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Saliva, peptidos antimicrobianos, cistatinas, histatinas, proteinas-

ricas em prolina, estaterina, timosinas, filogenia, espectrometria 

de massa 

 

A saliva e os seus componentes desempenham diversas funções 

na cavidade oral, tais como lubrificação, proteção dos tecidos 

orais e ação antimicrobiana. Entre os componentes responsáveis 

por esses papéis estão diversos péptidos cuja evolução e 

presença na saliva de outras espécies de mamíferos não está 

clara. 

No presente trabalho, duas classes destes péptidos, as cistatinas 

salivares e a timosina β4, foram analisadas usando ferramentas 

de genómica e de proteómica em conjunto. Para os estudos de 

proteómica foi colhida saliva de cão, rato, coelho e cordeiro, 

sendo a separação dos péptidos presentes feita por 

cromatografia liquida e a análise por espectrometria de massa 

tandem. Para os estudos de genómica foram pesquizadas bases 

de dados de sequências nucleotídicas e realizaram-se análises 

evolutivas. No que diz respeito à timosina β4 demonstrou que 

este péptido apresenta uma elevada conservação entre as 

diferentes espécies de mamíferos. Utilizando as sequências 

deste péptido encontradas no genoma dos diferentes mamíferos, 

foi possível identificar pela primeira vez por espectrometria de 

massa a timosina β4 na saliva do cão.  

No caso da classe das cistatinas, nomeadamente cistatinas C, D 

e tipo-S (S, SA e SN), a análise evolutiva permitiu verificar que 

as cistatinas D e tipo-S são específicas dos primatas, o que 

sugere que terão emergindo após a grande separação dos 

mamíferos que ocorreu há cerca de 80-90 milhões de anos. Os 

resultados permitiram também verificar que algumas sequências 

presentes nas bases de dados encontram-se mal anotadas, 

incluindo a sequência atribuída à cistatina S encontrada no rato. 

Por outro lado, a análise filogenética demonstrou que a cistatina 

C está distribuída por várias classes de mamíferos. No entanto, 

permanece por compreender o mecanismo da sua secreção na 

saliva humana e a sua ausência na saliva de outras espécies de 

mamíferos. 

Em conclusão, através da combinação da proteómica e filogenia 

podemos caracterizar e compreender a distribuição dos péptidos 

salivares em diferentes mamíferos e comparar com toda a 

informação existente para a saliva humana.  
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Saliva, antimicrobial peptides, cystatins, histatins, proline-rich 

proteins, statherin, thymosins, phylogeny, mass spectrometry 

 

 

Saliva and its components play several roles in the oral cavity, 

such as lubrication, protection of tissues and antimicrobial action. 

Among the components responsible for these roles are several 

peptides, which evolution and presence in other mammals’ saliva 

is not clear. 

In the present study, two peptide classes, salivary cystatins and 

thymosin β4, were analyzed using a combination of genomic and 

proteomic tools aiming the enlightening changes in the structure 

and distribution of these peptides between the different mammal 

species. For the proteomic analysis, saliva was collected from 

dog, rat, rabbit and lamb, being salivary peptides separated by 

chromatography and analyzed by tandem mass spectrometry. 

For the genomic studies, database of nucleotide sequences were 

searched and evolutionary analyses were performed. Regarding  

thymosin β4, the evolutionary analysis showed that this peptide is 

highly conserved through the collection of all peptide sequences 

from different mammals species genome, it was possible to 

identify for the first time by mass spectrometry the thymosin β4 in 

dog’ saliva. 

Respecting cystatins class, namely C, D and S-type cystatins (S, 

SA and SN), evolutionary analysis showed that D and S-type 

cystatins are Primate specific, which suggesting that these 

classes emerged after the great mammalian radiation at 80-90 

million years ago. The results also showed errors in the 

annotation of these sequences in databases, in particular the 

sequence attributed to cystatin S detected in rat. In contrast, 

evolutionary analysis showed that cystatin C is widely distributed 

in several mammal classes. However, it is not clear their 

secretion mechanism to saliva and why its absence in saliva of 

other mammal’ species. 

In conclusion, using phylogenetic and proteomic approaches it 

will be possible to understand and characterize the distribution of 

these peptides in different mammal species and compare with 

what is known in the human saliva.
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I. General Introduction 

 

Many of the processes involved in digestion are common across animal 

species, including food maceration or enzymatic activity. However, some features 

in the digestive system are the result of adaptation to chemical, physical and 

nutritional properties of the diet, being closely related to the species’ ecology [1]. 

The first portion of the digestive tract is the oral cavity, which comprehends the 

mouth and the structures enclosed within it. This cavity is bathed by saliva, a 

biofluid composed mainly of water (99.5%) and a complex mixture of proteins 

(0.3%) and inorganic substances (0.2%) [2,3]. The proteins present in saliva are 

mainly represented by glicoproteins, like mucins and lactoferrin, enzymes, like α-

amylase, immunoglobulins and several peptides, like cystatins, statherin, histatins 

and proline-rich proteins [3]. The inorganic component is composed by the usual 

electrolytes found in others body fluids, like sodium, potassium and calcium, found 

in different concentrations in saliva and contributing to a hypotonic character [3]. 

These salivary components mainly result from salivary glands’ secretion. In 

humans, parotid, submandibular and sublingual glands are responsible for the 

secretion of about 93% of the saliva volume, and less than 5% of the volume is 

secreted by a large number of minor glands present in the mucosa of the tongue 

(Von Ebner glands), cheeks, lips and palate [4,5]. However, some of the 

substances found in saliva are derived from mucosal and plasma exudates, 

gingival crevicular fluid, microorganisms, desquamated cells and food remains 

[4,5]. Indeed, oral cavity isn’t sterile, containing about 700 species of bacteria, 

viruses and fungi [6,7], which seem to be host-specific [8]. 

Saliva, in particular human saliva has been the subject of several studies 

that attempt to find pathophysiological-related changes in its composition for 

diagnosis purposes and for the knowledge of diseases’ pathogenesis [9]. Most of 

the recent studies in this field focus on the quantitative and/or qualitative 

alterations of salivary proteins and peptides [5,10-12]. However, the function and 

origin of some of these species are poorly comprehended and even less is known 

why some animal species, in particular mammal species, present a different 

salivary protein profile. So, the study of salivary protein families in a phylogenetic 
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perspective in mammals might reveal their relationship among different mammal 

species and relate their structural differences with their role in oral cavity.  

 

1. Salivary function 

 

Belonging to a large group of mucosal fluids, saliva has an important role in 

protecting the surface of the oral cavity against chemical, mechanical and 

microbial attack [13]. Saliva acts as a lubricant in the oral mucosa protection 

against friction. This lubricant action is mainly due to mucins and glycoproteins 

that represent about 16% of the total protein in whole saliva [14]. The high 

viscosity and elasticity that characterizes this class of proteins is also common to 

statherin and gPRPs, which not only contributes to the lubrication and hydration of 

the oral cavity but also, support mastication and swelling by the formation of the 

bolus [2,15]. With regard to food digestion, amylase has a key role in this process 

since it catalyzes the hydrolysis of glycosidic bonds from diet polysaccharides like 

starch [2]. 

Saliva also has a bactericidal action conferred by their protein species. For 

example, lactoferrin is a glycoprotein that is able to bind two atoms of iron, without 

which bacteria such as Aggregatibacter actinomycetemcomitans cannot survive 

[6,16]. Lysozyme is able to hydrolyze β-1,4 glycosidic linkages between N-acetyl-

muramic acid and N-acetilglucosamine of the peptidoglycan found in bacteria’s cell 

walls, leading to their lysis [2]. The antimicrobial action is also represented by 

immunoglobulins like sIgA, an important secretory immunoglobulin for host 

defense [17]. Some bacteria and virus could also produce cysteine proteinases 

that could damage salivary proteins and cause degradation of the oral tissues. 

However, cystatins present in saliva are able to minimize this proteolytic activity by 

acting as inhibitors of cysteine proteinases [18]. Moreover, the fungicidal activity of 

saliva is mainly due to salivary peptides called histatins [6], which also have 

antimicrobial activity against some strains of Streptococcus mutans [6]. 

Nevertheless, regular cleaning of the oral cavity regulates the balance between 

these pathogens and saliva antimicrobial activity [7]. 

http://en.wikipedia.org/wiki/Aggregatibacter_actinomycetemcomitans
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Saliva also behaves like a buffer system, which protects the oral cavity from 

pathogenic microorganisms by denying their optimal colonization conditions and 

neutralizing the food acids or acids produced by acidogenic microorganisms, thus 

preventing tooth demineralization [9]. Salivary pH is controlled by specific buffers 

such as bicarbonate and phosphate buffer systems and also by certain proteins, 

keeping the human pH of the oral cavity approximately neutral, with higher pH 

values (about 7.4) observed when the salivary secretion increases and lower 

values (about 6.2) at  low flow rates [2,3,9]. The bicarbonate system is mainly 

activated when the salivary flow rate increases and phosphate buffer acts when 

salivary flow is low [9]. Besides these buffer systems, proteins such as histatins or 

other alkaline products from the oral cavity also control saliva pH [9]. Despite the 

importance of the neutral pH in the human oral cavity, in other mammals the 

optimal pH is different. For instance, in ruminants the pH is higher (about 8.1) in 

order to buffer the volatile fatty acid produced during the digestive processes 

[19,20]. In frugivorous (fruit eater) Primates, saliva pH is lower than in folivorous 

(foliage eater) Primates; however, it is not clear whether this difference is a 

consequence of fruit acids that confer acidic saliva to frugivorous or if is due to 

buffering agents that maintain a more alkaline pH in folivores [1]. 

Besides these functions, saliva is also involved in the taste perception by its 

dissolution capacity allowing the gustatory buds to perceive different flavors 

associated with distinct substances [21]. All these important roles of saliva are a 

consequence of its composition, which seem to justify the considerable amount of 

published studies focused on saliva analysis in different scientific fields like health 

and life sciences [2,4,5,22,23]. 

 

2. Salivary proteome and peptidome composition 

 

The latest studies focused in the salivary proteome shows the presence of 

more than 2000 different proteins in human saliva, most of which without a 

glandular origin [24]. In overall, salivary proteins and peptides might be divided in 

three distinct groups based on their distribution and origin, i.e. if they are saliva-

specific or ubiquitous and if they are secreted by salivary glands or from external 
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sources. According to this classification, proteins secreted by salivary glands and 

present only in this biofluid are proteins like histatins and acidic proline-rich 

proteins [13]. Other proteins are common to other body fluids and to several 

tissues some of which are produced by secretory glands such as lysozymes, 

mucins, α-amylase and immunoglobulins, while others, such as albumin, are 

originated from other sources like plasma [13]. In table I.1, the contribution of the 

main salivary glands to the salivary proteome composition is summarized. 

 

Table I.1 - Concentrations of salivary proteins in human parotid and submandibular-sublingual 

saliva. (Adapted from [2] and [5]). 

Component Origin* 
Concentrations in whole 

saliva (µg/ml)** 

Albumin gingival crevicular fluid 60-1080 

Amylase Pr; Sm/Sl 380-500 

Cystatin Pr; Sm/Sl 

50-280 (Cyst C: 0.9; Cyst D: 

3.8; Cyst S: 53-116; Cyst SA: 

78; Cyst SN: 39) 

Histatin Pr; Sm/Sl 
2-33 (Hst1: 10.5-44.3; Hst3: 

1.7-11.8; Hst5: 2.1-16.5) 

Lactoferrin All salivary glands 20 

Lysozyme Pr; Sm 40 

Mucins All salivary glands MG1: 80-500; MG2: 10-200 

Proline-rich 

proteins (PRPs) 

aPRPs Pr; Sm/Sl 267.2-720.6 

bPRPs Pr - 

Statherin Pr; Sm/Sl 2-12 

sIgA Pr; Sm/Sl 19-439 

α-Defensins GCF 
HNP-1:0.1-10; HNP-2: 0.02-

6.0; HNP-3: 0-2.7 

β-Thymosins GCF Tβ4: 0.2–3.6 

S100A proteins various S100A8: 1.93; S100A9: 1.93 

*  Pr: Parotid gland; Sm: Submandibular gland; Sl: Sublingual gland; GCF: gingival crevicular fluid; 

**Hst: histatin; Cyst: cystatin; MG: mucin; HNP: human neutrophil peptide 

 

As can be depicted from Table I.1, the major characteristic components 

secreted by the human salivary glands are histatins, statherin, S-type cystatins, 

proline-rich proteins (PRPs), amylases, and mucins [25]. However several other 
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peptides can be found in saliva, and although some of them have non-glandular 

origin, most of them show antimicrobial activity [7].  

The distribution of theses salivary components in body fluids and tissues 

could give some indication about its physiological role in the oral cavity. For 

instance, proteins present in more than one secretion are expected to have 

functions common to the mucosal secretions where they are found, like, for 

example, protection of the epithelial tissues from friction [13]. On the other side, it 

is likely that proteins only present in saliva have specific functions of saliva such 

as digestion or teeth protection [13].  

Recently, emphasis has been given to the peptidome analysis of human 

saliva [3,26-29]. Polypeptide molecules with molecular weight below 15kDa are 

considered peptides and they are not necessarily fragments of larger proteins but 

instead might result from gene expression and subsequent maturation [4]. These 

peptides and other salivary proteins might also be the target of complex molecular 

processes. After their biosynthesis they may undergo intracellular pos-translational 

modifications (PTMs) and, once delivered in the oral cavity, they become target of 

many enzymes being continually modified [30]. Beyond PTMs like glycosylation, 

phosphorylation and sulfation, salivary proteins might undergo several cleavage 

processes by endo- and exo-proteases [5]. The proteases present in the oral 

cavity are mainly derived from leukocytes of the gingival exudates, 

microorganisms and epithelial cells [4,31]. It is also worth of note that salivary 

proteins are not equally susceptible to proteolytic breakdown, being histatins, 

statherin, acidic PRPs, and basic PRPs the most susceptible ones [26,30,32,33]. 

So far, 21 proteases were recognized to be involved in saliva proteolysis, namelly 

kallikrein 1, carboxipeptidase E, cathepsin L, cathepsin D, serine and aspartic 

proteases and MMP proteases [4,34]. Nevertheless, the proteolytic activity is to 

some degree non-specific and all salivary proteins could be the target of this 

process, depending mostly on their type and structure [4]. 

 

 

 



Characterization of mammal salivary peptides 

 

 

8 

3. Salivary peptides from glandular origin  

 

Cystatins, histatins, proline-rich proteins (PRPs) and statherin are 

considered the four major salivary protein families and are known as low molecular 

weight proteins with established primary structures in humans and unique in the 

fact that they present multiple physiological activities dependent on the 

polypeptide chain’s region. Indeed, 40-50% of the total secreted proteins in saliva 

are peptides like cystatins, histatins, statherin and PRPs [4]. These families have 

multiple activities in saliva, which may be related to their polypeptide chain 

structure and also to the location and structure of their genes, possibly reflecting 

evolutionary aspects. The genes encoding these peptides are clustered on 

chromosomes 3, 4, 12, 20 and 21 (Figure I.1) in the human genome [2]. 

 

Figure I.1 - Location on human chromosomes 3, 4, 12, 20 and 21 of the genes encoding for 
statherin, histatins, PRPs and cystatins found in saliva. The information was obtained on Ensembl 
and NCBI. 



Chapter I – General Introduction 

 

 

 

 
9 

The analysis of their evolutionary features in mammals might allow the 

establishment of the relation between structure and function for the different 

protein families, revealing their importance in the maintenance of oral health.  

 

3.1. Contribution of salivary glands for saliva proteome composition 

 

Salivary glands show considerable anatomic variability in terms of their size 

and location among different mammals, which might be understood as a lack of 

evolutionary restraint [35]. In opposition, organs such as liver and pancreas are 

cytologically and histologically very conserved among mammals, suggestive of 

conserved gene expression and regulation, perhaps associated with their 

fundamental role in the organism [35,36]. The low conservation of salivary glands 

in evolutionary lineages seems to be related to speciation events, possibly 

reflecting the different nutritional strategies of mammals [35]. In humans, the 

morphology of the salivary glands and their content in acinar and ductal cells is 

well established [37]. The acinar cells are responsible for the production of the 

gland content. After protein synthesis in these cells, proteins transit to the Golgi 

apparatus to be stored at secretory granules, from which they are released into the 

duct system [4,37]. Ductal cells are responsible for driving the content of the 

glands into the oral cavity [35]. Each gland has its own kind of acinar cells, and so, 

a characteristic type of secretion. For example, the secretion of the parotid gland is 

mainly serous, whereas the sublingual gland has a mucous secretion and the 

submandibular gland has a mixture of both [4,5]. The sublingual gland has many 

excretory ducts and some of them are joined to form the major sublingual duct, 

known as duct of Bartholin [5]. The Wharton’s duct, or submandibular duct, opens 

near the sublingual duct, so the content of this two glands reach the oral cavity as 

a mixture [5]. At last, the Stensen duct is responsible for carry the content of 

parotid to the oral cavity [5]. 

The contribution of each of these glands to saliva composition varies 

depending on several factors like age, alimentary habits, gender, and also on 

circadian rhythms and hormonal stimuli [3,38-40].  
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3.2. Cystatins 

 

Cystatins belong to a heterogeneous family of cysteine proteinase inhibitors 

that can be divided into three main families [41]: family I include intracellular 

cystatins A and B, also called stefins; family II is composed mainly by extracellular 

cystatins such as cystatin E, F, S, SN, SA, C, D, among others; and family III 

includes intravascular cystatins known as kininogens. Cystatins S, SA, SN (S-type 

cystatins), C and D are usually found in human saliva, and cystatins A and B were 

also identified in saliva of children aged up to six months [22,42]. Whereas cystatin 

C and D are usually found in several body fluids, the S-type cystatins are 

characteristic of saliva being secreted mostly by submandibular and sublingual 

glands, although they can also be found in tears [13,22]. Cystatins A and B are 

usually found in the cytoplasm of epithelial cells but can be secreted or released 

under specific circumstances [42,43]. 

 

3.2.1. Structural features of cystatins 

 

Cystatins S, SA, SN, C, D, A and B are encoded by CST4, CST2, CST1, 

CST3, CST5, CSTA and CSTB genes, respectively [43]. The genes expressing S-

type cystatins are clustered on human chromosome 20 at the locus 20p11.2, 

together with the loci of cystatin C and D known as CST1-5 locus [23]. S-type 

cystatins are 13–14 kDa proteins with 121 amino acid residues in length, lacking 

the 20 residues of the signal peptide [43]. The amino acid sequence of these 

cystatins shows about 88% homology and all of the S-type cystatins have a 

conserved glycine at position 11 [43]. Cystatin C is a 13.4 kDa protein with 120 

amino acid residues in length, after the removal of the 26 residue signal peptide, 

and is a basic protein (pI = 9.3), contrasting with other family members [41]. 

Finally, cystatin D is a 13.8 kDa protein, composed by 120 amino acids after the 

removal of the 20 amino acid residues signal peptide, with its sequence only 

showing about 55% homology with other salivary cystatins [41]. These peptides 

and other type-II cystatins present disulfide bonds at the carboxyl-terminal and 
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Figure I.2 - Representation of the 
structure of human cystatin D. 
The α-helix is marked in yellow, 
and the β-sheet is marked in blue. 
The three segments involved in 
cysteine proteases binding, 
formed by the N-terminal segment 
(N-term) and the first and second 
hairpin loops (L1 for QXVXG 
segment and L2 for PW residues) 
are indicated [45].  

cystatin S can be found phosphorylated at Ser-3 giving rise to cystatin S1, or 

diphosphorylated at Ser-1 and Ser-3 originating cystatin S2 [23].  

Human cystatins A and B are expressed by genes placed at loci 3q21 and 

loci 21q22.3, respectively [2]. These proteins have about 11 kDa and present 

almost 100 amino acid residues in length, being different from type-II cystatins in 

several ways [44]. There are no signal peptide 

sequences and disulfide bonds in cystatins A 

and B and they have a different amino acid 

sequence from type-II cystatins [43]. Cystatins A 

and B are slightly different in their amino acid 

sequence showing only 50% of identity [44]. 

 Although type-I and type-II cystatins 

present unrelated amino acid sequences, their 

tertiary structures have similar folds including 

five stranded anti-parallel β-sheet wrapped 

around a five-turn α-helix (Figure I.2) [45,46]. 

These cystatins share three conserved regions, 

the N-terminal segment, the conserved QXVXG 

region folded into a β-hairpin loop, and another 

hairpin loop with the PW conserved residues,  all 

of which important for the inhibition of papain-like 

cysteine proteases (Figure I.2) [47]. 

 

3.2.2. Cystatins functions  

 

These classes of cystatins act as inhibitors of mammals cysteine 

proteinases of the papain superfamily like mammalian lysosomal cathepsins B, C, 

H and L, by binding tightly to the enzyme and blocking substrate binding [48]. Most 

of the proteolytic enzymes are endopeptidases, but cathepsin B presents a 

carboxypeptidase activity, and cathepsin H has strong aminopeptidase and limited 

endopeptidase activity [48]. These kind of cathepsins are involved in the normal 

protein turnover of intracellular and endocytosed proteins not only in the oral cavity 
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but also in other tissues [48]. As lysosomal enzymes, they also acts in 

phagocytosis and can be released to the extracellular space by immune cells, 

where they can be involved in damaging and remodeling of the extracellular matrix 

and tissues [48]. Cathepsin B is the predominant human cysteine proteinase and it 

is inhibited by cystatin C and S-type cystatins whereas cystatin A and B mainly 

control exogenous cysteine proteases [13].  

Hall et al. (1995) suggested the N-terminal region of cystatin C, in particular 

residues 8, 9 and 10, to be crucial for the substrate-binding pockets of cathepsins 

B, L and H (Figure I.3) [43,49]. In turn, the loop region QXVXG contributes 40-60% 

to the binding to cathepsins B, H and L binding, and the PW region is mainly 

important for cathepsin B binding (Figure I.3) [43]. Thus, cystatins can place N-

terminal residues and hairpin loop regions along the active site in the same 

orientation as a substrate, inhibiting cysteine protease [48].  

 

MAGPLRAPLLLLAILAVALAVSPAAGSSPGKPPRLVGGPMDASVEEEGVRRALDFAVGEYNKASN
DMYHSRALQVVRARKQIVAGVNYFLDVELGRTTCTKTQPNLDNCPFHDQPHLKRKAFCSFQIYAV
PWQGTMTLSKSTCQDA 

 

S-type and D cystatins are poorer cathepsin inhibitors when compared to 

cystatin C, which inhibits cathepsin B and cathepsin L. This fact may be related to 

the contribution of the different conserved segments to their ability to bind cysteine 

proteases. As the structure of cysteine proteases interfere with the binding of 

polypeptide substrates, they can also interfere with the binding of cystatins [43,48]. 

S-type cystatins are also components of the enamel pellicle, binding to 

hydroxyapatite through negatively charged regions, such as the N-terminal region 

of the α-helix, and phosphorylated residues, inhibiting crystal growth and calcium 

phosphate precipitation [43,50]. 

Finally cystatins have antimicrobial activity against some pathogens and 

are able to inhibit viral replication probably by inhibiting necessary cysteine 

proteases [43,51]. Though unable to inhibit many bacterial species, S-type 

cystatins and cystatin C can inhibit growth of Porphyromonas gingivalis [43,52]. 

Figure I.3 – Amino acid sequence of human cystatin C with important segments to cathepsins 
binding highlighted in red, and the signal peptide highlighted in blue. (Sequence was obtained in the 
UniProt database) 

http://en.wikipedia.org/wiki/Porphyromonas_gingivalis
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Regarding antiviral activity, it was found that human S-type cystatins and cystatin 

C are able to block herpes simplex virus-1 (HSV-1) replication [43]. Moreover, 

cystatin C and also cystatin D act as inhibitors of coronavirus replication, which 

can cause acute gastroenteritis when present above physiological levels [43].  

 

3.2.3. Cystatin family evolution 

 

The diversity of biological functions of the cystatin super-family members 

suggests the cystatin domain has evolved from a primordial cysteine protease 

inhibitory domain into a more diverse protein–protein interaction module [53]. 

Muller-Ester et al. [54] first proposed that cystatins emerged from a stefin-like 

precursor protein by a fusion of  separate exons but with only the one encoding 

the N-terminal sequence related to the stefins. From it, the kininogens and other 

molecules with cystatin domains, like fetuins, could have evolved separately or in 

parallel, and retained or lost their protease-inhibitory activity and active site 

sequences [55]. 

In 1990 Rawlings and Barrett [56] suggested that the archetypal cystatin 

had no disulfide bonds. They also proposed that chicken cystatin diverged from 

the other type-II cystatins  around ~300 million years ago, corresponding to the 

time of the earliest reptiles and the divergence of birds and mammals [56]. The 

divergence of cystatins C and S was suggested to occur during early mammalian 

evolution, about 180 million years ago [56].  In 2002, Dickinson [43] proposed that 

cystatins from plants and animals diverged from a common ancestor at about 1.6 

billion years ago, being phytocystatins the best representative of the ancestral 

cystatin. This author also suggested that α-helix structure and the first disulfide 

bond were acquired about 1.2 billion years ago, and the second disulfide bond 

together with the other characteristics of type-II cystatins must have evolved about 

1 billion year ago. A few smaller and evolutionarily younger orthologous families 

have emerged in some mammalian orders, such as the Primate-specific subfamily 

of salivary cystatins (cystatins S, SA, SN and D). The phylogenetic tree proposed 

to the vertebrate type-II cystatins shows that D and S-type cystatins form a 

monophyletic clade with quite good confidence (84%) (Figure I.4). According to 
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Dickinson [43], there is no reason to separate cystatin D and S-type cystatins, 

since they seem to have evolved from a common cystatin C-like ancestor at about 

100 million years ago, and should be collectively referred as SD type cystatins 

(Figure I.4).  

 

In this tree, the branch representing the rat cystatin S is not grouped with 

the human SD-type cystatins, which indicates an independent origin. However this 

branch is not positioned with high confidence, so it is unclear if the rat cystatin S is 

a highly divergent ortholog of the human cystatins or if represents a case of 

independent evolution (Figure I.4) [43].  

The latest phylogenomic analysis of prokaryotic and eukaryotic cystatins 

has shown the presence of only two ancestral lineages for the cystatin family, 

stefins and cystatins. They are referred as ancient eukaryotic paralogs because 

they were probably formed by duplication prior to the divergence of the principal 

eukaryotes lineages. The work of Kordis and Turk [47] also suggested an 

intracellular progenitor of the cystatin superfamily lacking a signal peptide and 

disulfide bridges, and so similar to the extant Giaardia cystatin. In contrast to plant 

cystatins, cystatins from vertebrates and placental mammals’ suffered great 

diversification during the evolution. Cystatin and stefins were then created by a 

primordial gene duplication and while stefins remained as a single gene or as 

small multigene family in eukaryotes, cystatins underwent a more complex and 

dynamic evolution through several gene and domain duplications (Figure I.5) [47].   

Figure I.4 - Phylogenetic tree of some 
vertebrate type-II cystatins. The large 
arrow indicates a possible position for the 
root of the tree, with proteins on the 
cystatin C branch of the tree to the top. 
Abbreviations used: hCys, human 
cystatin; rat S, rat salivary cystatin S; and 
adder, puff adder (Bitis arietans) venom 
cystatin. [43] 
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Figure I.5 - Evolutionary scheme of type-I and type-II cystatins 

 

About 650 mya, the ancestor of vertebrates’ cystatins experienced the first 

diversification, giving rise to four orthologous family, including the progenitors of 

cystatin C. From the ancestor bony vertebrates (Euteleostomi) two novel 

orthologous families emerged, including the current cystatin C [47]. From the 

ancestor of land vertebrates (Tetrapoda) two novel orthologous families appeared 

and finally from placental mammals six orthologous families, that include cystatins 

8, 9, 11, 12, 13 and like-1 were formed [47]. In the ancestor of Amniota the 

duplication of the stefin gene has produced stefins A and B [47]. These authors 

noticed a large difference between placental (Eutheria) and ancestral (Prototheria 

and Metatheria) mammals, with the latter including 11 orthologous cystatin-derived 

families in addition of stefins A and B, and the former have 17 orthologous as well 

as stefins A and B [47]. So, ancestral mammals are closer to other land 

vertebrates such as amphibians that also have approximately 11 orthologous 

families. Kordis and Turk [47] also reported the partial loss of ancestral inhibitory 

activity in vertebrate orthologous families with the acquisition of novel functions in 

innate immunity. For example, human salivary cystatins are more recent than 

other type-II cystatins and they are less active against the host lysossomal 

cathepsins than others such as cystatin C [43].  
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3.3. Histatins and statherin 

 

Histatins belong to a family of small peptides with 3 to 4 kDa containing 

multiple histidine residues, being these peptides slightly basic [13,57]. These 

peptides are secreted by parotid, submandibular and sublingual glands and were 

first described in the early 1970s as peptides that enhance the glycolytic activity of 

microorganisms [58,59]. Only later it was described their potent bactericidal and 

fungicidal properties [60,61]. The concentrations of histatins in whole saliva are 

considerably lower than the concentrations found in parotid or in 

submandibular/sublingual secretions. This fact is mainly due to proteolytic 

breakdown, involving several enzymes with various proteolytic specificities, such 

as serine proteases [30]. So far, 135 different histatin family peptides have been 

acknowledge in whole saliva resulting from fragmentation of histatins 1 and 3 

[4,30]. These peptides have already been found in saliva of humans, macaques, 

and a number of other Primates representing various Anthropoids [62]. 

Histatins genes show nearly identical overall gene structures with statherin, 

suggesting these genes belong to a single gene family exhibiting accelerated 

evolution between the histatin and statherin coding sequences [62]. Human 

statherin is a 5.38kDa singular salivary peptide rich in tyrosine, proline and 

glutamic acid secreted by parotid and submandibular glands, also emerging in 

other body fluids besides saliva [13,63].  

 

3.3.1. Structural features of histatins 

 

Histatins 1, 3 and 5 are the most prominent histatins in human saliva [4]. 

Histatin 1 and histatin 3 have very similar sequences and are encoded by genes 

HTN1 and HTN3, also known as HIS1 and HIS2, respectively, both located on 

human chromosome 4 at the loci 4q13 [64-66]. These two genes show 89% 

overall sequence identity, with exon sequences exhibiting 95% homology, which 

have probably emerged by a gene duplication event in hominoids around 15-30 

million years ago, after their divergence from cercopithecoids and prior to the 

hominid divergence [62].  
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Human histatin 1 is composed by 38 amino acid residues without the signal 

peptide (first 19 amino acid residues), emerging phosphorylated on Ser-2 and 

poly-sulfated on the four terminal tyrosines by the tyrosylprotein sulfotransferase 

(Figure I.6) [65,67,68]. Proteolytic cleavage originates histatin 2, which consists on 

the fragment sequence 12-38 [66].  

 

Histatin 3 presents 32 amino acid residues in length after removal the signal 

peptide (Figure I.6) [66]. Due to the high susceptibility of motif RGYR to 

proteolysis, histatin 3 sequential cleavages give rise to many fragments including 

histatin 5, a fragment composed by the first 24 amino acid residues present in 

histatin 3 and resulting from tryptic like cleavage after Tyr-24 [33,65].  The 

substitution of Glu residue present in histatin 1 at position 4 by Ala in histatin 3 

abolished the kinase recognition site  preventing the Ser-2 phosphorylation [65]. 

The first three residues of histatin 3 and 5 (DSH) comprehend a conserved motif 

that complexes Cu2+ and Ni2+ [69]. Histatin 1 also has two specific motifs (HEXXH) 

capable of binding Zn2+, as well as histatin 3 and 5, that show an equal one 

(Figure I.6) [69].  

Similar proteins to histatin exist in macaques, cattle and most likely in other 

mammals [69,70]. In the specie Macaca fascicularis, it was found one peptide 

assigned as histatin 1 which showed 89% and 91% of similarity with human 

histatins 1 and 3 sequences, respectively. In addition, it exhibited comparable 

fungicidal effects against Candida albicans with human  histatins [71]. However, in 

cattle their structure and function are not well established yet [70].  

 

 

Figure I.6 - Amino acid sequence of human histatins 1, 3 and 5 and indication of functionally 
important peptide regions: DSH, metal-binding motif; HEXXH, zinc-binding region; AF, antifungal 
domain; WH, wound-healing domain [68] 
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3.3.2. Histatins function 

 

Histatin 1 seems to be involved in the maintenance of tooth enamel mineral 

and pellicle formation by binding to hydroxyapatite, being able to inhibit crystal 

growth of calcium phosphate salts [69]. The negative charge of the  phosphate 

group is a determining factor in the interaction of histatin 1 with tooth enamel 

mineral [30]. Histatin 1 also shows wound-healing activity both in oral primary cells 

and in non-oral cells [72,73]. However, histatin 2 appears to be more active in 

wound-closure process than histatin 1 [69]. It is though that for this function 

histatins are internalized by the epithelial cells and activate the extracellular signal-

regulated kinases pathway, enhancing epithelial migration to the wound [69]. 

Histatin 3 also presents a small wound-healing activity, suggesting  the last seven 

amino acid residues of histatins 1, 2 and 3 are those responsible for this activity 

(Figure I.6) [69]. 

By complexing ions like Zn2+, Cu2+ and Ni2+ histatins eliminate cofactors for 

enzymes or essential elements for bacterial growth [69]. In this regard, histatins 

are able to kill Streptococcus mutans, a bacteria responsible for dental carries and  

histatin 5 shows a great ability to inhibit the human matrix metalloproteases MMP-

2 and MMP-9 and appears to be the most potent histatin against yeast Candida 

albinans, Cryptococcus neoformans and Aspergillus fumigatus [59,69,74]. 

Residues 12-25 from histatin 3 are the main responsible for their fungicial activity 

and they are present in almost all of the longer fragments, suggesting the 

proteolytic process would not reduce the antimicrobial properties of these peptides 

[30]. Histatin 5 is also essential for the salivary antimicrobial activity and, like other 

cationic peptides, can adopt α-helice secondary structures [75]. These amphiphilic 

structures seem to form channels or pores in model lipid bilayers [57]. However, it 

has been suggested the mechanism of action of histatin 5 against microorganisms 

differs from that of most helical proteins that usually lyse pathogen’s lipid 

membranes. In C. albicans it is thought that this peptide is internalized and 

reaches the mitochondrion where causes loss of transmembrane potential and 

inhibits the respiratory chain at coenzyme Q level [76]. All these steps are 

reflected in an energetic collapse due to decreased ATP synthesis and increased 



Chapter I – General Introduction 

 

 

 

 
19 

levels of reactive oxygen species that damage biologically important molecules, 

leading consequently to loss of cell integrity [5]. Histatin 5 also has antifungal 

domains, which are located in the N-terminal and middle region of these molecules 

(Figure I.6) [68]. 

 

3.3.3. Structural features of statherin 

 

Human statherin is composed by 43 amino acid residues without the signal 

peptide and is phosphorylated at Ser-2 and Ser-3 [13,77]. In humans, statherin is 

encoded by the gene STATH localized on chromosome 4q.13.3, near to histatin 

genes [23].  Three other variants of statherin, known as SV1, SV2 and SV3 were 

also characterized [78]. SV2 lacks residues 6-15 present on statherin sequence 

due to alternative splicing of a exon coding for the missing residues [78]. SV1 and 

SV3 have the same sequence as statherin and SV2, respectively, but lack the 

carboxyl-terminal phenylalanine residue; however, it is not known if the removal of 

this residue affects these statherin’s functions [30,78]. Statherin is one of the 

peptides more prone to fragmentation and besides the three variants found in 

human saliva, 87 different fragments were also identified [4]. Raj et al., in 1992 

[79], reported the importance of the negative charge density given by the first 15 

amino acid residues and of the helical conformation at the N-terminal region for 

statherin interaction with hydroxyapatite. The first five amino acid residues are 

negatively charged and are followed by some 

positively charged residues, where the segment 

Glu5-Gly15 forms an amphipathic α-helix with 

the hydrophobic and hydrophilic residues on 

opposite sides of the helix , isolating 

hydrophobic residues at positions 7, 8, 11, and 

14 from the aqueous medium (Figure I.7) 

[63,80]. The remaining sequence is composed of 

hydrophobic and mostly uncharged polar 

residues like glutamine, proline, and tyrosine 

[79]. When attached to hydroxyapatite statherin 

Figure I.7 – Structure of human 
statherin with sticks drepresenting 
the two phosphoserine side chains 
Sep2 and Sep3 [81] 
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shows a structure represented by an α-helical structure at the N-terminal region 

(residues 1–16), a polyproline type II (PII) helix in the intermediate region 

(residues 19–35), and a 310 helix in the C-terminal region (residues 36–43) (Figure 

I.7) [81,82]. 

 

3.3.4. Statherin’s function 

 

The statherin peptide shows great affinity for calcium phosphate minerals 

and is able to inhibit precipitation and crystal growth of hydroxyapatite from 

supersaturated solutions of calcium phosphate [79]. The first polar 6 amino acid 

residues (Asp-pSer-pSer-Glu-Glu-Lys) of statherin are essential for binding 

hydroxyapatite and the first 15 residues are the main responsible for crystal 

growth’s inhibition (Figure I.8) [80]. Like for other anionic proteins, it is suggested 

that the inhibition of calcium phosphate precipitation might proceed via binding to 

calcium ions [79].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.8 – Amino acid sequence of the human statherin and their functional characteristics [83] 

 

When adsorbing to the tooth surface, the C-terminal domain undergoes 

transition from random coil to a helical conformation, unmasking oral bacterial 

binding epitopes that were not accessible in the protein while in solution [83]. 

Thus, statherin can promote the adherence of oral bacteria such as 
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Porphyromonas Gingivalis and Actinornyces viscosus [13]. In this regard, it is 

thought that bacterial adhesins may recognize two PQ segments (residues 31-32 

and 36-37) located at C-terminal (Figure I.8) [80]. Statherin showed also the ability 

to inhibit the conversion of Candida albicans blastoconidia into the more virulent 

hyphal growth form [84]. 

Finally, together the polar N-terminal end, the relatively nonpolar C-terminal 

end and the structure presented are necessary to form an amphipathic oriented 

film at the enamel interface providing the lubricant properties also expressed by 

statherin [80]. 

 

3.3.5. Statherin and histatin evolution 

 

Histatin and statherin exhibit little similarity in their amino acid sequence 

and are not considered members of the same family [62]. However, the histatin 

cDNAs exhibit an unexpected similarity to statherin cDNAs in the 5’ and 3’ 

untranslated regions (UTRs) and signal peptide sequences, and their genes are 

localized on position 4q11-13 of the human chromosome, further suggesting a 

possible evolutionary relationship [62]. Comparison of the HTN sequences with the 

STATH sequence suggests that STATH, HTN1 and HTN3 arose by gene-

duplication events (Figure I.9) [62]. 

The HTN1 and STATH genes show nearly identical overall gene structures, 

exhibit 77%-81% sequence identity in the intronic regions and 80%-88% sequence 

identity in noncoding exons but only 38%-43% sequence identity in the protein-

coding regions of exons 4 and 5 [62]. Together with their chromosomal location, 

Figure I.9 - Evolutionary scheme of the statherin/histatin family. 
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this suggests that HTN, and STATH belong to a single gene family with 

accelerated evolution between the HTN and STATH coding sequences [62]. The 

time of the initial gene-duplication event preceding the divergence of the STATH 

and HTN sequences has not been clearly defined. However, Li and Tanimura [85] 

suggested that HTN gene duplication occurred about 15-30 mya in hominoids after 

their divergence from cercopithecoids and prior to the hominid divergence. Thus, 

authors estimated by the rate in intron sequences substitutions that the initial 

gene-duplication event occurred about 40-50 million years ago [62].   

 

3.4. Proline-rich proteins 

 

Proline-rich proteins (PRPs) account for more than 60% in weight of the 

total salivary proteome being characterized by a predominance of amino acids 

proline, glycine, glutamine and glutamate [13,23]. This heterogeneous group is 

usually divided in acidic (aPRPs), basic (bPRPs) and glycosylated (gPRPs) 

proline-rich proteins and are encoded by a multigene family of 6 genes, giving rise 

to more than 20 PRP species due differential mRNA splicing and proteolytic 

cleavage after secretion [13]. In this sense, the concentration of acidic PRPs is 

lower in whole saliva than in glands due to proteolytic process [30]. Finally, 

glycosilated PRPs belongs to basic PRPs group, being its glycosilated form 

closely related to acidic PRPs, with similar amino acid sequences and close 

chromosomal locations [13].  The order of their genes in the cluster is most likely 

to be 5’ PRB2-PRB1-PRB4-PRH2-PRB3-PRH1 3’ [86]. 

 

3.4.1. Structure of acidic PRPs 

 

Acidic PRPs are proteins of about 16kDa, only expressed by salivary glands 

by two loci, PRH-1 and PRH-2 located on human chromosome 12p13.2 [13,23]. 

PRH1 codes for three alleles that express PIF-s (parotid isoelectric-focusing 

variant, slow), Db-s (double band, slow) and Pa (parotid acidic protein) isoforms 

[5]. PRH2 are bi-allelic and codes for PRP-1 and PRP-2, two proteins similar to 

PIF-s protein with 150 residues in length (without the 16 amino acid residues 
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signal peptide) [5,50]. Before being stored in the secretory granules, these 

proteins are phosphorylated at Ser-8 and Ser-22 and sometimes at Ser-17 and 

could undergo cyclization at the N-terminal due to the formation of pyroglutamate 

from glutamate residue [5]. Usually Pa protein is detected as a dimeric derivative 

originated by disulfide bonding involving Cys-103 residue [32]. After the secretion, 

the isoforms PRP-1, PRP-2, PIF-s and Db-s can also be partially cleaved near to 

the C-terminal end at the Arg103-Pro-Pro-Arg106 ↓  motif, being the site of the 

cleavage located after the residue Arg-106 (Arg-127 in Db-s protein), resulting in 

four truncated isoforms known as PRP-3, PRP-4, PIF-f  with 106 residues in length 

and Db-f, and a C-terminal fragment called P-C peptide with 44 residues [50,87]. 

The Pa isoform does not undergo proteolysis because the first Arg residue is 

replaced by a Cys residue, abolishing the protease recognition site [30]. Besides 

these, another 77 fragments from aPRPs have already been found [4]. It has been 

suggested the cleavage of aPRPs is under the action of a proprotein convertase 

which recognizes the RXXR consensus sequence, like furin [32,88]. 

aPRPs are typically composed by a polar and negatively charged amino 

terminus followed by an extended nonpolar sequence [50]. The differences 

between the most similar aPRPs are on residues 4 and 50. PRP-1 and PRP-3 

have an acid aspartic on position 4 and an asparagine on position 50, PRP-2 and 

PRP-4 have acid aspartic residues in both positions, and PIF-s and PIF-f have 

asparagines on position 4 and aspartic acid on position 50 [50]. Pa has also 150 

residues in length but have different residues at positions 26 and 103, and Db-s 

has 171 residues in length, due to a 21-residue insert after Gly83 and have a 

different residue at position 26 [50].  

It is also worth of note the three uncommon allelic products of PRH1 found 

in Asiatic population, where At and Aw proteins are allelic products of the PRH l 

locus and Au is another allele of PRH2 [89]. 

 

3.4.2. Acidic PRPs function 

 

The aPRPs N-terminal 30 residues are able to bind to hydroxyapatite and 

bind calcium ions, thus inhibiting the crystal growth of calcium phosphate in 
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supersaturated solutions (Figure I.10) [50]. It is thought that the adsorption of 

aPRPs to hydroxyapatite causes a conformational change which together with the 

acidic amino acid and phosphoserine residues promotes the calcium binding 

ability [50]. This conformational change also allows the attachment of some oral 

bacteria such as Actinomyces viscosus to the aPRPs carboxyl terminal [50]. Also 

for this function seems to be important the several segments of P-Q present along 

the amino acid sequence (Figure I.10) [90]. 

 

MLLILLSVALLAFSSAQDLDEDVSQEDVPLVISDGGDSEQFIDEERQGPPLGGQQSQPSAGDGNQ
DDGPQQGPPQQGGQQQQGPPPPQGKPQGPPQQGGHPPPPQGRPQGPPQQGGHPRPPRGRP
QGPPQQGGHQQGPPPPPPGKPQGPPPQGGRPQGPPQGQSPQ 

 
Figure I.10 – Amino acid sequence of the human acidic PRP with first 30 residues responsible for 

binding hydroxyapatite and calcium ions highlighted in green, the several segments PQ important 

for the bacterial attachment highlighted in red and the signal peptide highlighted in blue. (Sequence 

was obtained in the UniProt database) 

 

Finally, some studies reveal that Streptococcus mutans binds more strongly 

to larger aPRPs than to the smaller ones. Thus, larger aPRPs seems to promote 

bacterial attachment whereas smaller aPRPs allow the reduction of the bacterial 

attachment through the lack of the main binding sites [50].  

 

3.4.3. Structure of basic PRPs 

 

bPRPs are present in several body fluids and at the oral cavity level they 

are only expressed by parotid gland and represent the major component of adult 

saliva [5]. These peptides are expressed by four loci, PRB1-PRB4 located at 

12p13.2 chromosomal position. PRB1 and PRB3 loci express four alleles, small 

(S), medium (M), large (L) and very large (VL) while PRB2 and PRB4 loci express 

three alleles, S, M and L [5]. The size of these alleles depends on the number of 

63-bp tandem repetitions found in these genes [86]. bPRPs are very polymorphic 

due to individual insertions or deletions, tandem repeats, alternative splicing and 

complex PTMs [23]. So, the proteins expressed by these genes appear only as 

multiple fragments of larger pro-proteins and present several PTMs such as 

phosphorylation and glycosylation [4,91]. There are some issues about the 
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nomenclature of these peptides. Isemura et al. [92] and Saitoh et al. [93-95] 

classified some of them as P-D, P-E, P-F and P-H. Later Kauffman et al. [30] 

classified these and other fragments as IB5, IB9, IB8c, IB4 (or P-D, P-E, P-F and 

P-H, respectively), IB1, IB6, IB7, IB8a, II-1 and II-2. Recently, Amado et al. [4] 

assigned short names according IUPAC recommendations to these same 

peptides, bPRP4L 225/294 to IB5, bPRP1L 75/136 to IB9, bPRP2L 283/343 to 

IB8c, bPRP2L 345/416 to IB4, bPRP2L 1/96 to IB1, bPRP1L 259/376 to IB6, 

bPRP2L 97/155 to IB7, bPRP2L 159/277 to IB8a, bPRP4L 1/174 to II-1 and 

bPRP1L 1/75 to II-2 [4]. However, other fragments were also found and 

sometimes overlap the peptides mentioned, which creates chaos in the 

nomenclature [4]. In glycosylated PRPs the proteolytic process seems susceptible 

to the presence and spatial distribution of carbohydrate chains, whereas in non-

glycosylated basic PRPs the cleavage occurs mostly in Arg-Ser-Xaa-Arg↓ 

segment (the arrow indicates the site after which cleavage occurs), a motif similar to 

that in aPRPs [30]. 

  

3.4.4. Basic PRPs function 

 

The biological roles of bPRPs are not completely known. Nevertheless, 

these proteins seem to prevent the toxic effects of food tannins by blocking their 

absorption from the gut [96]. The complexes are formed by the association 

between the tannin polyphenol ring and the pyrrolidone ring of proline [96]. A role 

in taste perception has also been suggested for bPRPs since the complete 

expression of these peptides is only reached after puberty, the age at which this 

sense is fully developed [5]. Finally, gPRPs have the main function of lubricating 

oral tissues [13].  

 

3.4.5. PRPs evolution 

 

PRB and PRH genes have a similar organization, with 4 exons and 3 

introns [86]. The first exon has 64 bp in length and encodes the 16 amino acid 

residues signal peptide and the first 5 residues of the N-terminal region [86]. The 
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Figure I.11 - Evolutionary scheme of the PRPs family. 

 

second exon contains 36 bp and code for the next 12 amino acid residues [86]. 

Exon 3 is largest than the previous and is composed by multiple 63 bp tandem 

repeats, varying in number and sequence among the genes. PRH genes have an 

additional 102 bp portion in this exon [86]. The last exon is untranslated and 

contains a poly(A) sequence [86].   

In 1990 Kim et al. [97] proposed an evolutionary relationship based on a 

physical map of the chromosomal location of human PRP genes and their partial 

gene sequences. According to this model, initial gene duplication occurred 

followed by three unequal but homologous cross overs (Figure I.11) [86].  

 

 

 

 

 

 

 

 

 

 

The first duplication is thought to have occurred around 55 mya and gave 

rise to the ancient PRB and PRH genes [86]. The second duplication arose around 

25 mya and originated two related precursor genes from the ancient PRB gene. At 

about 20 mya, the genes PRH1 and PRH2 appeared from the ancient PRH gene 

and the genes PRB3 and PRB4 emerged by duplication of one of the precursor 

PRB genes [86]. Finally, about 5 mya the other PRB precursor gene was 

duplicated and originated PRB1 and PRB2 [86]. 

 

4. Other salivary peptides  

 

The oral epithelium is not only a passive cover, but a barrier against 

infection, playing an active role in innate host defense [98]. Epithelial cells, 

responding to the contact of oral bacteria and their products, produce natural 
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antimicrobial peptides and proteins which are part of the innate immune system 

[99]. These peptides complement the antimicrobial factors of saliva, such as the 

histatins, lysozyme, and salivary immunoglobulins [99]. 

The clinical use of these peptides may be beneficial for the early and non-

invasive detection of oral diseases, such as periodontitis, where the concentration 

of some of these peptides is altered [7]. Besides, its use was already suggested to 

the management of oral pathological conditions, since they have shown a broad-

spectrum activity, mainly against bacteria even at low levels, and are able to 

minimize the inflammatory state [7].  

 

4.1. Defensins 

 

Defensins are the most prominent mammalian antimicrobial peptides and 

could be divided in two main subfamilies known as α-defensins and β-defensins 

both presenting antibacterial, antifungal and antiviral activities [69]. Human α-

defensins are composed by six peptides, HNP (human neutrophil peptide)-1 to -4, 

HD-5 and HD-6, encoded by five genes, where the HNP-2 is a truncated form of 

HNP-1 or HNP-3 [69]. β-defensins are composed by four peptides, hBD-1 to -4, 

whose genes are located together with the five α-defensins genes in a cluster on 

human chromosome 8q23 [100]. 

 The HNP-1 to -4 peptides are mainly located in azurophilic granules of the 

neutrophils, which enter the oral cavity mainly through the junctional epithelium 

surrounding the teeth, while β-defensins are produced in epithelial cells and 

mucosa [69]. However, in human saliva, only five members of defensin’s family – 

HNP-1, HNP-2, HNP-3, hBD-1 and hBD-2 – have been identified [2,101]. Also, the 

distribution of these peptides in the various tissues of different animal species is 

not homogeneous. For example, α-defensins are not present in mouse neutrophils 

like is common in human and in species such as bovin; these immunologic cells 

contain β-defensins instead of α-defensins [100]. Additionally, another class of 

defensins, the θ-defensins were found, but only in species of Old World monkeys 

and in orangutans (not found in humans) [69].  
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This family of peptides present high variable amino acid sequences with 

only six characteristic cysteine motif [100]. Regarding defensins evolution it has 

been suggested the ancestral vertebrate defesin was a β-defensin and at some 

point in mammalian evolution a duplication event gave rise to the α-defensin gene 

(Figure I.12) [102,103]. Further duplication of α-defensin gene occurred after 

species divergence, since α-defensin genes cluster seems to be specific for each 

specie [103]. The presence of β-defensins orthologues in several different 

mammalian species suggests the occurrence of duplication of the ancestral β-

defensin gene even before the mammalian appearance [102].  However, it was 

also suggested that these genes were under an ongoing evolutionary process 

after mammalian divergence, originating species-specific β-defensin genes [102]. 

 

 

 

 

 

 

 

 

Figure I.12 - Evolutionary scheme of the defensins family. 

 

4.2. Cathelicidin  

 

Cathelicidin is an 18 kDa cationic antimicrobial protein produced in 

neutrophils and epithelial cells. The proteolytic cleavage at the C-terminal 

originates different heterogeneous peptides that can be found in saliva and 

gingival crevicular fluid [104,105]. These peptides are linked at the N-terminal 

prosequence, known as “cathelin” domain, and can range in size from 12 to 100 

amino acid residues, being the most common linear peptides of 23-37 amino acid 

residues with amphipathic α-helices conformation [106]. 

Despite the presence of cathelicidin family components in several 

mammalian species, the most known cathelicidin peptides are human LL-37, 
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porcine PR-39, and bovin BMAP-28 [106]. Regarding the oral cavity, the LL-37 

peptide was identified in human saliva and gingival crevicular fluid, where it acts 

as an antibacterial agent and is also able to neutralize the lipopolysaccharides 

produced by bacteria like Gram-negative bacteria, playing an important role in 

maintaining oral health [7,99].  

The evolutionary history of these molecules is not clear, besides not being 

found in non-mammal species [106]. Additionally, the genes encoding this protein 

family are under different selective pressures, existing different sets of related 

genes in each species [106]. In bovines, there are eleven cathelicidin genes 

clustered on chromosome 22, while in sheep there are eight different genes on 

chromosome 19. In turn, humans and mice contain one typical cathelicidin domain 

each, being the genes located at chromosome 3 and 9, respectively [106]. 

Curiously, these genes are located at regions of conserved synteny but most 

peptide sequences are remarkably different, being only highly conserved the 

cathelin domain [106].  

 

4.3. Adrenomedullin 

 

Adrenomedulin (ADM) is a small peptide with 52 amino acid residues 

resulting from a precursor protein codified by a gene located on human 

chromosome 11 [99]. In turn, ADM is a member of calcitonine superfamily and 

present considerable homology with other family members, such as amylin or 

calcitonin [107]. 

Despite, the presence of adrenomedullin in saliva from the submandibular 

and parotid glands, its concentration is higher in whole saliva, suggesting the oral 

epithelium as the main contributor of this peptide [108]. Regarding its function, this 

peptide was first considered as a vasodilator and later was recognized its 

antibacterial activity against Gram positive and Gram negative bacteria in the oral 

cavity [99]. Moreover, it is though the C-terminus is the main antimicrobial part, 

and the formation of postsecretory fragments could enhance the antimicrobial 

activity, manly against Escherichia coli and Staphylococcus aureus [69]. However 
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it was suggested that low concentration of adrenomedullin in saliva of healthy 

subjects cause no significant antimicrobial action [108]. 

 

4.4. β-Thymosins 

 
The β-thymosins are a family of highly conserved 5kDa, that in man is 

composed by thymosin β4 (Tβ4), thymosin β10 (Tβ10) and thymosin β15 (Tβ15) 

[109]. The main function of this peptide family is to regulate the dynamics of the 

cytoskeleton by binding to cytoskeletal G-actin (monomers form) [110]. Among 

these, Tβ4 is the most studied, being present at high concentration in almost every 

cell [109]. This peptide shows several functions, since it promotes cell migration 

and differentiation, upregulate metalloproteinase activity, promotes tissue repair 

and angiogenesis and is also involved in tumor metastasis [110-112]. Despite 

being highly conserved, different β-thymosins have different functions, for 

example, while Tβ4 seems to promote angiogenesis and cell migration, Tβ10 

inhibit this pathway and is a barrier to cell migration [113]. 

Tβ4 can also be found in saliva and other body fluids. In pre-term newborn 

saliva, the high levels of this peptide found in the oral cavity are mainly due to 

secretion by salivary glands, but in adult saliva, Tβ4 originate mainly from gingival 

crevicular fluid [114,115]. In the oral cavity, the presence of this peptide is 

associated with the development of several cranio-facial organs but also with its 

antimicrobial, anti-inflammatory and anti-apoptotic activity [116,117]. 

Regarding the evolution of this peptide family, very few data are available, 

and the existence information only focus on the conserved domain that bind to G-

actin [118]. 

 

4.5. S100A proteins 

 

S100A8 (calgranulin A) and S100A9 (calgranulim B) form a dimer known as 

calprotectin, which is a heterodimeric protein able to bind calcium and zinc, for 

which is essential the conserved metal binding His-X-X-X-His motif [7,99]. These 

peptides can be found in neutrophils, monocytes, macrophages and mucosal 
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keratinocytes, and are also expressed in cells of stratified oral epithelia and in 

cultured gingival epithelial cells [99]. 

These peptides show antimicrobial activity, mainly by sequestering zinc 

which is essential for the growing of some microbial species [99]. At high 

concentrations, the calprotectin heterodimer is able to inhibit the growth of 

Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis, and 

even at lower concentrations (4-32 µg/ml) it can inhibit growth of Candida albicans 

[119]. 

Regarding its evolution it is though that two ancestor members, S100A1 

and S100B, originated during the vertebrate evolution gave rise to all the S100 

protein family, which shown conservation of the N- and C-terminal regions 

[120,121]. The thirteen human S100 genes are clustered on chromosome 1q21, 

and it was found in mouse a syntenic region on chromosome 3 containing the 

S100 genes cluster, which shows a conservation pattern during evolution [120].  

 

5. Salivary composition analysis under an evolutionary 

perspective 

 

For nearly a century, mammalian phylogenetics was dominated by 

comparative anatomy and palaeontology, allowing the division of living mammals 

into two subclasses, Prototheria and Theria. Prototheria includes the egg-laying 

monotremes, such as platypus, whereas Theria includes two major groups of 

viviparous mammals, marsupials and placentals [122]. Regarding placentals 

Kumar and Hedges [123] estimated intraordinal divergences for Primates, 

Carnivores and Rodents and found that these were all at 65.5 (±0.3) million years 

ago (mya) except for Rodents, where intraordinal divergences were as far back as 

112 (±3.5) mya. The subsequent evolution of the distinct orders can vary 

consistently with species body size, population dynamics, lifestyle and location 

[124] (Figure I.13). Indeed, contrary to hopes that molecular evolution would be 

clock-like, variation in evolutionary rates between species appears to be the rule, 

rather than the exception [125]. In this sense, small-bodied mammal species tend 

to have faster rates of molecular evolution than their larger relatives, mostly 
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because smaller mammals have a larger population size and more generations 

per unit time due a shorter lifespan, accumulating more DNA copy errors and 

evolving faster [124]. 

Figure I.13 - Representative tree of the placental mammal evolution (data from 

http://www.timetree.org/) 

 

Nowadays, the evolutionary relatedness among groups of organisms might 

be studied by phylogenetic analysis,  employing progressive alignment of nucleic 

acid and/or protein sequences of several organisms to describe their evolution 

using a model that consists of two components, fist a phylogenetic tree showing 

the inferred evolutionary relationships among the species under study; second the 

description of the way individual sequences evolve by nucleotide or amino acid 

replacement along the branches of that tree [126,127]. These replacements are 

usually described as the products of chance mutation events, and their occurrence 

at each sequence site is mathematically modeled to produce the phylogenetic tree  

http://www.timetree.org/
http://en.wikipedia.org/wiki/Evolution
http://en.wikipedia.org/wiki/Organism
http://en.wikipedia.org/wiki/Evolution
http://en.wikipedia.org/wiki/Species
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[126]. Thus, any change across successive generations in the heritable 

characteristics of biological populations culminates in evolution and differentiation 

between species and might be reflected in protein structure, fold and function. 

Phenomenon such as fusion of duplicated domains and divergence through  

mutation could affect both the stability of protein folds and the requirements of 

protein function [128]. A recent example is the evolution of amylase gene, 

important for saliva function. Perry et al. [129] specifically looked at the effect of 

dietary starch on the number of copies of AMY1 in the human genome, the gene 

that encodes the salivary amylase enzyme. They found that populations with high-

starch diets have, on average, more AMY1 copies than those with traditionally low-

starch diets, which probably is associated with the improvement of the digestion of 

starchy foods [129]. This study allowed the recognition the environment’s influence 

on the evolution of amylase, which certainly also affect other salivary proteins 

adapting them to the environment of different mammal species. Beyond amylase, 

other proteins present in saliva also exhibits great composition variation in nature, 

which my represent adaptations to dietary habits [19]. It is known that some 

characteristics such as pH are quite different between humans and other kind of 

mammals [1,20], but few alterations in the composition of salivary proteome 

among different species are known. 

Despite the importance of human salivary peptides, in some ruminant 

species as sheep and goat, there is no evidence of the presence of cystatins, 

proline-rich proteins and histatins in parotid saliva proteome [19]. However, the 

saliva of ruminants contributes largely to the maintenance of the inorganic 

composition and the fluid volume of the rumen contents, important for maximum 

cellulose digestion [130]. So, the diversities of the digestive system and diet 

between ruminants and other mammals could explain some differences in their 

saliva composition. Nonetheless, it is thought the group of genes encoding 

statherin, histatins and some other proteins like casein, mapped on human 

chromosome 4 (in mouse on chromosome 5, in rat on chromosome 14, and in cow  

on chromosome 6), has been subjected to conserved chromosomal synteny 

during mammalian evolution, i.e., the co-localization of these genes was kept 

within the chromosomes of different mammalian species (Figure I.14) [131]. These 
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genes form a kind of secretory calcium-binding phosphoprotein gene cluster, being 

all of them associated with mineralized tissue [131]. Some of the genes clustered 

on this location are orthologous genes, e.g. genes present in different species 

originated by vertical descent from a single gene of the last common ancestor 

(Figure I.14). However, in cattle it was found a new gene which had about 30-50% 

amino acid sequence identity to human histatin and statherin, and since no direct 

ortholog was found in the human genome, the gene was named histatherin 

[132,133]. Studies about their role and activity suggest that histatherin is a 

ruminant-specific gene that plays a role in host defense in the oral cavity and milk 

in cattle [133]. Remnants of these genes are also present in mouse and rat at the 

genomic DNA level; however, no mouse transcripts have been identified yet [70]. 

Statherin was already identified in the pig parotid secretion, showing that this 

protein is not unique to Primates [134].  

Figure I.14 - Overview of organization of the genes identified in the casein gene cluster 

region in human, mouse, rat, and cow. Orthologous genes are indicated by identical shading, 

genes whose presence is predicted based on comparative analysis but have not been verified by 

expression analyses or presence of matching sequences in the databases are depicted in light 

gray [70]. 

 

Regarding PRPs, the motifs rich in proline seem similar among mammals. 

In swine parotid gland there are several fragments of proline-rich peptides but the 

intact pro-protein was not found, suggesting that, as in humans, the cleavage 

occurs before granule storage [5]. These cleavage products are shorter than 

human peptides (12-66 amino acid residues) and present more sequential proline 

residues [5]. Moreover, the consensus sequences recognized by convertase are 
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very different from those in humans, suggesting new protease activities [5]. The 

distinction of basic and acidic PRPs loci is not possible in swine, but only the SP-A 

peptide was identified with acidic pI, being the remained basic fragments [5]. In 

other species like mice and rats the aPRPs are more similar to those in humans, 

keeping an initial acidic segment followed by several basic and proline residues 

[5]. However, in salivary glands of rats, mouse and hamster PRPs are normally not 

detected or are present in very low amounts, but they are greatly induced by 

dietary tannins, highlighting their importance in the neutralization of these and 

other polyphenols [135].  

Currently, there are several nucleic acid and protein sequences available in 

databases such as Uniprot, NCBI and Ensembl, including information regarding 

the salivary peptidome, allowing the filogenetic analysis of this peptidome. Based 

on these databases and in published works, it was possible to establish in which 

mammal species the typical human salivary peptides in study were already 

identified. 

As can be observed in Table I.2, which presents a list of the mammal 

species where salivary peptides have been identified based on databases such as 

Uniprot, NCBI and Ensembl (http://www.uniprot.org/; http://www.ncbi.nlm.nih.gov/; 

http://www.ensembl.org/index.html) or described in the literature, few studies have 

focused on the identification of salivary protein families in other mammals than 

humans being most of these peptide sequences assigned as predicted in 

databases like Swissprot and Trembl (http://www.ebi.ac.uk/uniprot/). Genomic and 

proteomic analyses will be crucial not only to confirm the existence of all predicted 

peptides on saliva of several mammal species but also their position on the 

phylogenetic tree allowing a better understanding of the salivary proteins 

taxonomy. 

 

 

 

 

 

 

http://www.uniprot.org/
http://www.ncbi.nlm.nih.gov/
http://www.ensembl.org/index.html
http://www.ebi.ac.uk/uniprot/
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Table I.2- Peptides identified in some mammal species. Information based on 

[62,70,71,86,134,136-151] Ensembl, NCBI and Uniprot 

 

Specie S-type 

cystatins 

Cystatin 

D 

Cystatin 

C 

Statherin Histatins PRP

s 

References 

Homo 

sapiens 

            Saitoh et al. (1987); 

Freije (1991); Saitoh 

et al. (1989); 

Sabatini et al. 

(1990); Sabatini et 

al. (1993); Azen et 

al. (1996); Kim et al. 

(1993) 

Macaca 

mulatta 

          Yang et al. (2011); 

Wei et al. (1996) 

Macaca 

fascicularis 

         Yang et al. (2011); 

Oppenheim et al. 

(1982); Xu et al. 

(1990) 

Gorilla 

gorilla 

    *    Padovan et al. 

(unpublished) 

Callithrix 

jacchus 

    *    

Nomascus 

leucogenys 

    *    Padovan et al. 

(unpublished) 

Pan 

troglodytes 

     *   

Pongo 

abelii 

    *  *   

Trachypith

ecus 

cristatus 

       Padovan et al. 

(unpublished) 

Chloroceb

us 

aethiops 

       Padovan et al. 

(unpublished) 

Cricetulus 

griseus 

       Xu et al. (2011) 

Rattus 

norvegicus 

         * Cox and Shaw 

(1992); Esnard et al. 

(1990) 

Mus 

musculus 

         Frygelius et al. 

(2007); Huh et al. 

(1995); Lopez-Solis 

and Kemmerling 

(2005) 

Sus scrofa     *    Zhang et al. (2005); 

Manconi et al. 

(2010) 

Bos taurus        Rijnkels el al. (2003) 

* Sequences obtained from ENSEMBL 
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6. Aim 

 

Saliva functions like protection against microorganisms, lubrication and 

mineralization of teeth are attributable, at least partially, to peptides families like 

statherin, histatins, cystatins and PRPs, and other antimicrobial peptides. 

However, very few is known about their presence, structure and function in other 

animal species. In this sense, this study will mainly focus on the salivary peptides 

of several mammal species. Using a proteomic approach, the salivary peptidome 

of some different mammals’ species will be assessed in an attempt to know its 

composition and understand the differences when compared to human saliva. The 

interpretation of the data under a phylogenetic perspective will allow enlightening 

changes in the structure and distribution of these peptides between the different 

mammal species, under the influence of natural selection, genetic drift, mutation 

and gene flow, eventually explaining phenomena such as adaptation and 

speciation. 

To fulfill the main goal two cases will be the target of this work: 

a) in the first case, a phylogenetic analysis will be used to support the mass 

spectrometry search of β-thymosin peptide in different mammal species,  

b) in the second case, the phylogenetic approach will be used to explain the 

absence of C, D and S-type cystatins identifications using proteomics approach in 

several mammals’ saliva. 

  



Characterization of mammal salivary peptides 

 

 

38 

 



 

 

   

 

  

CHAPTER II – Thymosin β4 in mammals’ 

saliva  



Characterization of mammal salivary peptides 

 

 

40 

  



Chapter II– Thymosin β4 in mammals’ saliva 

 

 

 
41 

II. Thymosin β4 in mammals’ saliva 

 

1. Introduction 

 

Thymosins belong to a family composed by three distinct classes of low 

molecular weight proteins (α, β, and γ) isolated from calf thymus [109,152]. The 16 

known members of the beta-thymosin class are highly conserved acidic peptides 

that bind G-actin and control the assembly and disassembly of actin filaments 

which regulate the dynamics of the cytoskeleton [110]. From these, thymosin β4 

(Tβ4) is the most abundant isoform and probably the most active, being present in 

all cells, except for the erythrocytes, and in several body fluids such as plasma, 

tears and saliva [109-111]. This 5kDa peptide are composed by 43 amino acid 

residues and present several functions, such as influence in cell migration and 

differentiation, angiogenesis promotion in many tissues and regulation of 

metalloproteinase (MMP) activity [110-112]. 

Since Tβ4 lacks a signal peptide that allow its secretion, its presence in 

body fluids only is possible due to damaged cells, and its concentration in human 

saliva ranged from 0.2–3.6 µg/mL, being the gingival crevicular fluid the main 

contributor [111,115,153]. This biofluid, besides its importance in food maceration, 

has also an important role in protecting the surface of the oral cavity against 

chemical, mechanical and microbial attack [13]. In turn, the presence of Tβ4 in 

saliva could be related with the development of several cranio-facial organs, 

participating for example in the initiation, growth and differentiation of tooth germ, 

by promoting cell proliferation and differentiation [114,116]. Furthermore, the 

antimicrobial, anti-inflammatory and anti-apoptotic activity of Tβ4 in oral cavity 

cells has inferred its use as a therapeutic treatment of oral disorders, such as 

periodontal disease [117,153].  

Despite the evident importance of Tβ4 in saliva, it has only been clearly 

reported in humans [153], remaining unknown its presence in other mammals 

saliva. Taking this in consideration, identification of Tβ4 in other species will 

contributes to clarify its importance in saliva and the mechanism behind its 

secretion. 
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2. Material and methods 

 

2.1. Evolutionary analysis 

 

NCBI (http://www.ncbi.nlm.nih.gov), Ensembl (http://www.ensembl.org), and 

SwissProt (http://www.ebi.ac.uk/uniprot/) databases were used iteratively for the 

collection of thymosin β4 sequences. The Basic Local Alignment Search Tool 

(BLAST) [154] was also used to complete the collection of amino acid sequences 

for thymosin β4 and multiple sequence alignments were performed using the 

BioEdit Sequence Alignment Editor [155].  

 

2.2. Saliva collection 

 

Dog (mongrel) and lamb saliva were collected during 4 minutes using 

salivettes (Sterile Saliva Collection Devices by Sarstedt) where the swab was 

placed underneath the animal’s tongue. After the collection the salivette was 

centrifuged at 1000g for 2min for recover the saliva sample. For rat (Wistar) and 

rabbit (White New Zealand) saliva collection the animals were first injected with 

the sialagogue pilocarpine (4µmol/kg). All the samples were then centrifuged at 

12000g for 10min at 4ºC to be collected the supernatant.  

 

2.3. Peptide isolation and digestion 

 

The total protein content of each sample was quantified by the DC protein 

assay (BioRad). 100µL of each sample was mixed with ammonium 

hydrogenocarbonate 25mM (1:1) and filtered in filter units of 50kDa (Vivaspin 

500 - 50 kDa, Sartorius Stedim Biotech) by centrifugation at 10000g for about 

20min at approximately 12ºC. The peptides present in the filtrate were then 

digested overnight with trypsin (12.5ng/mL) at 37ºC. The digested peptides were 

dried in a speedvac (SpeedVac Plus SC 210 A, Thermo Savant). 

 

http://www.ebi.ac.uk/uniprot/


Chapter II– Thymosin β4 in mammals’ saliva 

 

 

 
43 

2.4. Peptide separation by LC 

 

Dried peptides were ressuspended in solvent A, 

(water/acetonitrile/trifluoroacetic acid (98:2:0.05 v/v/v)) and ten microliters of each 

sample was separated using an Ultimate 3000 (Dionex) using a capillary column 

(Pepmap100 C18; 3 µm particle size; 0.75 μm internal diameter, 15 cm in length). 

A gradient of solvent A to solvent B (water/acetonitrile/trifluoroacetic acid 

(10:90:0.045, v/v/v)) was used. The separation was performed using a linear 

gradient (5-55 % B for 30 min, 55-80 % B for 10 min and 70-5% A for 5 min) with a 

flow rate of 0.3μL/min. The eluted peptides were applied directly on a MALDI plate 

in 15 sec fractions using an automatic fraction collector Probot (Dionex, 

Amsterdam).  

 

2.5. Mass spectrometry 

 

Mass spectra were obtained on a matrix-assisted laser 

desorption/ionization–time-of-flight MALDI-TOF/TOF mass spectrometer (4800 

Proteomics Analyzer, Applied Biosystems, Foster City, CA, USA) in the positive 

ion reflector mode and in the mass range from 700-4500 Da with 800 laser shots. 

A data-dependent acquisition method was created to select the 16 most intense 

peaks in each sample spot for subsequent tandem mass spectrometry (MS/MS) 

data acquisition. GluFib (Glu-1-fibrinopeptide B) (m/z 1570.6) was used for internal 

calibration of the mass spectra.  

MS/MS data was searched against the Swissprot, Trembl and NCBI protein 

databases for all species using paragon algorithm from  ProteinPilot™ software 

(version 4.0, Applied Biosystems, USA) and Mascot software (v.2.1.0.4, Matrix 

Science Ltd, U.K.). An MS tolerance of 30 ppm was selected for precursor ions 

and 0.3 Da for fragment ions. Confidence levels upper to 99% were used as 

positive protein identification criteria. In order to estimate the false discovery rate 

(FDR)  a reverse decoy database was created for all SwissProt resulting in 5% of 

FDR (false positive peptides/(false positive peptides + total peptides))*100. Unique 

peptides retrieved from FDR search were considered for analysis. 
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3. Results 

 

3.1. Evolutionary analysis  

 

Searching databases allowed to retrieve several amino acid sequences for 

Tβ4 accounting 52 entries in the Swiss-Prot/TrEMBL (http://www.uniprot.org/) and 

more than 100 sequences in NCBI database. Some of these primary amino acid 

sequences were related to species distributed in several mammalian orders such 

as Primates, Rodents, Carnivores, Lagomorphs, Artiodactyls and Diprotodonts. 

The alignment of several Tβ4 amino acid sequences from different mammal 

species allowed to recognize a high conservation region of this peptide among all 

the species (Figure II.1).  

 

The high degree of conservation observed in Tβ4 does not allowed to infer 

the evolutionary history of this peptide in the mammalian class. However, the high 

similarity between distant mammal species allows predicting its existence in 

organisms where Tβ4 has not yet been identified. 

 

 

Figure II.1 - Amino acid sequence alignment of thymosin β4 from several species: Canis lupus 
familiaris(1) (XP_003432557); Canis lupus familiaris(2) (XP_003435498); Homo sapiens 
(HUMAN_TMSB4, P62328); Pongo abelii (PONAB_TMSB4, Q5R7H8); Bos Taurus 
(BOVIN_TMSB4, P62326); Equus caballus (HORSE_TMSB4, P62327); Sus scrofa (PIG_TMSB4, 
Q95274); Rattus norvegicus (RAT_TMSB4, P62329); Mus musculus (MOUSE_TMSB4, P20065-
2); Chinchilla villidera (CHILA_TMSB4, Q6S9C5);Oryctolagus cuniculus (RABBIT_TMSB4, 
P34032); Macropus eugenii (MACEU_ TMSB4, Q7YRC3). 

http://www.uniprot.org/
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3.2. Saliva analysis by LC-MS/MS 

 

Saliva from mammal species including dog, rat, rabbit and lamb was 

collected for analysis by mass spectrometry. Thus, the low molecular weight 

fraction was obtained through the utilization of microfilters and analyzed under 

digestion with trypsin or without digestion. The analysis by LC-MS/MS of the 

undigested fraction did not allow the identification of any peptide belonging to Tβ4. 

However, when digested with trypsin, several peptides were identified. It should be 

pointed that these identifications were achieved by using an internal database 

where all amino acids sequences were grouped for phylogenetic analysis. For 

instance, the amino acid sequence of Tβ4 from lamb or sheep is not available in 

SwissProt whereas in case of dog, several Tβ4 amino acid sequences have been 

detected and assigned as predicted. Using the Mascot software with internal 

database containing all sequences retrieved from phylogenetic approach, four 

fragments (from 10 hypothetical) were assigned in dog saliva after tryptic 

digestion, presenting high similarity with human Tβ4 and mouse Tβ4 with a 

confidence of 100%. When Paragon algorithm was used, nine fragments were 

identified having high similarity with the swine Tβ4 (sp|Q95274|TYB4_PIG) with a 

confidence of 97.7% (Table II.1). The amino acid sequence of Tβ4 from pig (Sus 

scrofa) is 100% identical with one of the predicted amino acid sequences from dog 

(Canis lupus familiaris (1) – XP_003432557) found in the evolutionary analysis 

(Figure II.1). However, in the undigested samples the analysis LC-MS/MS not 

identified this peptide, showing no fragments caused by other proteolytic enzymes. 

 In addition, from those six fragments identified, four presented post-

translational modifications such as methionine oxidation and serine acetylation. An 

example is shown in the MS/MS spectrum of figure II.2, where an acetylation at 

Ser-1 (plus 42.010565Da) and oxidation at Met-6 (plus 15.994915Da) were 

identified. 
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Table II.1 – Theorical mass values of tryptic fragments from predicted Canis lupus familiaris 

thymosin β4 (XP_003432557) and the mass values of tryptic fragments determined by LC-MALDI-

MS/MS in dog saliva and identified as thymosin β4 peptide. 

 

Fragment sequence Position 

Theorical tryptic peptides Experimental tryptic peptides 

Monoisotopic 
Mass [M+H]

+
 

Average 
Mass 

Monoisotopic 
Mass [M+H]

+
 

Observations 

KTETQEKNPLPSKETIEQEKQAGES 20-44 2829.4112 2831.0817 2829.435  

TETQEKNPLPSKETIEQEKQAGES 21-44 2701.3163 2702.9066 2701.336  

LKKTETQEKNPLPSKETIEQEK 18-39 2598.3985 2599.9594 2598.422  

MSDKPDMAEIEKFDKSKLKK 1-20 2368.2251 2369.8222 - Not found 

KTETQEKNPLPSKETIEQEK 20-39 2357.2195 2358.6238 2357.219  

MSDKPDMAEIEKFDKSKLK 1-19 2240.1301 2241.6470 - Not found 

TETQEKNPLPSKETIEQEK 21-39 2229.1245 2230.4486 2229.123  

MSDKPDMAEIEKFDKSK 1-17 1998.9511 2000.3113 - Not found 

NPLPSKETIEQEKQAGES 27-44 1984.9822 1986.1560 1984.939  

MSDKPDMAEIEKFDK 1-15 1783.8241 1785.0575 - Not found 

[Ac]SDKPDMAEIEKFDK 2-15 - - 1694.7797 N-acetylserine 

[Ac]SDKPDMAEIEKFDKSK 2-17 - - 1909.9177 N-acetylserine 

[Ac]SDKPDMAEIEKFDKSKLK 2-19 - - 2151.1077 N-acetylserine 

[Ac]SDKPDM[Oxi]AEIEKFDK 2-15 - - 1710.7767 
N-acetylserine; 
Met-oxidation 

[Ac]SDKPDM[Oxi]AEIEKFDKSK 2-17 - - 1925.9156 
N-acetylserine; 
Met-oxidation 

 

According the amino acid sequences of Tβ4 found in databases for the 

other species here in study (Figure II.1), it would be expected similar fragments in 

their saliva. However, none of the peptides found in dog saliva were identified in 

rat, rabbit or lamb saliva’s.  
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4. Discussion 

 

Thymosin β4 could be found in several members of the vertebrate phylum 

and is widely distributed throughout the mammalian tissues [156-158]. In 

mammals the gene that expresses Tβ4 is usually located at the X chromosome, 

although paralogues of this gene could be found in human and chimpanzee 

chromosome Y, and also in humans it was found the inclusion of pseudogenes in 

different chromosomes [159-161]. Moreover, the gene encoding Tβ4 displays high 

conservation among different species, not only by the high sequence homology 

but also by the similar arrangement of their genes, suggesting the importance of 

the structure conservation throughout the evolution of this gene [161]. With respect 

to saliva, this small peptide has only been found in humans [153], detected during 

the development of mouth’s structures, such as the tooth and salivary glands in 

mouse and humans [114,116,162,163]. 

The high conservation observed for Tβ4, even regarding distant mammal 

species such as Primates and the Diprotodonts (order of marsupial mammals) that 

diverge at more than 160mya (http://www.timetree.org), reveals a negative or 

purifying selection pressure on the conserved amino acids of Tβ4. This suggests 

that it has maintained its multiple functions and is not involved in adaptive 

processes. However, its high conservation is useful for allowing the clear 

identification of this peptide even in mammal species where it has not yet been 

fully characterized. Since this peptide has already been identified in human saliva, 

its similarity among species suggested not only a functional conservation but also 

a similar distribution and so, it could be found in saliva of other species.  

In the present study, we used the information retrieved from phylogenetic 

approach to perform the characterization of Tβ4 in saliva from mammals’ species 

through LC-MS/MS analysis of tryptic fragments. Using different software and 

gathering amino acid sequences in an internal database, it was possible to identify 

Tβ4 but only in dog saliva. Originally, it was expected the presence of this peptide 

mainly in rat saliva, since it was already identified in the oral cavity of this animal. 

However no identification of Tβ4 was obtained in saliva from rat, rabbit or lamb.  

http://www.timetree.org/
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Despite the fragments found in dog saliva being identified as Tβ4 are from 

human, mouse and pig, it is important to note that these three isoforms present 

100% amino acid identity (Figure II.1). Although in databases there are several 

predicted  amino acid and nucleic acid sequences of dog thymosin β4, most of the 

similar fragments found correspond to the gene product located at LOC100683370 

on chromosome 1 (XM_003432509), whose protein product  (XP_003432557) is 

also 100% identical to human, mouse and pig thymosin β4 peptides (Figure II.1). 

As can be observed in human thymosin β4, the peptide identified in dog saliva 

also lacks the initial methionine and appears acetylated at the N-terminal serine 

[164,165]. However, the influence of this modification in Tβ4 function has not been 

determined yet [164]. Furthermore, the two identified oxidized peptides evidenced 

the presence of thymosin β4 sulfoxide in dog saliva which is occasionally detected 

in human saliva [115]. About 5% of Tβ4 appears oxidized in human gingival 

crevicular fluid, having this sulfoxide specie a 20-fold lower affinity to G-actin which 

may regulate its actin-sequestering function [115,166]. In the present work the 

relative amount of thymosin β4 sulfoxide is not available, but the presence of Tβ4 

and its sulfoxide in dog saliva shows the importance of both species to the actin 

binding mechanism.  

Despite the different chromosomal location of Tβ4 gene identified in dog 

and in humans, as expected from phylogenetic analysis, the primary amino acid 

structure remained conserved throughout evolution. In fact, the entire molecule is 

involved in the functional activities carried out by this peptide, and distinct active 

sites play distinct functions: the segment 1-4 is important for anti-inflammation and 

angiogenesis, the segment 17-22 is crucial for actin binding and wound healing 

and the segment 1-15 confers cytotoxity protection [111]. Thus, being this amino 

acid sequence conserved in several mammal species, including Tβ4 from dog, it 

seems that similar function will be found in all of these species. In addition, it is 

worthy of note that no fragments were identified when LC-MS/MS analysis was 

performed without digestion, suggesting a high protection against proteolytic 

activity of saliva when compared to other salivary peptides such as histatins or 

PRPs that are the target of diverse salivary proteases, namely, kallikreins, 

cathepsins or metalloprotease, originating a large number of fragments [4,34]. 
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Furthermore, the cells and mechanism responsible for Tβ4 release in saliva are 

unknown. However, it is thought that this peptide has its main origin in the gingival 

crevicular fluid and its presence is probably connected to a role in the regulation of 

the junctional epithelium angiogenesis [115,167]. 

  The elucidation of Tβ4 function in saliva and the mechanism behind its 

secretion is crucial for its application as a therapeutic treatment for oral disorders, 

such as periodontal disease, mainly due its antimicrobial, anti-inflammatory and 

anti-apoptotic activity [117,153]. Besides that, Tβ4 presents cytoprotective 

properties that could protect gingival fibroblasts from apoptosis induced by 

chlorhexidine, the compound currently used as bacteriostatic and bactericidal 

agent in gingivitis and periodontitis management [117]. Thus, further studies are 

necessary to elucidate the importance of the presence of Tβ4 in this body fluid, 

and to understand why this peptide is only found in human and, now, in dog saliva. 



 

 

   

  

CHAPTER III – Evolution of C, D and S-type 

cystatins in mammals  
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III. Evolution of C, D and S-type cystatins in 

mammals 

 

1. Introduction 

 

Cystatins belong to a superfamily of low molecular weight proteins that 

usually act as inhibitors of cysteine peptidases (CPs) and are frequently involved 

in the normal protein turnover of intracellular and endocytosed proteins. Four main 

cystatin families are known, including type-II cystatins, that are characterized as 

proteins with 120-125 amino acid residues and two disulfide bonds [43]. Some 

proteins of this group are expressed in human saliva, namely, cystatin C, cystatin 

D and S-type cystatins (S, SN, and SA), which are encoded by the genes CST3, 

CST5, CST4, CST1 and CST2 (Table III.1), respectively, located on human 

chromosome 20 at the CST1-5 locus [23,26,43]. 

 

Table III.1 - Genes of “salivary cystatins” and their respective proteins in humans 

Genes Proteins 

CST1 Cystatin SN 

CST2 Cystatin SA 

CST3 Cystatin C 

CST4 Cystatin S 

CST5 Cystatin D 

 

Cystatin C-like proteins could be found in several vertebrates and 

evolutionary studies focused on this superfamily suggested that the ancestral 

cystatin C gave rise to the Primate-specific subfamily of salivary cystatins (cystatin 

D, S, SA and SN) [43,47].  

This protein family performs functions such as direct inhibition of 

endogenous and exogenous CPs, modulation of the immune system, antimicrobial 

activity and maintenance of the tooth surface [43]. However, they do not all 

present the same activity, i.e. D and S-type cystatins are poorer inhibitors of 

papain-like CPs when compared to cystatin C and cystatin C is less effective in the 
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bactericidal activity than cystatin S [43,51,168]. Indeed, there is a correlation 

between the activity of each cystatin and their evolution since successive 

generations of salivary cystatins are progressively less active against the host 

lysosomal cathepsins B, H, and L [43]. Additionally, human cystatin S presents 

relatively poor inhibitory activity and high affinity to the tooth surface, which 

suggests a main role in the maintenance of the mineralized surfaces [43]. 

It was already suggested that D and S-type cystatins evolved in Primates to 

protect the oral cavity from dietary and environmental CPs presenting poor 

inhibition of endogenous CPs [43]. However the evolution of these proteins in 

Primates is not clear, making essential the understanding of their evolution to 

better interpret their function in the oral cavity. Furthermore, despite some 

previous studies reporting D and S-type cystatins as Primate specific, in 

databases such as Swissprot or NCBI, sequences from non-Primate species 

annotated as cystatin S or cystatin D can be found. A good example is the rat 

cystatin S, although not clear whether if this cystatin is specific to Primates or if it 

can also be found in other mammals, particularly in its saliva. 

Thus, it is important to understand the distribution of this specific group of 

proteins in saliva from different mammal species, using proteomic and 

evolutionary methods together to accomplish this aim.  

 

2. Material and methods 

 

2.1. Proteomic analysis 

 

2.1.1. Saliva collection and preparation 

 

Dog (mongrel) and lamb saliva were collected during 4 minutes using 

salivettes (Sterile Saliva Collection Devices by Sarstedt) where the swab was 

placed underneath the animal’s tongue. After the collection the salivette was 

centrifuged at 1000g for 2min to recover the saliva sample. For rat (Wistar) and 

rabbit (White New Zealand) saliva collection the animals were first injected with 
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the sialagogue pilocarpine (4µmol/kg). All the samples were then centrifuged at 

12000g for 10min at 4ºC to collect the supernatant.  

 

2.1.2. SDS-PAGE protein separation  

 

Proteins present in saliva samples were separated by gel electrophoresis 

under denaturing conditions to be analysed by western blotting and by LC-MS/MS. 

For this, a 12,5% SDS-PAGE gel was made according to Laemmli [169] to 

separate the proteins by their molecular weight. The gel was then fixed in 40% 

methanol/10% acetic acid for 1 hour and stained with colloidal coomassie blue 

overnight. Finally, the gel was distained with 25% methanol until the background 

color was removed. 

 

2.1.3. In-gel protein digestion 

 

For mass spectrometry analysis, protein bands located around the 15kDa 

area were excised to be further digested. To the in-gel digestion, the gel sections 

were washed twice with 50mM ammonium bicarbonate and 100% acetonitrile and 

washed with 100% acetonitrile. After the gel pieces were dried in vacuum, 25µl of 

10µg/ml trypsin (diluted in 25mM ammonium bicarbonate) was added and after 

one hour, the gel pieces were covered with 50mM ammonium bicarbonate. The 

samples were incubated overnight at 37ºC and the tryptic peptides were then 

extracted from the gel pieces with 10% (v/v) formic acid. These fragments were 

finally dried in vacuum and ressuspended in 20µl of 50% acetonitrile and 0.1% 

formic acid. 

 

2.1.4. Determination of the presence of cystatin S in saliva by Wetern-blotting 

 

After the protein separation by SDS-PAGE the proteins were transferred to 

a nitrocellulose membrane (Whatman®, Protan®) in a buffer with 25mM Tris, 

192mM Glycine with a pH 8,3 and 20% methanol during 2hours at 200mA. The 

membrane was then blocked with 5% (w/v) dry non-fat milk in TBS-T (buffer with 
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20mM Tris at pH 7,5 and 150mM NaCl and 0,1% Tween 20) for 1 hour and 

incubated overnight at 4ºC with a solution of anti-cystatin S antibody (rabbit 

monoclonal (Ab58515 Abcam) in a dilution 1:500 in blocking solution. The 

membrane was washed three times during 10minutes with TBS-T and was 

incubated with an anti-rabbit antibody (F9887 Sigma) in a dilution of 1:1000 during 

1 hour. The membrane was washed again with TBS-T and detection was made 

with enhanced chemiluminescence (ECL-Plus, Amersham Pharmacia) and 

exposed to a photographic film (Kodak Sigma). The film was revealed and fixed.  

 

2.1.5. Peptide isolation and digestion  

 

The total protein content of each sample was quantified by the DC protein 

assay (BioRad). 100µL of each sample was mixed with ammonium 

hydrogenocarbonate (1:1) and filtered in filter units of 50kDa (Vivaspin 500 - 50 

kDa, Sartorius Stedim Biotech) by centrifugation at 10000g for about 20min at 

approximately 12ºC. The peptides present in the filtrate were then digested 

overnight with trypsin (12.5ng/mL) at 37ºC. The digested peptides were dried in a 

speedvac (SpeedVac Plus SC 210 A, Thermo Savant). 

 

2.1.6. Peptide separation by LC 

 

Both the filtrated samples and the samples separated by gel 

electrophoresis, after obtaining the tryptic fragments by digestion, were separated 

by LC. For this, dried peptides were ressuspended in solvent A, 

(water/acetonitrile/trifluoroacetic acid (98:2:0.05 v/v/v)) and ten microliters of each 

sample was separated using an Ultimate 3000 (Dionex) using a capillary column 

(Pepmap100 C18; 3 µm particle size; 0.75 μm internal diameter, 15 cm in length). 

A gradient of solvent A to solvent B (water/acetonitrile/trifluoroacetic acid 

(10:90:0.045, v/v/v)) was used. The separation was performed using a linear 

gradient (5-55 % B for 30 min, 55-80 % B for 10 min and 70-5% A for 5 min) with a 

flow rate of 0.3μL/min. The eluted peptides were applied directly on a MALDI plate 
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in 15 sec fractions using an automatic fraction collector Probot (Dionex, 

Amsterdam). 

 

2.1.7. Mass spectrometry analysis 

 

Mass spectra were obtained on a matrix-assisted laser 

desorption/ionization–time-of-flight MALDI-TOF/TOF mass spectrometer (4800 

Proteomics Analyzer, Applied Biosystems, Foster City, CA, USA) in the positive 

ion reflector mode and in the mass range from 700-4500 Da with 800 laser shots. 

A data-dependent acquisition method was created to select the 16 most intense 

peaks in each sample spot for subsequent tandem mass spectrometry (MS/MS) 

data acquisition. GluFib (Glu-1-fibrinopeptide B) (m/z 1570.6) was used for internal 

calibration of the mass spectra in the analysis made in fragments originated from 

the filtration, and trypsin autolysis peaks were used for internal calibration of the 

mass spectra from the fragments originated from the in-gel digestion, allowing a 

mass accuracy of more than 25ppm. 

MS/MS data was searched against the Swissprot, Trembl and NCBI protein 

databases for all species using paragon algorithm from  ProteinPilot™ software 

(version 4.0, Applied Biosystems, USA) and Mascot software (v.2.1.0.4, Matrix 

Science Ltd, U.K.). An MS tolerance of 30 ppm was selected for precursor ions 

and 0.3 Da for fragment ions. Confidence levels upper to 99% were used as 

positive protein identification criteria. In order to estimate the false discovery rate 

(FDR)  a reverse decoy database was created for all SwissProt resulting in 5% of 

FDR (false positive peptides/(false positive peptides + total peptides))*100. Unique 

peptides retrieved from FDR search were considered for analysis. 

 

2.2. Evolutionary analysis 

 

2.2.1. Cystatins sequences collection 

 

For the search of nucleotide sequences from cystatins C, D, S, SA and SN 

from several mammals the NCBI (http://www.ncbi.nlm.nih.gov) and Ensembl 

http://www.ncbi.nlm.nih.gov/
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(http://www.ensembl.org) databases were used by searching iteratively for the 

different query names (example: “cystatin S”, “CST4”, etc). Basic Local Alignment 

Search Tool (BLAST) [154] was also used to complete the collection of amino acid 

sequences for C, D and S-type cystatins (S,SA and SN). The accession numbers 

of the cystatin sequences retrieved are shown in Table III.2. 

 

Table III.2 – Accession numbers from the sequences found in databases of cystatins C, D, S, SA 
and SN and their chromosomal localization.  

 Species (common name) Accession number Chromosome 

Cystatin 
C 

Canis lupus familiaris (dog) XR_134509 23 

Felis catus (domestic cat) AB562976 Unknown 

Loxodonta africana (elephant) XM_003411620 Unknown 

Bos taurus (cattle) NM_174029 13 

Sus scrofa (pig) NM_001044602 17 

Ailuropoda melanoleuca (panda) XM_002931133 Unknown 

Nomascus leucogenys (gibbon) XM_003280847 Unknown 

Callithrix jacchus (marmoset) XM_002747514 5 

Pongo abelli (orangutan) ENSPPYT00000012515 20 

Saimiri sciureus (squirrel monkey) U52028 Unknown 

Homo sapiens (human) NM_000099 20 

Macaca mulatta (rhesus monkey) U51912 10 

Oryctolagus cuniculus (rabbit) NM_001082706 4 

Rattus norvegicus (rat) NM_012837 3 

Mus musculus (mouse) NM_009976 2 

Cavia porcellus (guinea pig) XM_003476403 Unknown 

Cricetulus griseus (chinese hamster) XM_003499974 Unknown 

Cystatin 

D 

Gorilla gorilla ENSGGOT00000016631 20 

Nomascus leucogenys (gibbon) XM_003278498 Unknown 

Callithrix jacchus (marmoset) ENSCJAT00000001226 5 

Homo sapiens (human) NM_001900 20 

Rattus norvegicus (rat) NM_001108961 3 

Macaca mulatta (rhesus monkey) XM_001097898 10 

Pan troglodytes (chimpanzee) XM_001147326 20 

Cystatin 

SN 

Homo sapiens (human) NM_001898 20 

Pan troglodytes (chimpanzee) XM_001147668 20 

Gorilla gorila ENSGGOT00000002801 20 

Nomascus leucogenys (gibbon) XM_003278497 Unknown 

Pongo abelli (orangutan)1 XM_002830032 20 

Pongo abelli (orangutan)2 XM_002834542 20 

Pongo abelli (orangutan)3 XM_002834568 20 

http://www.ensembl.org/
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2.2.2. Phylogenetic tree reconstruction 

 

Multiple sequence alignments were performed in BioEdit Sequence 

Alignment Editor [155] by using Clustal W [170] and by manual alignment. The 

evolutionary analysis was performed with the program MEGA 4.0 [171] and the 

phylogenetic tree was constructed using the neighbor-joining (NJ) method [172], 

considering complete deletion for gaps and being the consistency of the tree 

branches assessed by 1000 bootstrap replicates. The nucleotide coding sequence 

of chicken cystatin was used as an outgroup.  

 

3. Results 

 

3.1. Proteomic analysis 

 

The western-blotting technique was first used to detect the presence of 

cystatin S in saliva from human, rat, lamb, rabbit and dog samples. The results 

obtained were clear, since it was only detected the presence of cystatin S in the 

human saliva sample. Regarding the other saliva samples, the antibody used did 

not recognize the presence of this particular protein. However, the saliva analysis 

by tandem mass spectrometry allowed the identification of several proteins such 

as cystatins A, B and even cystatins M/E and 10. Two initial approaches were 

Pongo abelli (orangutan)4 XM_002834995 Unknown 

Pongo abelli (orangutan)5 XM_002834557 20 

Pongo abelli (orangutan)6 XM_002834559 20 

Cystatin 

S 

Homo sapiens (human) NM_001899 20 

Pan troglodytes (chimpanzee) XM_514553 20 

Callithrix jacchus (marmoset) XM_002747520 5 

Rattus norvegicus (rat)1 M75281 Unknown 

Rattus norvegicus (rat)2 XM_002726241 3 

Rattus norvegicus (rat)3 ENSRNOT00000055522 3 

Cystatin 

SA 

Homo sapiens (human) NM_001322 20 

Pan troglodytes (chimpanzee) XM_001147822 20 

Macaca mulatta (rhesus monkey) XM_001097284 10 

Chicken cystatin  J05077  
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used. On one hand, the salivary protein content was separated by gel 

electrophoresis and the bands detected near the 15kDa region were excised to be 

digested and the proteins identified. In the other approach, saliva samples were 

filtered to only obtain the proteins under 50kDa. These two strategies were used 

mainly to overcome the possibility of retention of the proteins of interest in the gel 

or in the filter, which would prevent their identification. However, the LC-MS/MS 

results only showed the presence of few type-II cystatins in saliva from rat, dog, 

rabbit and lamb (Table III.3). Still, this approach allowed identifying the presence 

of other type-II cystatins that were not expected in saliva and even to identify 

cystatins A and B (type-I cystatins) in dog and lamb saliva (Table III.3).  

 

Table III.3 – Cystatins found by LC-MS/MS from dog, rat, lamb and rabbit saliva. The searches that 
allowed these identifications were made using the mascot software against the Swissprot 
database. The Swissprot accession numbers are indicated in the table. 

 

3.2. Evolutionary analysis 

 

Saliva characterization from different mammal species by a proteomic 

approach did not allowed the identification of C and S-type cystatins in any of the 

species studied. However, in rat saliva, only cystatin-D was identified, which did 

not enable the understanding of their distribution in the mammalian class. In this 

sense, the phylogenetic analysis of these specific proteins could clarify the 

absence of these proteins in saliva of species other than humans and explain the 

ambiguity in their classification. 

The collection of C, D and S-type cystatins from the databases showed that 

cystatins such as cystatin C had been already identified in several mammal 

species while the sequences assigned as D and S-type cystatins are almost 

exclusive to Primates (Table III.2). However, in many mammal species these 

proteins have not yet been identified and, in some cases, the sequences available 

 Cystatin-A Cystatin-B Cystatin-6 Cystatin-10 Cystatin-D 

Dog CYTA_HUMAN CYTB_HUMAN CYTM_HUMAN - - 

Rat - - - D4AAU9_RAT G3H702_CRIGR 

Lamb CYTA_BOVIN CYTB_SHEEP    

Rabbit - - - D4AAU9_RAT - 
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are incorrectly annotated or even barely assembled. In humans, the genes 

encoding these proteins are well characterized, located on the chromosome 20 in 

the locus p11.21 and separated between each other by less than 0,1Mb. 

Regarding other mammals species, the locus containing the genes that encode 

type-II cystatins are often located in a syntenic region, being surrounded by the 

NXT1 and CZF1 genes and having upstream the ACSS1 gene (Figure III.1).  

By looking for CST3 gene it is possible to note that, among the genes here 

in study, this gene is the only one present in several genomes. However it has not 

been identified in the Gorilla gorilla and Pan troglodytes genomes. Regarding the 

dog genome, the conserved synteny is not observed because this region seems to 

be split between chromosomes 23 and 24 and, despite dog CST3 being located 

on chromosome 23, its chromosomal position is not clear. According to the gene 

organization in the other mammal species, CST3 is probably located upstream the 

CST9 gene. Besides that, the genes on chromosome 24 are positioned in a 

reverse way, i.e., the transcriptional orientation has an inverse direction but the 

gene organization remains the same.  

The other four genes analyzed are present mainly in Primate genomes. The 

chromosomal location of CST3, CST1 and CST5 genes showed that CST3 and 

CST5 genes are separated by ~200kb, while CST1 is located between ~100Kb 

apart from both. Regarding the S-type cystatins (CST1, CST2 and CST4 genes), 

in the human genome they are organized in the order CST4-CST2-CST1, which 

could also be seen in the Pan troglodytes genome. However, while CST1 gene 

may be retrieved from several Primate genomes, CST2 and CST4 genes are only 

found in Homo sapiens and Pan troglodytes genomes. In addition, there is also a 

gene assigned as CST2 in the rhesus monkey genome. However, whereas in 

human and chimpanzee this gene is located downstream of the CST1 gene, in 

rhesus monkey genome it was located upstream among the CST9 and CST3 

genes. It is also important to note that in the rat genome there is one gene 

assigned as CST5 and three genes annotated as CST4 located ~1Mb apart from 

the CST3 gene, but their chromosomal position is not consistent with that of 

Primates.  
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Figure III.1 – Type-II cystatin gene cluster region overview, showing the organization of the CST1-
5 genes in human (Homo sapiens), Rhesus monkey (Macaca mulatta), Chimpanzee (Pan 
troglodytes), Gorilla (Gorilla gorilla) Orangutan (Pongo abelii), Marmoset (Callithrix jacchus), Cattle 
(Bos taurus), mouse (Mus musculus) and rat (Rattus norvegicus). Orthologous genes are indicated 
by identical shading. The arrows indicate the reverse position and transcriptional orientation of the 
genes (data from Ensembl). 
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The alignment of the nucleotide sequences from C, D and S-type cystatins 

allowed the construction of a phylogenetic tree aiming the understanding of 

phylogenetic relationships between these type-II cystatins in mammals. The 

presented tree is a rooted neighbor-joining tree containing mammal sequences of 

C, D and S-type cystatins (Figure III.2). To better understand the positioning of the 

cystatins’ sequences in the branches of the tree, the alignment of their amino acid 

sequences is shown (Figure III.3) allowing the detection of differences in the 

amino acid composition that could be relevant to their functional role. 

Looking to the amino acid sequences presented in Figure III.3, it is clearly 

visible amino acid segments that allow distinguishing the different cystatins. 

Indeed, CST5 sequences present several typical amino acid patterns relatively to 

CST3 sequences and some of them correspond to basic to acidic amino acid 

substitutions (for example RKA residues in CST3 and EEE residues in CST5). 

CST1, CST2 and CST4 exhibit some amino acid substitutions in common, being 

difficult to identify differences between the sequences that allow their division into 

the different cystatin types. From the amino acid alignment it is also possible to 

observe the highly divergent rat cystatins (CST4 and CST5) and Cricetulus grisues 

CST3, being substantially different from the other CST4, CST5 and CST3 

sequences. Besides that, there are also several amino acid substitutions in the 

signal peptide regions which could influence the mechanism of their secretion. In 

addition, the signal peptide from some cystatin sequences is not known and can 

vary among different animal species, for example, the signal peptide from human 

CST3 is composed by the first 26 amino acid residues, while the signal peptide of 

rat and rabbit CST3 are composed by the first 20 and 28 amino acid residues, 

respectively. 

 



Characterization of mammal salivary peptides 

 

 

64 

 

Figure III.2 – Rooted neighbor-joining tree representing the bootstrap consensus following 1000 
replicates. The nucleotide sequences were obtained from ENSEMBL and NCBI databases and 
their respective accession numbers are reported in table III.2. In the tree there is also the indication 
of the mammalian classes associated with the CST3 clusters. 

2 
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 Figure III.3 – Amino acid composition of the cystatins used for the phylogenetic tree reconstruction. The 
boxed amino acids indicate the main amino acid substitutions in the different cystatins; red and blue 
boxes indicate amino acid differences that divide the CST1 (cystatin SN) copies from Pongo abelii in 
two main groups; green boxes indicated the signal peptide. 
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Several different copies of CST1 gene were detected for Pongo abelii. 

These copies appear distributed in different clusters in the phylogenetic tree 

(Figure III.2). All the sequences are from genes located on chromosome 20 of 

Pongo abelii, except for CST1 (4) (XM_002834995) for which the chromosomal 

location remains unknown. The copy CST1 (1) (XM_002830032) is located near 

other type-II cystatins in Pongo abelli at chromosome 20 whereas the other genes 

are located downstream in the same chromosome at the telomeric region (Figure 

III.4). These sequences show several amino acid substitutions suggesting that 

they are not the result of a single duplication from the ancestral gene (Figure III.3). 

 

The phylogenetic tree also revealed an unexpected position of the branch 

that includes the sequences of rat cystatin S (CST4), rat cystatin D (CST5) and 

cystatin C (CST3) from Cricetulus griseus. Moreover, the pairwise distances, i.e. 

the path-distance between taxa on a phylogram, revealed large distances between 

these sequences and the other cystatin sequences (Table III.4). With regard to the 

sequences of rat cystatin S (CST4) the genetic distances between these 

sequences and the human cystatin S are higher than the distance to the chicken 

cystatin, the sequence used as an outgroup. Additionally, the search with Blastn 

[154] with these sequences only identified with high confidence proteins also 

assigned as cystatin S of rat and the alignment made with other proteins, even 

other type of cystatins, showed query coverage under 50% and a percentage of 

identity below 70%. 

 

 

 

Figure III.4 – Chromosomal location of CST1 and CST3 of Pongo abelli in Chromosome 20 (data from 

Ensembl). 
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Table III.4 – Pairwise distances between human cystatins and cystatin S and cystatin D from 
Rattus norvegicus, cystatin C from Cricetulus griseus and chicken cystatin. The distance values of 
Rodent genes corresponding to genes in the human genome are highlighted in grey. 

 Homo cst4 Homo cst5 Homo cst3 

Chicken cystatin 0,683 0,731 0,612 

Ratus cst4 (1) 0,713 0,619 0,580 

Ratus cst4 (2) 0,720 0,657 0,605 

Ratus cst4 (3) 0,711 0,639 0,641 

Rattus cst5 0,640 0,560 0,529 

Cricetulus cst3 0,602 0,531 0,522 

 

 

4. Discussion 

 

Despite the importance of cystatins in the protection of the oral cavity, in 

some mammal species there is no evidence of their presence in saliva. By a 

proteomic approach of rat, dog, rabbit and lamb saliva only the presence of 

cystatin D in rat was confirmed. None of the other type-II cystatins here in study 

were found. Surprisingly, in dog and lamb saliva the presence of cystatins A and 

B, also known as stefins or type-I cystatins, was observed. These cystatins have 

been already identified in human saliva from healthy adult individuals [26], 

although more commonly found in higher concentrations in infant saliva being the 

main cystatins in saliva at this age [42]. The presence of type-I cystatins instead 

type-II cystatins in dog and lamb saliva could indicate a higher importance of the 

intracellular inhibition of papain and cathepsins L, S and H and the development of 

squamous epithelia in the oral cavity of these mammals since this involves the 

action of cystatin A and B [42,173]. Yet, it is not clear why these cystatins are only 

found in dog and lamb saliva and are not found in the other saliva’s in study. 

Nevertheless, by looking at the evolution of mammals (Figure I.13), the dog 

(Carnivora order) and sheep (Artiodactyla order) species are closely related, which 

could suggest that during the evolution these groups suffered alterations in these 

cystatins that allowed their secretion in saliva. Yet in dog saliva, the presence of 

cystatin-6, a type-II cystatin also known as cystatin-M/E, was identified. This 

cystatin, besides being a glycoprotein, only shares 35% homology with the other 
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type-II cystatins [174] and is overall expressed in the cutaneous epithelia. 

However, due to its putative signal peptide it can be secreted and has already 

been found in human sweat [174]. In addition, small amounts of cystatin M/E may 

be detected in the esophagus, oropharyngeal tissues and lung [174], and its 

expression has already been verified in rat salivary glands [175]. Like other 

cystatins, this protein is involved in the inhibition of cysteine proteases, controlling 

mainly the activity of cathepsin V, cathepsin L and legumain [174]. As type-II 

cystatins are normally inhibitors of papain-like cystein proteases (C1 family), the 

ability of cystatin M/E to inhibit also legumain (family C13) [174] could reveal an 

adaptive strategy adopted by the dog to protect the oral cavity against the 

degradation caused by this protease. 

Cystatin-10, another type-II cystatin was found in rat and rabbit saliva. The 

expression of this cystatin has already been observed in rat salivary glands being 

secreted mostly by the parotid gland [175], showing that this cystatin is also 

expressed in soft tissues and is not specific to cartilage as it was originally thought 

[176]. However, its function in the oral cavity is not yet clear. Additionally, it is 

important to refer that the approach used for rat and rabbit saliva collection 

involved the use pilocarpine, a sialagogue that stimulates salivation and may affect 

the pattern of protein secretion [177,178]. This could explain, for example, why 

cystatin-M/E, previously detected in rat salivary glands [175], was not identified in 

rat saliva, and why cystatin-10 was only found in rat and rabbit saliva.   

Among the cystatins normally found in human saliva, only a protein 

assigned as cystatin D was identified in this study for rat saliva. The remaining 

cystatins, i.e., cystatin C and S-type cystatins were not identified in rat, rabbit, 

lamb or dog saliva’s using the approach described in section 2.1 of this chapter, 

remaining to understand why these proteins are not present in saliva from the 

studied species. In this context, a phylogenetic interpretation of the proteomic 

results could clarify this question and allow understanding the distribution of these 

proteins among mammals.  

The analysis of the chromosomal location of cystatins in several mammal 

genomes showed a shared synteny among Primates, Rodents and other genomes 

(Figure III.1) showing the same gene order in the chromosomes. By looking at the 
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genomes of these species it is also evident the presence of the CST3 gene in 

almost of all of the analyzed genomes, which is consistent with the previous idea 

that CST3 (cystatin C) is the most ancestral gene among the genes here in study. 

From those genomes analyzed, this gene is located upstream the CST9 and CST8 

genes, other type-II cystatins genes also located in this chromosomal region. 

However, the synteny is not observed in the dog genome, being the cystatin locus 

split between two chromosomes. This could be the result of a chromosome 

translocation due the rearrangement of the genome, without the cystatin gene 

cluster being lost.  

In the phylogenetic tree (Figure III.2), the cystatin C sequences of the 

different mammalian orders are clustered according to the molecular tree of 

placental mammals (Figure I.13), suggesting that the gene tree for this gene 

reflects the mammal evolution tree and allows to clearly distinguish the branches 

of Primates, Rodents, Carnivores, Artiodactyla and Lagomorphs. This supports 

previous studies that suggested cystatin C was at the origin of the other type-II 

cystatins [43,47], being the most ancestral cystatin here in study. Indeed, two of 

the main conserved domains in cystatins, the Q55-X-V-X-G59 and P105-W106 

segments [47], are conserved in all the cystatin C sequences analyzed (Figure 

III.3). Thus, the absence of a high degree of differentiation between cystatin C 

proteins in the different mammal species may suggest that this protein has 

conserved its function. Although not being a major cystatin in the human saliva 

[22], cystatin C was not found in any of the animal saliva’s analyzed by the 

proteomic approach. Thus, the mechanism behind its secretion that may explain 

its presence in human saliva but not in other mammal species namely rat, rabbit, 

dog and sheep, remain to be understood. However, it is important to note that the 

secretion of cystatins in saliva is dependent on their signal peptide. As can be 

seen from the Figure III.3, the signal peptides from cystatin C (CST3) sequences 

of the animal species analyzed by the proteomic approach are quite different when 

compared to the human signal peptide which might influence its secretion.  

Regarding cystatin D (CST5), the phylogenetic tree showed a cluster 

comprising only D cystatins from Primates (Figure III.2). The other cystatin 

assigned as cystatin D from Rattus norvegicus is placed in a different branch 
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along with three other sequences annotated as rat cystatin S and Chinese 

hamster cystatin C, which may indicate a wrong annotation. Cystatin D seems to 

have had its origin before the Primate divergence, which occurred roughly at 85 

mya [179], since it is present in species from Old and New World Monkeys. 

Cystatin SN (CST1) has emerged also only in Primates but presents a more 

complex evolution (Figure III.2). Indeed, in Pongo abelii several sequences of 

cystatin SN were found, which represent successive duplications of the gene 

CST1 in this species. These sequences are distributed in different branches in the 

tree and according to their distribution and key amino acids in their composition 

(Figure III.3), the most ancestral cystatin SN in Pongo abelii is represented by 

CST1 (1), which is clustered with Nomascus CST1. In turn, by duplication, this 

cystatin gene originated two distinct groups. One group is represented by CST1 

(2) and (3), and the other contains CST1 (6), (5) and (4). The evolutionary path of 

these paralogous inferred from the tree could be further confirmed by taking into 

account their chromosomal location (Figure III.4). In addition, these gene copies 

are located in the telomeric region of the chromosome 20. Telomeric regions are 

regarded as having a greater tolerance for the incorporation of new genetic 

material without affecting the organism and that in these chromosomal regions a 

much greater length of time is required to delete duplicated segments because of 

their constrains for recombination [180]. This might explain the large number of 

copies of this gene and their maintenance in Pongo abelii genome. 

Duplications in the telomeric regions are quite common also in the human 

genome and there are several examples described in the literature. Such as the 

CST1 gene in Pongo abelii, the human TUBB4Q gene is also present in the 4q 

telomere and in ten more regions of the human genome, but only four of these 

paralogous are transcribed [181]. This behavior could also be shared with the 

CST1 genes from Pongo abelii, but further studies are necessary to determine 

whether all copies of this gene are equally transcribed. Moreover, the multiple 

copies of CST1 gene in the telomeric region of Pongo abelii chromosome 20 is not 

unheard, since, for example, in the human genome the OR-A gene present 

multiple copies in subtelomeric regions and could also vary its chromosomal 

location among humans [182]. These events could create gene families by 
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multiple duplications and modification processes which could allow the adaptation 

of the organisms to the environment. 

In particular, in these duplicates, there are amino acid substitutions in the 

two characteristic cystatin conserved domains (QXVXG and PW segments), that 

may involve the acquisition of novel functions by these genes in Pongo abelii. This 

observation is in agreement with the postulated idea by Ohno (1970) about gene 

duplication [183], which state that the gene’ copies are free to accumulate 

mutations and could subsequently lead to loss or gain  of new functions, while at 

least one of the copies still performs the ancestral task [184,185]. Thus, these 

amino acid substitutions could reveal the acquisition of novel functions while the 

ancestral CST1 gene maintains its original function, which could be also seen as a 

mechanism for the preservation of these copies in the genome. Although all of 

these CST1 genes are from protein coding sequences, it is not clear if all of them 

are expressed and if the observed mutations can interfere with the cysteine 

protease inhibitor activity typical of cystatins.  

With regard to cystatin SA (CST2) and cystatin S (CST4), they emerged 

only in Homo sapiens and Pan troglodytes and presents a high degree of similarity 

among each other, suggesting a common evolution even after its divergence into 

distinct genes. According to these data, these genes were originated at ~6,4mya, 

the average time for the emergence of these two species [186].  

As can be seen from the data, there is also the presence of a Macaca 

mulatta cystatin SA (CST2) and a Callithrix jacchus cystatin S (CST4). However, 

due to the other observed results, such as its position in the phylogenetic tree, 

these nucleotide sequences may not be correctly assigned. Moreover, the 

information from the chromosomal location of the gene assigned as CST2 in 

Macaca mulatta places it in an unusual region compared to that of the CST2 

genes from human and chimpanzee. According to their position in the tree these 

genes are more likely representatives of the cystatin SN (CST1) in these species. 

The same misclassification seems to have occurred in the sequences of cystatin S 

and cystatin D from Rattus norvegicus and cystatin C from Cricetulus griseus. 

Probably, these genes arose in Rodents before their divergence and nowadays 

can only be found in rat and Chinese hamster, since they may have been deleted 
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from the mouse genome. However, it is very unlikely they are type-II cystatins, 

because they present larger genetic distances to other type-II cystatins than to 

chicken cystatin that has diverged from mammals ~300mya 

(http://www.timetree.org). Besides, considering that cystatin S originated before 

the divergence of Homo sapiens and Pan troglodytes, it is unlikely to have 

appeared independently also in the rat genome. It is also important to refer that 

the sequence assigned as cystatin S from Rattus norvegicus was formerly known 

as LM protein, being latter assigned to cystatin S mostly due to similarities of the 

amino acid sequence with other type-II cystatins and due to its ability to inhibit 

some cysteine proteases [187]. Indeed, these Rodent cystatins present similar 

functional domains to that of the type-II cystatins (http://prosite.expasy.org/). 

However, human cystatin S presents poor inhibitory activity but have other 

functions in the oral protection. No studies exist regarding the antimicrobial activity 

and the hydroxyapatite binding ability of these proteins in Rodents. Also, the 

expression pattern of these proteins differs from that of human cystatin S since 

human cystatin S may be found in adult saliva and these Rodent proteins can only 

be found in younger animals or by stimulation with isoproterenol [43].  

The interpretation of the data from the proteomic approach under an 

evolutionary perspective allowed clarifying the distribution of C, D and S-type 

cystatins in the saliva’s analyzed. S-type and D cystatins could not be found in 

dog, lamb or rabbit saliva, since they are Primate specific, and the protein 

assigned as cystatin D (CST5) found in rat saliva, according to the phylogenetic 

tree, is a sequence misannotated, belonging to a group of Rodents specific 

proteins that although presenting similar segments to the cystatin domains they 

are not true C, D or S-type cystatin. Although similar to cystatins, the function of 

this rat protein in saliva is not clear. In addition, and especially for S-type cystatins, 

misannotation in the databases may be due to their high similarity and since they 

are the most recent proteins this impairs the acquisition of characteristics that 

allow their clear distinction.   

Finally, it remains to explain why cystatin C (CST3) is not found in rat, 

rabbit, dog or lamb saliva. The phylogenetic tree shows the presence of this 

cystatin in several placental mammals genome and, since it could be found in 

http://www.timetree.org/
http://prosite.expasy.org/PS00287
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human saliva, its presence was expected in other mammal species. However, the 

mechanism behind cystatin C secretion remains to be understood being crucial to 

explain its presence in human saliva but not in the other mammals’ saliva.  
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IV. General discussion and conclusion 

 

Nowadays, advances in large scale DNA sequencing technology allows 

sequencing the whole genomes of several organisms. The exhaustive analysis of 

these genomes gives us the ability to search for common genes in different 

species, enabling the sequences to be subsequently compared [188]. Phylogeny 

is, in that way, the basis for comparative genomic and allows understanding the 

genes under its evolutionary path [189]. However, little is known about the 

evolution of the characteristic peptides found in human saliva. 

To know if these genes are expressed in the same way in saliva of other 

species besides man, the evaluation of mRNA presence in saliva could be 

performed by DNA microarrays or other methods [188]. However, due to the 

characteristics of this biofluid, searching for mRNA molecules would be a difficult 

task mainly because RNA is quickly and highly degraded [190]. Thus, the solution 

involves the use of proteomics approaches for the evaluation of these peptides 

presence in saliva from several species. Nevertheless, the analysis of proteins can 

also be complex mainly due the post-translational modifications and the diverse 

physiochemical characteristics of the peptides [188].  

Mass spectrometry is usually the most used approach in proteomics, but it 

is directed for a panoramic figure of the sample, allowing to identify a large number 

of proteins simultaneously. Thus, it could not be the appropriate method to identify 

specific proteins among large numbers of other proteins that could even be 

expressed in the sample in higher amounts [188]. However, pre-separation of 

proteins by gel electrophoresis or by HPLC (high performance liquid 

chromatography), as performed in this work, allows to reduce sample complexity 

and achieve a better identification.  

Phylogeny could help to understand which are the genes expressed in a 

specific sample and to optimize the proteomic approach used to clearly identify 

one protein from a specific group of proteins. In this work, such approach was 

used to identify thymosin β4 in animal’s saliva. This peptide were previously 

identified in human saliva and the comparative analysis of the Tβ4 amino acid 

sequences from different mammal species allows to notice that this peptide is 
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highly conserved. Thus, it seems evident that Tβ4 could also be present in saliva 

from other species beyond humans, and so, the proteomic approach used was 

directed for the identification of this particular peptide.  

On the other hand, an interpretation of the obtained data by mass 

spectrometry under a phylogenetic perspective could help to understand the 

distribution of a protein group in a specific kind of sample. This was useful to 

understand the data regarding C, D and S-type cystatins, which were found in 

human saliva but not all of them were found in saliva from the other species. 

Phylogenetic analysis allows concluding that D and S-type cystatins couldn’t be 

identified in saliva from the analyzed species because they are Primate specific. 

Phylogenetic analysis performed in this work also enable to determine wrongly 

annotated nucleotide sequences, namely the sequences assigned as cystatin S 

and cystatin D from rat, that besides some similarity with other cystatins are 

obviously wrongly annotated in the databases. Therefore, it becomes evident the 

importance of the link between proteomics and phylogenetic approaches, which 

allows to target more effectively the study and understand under an evolutionary 

perspective the distribution of specific proteins in different organisms. The same 

has already been suggested by metagenomics and may explain, for example, if a 

given protein found for the first time in an organism represents the emergence of a 

new protein family or if it is the result of the divergence of known protein families 

[191]. Thereby, annotation errors would be avoided as those sometimes found in 

databases. 

The use of these two aspects in the characterization of different mammals’ 

saliva allowed to draw some conclusions, but also left some doubts: 

- Thymosin β4 was in fact identified in other saliva beyond human. This 

peptide was found in dog saliva, but was not found in the other analyzed 

species, remaining to understand the mechanisms that lead to its 

expression in saliva. 

- Type-I cystatins were identified in dog and lamb saliva, but not in the 

other species, and other type-II cystatins (beyond C, D and S-type 

cystatins) were also reported in rat and rabbit saliva. Not being saliva 
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specific, the presence of these cystatins over salivary cystatins is not 

clear. 

- Cystatin C, although present in the genome of several mammals, was 

not identified in any saliva analyzed in this work. However, it is not a 

cystatin specific to saliva, but remains to understand why it could be 

found in human saliva and not in the others analyzed saliva’s. 

- Cystatin D and S-type cystatins are Primate specific and have probably  

emerged after the great mammalian radiation at 80-90 million years ago. 

- Proteins wrongly annotated as cystatins S and D in rat remains 

incorrectly characterized, being its real function not known in the oral 

cavity of these mammals. 

- Although samples from Pongo abelii were not analyzed in this work, it 

would be interesting to see if all genes of cystatin SN found by the 

phylogenetic analyses are expressed in this mammal saliva, and if their 

function has evoluted. 

By all these reasons, the study of saliva from different mammal species 

using these two analytical strands, phylogeny and proteomics, may provide 

answers to this questions and may represent a way for attaining new knowledge 

about saliva. 
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