underlying work of this thesis focused on the systematic evaluation of digital im-
age processing techniques and tools that may provide insightful and reliable quantitative
information regarding neuronal morphology. The first objective was thus to conduct a
functional survey of the available relevant software tools for neuronal image processing. A
second objective consisted on the development of customized image processing workflows
that could handle very specific imaging contexts. Due to the above mentioned peculiarities
of phase contrast images, these were selected as the case study for the workflow develop-
ment.

This thesis is divided in six chapters, with the remaining five chapters organized as
follows:

Chapter two Survey of digital image processing tools for fluorescence neuronal bioim-
ages.

Begins with a survey of relevant digital tools for neuronal image processing. From
this survey three programs were chosen for comparison of their applicability to analyse
neuronal fluorescence bioimages (chapter Three). The selected programs’ preprocessing
requirements were here evaluated.

Chapter three Benchmarking of digital tools for fluorescence images.
This chapter presents the results of a functional comparative analysis performed on

day-to-day neuronal fluorescence images using the previously selected digital processing
tools. Routine epifluorescence neuronal images were used. Data obtained with the various
programs was compared to the manual analysis of the images using ImageJ analysis tool
[16].
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Chapter four Phase contrast images - Developing new tools.
In this chapter we have established and optimized a sequence of processing and analysis

steps to better extract relevant information of neuronal phase contrast images. For this we
have used phase contrast images obtained from rat primary neuronal cultures at various
developmental days.

Chapter five Phase contrast images - A case study.
The workflow developed in Chapter 4, in the form of an ImageJ macro, was used to

answer a scientific question by applying it to phase contrast images of neuronal cultures
at increasing differentiating days, in the presence or absence of a relevant pharmacological
inhibitor.

Chapter six Discussion and Conclusion.
In this chapter the results obtained in the benchmarking analysis of digital tools for

fluorescence images are discussed and a workflow for the analysis of this type of images is
presented, taking in consideration the specific analytical aims. Results obtained with the
newly developed ImageJ macro for neuronal cultures phase contrast images will also be
here discussed. Problems that arise during the tools application and that still remain to
be answer, and potential future work will also be advanced.
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Chapter 2

Survey of Digital Image Processing
tools for neuronal images

2.1 Relevant neuronal image features

There are several neuronal morphological characteristics that provide relevant struc-
tural information on the neuronal cultures. Neuronal features more relevant for quan-
titative assessment include cell body (soma) area and circularity, and various neuritic-
related parameters such as neuritic length and branching. Soma-related features can be
analysed using the following geometrical parameters: maximum diameter (major axis),
minimum diameter (minor axis), area, perimeter and shape or aspect ratio (maximum
diameter/minimum diameter ratio)[17][3]. Characterization of the neurites can include de-
termining the number of attachment points (neurites directly connected to the cell body),
tree length (total neuritic length of a neuron or set of neurons), tree dispersion (geometrical
distance between the cell body’s center of gravity and the center of gravity of the complete
tree) and tree branching (number of end points/number of attachment points ratio) [17]
[3].

2.2 Image processing tools - ImageJ and compatible

software

Software tools for neuronal digital analysis are capable of quantifying structural pa-
rameters in neuronal bioimages, in particular images recorded using light microscopy. The
neuronal parameters that these tools can measure vary among the different programs, but
generally include[3]:
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Primary morphological measurements1:

• Cell body area, the area of the cell soma;

• Circularity, (4π × area/perimeter2) - this value can vary between 1 (perfect circle)
and 0 (increasingly elongated shape). The values may not be correct for very small
particles;

• Total neurite length - the sum of the distances from each neuritic terminal tip to its
origin, of all the neurites of all the neurons in the image;

• Attachment points - locations where the neurites connect to the soma;

• Ending points - the locations at the tips of the neurites.

Secondary measurements2:

• Average cell body area - total cell bodies’ areas divided by the number of neuronal
cells;

• Neurite length per neuron - the total neurite length divided by the number of neurons
in the image;

• Branching - the ratio between the number of ending points and the number of at-
tachment points.

Some of the processing components that analyse these parameters were developed to
be within the ImageJ software environment. ImageJ is a general purpose image processing
program whose name derives from being written in the Java language. This program has
its source code openly available and its use is license-free. It can run on any operating
system and it is easy to use [16].

ImageJ can read most of the common image formats used in the field of biomedical
imaging, such as TIFF, BMP and PNG, among others. It supports all common manipu-
lations, including reading and writing of image files, and operations on individual pixels,
image regions, whole images and stacks. It can perform operations such as convolution,
edge detection, Fourier transform, histogram and particle analyses (including sophisticated
statistical processing of groups of particles), editing and color manipulation. ImageJ also
supports more sophisticated operations based on image oriented standard arithmetic and
logic operations, and also mathematical morphology operators that are often used in struc-
tural filtering of biomedical images [16].

The program’s applicability is virtually limitless because of the availability of user writ-
ten macros and plugins, enabling the user to customize the software environment according
to the processing needs raised by the specific analysis problems [16].

1parameters usually directly available, normally include: neuronal cell body area, neurite length, at-
tachment points and ending points

2parameters calculated using primary measurements
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Figure 2.1: Image representing part of the parameters analysed in a neuronal bioimage.
Total neurite length is represented in green; in this case, since the image represents a single
neuron, green represents both the total neurite length and neurite length per neuron. The
ending points are represented in pink. The attachment points are represented by the dots
in blue. The cell body is located inside the red area.

Macros are scripts that are meant to ease up the automation of often repeating tasks,
which would be tedious to implement manually. ImageJ has an easy-to-use macro-language,
meaning that knowledge of Java is not required for writing simple scripts.

Plug-ins are external programs, mostly written in Java language, that offer image pro-
cessing capabilities that do not exist in the core capabilities of ImageJ and, once imple-
mented, they cannot be distinguished from the program itself. However, developing new
plugins requires knowing Java language [16].

There are several publicly available ImageJ plug-ins that are somehow being used in
neuronal image processing. For the purpose of this thesis we have selected those that had
multiple citations in relevant image processing overview articles [18][3]. The NeurphologyJ
[12] and NeuriteQuant [19] software were also included in this comparative analysis since
they are the two most recent programs of neuronal morphology quantification reported in
the literature that also function in the ImageJ environment.
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2.3 Common operations performed by image process-

ing tools

Digital image processing within bioimaging context is usually composed by three main
steps: Preprocessing; Segmentation; Feature extraction.

Before the analysis phase it is usually necessary to perform some kind of preprocessing
steps on the acquired image raw data in order to improve its visual contents and correct
possible defects that may impair the quantitative analysis tasks. Some preprocessing steps
usually used are designed to enhance the image contrast, reduce noise and correct illu-
mination problems. After this step of image improvement the image can be segmented
(separation of the different components of the image). Pixels with the same characteristics
are supposed to be part of the same structure, so segmentation usually starts with an
intensity threshold. Morphological filtering is often applied to improve the results. Af-
ter the segmentation is performed, and the objects are properly separated, quantitative
information can be extracted in a procedure called feature extraction.

The main tools of image processing that will be used during this thesis are described
below.

Threshold : A grayscale image (with pixels in the range between 0-255) is converted
to binary by defining a grayscale cutoff point. Grayscale values below the cutoff become
black (0 of intensity value) and those above become white (255 of intensity value). This is
useful to separate background data from foreground data including our target objects [20].

Gaussian blur : The application of the Gaussian filter has the effect of smoothing the
image. The degree of smoothing is controlled by the choice of the standard deviation
parameter sigma. A Gaussian function with a large value of sigma is an example of a
so-called low-pass filter in that the sharp edge features (high spatial frequency content) of
an image is suppressed [21].

Morphology operators : These use a structural element to probe an image and filtering or
quantifying the image according to the manner in which the structural element fits within
the image. By marking the locations at which the structural element does fit within the
image object(s) we derive structural information about the image, that depends on both
the size and the shape of the structural element. This requires that the user defines the
type and the radius of the structural element used. The following morphology operations
are usually used in image processing and are applied to all the image objects that fit within
the structural element:

• The gray-scale erosion operation reduces the brightness (and the size) of all bright ob-
jects on a dark background in an image, and can be used to eliminate small anomalies
from an image, such as single-pixel bright spots, typically smaller than the object(s)
of interest.

• The gray-scale dilatation operation increases the brightness (and the size) of all bright
objects on a black background in an image, and this operation can be used to elim-
inate small anomalies from an image, such as single-pixel dark spots within or near
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the object(s) of interest.

• The opening operation is an erosion operation followed by a dilatation operation, and
thus objects tend to maintain their original size. In this, the erosion first eliminates
small anomalies such as single-pixel bright spots and reduces the object(s) brightness,
and the following dilatation then roughly increases remaining object(s) brightness
back to their original levels (and size), roughly eliminating any alterations caused by
the previous erosion step on the object(s) of interest. The opening operation is useful
to clean up images with noise and other small anomalies related to bright spots. The
Top-hat image is the image obtained by subtracting a morphologically opened image
from the original image.

• The closing operation is a dilatation operation followed by an erosion operation. In
this, the dilatation first eliminates small anomalies such as single-pixel dark spots
within the object, and the following erosion operation then roughly reduces objects
brightness back to their original levels. The closing operation is useful to clean
up images with object holes and other small anomalies related to dark spots. The
Bottom-hat image is the one obtained by subtracting the original image from a mor-
phologically closed version of the image [22].

Skeletonize: The skeleton of a binary object is a representation of the basic form of
that object, which has been reduced down to its minimal level. An useful analogy is the
“prairie-fire analogy”. In this analogy the boundary of an object is set on fire and spreads
with uniform velocity in all directions inwards; the skeleton of the object will be defined
by the points at which the fire fronts meet and stop each other [20] [23].

2.4 ImageJ Plug-ins

2.4.1 NeuronMetrics

NeuronMetrics is a semi-automated open source3 software for quantitative analysis of
2D fluorescence images of neurons. It can estimate neurite length, branch number, primary
neurite number, territory (the area of the convex polygon bounding the skeleton and cell
body), and polarity index, which is the percentage of total length contributed by the
primary neurite with the greatest combined length of its trunk and arbor. It is capable of
correct branch counts using a method called “faces” in computational geometry [26]. A
face is the result of the contact of one neurite with another. Faces are important for the

3Open source licenses must permit non-exclusive commercial exploitation of the licensed work, must
make available the source code, and must permit the creation of derivative works from the work itself[24].
In opposition proprietary/close source code is kept as a closely guarded trade secret. By maintaining the
secrecy of the source code, the software vendor has sole control of its software products, the development
of new features, and maintenance[25].
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branch count, because when a neurite tip touches another neurite, a false branch point is
created [27].4

2.4.2 NeuriteTracer

Neurite tracer is an open source plugin that processes pairs of neuronal and nuclear
marker 2D images to obtain skeletons of neurites and masks of neuronal nuclei. Neurite-
Tracer was reported to have a very strong correlation with the values of NeuronJ [28].

The program has some disadvantages, like when closely apposed nuclei are merged into
a single nucleus or when non-neuronal cellular nuclei overlap with neurites or cell body, the
result is a false positive neuron count. The number of images that can be processed in one
batch is limited by the amount of RAM installed in the computer. Further, for accurate
tracing the program needs the outgrowth in the images to be well separated; indeed,
dense cultures with a great amount of neuritic outgrowth are not traced well because the
threshold step merges adjacent neurites[28].

2.4.3 NeurphologyJ

This open source plugin set aims the automate quantification of neuronal morphology
from 2D images of fluorescence microscopy. It is capable of quantifying soma number and
size, neurite length, attachment points and end points.

NeurphologyJ operates on the entire image, so when an overlapping neurite network is
established, it is extremely difficult to identify the origin of a particular neurite. For this
reason, NeurphologyJ was not designed to quantify neuronal morphology on a per cell basis.
The program does not quantify neurite length on images acquired with high magnification
objectives (equal or higher than 40×), since the neurite width in these images is quite
large, and when the command ‘skeletonize’ is applied it produces a tree-like skeleton that
results in overestimation of the neurite length. It is also unable to perform ending point
quantification on neurons with highly fragmented neurites, because each tip of the neurite
fragment will be recognized as ending points [12].

2.4.4 NeuriteQuant

NeuriteQuant is also a freely available open source tool for automated quantification of
neuronal 2D morphology. The underlying algorithm performs quantitative measurements
of neurite length, neuronal cell body area, neurite-cell body attachment points, and neurite
endpoints per field. From these primary measurements it can derive average measurements
per neuron for neurite length, cell body area and neurite count.

The program has some limitations, namely: 1) the image analysis is optimal at high
signal-to-noise levels, which only enables detection of weak neurite structures by setting

4To calculate the territory, the vertices of the skeletonized neuron are connected to form a convex
polygon and its area is computed.
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low detection thresholds; therefore measurements with markers that stain barely above
noise levels are less accurate and weaker neurite structures might be excluded from the
analysis by the threshold procedure. 2) At high cell densities, if neuronal cell bodies are
not separated from each other, the neuronal cell body number can only be estimated by
dividing the total neuronal cell body area by a user-defined reference size of typical neuronal
cell bodies. 3) More complex morphometric measurements, which are derived from and/or
depend on the ratios of multiple primary morphological measurements like average branch
density, are less accurate if only few cells or few small neurite fragments are analysed per
field [19].

2.4.5 NeuronJ

NeuronJ is a semi-automatic neurite tracing freeware implemented as a plugin for Im-
ageJ to analyse 2D neuronal fluorescence images. It was compared to fully manual tracing
methods (in [29]) and, in terms of length measurements, the differences between NeuronJ
and the manual methods were not significant.

NeuronJ tracing is divided in two phases: in the first one (detection phase), to every
individual pixel in the image is assigned a value indicating its likelihood of belonging to
a neurite; in the second phase (tracing phase), consecutive pixels that are most likely to
represent the centerlines of the neurites are linked together to constitute the tracings. The
former is a preprocessing step and is carried out fully automatically, the later requires user
interaction.

NeuronJ also provides the possibility to label and color tracings, to store them to and
load them from disk, and to compute and display the dimensions of individual tracings as
well as the statistics of measurements on selected or all tracings [29].

2.5 The MATLAB Environment

MATLAB is a highly regarded software environment for scientific data processing in-
cluding well integrated computational, programming and visualization functionalities. This
is a script oriented environment where programming is actually accomplished through user
written files in the form of scripts or functions. These may include core MATLAB func-
tions or special purpose functions normally available within organized, public or commer-
cial, repositories called toolboxes [30]. A major distinguishing feature of MATLAB is its
core array processing design. Every object is a “matrix” and all sorts of operations are
array oriented. Images are data structures that match well with MATLAB approach to
data processing. MATLAB based image processing is a lively area of software develop-
ment and, besides its own toolbox, there are many tools available to tackle the very wide
scope of problems arising in image processing. Neuronal image processing is no exception
and, in the following sections, we will briefly mention representative MATLAB based tools.
Although the MATLAB learning curve is generally steep, the programming skills for the
common user in the bioimaging field are still demanding and time consuming. This par-
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tially justifies the prevalence of solutions based on ImageJ tools, reinforced by the fact that
they are commonly open source and publicly available free of charge.

Programs that function in MATLAB environment

2.5.1 Neuroncyto

The open source software Neuroncyto is fully automated and can measure neurite length
on a cell-by-cell basis, the branching complexity of a neurite5, and the number of neurites
per cell. This software uses topological analysis to segment the cells. The image analysis
algorithms were developed for images acquired by two-channel microscopy but can be
applied to cellular images of multichannel microscopy if the nuclei are acquired by one of
the channels [31].

2.5.2 Edge-based tracing

This is a novel algorithm implemented in MATLAB and was used to analyse images
acquired using multi-channel fluorescence microscopy. It is designed for the automatic
labelling and tracing of branching structures and it does this by tracing and extracting
the center line points recursively, detecting the edge points for each line in the image;
the tracing results are then smoothed out using a 2D curve smoothing method, to remove
jaggy-looking traces while preserving the line structures. The algorithm is capable to detect
soma and measure parameters such as the length per neurite and total neurite length. The
quantitative evaluation of the tracing performance of the algorithm shows that the results
generated by the algorithm are similar to those generated by two independent observers
that labelled the images manually[32].

Standalone tools

2.5.3 Dynamic programming

Dynamic programming6 is an automatic algorithm for extraction of neurites that la-
bels all the neuritic segments of neurite structures in fluorescence neuronal images. The
algorithm selects the starting and ending points automatically, by iteratively tracing the
centerline points along the line path representing the neurite segment. Of note, the time
needed to extract the neurite structures in an image with the size 1360 × 1200 is 24.1
seconds in a PC with Pentium IV, 2.4GHz and 1024 MB memory [33].

5the number of the branches of that neurite divided by the length of the neurite.
6actually the program does not have a name, having this designation since it is based in this method-

ology.

20



2.5.4 Multineurite

This is an automated freeware for neurite analysis requiring user interaction in setting
initial parameters. The program is designed to analyse 2D fluorescence microscopy images.
It is able to generate branching and endpoints and mark all neurites, but without classi-
fying them into the neurons they belong to; this occurs due to the growth of neurons in
clusters and the difficulty to identify neurites from individual neurons in some images. The
algorithm consists on two phases: the first one is the marking phase, in which a multi-scale
curvilinear structure detector, based on the local Hessian matrix, yields a single and con-
nected response to each neurite; in the second phase, the program connects near branching
structures that are broke[1].

A summary of all these programs and the morphological parameters they can measure
is shown in Tables 2.1 and 2.2, together with information about their license type.

Table 2.1: Resume of characteristics of the programs listed above. The number of citations
in peer reviewed papers was obtained by the search engine ’Google’.

Program Freeware
Open 

source

Times cited in 
peer reviewed 

papers
NeuronMetrics yes yes 23
NeuriteTracer yes yes 42
NeurphologyJ yes yes 2
NeuriteQuant yes yes 0

NeuronJ yes no 342
Multineurite yes no 49
NeuronCyto yes yes 29

Edge-based tracing no no 35
Dynamic programming no no 23

From the programs listed in Tables 2.1 and 2.2, NeurphologyJ, NeuriteQuant and Neu-
ronJ were selected to be used in benchmarking tests with our fluorescence images. These
programs were chosen because NeurphologyJ and NeuriteQuant are the two most recent
programs of neuronal morphology quantification reported in the literature, both are open
source, work in ImageJ, a single image of fluorescence microscopy is sufficient to measure
neurite outgrowth, and are automatic. NeuriteTracer was not chosen since it requires pairs
of fluoresce images that include the nuclei, and NeuronMetrics was put aside since it is
semi-automatic. NeuronJ is usually used as control to compare the results from other free-
wares tools since the program is semi-automatic and its results are reported to be similar to
the ones obtained by manual analysis. Further, NeuronJ is the most widely used freeware
for neuronal analysis, as shown by its higher number of citations (Table 2.1).
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Table 2.2: Resume of the relevant characteristics of various programs available for analysis
of fluorescence neuronal microphotographs.

Program Morphology related parameters evaluated
Compatibility 
with ImageJ

Authors

NeuronMetrics
Total neurite length; branch number estimate; 
primary neurite number; territory and polarity 

index
yes Narro et al, 2007

NeuriteTracer 
Count neuronal nuclei; traces and measures 

Neurite Length
yes Pool et al, 2008

NeurphologyJ
Soma number and size; neurite length; neurite 

attachment and ending points
yes Ho et al. 2011

NeuriteQuant

Total neurite length; total neuronal cell Body 
area; average cell body cluster size; total 
number of cell bodies; number of neurite 

endpoints; quantification of the average signal 
intensity; total branch number; branch density 

along the neurite length; average neurite length 
per neuron; average length of individual 

neurites

yes Dehlmelt et al, 2011

NeuronJ Length per neurite; total neurite length yes
Meijering et al, 

2004

Multineurite Neurite length; branching and endpoints N/a Xiong et al, 2009

NeuronCyto
Length of neurites on a cell-by-cell basis; 

branching complexity; number of neurites
no, MATLAB Yu et al, 2007

Edge-based tracing
Soma detection; length per neurite and total 

neurite length
no, MATLAB Zhang et al, 2007

Dynamic 
programming

Length of total neurite segments N/a Zhang et al, 2007

N/a- Information not available
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2.6 The need for pre-processing

Before performing the benchmarking test the programs were applied to both raw im-
ages and images that were pre-processed to enhance contrast and correct for non-uniform
illumination effects. The objective was to evaluate if the selected programs are ready to
analyse our raw images or if some type of pre-processing was needed.

2.6.1 Pre-processing tasks

To enhance the contrast of our neuronal fluorescence images we used the method pro-
posed in [32] that is mostly based on gray-scale mathematical morphology concepts [34]
using the Top and Bottom hat transformations. Technically, the top-hat transform sub-
tracts a morphologically opened image from the original image, while the bottom hat
transform subtracts the original image from a morphologically closed version of the image.
Using the top-hat transforms it is possible to detect object crests, while using the bottom-
hat transform we emphasize the object’s valleys. In our images, the structural element
used to both the open and close operations was a circle with size four pixels, since this is
roughly the typical diameter of the proximal region of the neurites (attachment points) in
these images. These authors propose to add the top hat transformed image to the original
image and then subtract the bottom hat transform. In order to correct illumination we
used a method similar to the proposed by Leong, et al [35]. The idea is to estimate an
approximation of the background intensity function. This is accomplished by computing a
lowpass-filtered version of the image and subtracting it from the original. In order to ob-
tain a reasonable approximation for the background behaviour, the filter is normally build
upon a large Gaussian kernel with the standard deviation above 120 pixels. In Figures
2.2b and c it is possible to observe the effects of these pre-processing steps in opposition
to the original image (Figure 2.2a).

The following three fluorescence images (Figure 2.3a, b and c) were used as case stud-
ies for the need of preprocessing operations before the application of the selected digital
programs (NeuronJ, NeurphologyJ and NeuriteQuant).
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(a) Unprocessed image.

(b) Previous image with its contrast en-
hanced through morphology operations (see
text above).

(c) Previous image following illumination
correction using a Gaussian Blur with ra-
dius 100.

Figure 2.2: Image used to examplify the alterations arising from the described preprocess-
ing operations.
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(a) Raw image a.

(b) Raw image b.

(c) Raw image c.

Figure 2.3: Raw neuronal fluorescence images used to assess the importance of preprocess-
ing before using the selected analytical software.
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2.6.2 Preprocessing in NeurphologyJ

The program uses pre-processing to increase the signal-to-background ratio. It uses
three functions to achieve image enhancement, which are: edge detection, uneven back-
ground correction and intensity-based pixel selection. The program will be used to analyse
fluorescence images such as the example images a, b and c in Figure 2.3, before and after
being preprocessed by manually applying the preprocessing tasks described in the 2.6.1
section.

As shown in Figures 2.3a, 2.4a and 2.4b the cell body is well detected in both cases,
however the neurites are fragmented and some are not even marked. The image without
pre-processing 2.4a has its neuritic network clearly sub-measured and in the preprocessed
image of Figure 2.4b most of the thin and dim neurites are not marked.

(a) Image a.

(b) Image b.

Figure 2.4: Neuronal fluorescent image 2.3a analysed with (image b) and without (image
a) preprocessing in NeurphologyJ.

For the second example we can compare images in Figures 2.3b (original image), 2.5a
(raw image analysed with NeurpholyJ) and 2.5b (image analysed with NeurphologyJ with
previous preprocessing). In both the images analysed by NeurphologyJ one cell and its
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neurites are missing. In the image obtained upon analysis of the raw image, one of the
cells has no neurites marked, and in the other cell there are gaps within the neurites. In
the case of the preprocessed image 2.5b, the neurites are better recognized, but the dim
and thin neurites are still absent from the final image, not being detected by the program.

(a) Image a.

(b) Image b.

Figure 2.5: Neuronal fluorescent image 2.3b analysed with (image b) and without (image
a) preprocessing in NeurphologyJ.

In the third example we can compare the original image (Figure 2.3c) with the ones
obtained with NeurphologyJ with (Figure 2.6b) or without (Figure 2.6a) preprocessing.
The cell body is correctly marked in both the Figure 2.6 images. In the raw image 2.6a
the neurites are much more fragmented and the network is clearly submeasured. The
neurites in the preprocessed image 2.6b have some gaps along the neurites, causing a small
subestimation in neurite length.
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(a) Image a.

(b) Image b.

Figure 2.6: Neuronal fluorescent image 2.3c analysed with (image b) and without (image
a) preprocessing by NeurphologyJ.
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2.6.3 Preprocessing in NeuriteQuant

The program NeuriteQuant does not perform any pre-processing to the images before
analysing them[19].

In the first case analysed with NeuriteQuant, in the image without preprocessing (Fig-
ure 2.7a) it is possible to see that the neurites are marked correctly, but the thin and dim
neurites possess some gaps. Imposing pre-processing, as shown in Figure 2.7b results in
the overestimation of neurites, due to the huge area marked around the soma. It is also
possible to see a gap in the longest neurite.

(a) image a.

(b) image b.

Figure 2.7: Neuronal fluorescent image 2.3a analysed with (Image b) and without (image
a) preprocessing by NeuriteQuant.

In the group of images of Figures 2.3b (original image) and 2.8a and 2.8b (second
example of NeuriteQuant application), in the raw image, Figure 2.8a the cell with less
contrast and its neurites are not recognized; further, the neurites of the recognized cells
present a few gaps, and dim and thin neurites are not recognized. The processed image
in Figure 2.8b has all its cells marked, but there is a small gap in the cell with lower
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contrast. The other two cells have all their neurites correctly marked, with no gaps, and
more neurites are visible than in the unprocessed image.

(a) image a.

(b) image b.

Figure 2.8: Neuronal fluorescent image 2.3b analysed with (Image b) and without (Image
a) preprocessing by NeuriteQuant.

In the group of images of Figure 2.3c (original image), and 2.9a and 2.9b (third example)
the raw image (Figure 2.9a) presents a gap in an area that has low contrast, and some
endpoints and small branches are not recognized. In the processed image the neurites are
correctly marked, and some small neurites not marked in Figure 2.9a are already marked
in this image, leading to an increase in the network area.
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(a) image a.

(b) image b.

Figure 2.9: Neuronal fluorescent image 2.3c analysed with (image b) and without (image
a) preprocessing by NeuriteQuant.
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2.6.4 Preprocessing in NeuronJ

NeuronJ is a semi-automatic program that requires user interaction to trace the neu-
rites. To analyse the images first we have to open the plugin NeuronJ in Plugins/NeuronJ,
after which the image is loaded in Load image/tracings and the command Add tracings is
used to draw the neurites. After all the neurites are draw the command Measure tracings
is used to obtain the neuritic length. NeuronJ gives similar or equal results with or without
preprocessing, since it mainly depends on manual draw. Figure 2.10 shows examples of
images (originals in Figure 2.3) analysed with NeuronJ, where the neurites were drawn in
an semi-automatic manner, since the program depends on the manual determination of
several points along the neurite.

2.6.5 Manual analysis (using ImageJ)

In Figure 2.11 it is possible to observe the example images of Figure 2.3 with a method
further described in detail in Chapter 3 used to analyse images manually using the ImageJ
drawing tools.
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(a) image a.

(b) image b.

(c) image c.

Figure 2.10: Example images of figure 2.3(a, b and c) analysed with the program NeuronJ.
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(a) Image a.

(b) Image b.

(c) Image c.

Figure 2.11: Example images analysed with the program ImageJ.
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2.6.6 Concluding remarks

From the survey of freeware tools that analyse fluorescence images NeurphologyJ and
NeuriteQuant were chosen since these programs are automatic, only need a single image of
fluorescence microscopy to measure neurite outgrowth, and are both open-source. NeuronJ
was chosen since it is the most used program and is also used as a measure of comparison
when new digital analytical programs are tested.

About the need for preprocessing, this apparently improved the identification of neurites
(and therefore the following segmentation step) for both softwares. However, it created
a high number of false positive neurites in NeuriteQuant. Further, preprocessing was
not able to resolve the problem of NeurphologyJ to detect thin and dim neurites. Hence
the need for preprocessing will be further tested by the full application of the selected
programs (Chapter 3). Further, it is not possible to generalize the scope of a tool since its
appropriateness depends on the need of preprocessing, the efficiency of this preprocessing,
and the quality of our raw data, which is often acquired in quite diverse experimental and
technical conditions.
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Chapter 3

Benchmarking of digital tools for
fluorescence images

In this chapter we present the quantitative results obtained with the analysis of routine
fluorescence images using with the programs chosen in the previous chapter.

3.1 Manual analysis

The control further used for all the freeware programs tested consisted on data extracted
from a manual analysis of the fluorescence images. Nine images, in a total of 12 cells,
were analysed by one observer. ImageJ was the program used to visualise the images
and to perform the manual drawing of relevant features, such as neurites and cell bodies.
Fluorescence images were analysed with ImageJ using the tool Freehand line to draw the
neuronal contours. To measure the neurites the command Measure was used, followed by
the command Label to mark the neurites that were being measured. When all neurites
are marked, the column ’Length’ in the results window is summed to obtain the Total
Neurite Length. To measure the Cell Body Area we used the command Magnifying glass
to increase the zoom in the cell body, then the command Freehand selections was used to
delineate the cell body manually. After the selection, the command Create mask was used;
in the mask a threshold is set to select the area corresponding to the cell body, and then
the command Analyse particles was used to retrieve quantitative data from the cell body.
In order to count the attachment and ending points, the plugin cell counter was used.
With this plugin the points of interest are manually marked by the user, and labelled and
stored by the program; of note, up to 8 types of markers are available from the program.

In Table 3.1 is possible to observe that the mean Number of Cells in the fluorescence
images is 1.3 ± 0.2 and the mean Cell Body Area per Cell is 141.4 ± 13.8 µm2. A wide
range of Cell Body Area values is present in this set of images, with the maximum in image
4 (237.8 µm2) and the minimum in images 3 and 9 (99.3 µm2). The mean Neurite Length
per Cell is 602.7± 114.8 µm, with a maximum of 1291.9 µm (image 5), and a minimum of
249.7 µm (image 9), thus also presenting a large range. The number of Attachment Points
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Table 3.1: Parameters obtained with the manual analysis of fluorescence images of neuronal
primary cultures at 4 div.

Image
Number of 

Cells
Cell Body 

Area

Neurite 
Length per 

Cell

Total 
Neurite 
Length

Attachment 
points

Ending 
points

Branching

1 1 117.6 965.8 965.8 5.0 34.0 6.8
2 1 142.2 624.2 624.2 7.0 29.0 4.1
3 1 99.3 271.6 271.6 7.0 21.0 3.0
4 1 237.8 656.5 656.5 11.0 33.0 3.0
5 1 131.1 1291.9 1291.9 10.0 24.0 2.4
6 3 139.5 351.9 1055.8 5.0 15.0 3.0
7 1 152.7 399.4 399.4 10.0 22.0 2.2
8 1 153.4 612.9 612.9 11.0 39.0 3.5
9 2 99.0 249.7 499.4 6.0 15.5 2.6

Mean 1.3 141.4 602.7 708.6 8.0 25.8 3.4

SEM 0.2 13.8 114.8 110.3 0.8 2.8 0.5

is 8.0± 0.8 and the number of Ending points is 25.8 ±2.8. Finally, the mean Branching of
these images corresponds to 3.4 ± 0.5.

Table 3.2: Parameters obtained with the semi-automatic freeware program NeuronJ from
the analysis of fluorescence images of neuronal primary cultures at 4 div.

Image
Number of 

Cells

Neurite 
Length per 

Cell

Total Neurite 
Length

1 1 977.7 977.7
2 1 707.4 707.4
3 1 310.6 310.6
4 1 654.8 654.8
5 1 1281.3 1281.3
6 3 350.9 1052.6
7 1 423.5 423.5
8 1 629.7 629.7
9 2 255.2 510.3

Mean 1.3 621.2 727.6
SEM 0.2 112.7 105.6

3.2 NeuronJ

NeuronJ is a semi-automatic program that only allows to draw neurites (with user
interaction) and quantify their length. In the analysis with NeuronJ the mean Neurite
Length per Cell is of 621.2 ±112.7 µm, a value that is close to the manual analysis (602.7±
114.8 µm) (Table 3.2). Assuming normally distributed data (since the results passed the
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Kolmogorov-Smirnov normality test) an unpaired t test shows that there is no statistically
difference of the means obtained using ImageJ and manual analysis (Figure 3.2).

Table 3.3: Parameters obtained with the freeware program NeurphologyJ from the auto-
matic analysis of raw fluorescence images of neuronal primary cultures at 4 div.

Image
Number of 

Cells
Cell Body 

Area

Neurite 
Length per 

Cell

Total 
Neurite 
Length

Attachment 
points

Ending 
points

Branching 

1 2 116.0 351.3 702.6 4.5 99.0 22.0
2 1 156.9 133.9 133.9 2.0 122.0 61.0
3 1 134.4 104.5 104.5 3.0 69.0 23.0
4 1 275.0 308.1 308.1 6.0 149.0 24.8
5 1 169.6 461.3 461.3 13.0 464.0 35.7
6 2 144.0 43.2 86.5 1.5 34.5 23.0
7 1 252.0 267.4 267.4 8.0 159.0 19.9
8 1 213.9 249.0 249.0 5.0 190.0 38.0
9 2 104.3 122.7 245.5 3.0 93.0 31.0

Mean 1.3 174.0 226.8 284.3 5.1 153.3 30.9
SEM 0.2 20.0 45.2 65.0 1.2 42.0 4.3

3.3 NeurphologyJ in raw images

In the raw images, NeurphologyJ presented a similar Number of Cells as the manual
analysis (1.3). Nonetheless, the program has marked false positive cells (image 1: 2 cells are
marked when only one is present) and false negative cells (image 6: 2 cell was marked when
3 were present). The mean of Cell Body Area is 174.0 ±20.0 µm2, not statistically different
from the manual analysis (Figure 3.1). The mean Length per Cell is 226.8 ±45.2 µm, a
value statistically different from the manual analysis (602.7 ± 114.8 µm, p<0.001)(Figure
3.2). This lower value is due to the lack of sensitivity of the program to detect the neurites,
as it is possible to observe in the Figures 2.4a, 2.5a and 2.6a (Chapter 2). The mean
Number of Attachment points is 5.1 ± 1.2 slightly lower than control, but not found to be
statistically different (Figure 3.3). The mean value of Ending points is 153.3±42.0 and the
mean Branching is 30.9 ± 4.3, with both values being significantly higher than in manual
analysis (Figures 3.4 and 3.5).

3.4 NeurphologyJ in preprocessed images

Concerning the Number of Cells, even after preprocessing, NeurphologyJ continued to
mark a false negative cell in image 6, although correcting the error occurred in image 1
(Table 3.4). Thus, the mean Number of Cells is 1.2±0.2, which is under the manual analysis
mean (1.3 ± 0.2). The Cell Body Area is much higher (197.8 ± 22.8 µm2) than in manual
analysis (141.4 ± 13.8 µm2), but still the difference was considered not quite significant
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Table 3.4: Parameters obtained with the freeware program NeurphologyJ from the auto-
matic analysis of enhanced fluorescence images of neuronal primary cultures at 4 div.

Image
Number 
of cells

Cell Body 
Area

Neurite 
Length per 

Cell

Total 
Neurite 
Length

Attachment 
points

Ending 
points

Branching 

1 1 244.2 901.0 901.0 12.0 141.0 11.8
2 1 160.7 297.4 297.4 7.0 133.0 19.0
3 1 138.1 183.5 183.5 6.0 62.0 10.3
4 1 305.0 409.4 409.4 17.0 100.0 5.9
5 1 175.3 590.3 590.3 13.0 346.0 26.6
6 2 148.0 126.6 253.2 4.0 48.5 12.1
7 1 281.6 336.5 336.5 13.0 106.0 8.2
8 1 220.1 513.5 513.5 11.0 197.0 17.9
9 2 107.2 216.6 433.2 8.0 100.0 12.5

Mean 1.2 197.8 397.2 485.5 10.1 137.1 13.8
SEM 0.1 22.8 80.8 11.9 1.4 29.9 2.1

(p=0.0503) using the Mann-Whitney test (Figure 3.1). The mean Neurite Length per
Cell is 397.2 ±80.8µm, a value far from the manual analysis (602.7 ± 114.8 µm), but
still not statistically significant using the two-tailed Unpaired t test (p=0.1627) (Figure
3.2). The mean number of Attachment points (10.1 ± 1.4) is close to the manual analysis
(8.0 ± 0.8) (Figure 3.3). The mean Number of Ending points is 137.1 ± 29.9, far from
the manual analysis (25.8 ± 2.8). This clear overestimation of the Ending Points is due
to the fragmentation of the neurites and gaps between them, which may be caused by the
low accuracy of the program to detect the neurites in these images, since each fragment
created has two ending points that contributes to the increase in this value (Figure 3.4).
The mean branching is 13.8 ± 2.1, significantly higher than in manual analysis (3.4 ± 0.4)
(Figure 3.5), as expected from the results regarding the number of Ending Points.

Table 3.5: Parameters obtained with the freeware program NeuriteQuant from automatic
analysis of raw fluorescence images of neuronal primary cultures at 4 div.

Image
Number of 

Cells
Cell Body 

Area

Neurite 
Length per 

Cell

Total 
Neurite 
Length

Attachment 
points

Ending 
points

Branching

1 1 163.0 1034.2 1034.2 4.0 105.0 26.3
2 1 128.2 516.1 516.1 5.0 103.0 20.6
3 1 106.7 231.0 231.0 5.0 40.0 8.0
4 1 198.9 488.1 488.1 8.0 68.0 8.5
5 1 124.2 1642.9 1642.9 13.0 399.0 30.7
6 2 109.1 225.8 451.6 6.0 52.0 8.7
7 1 222.1 403.5 403.5 6.0 50.0 8.3
8 1 165.5 641.9 641.9 6.0 115.0 19.2
9 2 79.9 357.4 714.8 5.0 82.5 16.5

Mean 1.2 144.2 615.7 680.5 6.4 112.7 16.3
SEM 0.1 15.5 152.2 141.9 0.9 36.9 2.8
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3.5 NeuriteQuant in raw images

In the analysis of raw images with NeuriteQuant (Table 3.5), the mean Number of Cells
per image is 1.2 ± 0.1, slightly lower than in manual analysis since one cell is not marked
in image 6. The mean Cell Body Area is 144.2 ± 15.5 µm2, a value very close to manual
analysis (141.4 ± 13.9 µm2) (Figure 3.1). The mean Neurite Length per Cell is 615.7±
152.2 µm, which is also close to the manual analysis (602.7± 114.8 µm) (Figure 3.2). The
mean number of Attachment points is 6.4 ± 0.9, and is slightly lower than the value of
manual analysis 8.0 ± 0.8 (Figure 3.3). The Ending point (112.7 ± 36.9) and Branching
(16.3±2.8) values are higher than in manual analysis (Figures 3.4 and 3.5), although being
the ones more similar to the control manual analysis. Again, this is probably due to the
overestimation of the number of Ending Points by the fragmentation of the neurites and
some wider gaps present along the neurite; it may also be due to counting small protusions
of the neurites not clearly distinguished by the human observer, as ending points.

Table 3.6: Parameters obtained with the freeware program NeuriteQuant from automatic
analysis of enhanced fluorescence images of fluorescence of neuronal primary cultures at 4
div.

Image
Number 
of Cells

Cell Body 
Area

Neurite 
Length per 

Cell

Total 
Neurite 
Length

Attachment 
points

Ending 
points

Branching 

1 1 215.4 1584.8 1584.8 5.0 243.0 48.6
2 1 169.0 1039.0 1039.0 14.0 155.0 11.1
3 1 140.1 416.5 416.5 10.0 81.0 8.1
4 1 310.5 766.1 766.1 14.0 101.0 7.2
5 1 184.6 2964.2 2964.2 16.0 480.0 30.0
6 3 115.1 430.0 1290.0 6.3 85.0 13.4
7 1 311.0 495.8 495.8 11.0 58.0 5.3
8 1 226.5 913.9 913.9 15.0 113.0 7.5
9 2 106.6 860.2 1720.3 12.0 114.5 9.5

Mean 1.3 197.6 1052.3 1243.4 11.5 158.9 15.6
SEM 0.2 25.3 268.2 261.6 1.3 44.0 4.8

3.6 NeuriteQuant in preprocessed images

In the images analysed after preprocessing the mean Number of Cells is 1.3± 0.2, with
all cells marked correctly (Table 3.6). The Cell Body Area is 197.6±25.3 µm2, a value much
higher than in manual analysis but still considered not statistically significant (p=0.1135)
due to its high error SEM (SEM of 13%) (Figure 3.1). The mean value of Neurite Length
per Cell is 1052.3 ± 268.2 µm, a value higher than in manual analysis (602.65 ± 114.80
µm). However, the difference is considered not statistically significant using the test Mann-
Whitney Test (Figure 3.2). The mean values of Attachment points (11.5 ± 1.3), Ending
points (158.9±44.0) and Branching (16.6±4.8) are higher than in manual analysis (Figures
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3.3, 3.4 and 3.5), probably due to apparently false positive neurites marked around the cell
body that were previously observed to arise from the processing step (Figure 2.7).
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Figure 3.1: Graphic with Cell Body Area of fluorescence microscopy images of GFP trans-
fected neuronal primary cultures at 4 div. ri, raw images; ppi, pre-processed images.
Non-parametric methods were used to test for statistic significant differences since not all
data passed the Kolmogorov-Smirnov (K-S) normality test. Differences between all groups
were tested using the Kruskal-Wallis test (a non-parametric ANOVA), and no significant
differences were found. Using non-parametric Mann-Whitney test to separately compare
the programs with the manual analysis we have found not quite significant differences only
for NeurphologyJ/ppi (p=0.0519).
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Figure 3.2: Graphic with the Neurite Length per Cell of fluorescence microscopy im-
ages of neuronal primary cultures at 4 div. ri, raw images; ppi, pre-processed images.
Non-parametric methods were used to test for statistic significant differences since not
all data passed the K-S normality test. Differences between all groups were tested using
the Kruskal-Wallis test (a non-parametric ANOVA), followed by the Dunn test if p<0.05.
Differences obtained were for NeurphologyJ/ri: p<0.05 vs manual analysis; p<0.01 vs
NeuronJ; p<0.001 vs NeurphologyJ/ppi.
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Figure 3.3: Graphic with the mean Attachment points per the cell of fluorescence mi-
croscopy images of neuronal primary cultures at 4 div. ri, raw images; ppi, pre-processed
images. Non-parametric methods were used to test for statistic significant differences
since not all data passed the K-S normality test. Differences between all groups were
tested using the Kruskal-Wallis test (a non-parametric ANOVA), followed by Dunn test if
p<0.05. Significant differences were found only for NeurphologyJ/ri vs NeuriteQuant/ppi
(p<0.01). Using non-parametric Mann-Whitney test to separately compare each of the
programs with the manual analysis we have found not quite significant differences between
NeuriteQuant/ppi (p=0.0504), and significant differences for NeurphologyJ/ri (p<0.05.)
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Figure 3.4: Graphic with the mean Ending points per cell of fluorescence microscopy
images of neuronal primary cultures at 4 div. ri, raw images; ppi, pre-processed im-
ages. Non-parametric methods were used to test for statistic significant differences since
not all data passed the K-S normality test. Differences between all groups were tested
using the Kruskal-Wallis test (a non-parametric ANOVA), followed by the Dunn test if
p<0.05, with differences being found for manual analysis vs all the programs: Neur-
phologyJ/ppi (p<0.01); NeurphologyJ/ri (p<0.01); NeuriteQuant/ppi (p<0.001); Neu-
riteQuant/ri (p<0.05).
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Figure 3.5: Graphic with the mean Neurite Branching per cell of fluorescence microscopy
images of neuronal primary cultures at 4 div. ri, raw images; ppi, pre-processed images.
Non-parametric methods were used to test for statistic significant differences since not all
data passed the K-S normality test. Differences between all groups were tested using the
Kruskal-Wallis test (a non-parametric ANOVA), followed by the Dunn test if p<0.05, with
differences being found for manual analysis vs: NeurphologyJ/ppi (p<0.05); Neurpholo-
gyJ/ri (p<0.001); NeuriteQuant/ri (p<0.01).
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3.7 Concluding remarks

Preprocessing did not affect the extraction of number of cells, resulted in a overestima-
tion of cell body area, increased the neurite length per cell and the number of attachment
points. Both programs tested greatly increased the number of ending points and branching.
From all the previous data it is possible to observe that none of these automatic freeware
tools is capable of perfectly analyse our neuronal fluorescence images. Nonetheless, the
NeuriteQuant freeware is the one that gives results more similar to control analysis and
is more suitable to our raw microphotographs, acquired in real acquisition conditions that
are hardly reproducible from literature to the real laboratory settings.
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Chapter 4

Phase Contrast Images - Developing
new tools

4.1 Software tools for phase contrast microscopy

The phase contrast optical imaging technique is used in brigthfield microscopy to en-
hance contrast of unlabelled and even unprocessed biological samples, such as live cells in
culture.

In phase contrast microscopy, the contrast of the image is improved in two steps. The
background light is phase shifted by passing through a phase shift ring. This eliminates the
phase difference between the background and the scattered light, that leads to an increase
in the intensity difference between the foreground and the background. To further increase
the contrast, the background is dimmed by a gray filter ring. Some of the scattered light
is also phase shifted and dimmed by the rings, but in a lesser extent[36].

Phase contrast images do not need antibodies or dyes and therefore can be inexpensive
in terms of imaging reagents. Moreover, there is no need of spending time in antibodies
incubation nor in any previous sample preparation, making this a potential good method
of neuronal analysis. As staining is not usually used for these images, the cells remain alive
after the analysis, another relevant characteristic of this imaging technique. Nonetheless,
there are also disadvantages to this technique, which include: the difficulty to analyse
these images due to their intrinsic low contrast, namely between the object of interest
and the image background; uneven illumination that results from shinning a light on two-
dimensional objects; and vignetting (darkening of the corners of the image with a spotlight
appearance)[37].

Unexpectedly, there are few freeware tools capable of analysing phase contrast images
of neurons and neuronal cultures in an automatic or semi-automatic manner.

4.1.1 NeuronGrowth

Our search for freeware tools was dedicated to automatic or semi-automatic analysis
of neurons only retrieved NeuronGrowth. NeuronGrowth is a program for the automatic
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quantification of extension and retraction of neurites and fillopodia from time-lapse se-
quences of two dimensional bioimages. NeuronGrowth was implemented in Java, as an in-
dependent and multi-platform system containing entire digital image processing modules.
The program needs a previous semi-automatic characterization of neurites in a reference
image, which is further used for the automatic tracking and measurement of neurites in the
time sequence images. The program includes some preprocessing modules like sequence
alignment, background subtraction, flat field correction, light normalization, and cropping.
In phase contrast images this program can be used to track and measure neurites, and in
fluorescence images it can be used to track fillopodia. This program was implemented as
a free plug-in for ImageJ [38].

Unfortunately, this program can not be applied to our images since these are not ob-
tained from time-lapse experiments where the same sample field is imaged through time.
It would be therefore necessary to mark all the neurites manually if this program was to
be used.

4.1.2 Image Processing techniques for phase contrast image
analysis

Image Preprocessing

Before applying a program for the quantitative analysis of neuronal phase contrast
images, as the image of Figure 4.1, in most of the cases preprocessing steps are needed
to enhance contrast, remove dead cells, and correct the illumination. Some of the tools
available in ImageJ dedicated to perform image preprocessing are described below.

- Contrast enhancement

In the ImageJ environment there are some tools designed to enhance contrast. The
Contrast Limited Adaptive Histogram Equalization (CLAHE) plugin enhances the local
contrast of an image, and is called through the menu Process / Enhance Local Contrast
(CLAHE).

Contrast enhancement can also be achieved using mathematical morphology, by creat-
ing Top-hat and Bottom-hat processed images of the original one. The Top-hat image is
used to highlight the brightest spots and extract the small elements in the input image,
while the Bottom-hat image is used to emphasize the gaps between the objects of the
original image. These tools can be used to enhance contrast by a method described by [32]
and [34] that consists in adding the Top-hat image and subtracting the Bottom-hat image
to the original, maximizing the contrast between the objects and the gaps that separate
them. Figure 4.2 results from the application of this method to the original Figure 4.1,
using ImageJ tools.
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Figure 4.1: Example of an original phase contrast neuronal image to be digitally analysed.
Microphotography obtained at 4 div.

- Debris removal

Thresholding the enhanced image will result in binary objects comprising not only
living cells but also dead cells and noise components (see Chapter 2). Thus, it is necessary
to remove these unwanted foreground components (dead cells and other debris) during that
process. This can be achieved by setting criteria for unwanted image components based on
a subset of features such as intensity and particle circularity, which have to be defined by
the user. Particles to be removed have to fulfil all the criteria, which is set in an empirically
manner by testing the parameters in components of the image that the user knows to be
signal, such as live cells bodies.

In the case of Figure 4.2, the value of the threshold applied to it was 100 pixels, meaning
that the particles in the image with a intensity value over 100 are selected for potential
removal. The value of the particles’ area size was set to 400 pixels and the circularity
criteria was established between 0.3 and 1; this means that all the particles whose area
is below 400 pixels and with circularity parameters inside that circularity interval are
potential noise. Particles that have all these characteristics, and thus fulfil all the criteria,
are considered dead cells or debris and are consequently removed. Figure 4.3 shows the
result of the application of this method to Figure 4.2; note the removal of bright dead cells
throughout the image.

- Illumination correction

In image recognition it is always assumed that the same type of feature has the same
brightness wherever they appear in the field of view. This assumption is equivalent to
stating that the illumination is uniform. One of the approaches to illumination correction
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Figure 4.2: Image 4.1 with its contrast enhanced by using a circle with 20 pixels as a
structural element.

can be based on a method similar to the proposed by Leong et al [35]. The idea is to
estimate an approximation of the background intensity function. This is accomplished by
computing a lowpass-filtered version of the image and subtracting it from the original.
In order to obtain a reasonable approximation for the background behaviour, the filter is
normally build upon a large Gaussian kernel with the standard deviation setted to be 120
pixels. Figure 4.4 shows the resulting image after illumination correction of Figure 4.3; the
illumination was improved but the cell bodies appear fragmented and/or with holes.

Another method to correct uneven illumination is using the Top-hat transform[39]. In
Figure 4.5 is used a Top-hat transform with a circle with 20 pixels as a structural element,
applied to Figure 4.2. Here, the illumination was corrected and the soma and neurites are
clearly visualized; some bright smaller dots appear that can be easily removed in posterior
steps
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Figure 4.3: Image 4.1 after dead cells and debris removal by thresholding.

Figure 4.4: Image 4.3 after the illumination correction using a Gaussian blur of 120 pixels
in Figure 4.3.
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Figure 4.5: Image 4.2 after the illumination correction using the Top-hat transform. The
image used to perform this operation was Figure 4.2.
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Segmentation

Image segmentation provides a set of disjoint regions in the image according to some
criteria and often involves a priori knowledge. The aim is that some of these regions will
match our objects of interest [22].

- Cell bodies segmentation

Cell body segmentation is achieved by a morphological opening operation (an erosion
followed by a dilation)[22]. This removes the thin neuritic mask and leaves the cell bodies.

- Neuritic Segmentation

To segment the neurites of an image it is necessary to subtract from it the previously
obtained image with the mask of the cell bodies. To improve the process it is also necessary
to reduce the noise and enhance the edges to better find the neurites; for this purpose we
can use the Difference of Gaussians (DoG), which is a differential operator that provides a
numerical estimate for the second derivative of the underlying image. The first Gaussian
kernel is used to smooth the image and suppress high-frequency noise, while the second
Gaussian kernel, with a larger standard deviation, removes both the noise and important
edges, lines and details. The difference between the two images keeps only the structures
that have an intermediate size range between the two operators.

A similar method to enhance edges under controlled noise levels is the Laplacian of
Gaussian edge detector that first smooths the image with a Gaussian before performing
the second derivative computation to enhance the edges.

Feature extraction

The next step after the segmentation is to measure the individual features of each
object. The command analyse skeleton can be used to obtain the length of the neurite
network, while the command analyse particles can be used in the mask of cell bodies
to obtain the features of the cell bodies. The features quantified in the mask of cell bodies
are the number of cells, the area - which is the pixel area of the interior of the object, and
circularity - a parameter obtained using the formula 4π × area/perimeter2 [20], with a
value of 1.0 indicating a perfect circle.

By using these image processing techniques it is possible to design a macro script to run
within the ImageJ environment that provides an efficient support for the semi-automated
quantitative analysis of this peculiar kind of images. The commands workflow and their
settings will be described in the next section.
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4.2 NeuronNet macro for neuronal phase

contrast bioimages

4.2.1 Preprocessing

Contrast enhancement

To perform contrast enhancement we used mathematical morphology by creating Top-
hat and Bottom-hat processed images of the raw image. By adding the Top-hat image and
subtracting the Bottom-hat image to the original image the contrast was enhanced. The
structural element used to perform these operations was a circle with a radius of 20 pixels,
and the original and enhanced images are the ones previously presented in Figure 4.1 and
4.2, respectively.

Illumination correction

In the NeuroNet macro we can skip the debris removal preprocessing step since we will
use the Top-hat method to correct illumination and, with this method, the macro does not
include debris as cell bodies (as it can be observed in the resulting image Figure 4.6), since
debris are usually removed through a erosion and the cell bodies are selected by size. This
Top-hat transform was setted with a 20 pixels circle as the structural element.

4.2.2 Segmentation

Cell body segmentation

To segment cell bodies we used the Top-hat image that we have previously obtained.
To this Top-hat image (Figure 4.5) it is first applied an erosion with a structural element
of 2 pixel, of radius, to separate the cells, and then an opening is applied with a structural
element of 5, since it gave the best results upon an erosion of 2 pixels, in terms of cell body
recognition and less false positives. Then, a threshold is applied to get the cell bodies and
the command analyse particles is used to create a mask of these cell bodies. The result
can be observed in Figure 4.6. This step may still require user interaction in order to
fine tune the results - compare cell bodies segmentation of Figure 4.7, obtained after user
interaction, with the ones of Figure 4.6 (obtained automatically).

Neuritic enhancement and segmentation

To segment the neurites we have first created a Top-hat image obtained with a struc-
tural element of 25 pixels applied to the previously contrast enhanced image, enhanced its
contrast through CLAHE, and finally subtracted the image with the mask of cell bodies
from this enhanced Top-hat image. Following, we have used the ’Difference of Gaussians’
method to improve the process by reducing the noise and enhancing the edges of the neu-
rites. The first Gaussian kernel smooths the image and was set to have 1 pixel of radius,
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Figure 4.6: Image derived from Figure 4.5 image following the application of the automatic
cell body segmentation processing; the cell bodies are marked without user interaction.
Note that some cell bodies were not detected by the macro (false negatives, arrows), while
others do not correspond to real cell bodies of live cells (false positives, arrowheads).

while the second Gaussian kernel that removes both the noise and important edges was set
to 3 pixels. The difference between the two images (resulting from subtracting the image
with a Gaussian blur of 3 from the image a Gaussian blur of 1) keeps only the structures
that have an intermediate size range between the two operators.

The resulting image is binarized (transformed in 0/1 images, with background values set
to 0 and foreground values set to 1) using a predefined threshold that varied accordingly
to the developmental period of the cells (time in culture: intensity value of 5, 3 and 1
for 4, 10 and 14 div images, respectively). To remove the remaining noise that was still
present in the image we used the command analyse particles to remove particles with a
size smaller than 22, 17 or 10 pixels in 4, 10 and 14 div images, respectively. These values
were empirically determined for each time period, being the ones that gave the best results
in terms of debris removal. In Figure 4.8 it is possible to observe the binarized image of the
neurites. Afterwards, a mask with particles with circularity over 0.8 was created, since the
cell body are not present in this image and the neurites present circularity usually below
0.4. This mask was subtracted to image in Figure 4.8, in order to remove noise that was
still present (see Figure 4.9).

With the binary image it is possible to use the command skeletonize to make skeletons
of the neurites and measure their length, as demonstrated in Figure 4.10. This command
iteratively erodes structures down to a thickness of 1 pixel without splitting them.
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Figure 4.7: Image derived from Figure 4.5 following the application of cell body segmen-
tation processing and user interaction; the cell bodies that were previously not marked by
the macro (Figure 4.6) were manually depicted.

Figure 4.8: Image showing binarized segmented neurites (derived from Figure 4.5, upon
subtraction of the cell body mask shown in yellow in Figure 4.7.
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Figure 4.9: Image of binarized segmented neurites after the removal of particles with
circularity over 0.8.

Figure 4.10: Image showing the skeleton of the neurites (derived from Figure 4.9).
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4.2.3 Feature extraction

The final step of image processing is to measure the individual features of each object.
We use the command analyse skeleton to obtain the neuritic network length of Figure 4.10,
and the command analyse particles in the mask of cell bodies to quantify the number of
cells, the area (in pixels), and circularity (with a value of 1.0 indicating a perfect circle).
The total image area occupied by the neurons, expressed as percentage of the total area of
the image, was measured in Figure 4.11, an image where neurites were added to the mask
of cell bodies. Of note, to better analyse the efficiency of the NeuroNet macro, this ’end’
image was always visually compared to the original raw image (here Figure 4.11 vs Figure
4.1)

In Figures 4.12 and 4.13 we can find the parameters usually obtained by the macro.
In the image we have named “Mask” (cell bodies mask image) we have obtained the
information about the number of cells, average size of each neuronal cell body and mean
cell body circularity. From the image we have named “cell-body-neurites” we extracted
the percentage of area occupied by the cell bodies plus the neuritic network, and from the
image we have named “neurite” we extracted the information of the percentage of area
occupied only by the neuritic network.
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Figure 4.11: Image with the cell bodies added to the image of neurites.

Figure 4.12: Parameters obtained by the NeuroNet macro. The parameters underlined are
the most relevant for comparing phase contrast images of neuronal cultures in different
conditions (see Chapter 5). Values are given in pixels.

Figure 4.13: Window with the neuritic skeleton analysis. The values of the column ”Branch
length” are subsequently summed in the program MS Office Excel to obtain the Total
Neuritic Length. Values are given in pixels.
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Chapter 5

Phase contrast images - a case study

The NeuroNet macro developed in Chapter 4 to tackle specific image processing prob-
lems of neuronal cultures of phase contrast images was applied to various sets of images
from two different experimental conditions - Control and N-[N-(3,5- difluorophenacetyl)-l-
alanyl]-S-phenylglycine t-butyl ester (DAPT), a pharmacological inhibitor - at three dif-
ferent culture incubation periods: 4, 10 and 14 div, in order to extract quantitative data
from these and to test the macro.

5.1 Control condition

The macro NeuroNet was first applied to the three sets of phase contrast microscopy
images (4, 10 and 14 div) taken under basal control conditions. Results are provided in
the following Tables (5.1 to 5.3). All the images analysed in this chapter were obtained
with a 20× objective in an epifluorescence inverted Olympus IX microscope. Each of the
images has the size of 1376 × 1032 pixels, which in micrometers corresponds to 444 × 333
micrometers.

4 div images

In 4 div images (Table 5.1) the average Number of Cells per image is 30.4 ± 3.3 cells,
with the minimum value per image being 11 cells (image 3) and maximum value being 43
cells (image 4), with this creating a great range for this parameter (a SEM that represents
11% of its mean) (Figure 5.10). The Cell Body Area has a mean of 132.3 ±2.8 µm2, with
an amplitude of 29.2 µm2 (Figure 5.4). The Circularity has a low range of values, with a
mean of 0.80 and an amplitude of 0.05.

The Total Network Length tends to change with the number of cells in the image, with
its highest value (10960.6 µm) being in the image with the highest number of cells, image
4, as expected. The Neurite Length per Cell (8346.5 ±747.7 µm) has a great variability
due to the non homogeneity of the network along the culture: an amplitude about 95%
of its mean, and a SEM that represents 10% of its mean, similar to the SEM of Total
Neurite Length that is around 9% of its mean. This possibly indicates the need to analyse
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Table 5.1: Primary and secondary parameters retrieved by the NeuroNet macro in the anal-
ysis of phase contrast microscopy images of neuronal primary cultures at 4 div. Description
of each parameter can be found in Chapter 2.

Image
Number 
of cells

Cell body 
area

Circularity 
per cell

% of Total Area 
Occupied by the 

Neurites

% of Total Area 
Occupied by the 
Neurites plus the 

cell bodies

Total 
neurite  
length

Neurite 
length per 

cell

1 20 129.0 0.79 3.2 5.0 4253.5 212.7
2 30 138.0 0.77 6.1 9.1 7669.7 255.7
3 11 142.3 0.81 4.3 5.5 5413.9 492.2
4 43 113.1 0.81 9.0 12.3 10960.6 254.9
5 26 129.8 0.82 6.3 8.7 8789.7 338.1
6 41 127.1 0.82 8.5 12.3 10627.7 259.2
7 39 135.7 0.80 7.3 10.8 9349.4 239.7
8 27 137.7 0.81 7.9 10.7 9398.7 348.1
9 37 137.5 0.82 6.5 10.2 8654.8 233.9

Mean 30.4 132.3 0.80 6.6 9.4 8346.5 292.7
SEM 3.3 2.8 0.01 0.6 0.8 747.7 29.2

a larger number of images due to the non homogeneity of the network along the culture.
The area occupied by the neuronal culture (Figure 5.6) has a mean of 9.4 ± 0.8%. This
mainly reflects the contribution from the neuritic network, whose area represents 70% of
the total area occupied by the culture. In Figure 5.1 is presented a example image of this
condition.
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(a) image a.

(b) image b.

Figure 5.1: Original phase contrast image of 4 div control group (a) analysed with the
NeuroNet macro (b).
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Table 5.2: Primary and secondary parameters retrieved by the NeuroNet macro in the
analysis of phase contrast microscopy images of neuronal primary cultures at 10 div. De-
scription of each parameter can be found in Chapter 2.

Image
Number 
of cells

Cell  
body 
area

Circularity 
per cell

% of Total Area 
Occupied by the 

Neurites

% of Total Area 
Occupied by the 
Neurites plus the 

cell bodies

Total 
neurite  
length

Neurite 
length per 

cell

1 34 151.4 0.81 22.2 26.0 27819.7 818.2
2 25 180.5 0.81 23.5 26.6 27232.3 1089.3
3 33 143.3 0.82 19.7 22.9 22528.4 682.7
4 25 156.5 0.82 13.6 16.5 16316.5 652.7
5 26 173.9 0.85 19.8 23.0 22691.3 872.7
6 19 147.0 0.82 17.0 19.1 20925.2 1101.3
7 33 158.1 0.82 20.3 24.4 21746.1 659.0
8 27 163.0 0.83 19.3 22.5 23601.9 874.1
9 39 143.3 0.80 17.5 21.8 19938.4 511.2

Mean 29.0 157.4 0.82 19.2 22.5 22533.3 806.8
SEM 2.0 4.4 0.01 1.0 1.1 1109.9 63.2

10 div images

In 10 div control images (Table 5.2) a smaller amplitude is evident in the Number
of Cells per image, while the mean (29 cells) remains constant (when compared to 4 div
images), as expected since neurons do not perform mitosis. The range of values for the
Cell Area is higher due to the influence of image 2, with a value of 180.5, that is far from
the mean (157.4 ± 4.4 µm2, Table 5.2), with its mean being significantly different from 4
div images (Figure 5.4). The Circularity keeps the range of 0.05 and is therefore the most
stable parameter, not changing with time in culture (Figure 5.5). Of note, the circularity
parameter has a SEM that represents only 1% of its mean, while the Cell Area SEM is
around 3%, and the Cell Number has a SEM of 7% of its mean.

Regarding Total Network Length (22533.3 µm), image 4 shows the lowest value (16316.5
µm), even though it does not present the lowest number of cells. This can be due to an error
in the segmentation of the neurites by the program, resulting in a great range of values for
this parameter. The Neurite Length per Neuron (806.8 µm) has a great amplitude since
images 2 and 6 have twice the value of the Neurite Length per Neuron of image 9. This
parameter has a SEM of 8%, while the Total Neurite Length SEM represents only 5% of its
mean. As expected, these parameters regarding the neuritic network increased with time in
culture, including the Area occupied by neuronal soma and neurites (Figure 5.6). The area
occupied by the neuronal culture has a mean of 22.5±1.1%, with an increased contribution
from the neuritic network since it now represents 85% of the total neuronal area (Figure
5.6). In Figure 5.2 a image of this group condition is analysed with the NeuroNet macro.
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(a) image a.

(b) image b.

Figure 5.2: Original phase contrast image of 10 div control group (a) analysed with the
NeuroNet macro (b).
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Table 5.3: Primary and secondary parameters retrieved by the NeuroNet macro in the
analysis of phase contrast microscopy images of neuronal primary cultures at 14 div. De-
scription of each parameter can be found in Chapter 2.

Image
Number 
of cells

Cell body 
area

Circularity 
per cell

% of Total Area 
Occupied by the 

Neurites

% of Total Area 
Occupied by the 
Neurites plus the 

cell bodies

Total 
neurite  
length

Neurite 
length per 

cell

1 43 137.3 0.82 38.8 44.0 48060.6 1117.7
2 35 134.2 0.79 40.6 43.9 48462.3 1384.6
3 41 125.8 0.82 38.1 41.8 41621.6 1015.2
4 27 116.0 0.80 37.3 39.6 41017.4 1519.2
5 61 151.5 0.80 39.4 46.0 41899.7 686.9
6 38 140.0 0.81 39.7 43.8 48688.7 1281.3
7 35 137.9 0.83 40.1 43.4 48551.6 1387.2
8 37 149.4 0.84 39.9 43.6 49339.0 1333.5
9 36 147.7 0.82 39.7 43.7 46691.0 1297.0

10 27 143.0 0.82 39.1 41.7 46802.6 1733.4
11 31 159.9 0.82 40.0 44.0 49128.4 1584.8
12 42 138.7 0.81 39.0 43.1 46137.4 1098.5
13 59 135.4 0.82 38.5 44.1 48411.6 820.5
14 22 182.4 0.82 40.3 43.0 47684.8 2167.5
15 63 125.6 0.80 37.4 43.1 45369.4 720.1

Mean 39.8 141.6 0.81 39.2 43.3 46524.4 1276.5
SEM 3.2 4.1 0.00 0.3 0.4 729.8 101.8

14 div images

In 14 div images there is a higher Number of Cells than in 4 and 10 div images (39.80±
3.2) and this parameter also presents a high amplitude, reflected in its SEM (8% of the
mean) (Table 5.3). These values were not expected and can be due to the fact that the
images analysed were acquired in high density cell clusters or/and to the presence of some
glia cells in the culture. In general the Cell Body Area is constant (SEM of 2.9% of the
mean) with the exception of image 14, with a value of 182 µm2 and is similar to 4 div images
(Figure 5.4). The Circularity remains similar and is still the parameter that presents less
variability (Figure 5.5).

The Total Neurite Length (46524.4 ±729.8 µm) is almost constant at this period (SEM
around 2% of the mean), more constant than in 10 div images, which may reflect structural
maturation of the network. The Neurite Length per cell has a mean of 1276.5 ±101.8 µm
and has a great variability (SEM around 8% of the mean) due to the variation in the
number of cells from image to image. The area occupied by the neuronal culture presents
a mean value of 43.3 ± 0.4%. The contribution from the neuritic network has a higher
value than in 4 and 10 div images, as expected, and represents now 91% of the total area
occupied by the culture (Figure 5.6). Figure 5.3 is a representative image of this group.

68



(a) image a.

(b) image b.

Figure 5.3: Original phase contrast image of 14 div control group (a) analysed with the
NeuroNet macro (b).
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Figure 5.4: Graphic with the Cell Body Area of phase contrast microscopy images of
neuronal primary cultures at 4, 10 and 14 div in control conditions. Data were tested with
the Kolmogorov and Smirmov method to test for normality and all groups passed. The
sample were also tested to observe if the standard deviation is identical using the method
of Barlett, which suggested that the difference among the SD was not significant. Using
the Tukey-Kramer Multiple Comparisons Test to analyse the significance of values the
following results were obtained: p<0.01 for 4 vs 10; p>0.05 (ns) for 4 vs 14; p<0.05 for 10
vs 14 div.

In terms of the variation of these neuronal parameters with time in culture, it is possible
to observe in Figure 5.4 that the Cell Body Area values are statistically different between
4 vs 10 div and 10 vs 14 div images, what was not expected. In Figure 5.5 it is possible to
observe as expected the data from Cell Body Circularity do not present any statistically
significant differences between any values, as expected. Furthermore, with time in culture,
both the values for Neuritic and Neuronal Area present significantly differences between 4,
10 and 14 div images (Figure 5.6), as expected for a developing culture. The percentage
of contribution of the neurites to the neuronal network increases with time from 70% at 4
div to 85% at 10 div and 91% at 14 div, as expected.

5.2 DAPT conditions

DAPT is a pharmacological drug that inhibits the cleavage of a transmembranar pro-
tein, the Alzheimer’s Amyloid Precursor Protein (APP), which is involved in cell adhesion
and neuritogenesis, with APP being required for synaptogenesis, synapse remodeling and
neurite outgrowth in neurons.[40] [41]. In other cell lines this drug has been observed to in-
crease the number of preneuritic processes (our unpublished results) and thus its potential
effects in the establishment of the neuritic network in cortical primary neuronal cultures
were assessed here.
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Figure 5.5: Graphic with the circularity of phase contrast microscopy images of neuronal
primary cultures at 4, 10 and 14 div in control conditions. The 10 div and 14 div group
did not pass the Kolmogorov and Smirnov Test for normality, and hence we used the
Kruskal-Wallis test to analyse the variation among column medians, with the values not
being significantly greater than expected by chance.
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Figure 5.6: Graphic with the neuritic and neuronal area of phase contrast microscopy
images of neuronal primary cultures at 4, 10 and 14 div in control conditions. The 4, 10
and 14 div groups passed in the Kolmogorov and Smirnov Test for normality of neuritic
area, however the method of Barlett suggests that the differences among the Standard
Deviation is significant; due to this, non parametric tests were used to compare the results.
Using the Welch corrected Unpaired t test to analyse the significance of values, the following
results for neuritic area were obtained: p<0.0001 for 4 vs 10; p<0.0001 for 4 vs 14; p<0.001
for 10 vs 14 div. The neuronal area group 14 div did not pass in the normality test, so
in the statistical analysis non parametric tests were also used. Using the Welch corrected
Unpaired t test, to analyse the significance of values the following results for neuronal area
were obtained: p<0.001 for 4 vs 10; p<0.0001 for 4 vs 14; p<0.0001 for 10 vs 14 div.
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Table 5.4: Primary and secondary parameters retrieved by the NeuroNet macro in the
analysis of phase contrast microscopy images of neuronal primary cultures at 4 div after
24h incubation with 1 µmol DAPT. Description of each parameter can be found in Chapter
2.

Image
Number 
of cells

Cell body 
area

Circularity 
per cell

% of Total Area 
Occupied by the 

Neurites

% of Total Area 
Occupied by the 
Neurites plus the 

cell bodies

Total 
neurite  
length

Neurite 
length 
per cell

1 30 124.2 0.76 7.3 10.1 9513.9 317.1
2 39 124.4 0.84 8.7 12.0 11373.5 291.6
3 42 115.3 0.82 7.0 10.7 9415.8 224.2
4 38 128.2 0.83 8.1 11.7 9942.3 261.6
5 35 131.4 0.81 9.1 12.6 11710.3 334.6
6 33 118.2 0.83 7.2 10.0 9815.8 297.4
7 26 136.7 0.77 6.8 9.4 9065.8 348.7
8 33 110.9 0.77 6.0 8.7 7925.5 240.2
9 39 121.0 0.79 8.2 11.3 10467.4 268.4

10 46 117.3 0.80 7.9 11.6 10158.1 220.8
11 54 121.9 0.81 8.8 13.5 11639.7 215.5
12 34 137.9 0.83 6.7 10.1 7925.8 233.1

Mean 37.4 123.9 0.80 7.7 11.0 9912.8 271.1
SEM 2.2 2.4 0.01 0.3 0.4 366.7 13.4

4 div images

The 4 div DAPT images exhibit a higher Number of Cells per image (Table 5.4) than
the 4 div control images, with a mean of 37.4± 2.2 (SEM of 6% of the mean) vs 30.4± 3.3
cells in control (Figure 5.10). The Area of the Cell Bodies does not change substantially
and has a mean of 123.9 ±2.4 µm2 with a SEM of 2% vs 132.3 ±2.8 µm2 in control cells
(Figure 5.11). The mean Circularity per cell is 0.80 ± 0.01 with a SEM below 1%, still
being the most constant value.

Total Neurite length has a mean value of 9912.8 ±366.7 µm (SEM of 3.7% of mean),
with this value being higher than in control images (8346.5 ±747.7 µm), but not statistically
significant. In contrast, the Network Length per cell mean was very similar: 271.1 ±13.4
µm (SEM around 5%) vs 292.7 ±29.7 µm in control (Figure 5.13). This may result from
the slightly higher number of cells in DAPT conditions (Figure 5.10). This fact can also
explain the following: the area occupied by the neuronal culture is slightly higher than in
control conditions (11.0±0.4% vs 9.4±0.8% in control); but the neuritic network, however,
has a contribution to this value of 70% in both samples (Figure 5.12). In Figure 5.7 is
presented a representative image of this group.
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(a) image a.

(b) image b.

Figure 5.7: Original phase contrast image of 4 div DAPT group (a) analysed with the
NeuroNet macro (b).
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Table 5.5: Primary and secondary parameters retrieved by the NeuroNet macro in the
analysis of phase contrast microscopy images of neuronal primary cultures at 10 div after
24h incubation with 1 µmol DAPT. Description of each parameter can be found in Chapter
2.

Image
Number 
of cells

Cell body 
area 

Circularity 
per cell

% of Total Area 
Occupied by the 

Neurites

% of Total Area 
Occupied by the 
Neurites plus the 

cell bodies

Total 
neurite  
length

Neurite 
length 
per cell

1 21 173.3 0.80 21.6 24.4 26034.5 1239.7
2 31 176.0 0.84 21.6 25.2 23556.8 759.9
3 20 144.0 0.82 16.7 18.8 20551.0 1027.5
4 18 203.0 0.82 23.2 25.9 28876.5 1604.2
5 18 201.2 0.84 29.0 31.5 36382.9 2021.3
6 31 161.2 0.84 20.2 24.2 23763.5 766.6
7 29 159.6 0.81 18.4 21.8 21738.4 749.6
8 24 153.0 0.84 17.5 20.0 21135.5 880.6
9 34 137.8 0.81 13.8 17.2 15260.3 448.8

10 10 166.7 0.84 16.5 17.6 19542.9 1954.3
11 20 156.2 0.82 21.1 23.2 25447.4 1272.4

Mean 23.3 166.5 0.82 20.0 22.7 23844.5 1156.8
SEM 2.2 6.3 0.00 1.2 1.3 1664.6 155.9

10 div images

There was a considerable decrease in the Number of Cells (23.3 ±2.2 cells) relatively
to 4 div images (37.4 ±2.2 cells) and also to 10 div control conditions (29.0 ±2.1 cells),
leading us to suspect that between the 4 and 10 div time periods some cells died, or
that these images were taken in lower density areas of culture. The Cell Body Area
remains constant (166,5 ±6.3 µm2), SEM of 3.8% relatively to control conditions (157,4
±4.4 µm2) (Figure 5.11). The Circularity (0.82 ±0.00) remains constant in relation to
control condition and 4 div DAPT images. Total Neurite Length has a mean of 23844.5
±1644.6 µm (similar to control conditions, 22533.3 ±1109.9 µm). Two images contribute
to this slightly high amplitude: image 9 has a value below the mean, albeit it is the image
with more cells; possibly, due to the characteristics inherent to the image such as the
presence of cell clusters, the readings have been affected. On the other hand, image 5,
with a lower cell count than image 9, presents a total neurite length greater than the mean
value. In agreement, the Area occupied by the Neuronal culture is equal in both conditions
(22.7 ± 1.3% for DAPT vs 22.5 ± 1.1% in control), and mainly reflects the contribution
from the Neuritic Network, whose area represents 88% of the total area occupied by the
culture (85% in control group) (Figure 5.12). The Neurite Length per Cell is of 1156.8
±155.9 µm, presenting a huge variability, with a minimum of 448.8 µm and a maximum of
2021.3 µm. Interestingly, the mean Network Length per Cell value is higher than in 10 div
control images (806.8 ±63.2 µm) and close to the value of 14 div control images (1276.5
±101.8 µm) (Figure 5.13). This appears to result from the lower Number of Cells for this
condition and time point. In Figure 5.8 is presented a representative image of this group.
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(a) image a.

(b) image b.

Figure 5.8: Original phase contrast image of 10 div DAPT group (a) analysed with the
NeuroNet macro (b).
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Table 5.6: Primary and secondary parameters retrieved by the NeuroNet macro in the
analysis of phase contrast microscopy images of neuronal primary cultures at 14 div after
24h incubation with 1 µmol DAPT. Description of each parameter can be found in Chapter
2.

Image
Number 
of cells

Cell body 
area

Circularity 
per cell

% of Total Area 
Occupied by the 

Neurites

% of Total Area 
Occupied by the 
Neurites plus the 

cell bodies

Total 
neurite  
length

Neurite 
length 
per cell

1 19 196.9 0.77 38.3 40.8 46099.0 2426.3
2 29 189.5 0.77 39.0 42.7 44761.3 1543.5
3 25 165.6 0.84 39.8 42.7 47848.4 1913.9
4 36 149.3 0.83 39.9 43.5 43677.7 1213.3
5 24 254.3 0.78 39.3 43.8 44835.2 1868.1
6 49 144.3 0.82 38.9 43.6 48976.8 999.5
7 26 167.9 0.83 39.9 43.0 47080.3 1810.8
8 35 152.9 0.84 39.4 43.0 45025.5 1286.4
9 37 148.1 0.83 39.8 43.7 43675.2 1180.4

10 30 147.3 0.84 38.9 42.4 46332.9 1544.4
11 40 166.2 0.84 40.4 45.2 47649.7 1191.2
12 47 134.5 0.82 40.3 44.8 49238.7 1047.6
13 52 128.6 0.84 40.0 45.1 47656.8 916.5
14 37 142.2 0.83 39.6 45.0 48977.4 1323.7

Mean 34.7 163.4 0.82 40.6 44.2 46559.6 1447.6
SEM 2.7 8.7 0.01 0.2 0.3 517.0 114.3

14 div images

The mean Number of Cells per image in the 14 div DAPT images (Table 5.6) is 34.7
±2.7, similar to control group (39.8 ± 3.2) and to 4 div DAPT images (37.4 ± 2.2), but
higher than in 10 div DAPT images (23.3±2.2); this indicates that 10 div images were not
representative of the general cellular population. The Cell Body Area has a mean of 163.4
±8.7 µm2 that is higher than in control group, 141.7 ±4.1 µm2, but the difference was not
statistically significant (Figure 5.11). The mean Circularity per cell (0.82 ± 0.01) almost
did not change between control and DAPT conditions or with time in culture, remaining
as the most constant parameter.

Total Neurite Length was constant among the sample, with a mean value of 46559.6
±517.0 µm, and is very similar to the mean of the control group: 46559.6 ±517.0 µm. The
Neurite Length per Cell has a high variability in between the sample images (amplitude of
1510 µm), with a mean of 1447.6 ±114.3 µm (SEM of 8%), similar to the control group,
1276.5 ±101.8 µm (Figure 5.13). The Area occupied by the Neuronal culture has a mean
of 44.2 ±0.3%, similar to the control group (43.3 ± 0.4%) (Figure 5.12) and, as in control,
the major contribution to Neuronal culture results from the Neuritic Network, whose area
represents 92% of the total area occupied by the culture (91% in control group). In Figure
5.9 is presented a representative image of this group.
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(a) image a.

(b) image b.

Figure 5.9: Original phase contrast image of 14 div DAPT group(a) analysed with the
NeuroNet macro (b).
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Figure 5.10: Graphic presenting the Number of Cells of phase contrast microphotographs
of 4, 10 and 14 div neuronal primary cultures, in both control and DAPT conditions. All
the groups passed in the Kolmogorov and Smirnov test for normality and Bartlett’s test
suggests that the differences among the standard deviation are not significant. Using the
Unpaired t test to compare the values of 4 div control vs 4 div DAPT (p=0.0933), 10 div
control vs 10 div DAPT (p=0.0766) and 14 div control vs 14 div DAPT (p=0.2363) we
have concluded that these were not statistically different.
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Figure 5.11: Graphic presenting the Cell Body Area of phase contrast microphotographs of
4, 10 and 14 div neuronal primary cultures, in both control and DAPT conditions. One of
the groups did not pass in the Kolmogorov and Smirnov test for normality. So the samples
were tested using non-parametric methods. Using the Mann-Whitney test to compare the
values 4 div control vs 4 div DAPT (pv=0.04), 10 div control vs 10 div DAPT (pv=0.3232),
14 div control vs 14 div DAPT (pv=0.0196).
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Figure 5.12: Graphic with the Neuritic and Neuronal areas of phase contrast micropho-
tographs of 4, 10 and 14 div neuronal primary cultures, in both control and DAPT condi-
tions. One of the groups did not pass in the Kolmogorov and Smirnov test for normality.
So the samples were tested using non-parametric methods. Using the Mann-Whitney test
to compare Neuritic Area values of 4 div control vs 4 div DAPT (p=0.3216), 10 div control
vs 10 div DAPT (p=0.6200), 14 div control vs 14 div DAPT (p=0.6620); Neuronal Area
of 4 div control vs 4 div DAPT (p=0.2551), 10 div control vs 10 div DAPT (p>0.9999),
14 div control vs 14 div DAPT (p>0.9999). All the results were not statistically different.
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Figure 5.13: Graphic with the Neurite Length per Cell of phase contrast microphotographs
of 4, 10 and 14 div neuronal primary cultures, in both control and DAPT conditions. One of
the groups did not pass in the Kolmogorov and Smirnov test for normality. So the samples
were tested using non-parametric methods. Using the Mann-Whitney test to compare the
Neurite Length per Cell of 4 div control vs 4 div DAPT (pv=0.7664), 10 div control vs 10
div DAPT (pv<0.0001), 14 div control vs 14 div DAPT (pv>0.4253).
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Chapter 6

Discussion and Conclusion

6.1 Fluorescence images

In what concerns fluorescence images of neuronal cultures, in the major part of the pa-
rameters evaluated, all programs retrieved results not statistically different from the ones
resulting from the manual analysis taken as control. Specifically, for the Cell Body Area
present results not statistically different from manual analysis taken as control; however,
the programs that present closer cell body area results are NeuriteQuant and NeurphologyJ
in raw images, since both the programs present higher results with preprocessed images.
The mean Neurite Length per Cell is the parameter that presents more variability among
the programs. The programs that present values closer to the manual analysis are Neu-
ronJ with a coefficient of determination(r2) of 0.993, followed by NeuriteQuant (r2=0.926)
with raw images, and NeurphologyJ (r2=0.631) in preprocessed images (Figure 6.1). The
program NeuriteQuant with raw images has a mean value closer to the one resulting from
manual analysis but presented a larger SEM than NeuronJ, and the manual analysis. These
two are very similar, as expected, since NeuronJ has a high contribution from the user.
Concerning Attachment Points, both NeuriteQuant and NeurphologyJ (with preprocessed
images) present values higher than the manual analysis, but with raw images the values
obtained were lower than control. The program NeuriteQuant with preprocessed images
present not quite significant differences, and NeurphologyJ/ri presented statistically differ-
ent results from control, being the two pairs program/type of images more dissimilar than
manual analysis. In relation to the detection of the Ending Points, all the programs present
results much higher than the ones from manual analysis, being therefore all statistically
different. This is possibly due to the high fragmentation of the neurites mainly by the
programs in the segmentation step. Nonetheless, again the pair NeuriteQuant, raw images
was the one closer to control analysis. For the determination of Neurite Branching, all the
programs also present values higher than manual analysis, due to the great overestimation
of the Ending Points and since the branching value is calculated by the ration between the
number of Ending Points and the number of Attachment Points. Noteworthy, since the
manual analysis was done by only one operator, it is not possible to observe the variability
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inter-operators and possible errors deriving from subjective analysis.
From all the previous analysis the program that seems to work better with our 4 div

fluorescence images is NeuriteQuant, applied to raw images, since it is automatic and
gives overall results more similar to the manual analysis; this is particularly true for the
evaluation of the Neurite Length per cell (Figure 3.2). One of the drawbacks is that the
quantification of neuritic ramification is better to be performed manually, since although
the number of Attachment Points are close to the manual analysis, the same does not occur
with the Ending Points (Figure 3.4). NeuriteQuant can automatically evaluate/extract
more morphological parameters than the other freeware (see Table 2.2), and future mark
will include to test its ability to quantify neuronal parameters not presented here due to
limitations of the other freeware.

0 

4 

8 

12 

16 

20 

N
um

be
r 

Attachment Points 

R² = 0.9256 

R² = 0.631 

R² = 0.9934 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

0 200 400 600 800 1000 1200 1400 

Te
st

ed
 P

ro
gr

am
 

Manual analysis 

Neurite Length per Cell 
NeuriteQuant r.i. 

NeurphologyJ pp.i. 

NeuronJ 

Linear (NeuriteQuant r.i.) 

Linear (NeurphologyJ pp.i.) 

Linear (NeuronJ) 

Figure 6.1: Correlation of the parameter Neurite Length per Cell by the programs NeuronJ,
NeuriteQuant/r.i. and NeurphologyJ/pp.i. with the manual analysis.
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6.2 Phase contrast images

Phase contrast images are easy to obtain, are almost cost-free, and may not imply killing
the cells in the sample. In the other hand, these images present a very low signal-to-noise
ratio and may have uneven illumination.

Few or none freeware could be found to analyse this type of images, leading us to
develop a new macro, named NeuroNet since it is aimed to evaluate the status of neuronal
networks at different conditions (time, pharmacologically, etc).

First, this macro was applied to microphotographs of cultures in control conditions at
a different time points of development (4, 10 and 14 div). The results obtained were as
expected, with an increasing in neuritic length, both total and per cell, and also in the
occupation area by the neuronal culture. Nonetheless, results for the 14 div images in
comparison to 10 div - double values for the Neuritic Area (figure 5.3) and 1.5 fold increase
in the Neuritic Length per Cell (Figure 5.7) were somewhat unexpected, since the culture
should be morphologically mature around the 10 div period [9].

Further, the NeuroNet macro was applied to images of cultures at the same time periods
but incubated with a drug that inhibits the cleavage of an adhesion protein, the APP. This
drug was observed to increase the number of preneurites and neurites in immortalized cell
lines (our data not published).

In 4 div images there is no statistical difference in the mean Number of Cells per image
between DAPT and control group, although the DAPT group has slightly more cells.
About the Cell Body Area there is a statistical significant difference between conditions,
with the control group having higher Cell Body Area. In what concerns Neuritic and
Neuronal Area, and Neurite Length per Cell, no statistical significant difference was found
between the two conditions (Figure 5.6 and 5.7). This can be visualized in Figure 6.3,
where the values extracted for each image Total Neurite Length are presented. Noteworthy,
when using the NeuroNet macro in 4 div phase contrast images, taken in parallel to the
fluorescence microphotographs of Chapter 3, the mean Neurite Length per Cell extracted
is about one third of the value of the fluorescence images analysed manually. This huge
difference can be due to the fact that GFP cDNA is better transfected into more mature
cell, with higher neuritic length. In Figure 6.2 it is possible to compare a image of a
neuron acquired with fluorescence microscopy with an image of the same neuron and non-
fluorescing neighbours, acquired with phase contrast microscopy.

In 10 div images, the control group has more cells potentially indicating higher survival
of the post-mitotic neurons, however the difference is not statistically significant. The Cell
Body, Neuritic and Neuronal Area are almost identical between the control and DAPT
groups. The only difference found is in the Neurite Length per Cell (Figure 5.7) in which
the DAPT group has a value higher than in 10 div control group, and is more similar to
14 div control group. With this number of samples these differences were not statistically
significant, and a higher n has to be used to assure their similarity, difference. The same
is applied to the difference found in cell body area between control and DAPT conditions
at 4 div.

In 14 div images the control group has more cells than the DAPT group but, as in 10
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div images, this difference was not statistically significant. The Cell Body Area is higher
in the DAPT group and as also observed in the 4 and 10 div images, the Number of Cells
and the Cell Body Area appears to have an inverse relationship. This may be due to
the presence of mitotic glial cells, which has to be further evaluated. The Neuritic and
Neuronal Area are almost equal between the groups, suggesting that between 10 and 14
div may occur the maturation of the neuritic network.

In general, there are no differences in the control and DAPT conditions. We would
like to also compare the number of attachment and ending points, and calculate the neu-
rite branching, however, due to the characteristics of these phase contrast images (high
ramification and number of neuritic contacts and crossovers/low signal to noise ratio), the
neurites appear fragemented and therefore all these parameters would be overestimated.
Overall, the increase in the percentage of area occupied by the neuronal culture and the
neuritic network gives us strong indications of the macro capabilities. In regarding the ef-
fects of DAPT in the culture development, we would like to analyse the growth of neurons
with the NeuroNet macro and with NeuronGrowth program at early development stages.
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(a) Phase contrast image with the marked region of interest of a neu-
ron acquired through fluorescence microscopy (the same of Figure
2.2).

(b) Previous image following binarization with the result of segmen-
tation of neurites with the NeuroNet macro.

Figure 6.2: Comparison of phase contrast with fluorescence microscopy.
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Figure 6.3: Values of Total Neurite Length for each image in 4, 10 and 14 div in both
control and DAPT conditions.
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6.3 Conclusion

The first objective of this thesis, which was to perform a function survey of the available
tools for neuronal image processing, and its sub-objective of testing if the programs avail-
able better performed with a preprocessing step before the analysis, were accomplished.
We thus propose the application of NeuriteQuant to raw fluorescent images with the cau-
tion that measurements of Attachment and Ending points should be performed manually
for better results.

The second objective, of creating a workflow to extract relevant information of neuronal
phase contrast images, was also accomplished with the development of the NeuroNet macro,
which was further tested in our phase contrast images at different conditions with apparent
success. We are still comparing the values obtained with ones reported in the literature, but
few data/articles were found until now with morphometric data from rat cortical primary
cultures. Of note, the NeuroNet macro has been already improved in the step of neuronal
cell bodies segmentation.

Future work could include an increase in the number of samples(n) and testing more con-
ditions in order to achieve better preprocessing settings in fluorescent microphotographs;
include more observers for the manual analysis; survey digital solutions for neuritic frag-
mentation in programs such as Neurolucida. About the NeuroNet macro we aim to develop
other methods to improve the removal of debris before the neurite segmentation, and to
automate the process of extracting the total neurite length without needing to sum the
values obtained with the skeletonization of neurites in the MS Office Excel.
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